第一篇:传感器复习题
2.理解自动检测系统的组成。(选择)
组成:①传感器、②信号处理电路、③数据处理装置
6.了解传感器的分类、组成及特性(填空)(判断)
分类:①按被测量分类:位移、力、力矩、转速、振动、加速度、温度、压力、流量、流速
②按测量原理分类:电阻、电容、电感、光栅、热电偶、超声波、激光、红外、光导纤维等传感器
组成:①敏感原件、②传感原件、③测量转换电路
特性:灵敏度、分辨力、线性度、迟滞、稳定性、电磁兼容性、可靠性
7.了解电阻应变式传感器的分类;(填空)
分类:①金属应变片:ⅰ金属丝、ⅱ箔式、ⅲ薄膜式
②半导体应变片
9.了解金属热电阻的分类、特点;(填空)
分类:①普通型、②铠装型、③薄膜型
特点:温度升高,阻值增大
10.了解热敏电阻的分类、特性;(填空)
分类:①负温度系数热敏电阻(NTC)
②正温度系数热敏电阻(PTC)
特性:①NTC的离散型较小,测量精度较高
②当温度上升到某临界点时,其电阻突然下降,多用于各种电子电路中抑制浪涌电流
12.了解湿敏电阻传感器的结构、原理。(判断)
结构:引线、多孔性电极、多孔陶瓷、底座、铬加热丝、外壳、引脚、气孔 原理:
13.了解自感传感器的分类及特点;(填空)(选择)
分类:①变隙式、②变截面式、③螺线管式
特点:用于微小位移测量,线性区较小灵敏度较低,结构简单制作容易
14.了解自感传感器的应用。(填空)(选择)
应用:①位移测量
②电感式滚柱直径分选装置
③光感传感器在仿形机床中的应用
④电感式圆度计
⑤压力测量
15.了解差动变压器结构、工作原理及差动整流电路;(填空)
结构:①一次线圈、②二次线圈、③衔铁、④测杆
工作原理:
差动整流电路:
17.了解电涡流传感器工作原理、结构及特点;(选择)
工作原理:电涡流传感器的基本工作原理是基本电涡流效应。根据法拉第电磁感应定律,金属导体置于变化的磁场中时,导体表面就会有感应电流产生。这种电流的流线在金属体内自行闭合,这种由电磁感应原理产生的旋涡状感应电流称为电涡流,这种现象称为电涡流效应,电涡流传感器就是利用电涡流效应来检测导电物体的各种物理参数的。
结构:电涡流线圈、探头前端壳体、位置调节螺纹、信号处理电路、挟持螺母、电源指示灯、阀值指示灯、输出屏幕电缆线、电缆插头
特点:探头的直径越大,测量范围就越大,但分辨力就越差,灵敏度也降低
18.理解电涡流传感器的应用;(选择)
应用:①位移的测量、②振动测量、③转速测量、④镀层测量、⑤电涡流式通道安全检查门⑥电涡流表面探伤
19.掌握接近开关的概念、分类、特点、应用。(填空)(选择)
概念:接近开关又称无触点行程开关
分类:①电涡流式、②电容式、③霍尔式、④自感式、差动式变压器式、⑤磁性干簧开关
特点:①非接触检测,不影响被测物的运行工况
②不产生机械磨损和疲劳损伤,工作寿命长
③响应快,一般响应时间可达几毫秒或十几毫秒
④采用全密封结构,防潮、防尘性能好
⑤无触点、无火花、无噪声,所以适用于要求防爆的场合⑥输出信号大,易于与计算机或PLC等接口
⑦体积小,安装、调整方便
应用:①生产工件加工定位
②生产零部件计数
③成品零件缺位检测
20.了解压电效应、压电材料;(填空)(问答)(判断)(计算)
压电效应:当电介质受到某一方向的的力的撞击时而变形,其内部发生极化现象,外部发生变形;当这个力消失时,电介质又回到不带电状态,这种现象叫作压电效应。
压电材料:①石英晶体、②压电陶瓷、③高分子合成材料
22.了解电容传感器工作原理、分类;(填空)
工作原理:电容量C、A、d、∈的函数,这就是电容传感器的基本工作原理。分类:①变面积式、②变极距式、③变介电系数式
23.掌握电容传感器的应用;(选择)
应用:①电容测厚仪;
②电容加速度传感器;
③湿敏电容;
④电容式油量表;
⑤电容式接近开关。
25.了解超声波的特性,超声波探头;(填空)(选择)(判断)
特性:灵敏度高、指向性好
26.超声波传感器应用;(计算)
27.超声波探伤(选择)
①A型超声探伤:横坐标-时间轴;纵坐标-反射波强度
②B型超声探伤:横坐标-扫面距离;纵坐标-探伤深度
③C型超声探伤:
28.掌握霍尔效应霍尔传感器的应用;(选择)
应用:①角位移测量仪;
②霍尔转速表;
③霍尔式微压力传感器;
④霍尔式无触点汽车电子点火装置;
⑤霍尔式无刷电动机;
⑥霍尔式接近开关。
31.霍尔接近集成电路分类。(填空)
分类:①线性式、②开关式
32.热电效应及热电偶按结构分类;(问答)(填空)
热电效应:塞贝克发现和证明了两种不同材料的导体A和B组成的闭合回路,当两个结点温度不相同时,回路中将产生电动势,这种物理现象称为热电效应。热电偶按结构分类:①普通型热电偶、②铠装型热电偶、③薄膜热电偶
33.热电势大小影响因素。(选择)
34.了解冷端延长的方法及补偿导线的用途;(选择)
35.掌握计算修正法;(选择)
37.了解光电效应的三种类型及应用;(选择)
类型:①外光电效应-光电管、光电信增管、光电摄像管
②内光电效应-光敏电阻、光敏二极管、光敏三极管、光敏晶闸管③光生伏特效应-光电池
38.热释电效应;(问答)
热释电效应:某些电介质表面温度发生变化时,在这些介质的表面就会产生电荷,这种现象称为热释电效应。
39.理解光电传感器的四大类型的应用;(选择)(填空)P203
40.光电效应:用光照射某一物体,可以看作物体受到一连串能量为hf的光子的轰击,组成着物体的材料吸收光子能量而发生相应的光效应的物理现象称为光电效应。
1传感器由敏感元件,传感元件,测量转换电路组成。
2电阻应变片两大类:第一类是将应变片粘贴于某些弹性体上并将其接到测量转换电路,这样就构成测量各种物理的专用应变式传感器,第二类是将应变片贴于被测试件上,然后将其接到应变仪上就可直接从应变仪上读取应变量。
3应变式传感器:1应变式加速度传感器2应变式荷重传感器3压阻式固态压力传感器4压阻式压力传感器
4传感器分类:1按测量分类:位移,力,力矩,转速2按测量原理分类:电阻,电容,电感,光栅。
5金属热电阻分类:普通型,铠装型,薄膜型,特点:温度升高,金属内部原子晶格的振动加剧,从而使金属内部的自由电子通过金属导体时的阻力增大,电阻率变大,电阻值增大。6热敏感电阻按温度系数分:负温度系数热敏电阻(NTC)和正温系数热敏电阻(PTC)。7自感式电感传感器:有变隙式,变面积式和螺线管式三种。
8接近开关又称无触点行程开关。核心:感辨头。分类:1自感式差动变压器式2电涡流式3电容式4磁性干簧开关霍尔式。
9电容式传感器分类:变面积式,变极距式,变介电常数式。
10某些电介质在沿一定方向上受到外力的作用而变形时,内部会产生极化现象,同时在其
表面上产生电荷当外力去掉后,又重新回到不带电的状态,这种现象称为压电效应,压电材料一般有三类:压电晶体(单晶体),压电陶瓷(多晶体)高分子压电材料。
11金属或半导体薄片置于磁感应强度为B的磁场中,磁场方向垂直于薄片,当有电流I流过薄片时,在垂直于电流和磁场的方向上将产生电动势E这种现象称为霍尔效应。12霍尔集成电路可分为线性型和开关型两大类。
13用两种不同金属组成闭合回路,当两个结点温度不相同时,回路中将产生电动势,这种物理现象称为热电效应,两种不同材料的导体所组成的回路称为“热电偶”组成热电偶导体为“热电极”,热电偶结构分类:1普通型热电偶2铠装热电偶3薄膜热电偶
14某些电介物质表面温度发生变化时,在这些介质的表面就会产生电荷,这种现象称为热释电效应用具有这种效应的介质制成的元件称为热电释电元件。
可能出现的最大满度相对误差可以从精度等级直接得到,即rm=2.5%。
2、@m=rm*Am=2.5%*1.5MPa=0.0375M=0.0375kPa3、rx
0.5级表测量时,若用1.0级表测量时,可能出现的最大示值相对误差为
r
计算结果表明,用1.0级表比用0.5级表的示值相对误差反而小所以更合适
超声波液位计的显示上测得:t0=1.5msth1=6.0ms.已知水底与超声波探头的间距h2为10m,反射小板与探头的间距h0为0.5m,求液位h.解由于C=2h0/t0=2h1/t1h0/t0=h1/t1所以h1=(t1/t0)h0=(6.0*0.5/1.5)m=2m 所以液位为:h=h2-h1=(10-2)m=8m
第二篇:传感器复习资料..
1.1、金属电阻应变片与半导体材料的电阻应变效应有什么不同? 答:金属电阻的应变效应主要是由于其几何形状的变化而产生的,半导体材料的应变效应则主要取决于材料的电阻率随应变所引起的变化产生的。1.2、直流测量电桥和交流测量电桥有什么区别? 答:它们的区别主要是直流电桥用直流电源,只适用于直流元件,如电阻应变片,交流电桥用交流电源,适用于所有电路元件,如电阻应变片、电容。1.3、简述电阻应变式传感器产生横向误差的原因。
粘贴在受单向拉伸力试件上的应变片 , 如图2-3所示,其敏感栅是有多条直线和圆弧部
图2-3 横向效应
分组成。这时,各直线段上的金属丝只感受沿轴向拉应变x,电阻值将增加。但在圆弧段上,沿各微段轴向(即微段圆弧的切向)的应变与直线段不相等,因此与直线段上同样长度的微段所产生的电阻变化就不相同,最明显的在/2处圆弧段上,按泊松关系,在垂直方向上产生负的压应变y,因此该段的电阻是最小的。而在圆弧的其它各段上,其轴向感受的应变由 +x变化到-y。由此可见 , 将直的电阻丝绕成敏感栅之后,虽然长度相同,但应变状态不同,其灵敏系数降低了。这种现象称横向效应。
应变片横向效应表明 , 当实际使用应变片时,使用条件与标定灵敏系数 k 时的标定规则不同时,实际 k 值要改变,由此可能产生较大测量误差,当不能满足测量精确度要求时,应进行必要的修正。
1.4、采用阻值为120Ω灵敏度系数K=2.0的金属电阻应变片和阻值为120Ω的固定电阻组成电桥,供桥电压为4V,并假定负载电阻无穷大。当应变片上的应变分别为1和1 000时,试求单臂、双臂和全桥工作时的输出电压,并比较三种情况下的灵敏度。
KUKU421062106/V,应解:单臂时U0,所以应变为1时U0444KU421032103/V; 变为1000时应为U044KUKU421064106/V,应变为双臂时U0,所以应变为1时U0222KU421034103/V; 1000时应为U022全桥时U0KU,所以应变为1时U08106/V,应变为1000时应为U08103/V。从上面的计算可知:单臂时灵敏度最低,双臂时为其两倍,全桥时最高,为单臂的四倍。1.5、差动电桥有哪些有优点?
答:差动电桥比单臂电桥的灵敏度高,此外,还可以有效地改善电桥的温度误差、非线性误差。
1.6、如图所示为一直流电桥,供电电源电动势E=3V,R3=R4=100Ω,R1和R2为同型号的电阻应变片,其电阻均为50Ω,灵敏度系数K=2.0。两只应变片分别粘贴于等强度梁同一截面的正反两面。设等强度梁在受力后产生的应变为5000με,试求此时电桥输出端电压Uo。
题2.5图
KU23510315mV 解:此电桥为输出对称电桥,故U0222.1、电容式传感器有哪些类型?
解:电容式传感器分为变极距型、变面积型和变介质型三种类型。
2.2、试分析变面积式电容传感器和变间隙式电容的灵敏度?为了提高传感器的灵敏度可采取什么措施并应注意什么问题? 解:以变面积式电容传感器为例进行说明,如图所示是一直线位移型电容式传感器的示意图。
Δxbxda直线位移型电容式传感器
当动极板移动△x后,覆盖面积就发生变化,电容量也随之改变,其值为
C=εb(a-△x)/d=C0-εb·△x/d(1)
电容因位移而产生的变化量为
CCC0其灵敏度为 KbdxC0x aCb xd可见增加b或减小d均可提高传感器的灵敏度。
2.3、为什么说变间隙型电容传感器特性是非线性的?采取什么措施可改善其非线性特征? 解:下图为变间隙式电容传感器的原理图。图中1为固定极板,2为与被测对象相连的活动极板。当活动极板因被测参数的改变而引起移动时,两极板间的距离d发生变化,从而改变了两极板之间的电容量C。
1d21–固定极板 2--活动极板
设极板面积为A,其静态电容量为CAd,当活动极板移动x后,其电容量为
xAd(1)CC0dxx212d1当x< xx2121 则CC0(1)(2) dd由式(1)可以看出电容量C与x不是线性关系,只有当 x< 2.4、变间隙电容传感器的测量电路为运算放大器电路,如题4.8图所示。C0=200pF,传感器的起始电容量Cx0=20pF,定动极板距离d0=1.5mm,运算放大器为理想放大器(即K→∞,Zi→∞),Rf极大,输入电压ui=5sinωtV。求当电容传感动极板上输入一位移量△x=0.15mm使d0减小时,电路输出电压uo为多少? 题4.8图 解:由测量电路可得 u0C0C0200uiui5sint45sintV Cx0d0201.5Cx1.50.15d0x2.5、如图3-22所示正方形平板电容器,极板长度a=4cm,极板间距离δ=0.2mm.若用此变面积型传感器测量位移x,试计算该传感器的灵敏度并画出传感器的特性曲线.极板间介质为空气,08.8510-12F/m。 ax 解:这是个变面积型电容传感器,共有4个小电容并联组成。 C040a24161048.85101228.32 /pF 2103C0kx28.3270.8x(x的单位为米) 40ax)Cx40a(ax)CCxC0 CxC040a48.8510124102K70.8 /pF x2103CxpF4030201004123xcm 3.1、试述影响差动变压器输出线性度和灵敏度的主要因素是什么? 解:影响差动变压器输出线性度和灵敏度的主要因素是:传感器几何尺寸、线圈电气参数的对称性、磁性材料的残余应力、测量电路零点残余电动势等。 3.2、试述电涡流式传感器的灵敏度主要受哪些因素影响?它的主要优点是什么? 解:电涡流式传感器的灵敏度主要受导体的电导率、磁导率、几何形状,线圈的几何参数,激励电流频率以及线圈到被测导体间的距离等因素影响。电涡流式传感结构简单、频率响应宽、灵敏度高、测量范围大、抗干忧能力强,特别是有非接触测量的优点,因此在工业生产和科学技术的各个领域中得到了广泛的应用。 4.1、为什么压电传感器通常都用来测量动态或瞬态参量? 解:如作用在压电组件上的力是静态力,则电荷会泄露,无法进行测量。所以压电传感器通常都用来测量动态或瞬态参量。 4.2、压电式传感器测量电路的作用是什么?其核心是解决什么问题? 解:压电式传感器的产生的电量非常小,内阻很高。测量电路的作用是进行阻抗变换和放大,即要求测量电路的输入阻抗很高,输出阻抗很低,通常用高输入阻抗运放。其核心是要解决微弱信号的转换与放大,得到足够强的输出信号。 4.3、某加速度计的校准振动台,它能作50Hz和1g的振动,今有压电式加速度计出厂时标出灵敏度K=100mV/g,由于测试要求需加长导线,因此要重新标定加速度计灵敏度,假定所用的阻抗变换器放大倍数为1,电压放大器放大倍数为100,标定时晶体管毫伏表上指示为9.13V,试画出标定系统的框图,并计算加速度计的电压灵敏度。解:此加速度计的灵敏度为 K913091.3 mV/g 100标定系统框图如下: 加速度计阻抗变换器电压放大器晶体管毫伏表 4.4、用石英晶体加速度计及电荷放大器测量机器的振动,已知:加速度计灵敏度为5pC/g,电荷放大器灵敏度为50mV/pC,当机器达到最大加速度值时相应的输出电压幅值为2V,试求该机器的振动加速度。 已知:ka=5pC/g,kq=50mV/pC,Vomax=2V 求:amax=? 解: 因为: kaQ/a;kqV0/Q 则有: V0kakqa 所以: amaxV0max8g kakq4.5、用石英晶体加速度计及电荷放大器测量机器振动,已知,加速度计灵敏度为5pC/g;电荷放大器灵敏度为50mV/pC,最大加速度时输出幅值2V,试求机器振动加速度。解:KK1K2550250mV/g KUU2000a4g aK2504.6、什么叫正压电效应?什么叫逆压电效应?常用压材料有哪几种? 答:某些电介质在沿一定的方向上受到外力的作用而变形时,内部会产生极化现象,同时在其表面上产生电荷,当外力去掉后,又重新回到不带电的状态,这种现象称为压电效应。这种机械能转化成电能的现象,称为正压电效应。反之,在电介质的极化方向上施加交变电场或电压,它会产生机械变形,当去掉外加电场时,电介质变形随之消失,这种现象称为逆压电效应。应用于压电式传感器中的压电材料通常有三类:一类是压电晶体,它是单晶体,如石英晶体、酒石酸钾钠等;另一类是经过极化处理的压电陶瓷,它是人工合成的多晶体,如钛酸钡等;第三类是有机压电材料,是新型的压电材料,如聚偏二氯乙烯等。4.7、一只x切型的石英晶体压电元件,其,相对介电常数,横截面积A=5cm2,厚度t=0.5cm。求: (1)沿石英晶体电轴方向施加力的作用,产生电荷的压电效应称为什么?若沿电轴方向受Fx=9.8N的压力作用时两电级间输出电压值为多大? (2)若此元件与高输入阻抗运放连接时连接电缆的电容为Cc=4pF,该压电元件的输出电压值为多大? 解:(1)沿石英晶体电轴方向施加力的作用,产生电荷的压电效应称为纵向压电效应。对于x切型的石英晶体压电元件,纵向受力时,产生的电荷量为 压电元件的电容量为 两电极间的输出电压值为 (2)此元件与高输入阻抗运放连接时,连接电缆的电容与压电元件本身的电容相并联,输出电压将改变为 5.1、光电效应有哪几种?与之对应的光电元件各有哪些? 答:光电效应有外光电效应、内光电效应和光生伏特效应三种。基于外光电效应的光电元件有光电管、光电倍增管等;基于内光电效应的光电元件有光敏电阻、光敏晶体管等;基于光生伏特效应的光电元件有光电池等。 5.2、常用的半导体光电元件有哪些?它们的电路符号如何? 答:常用的半导体光电元件有光敏二极管、光敏三极管和光电池三种。它们的电路符号如下图所示: 光敏二极管 光敏三极管 光电池 5.3、什么是光电元件的光谱特性? 答:光电元件的光谱特性是指入射光照度一定时,光电元件的相对灵敏度随光波波长的变化而变化,一种光电元件只对一定波长范围的人射光敏感,这就是光电元件的光谱特性。5.4、光电传感器由哪些部分组成?被测量可以影响光电传感器的哪些部分? 答:光电传感器通常由光源、光学通路和光电元件三部分组成,如图所示。图中Ф1是光源发出的光信号,Ф2是光电器件接受的光信号,被测量可以是x1或者x2,它们能够分别造成光源本身或光学通路的变化,从而影响传感器输出的电信号I。光电传感器设计灵活,形式多样,在越来越多的领域内得到广泛的应用。 光源Φ1光学通路Φ2光电元件Ix1x2x3 5.5、模拟式光电传感器有哪几种常见形式? 答:模拟式光电传感器主要有四种。一是光源本身是被测物,它发出的光投射到光电元件上,光电元件的输出反映了光源的某些物理参数,如图a所示。这种型式的光电传感器可用于光电比色高温计和照度计;二是恒定光源发射的光通量穿过被测物,其中一部分被吸收,剩余的部分投射到光电元件上,吸收量取决于被测物的某些参数。如图b所示。可用于测量透明度、混浊度;三是恒定光源发射的光通量投射到被测物上,由被测物表面反射后再投射到光电元件上,如图c所示。反射光的强弱取决于被测物表面的性质和状态,因此可用于测量工件表面粗糙度、纸张的白度等;四是从恒定光源发射出的光通量在到达光电元件的途中受到被测物的遮挡,使投射到光电元件上的光通量减弱,光电元件的输出反映了被测物的尺寸或位置。如图d所示。这种传感器可用于工件尺寸测量、振动测量等场合。 31122a)a)被测量是光源b)b)被测量吸收光通量 c)被测量是有反射能力的表面2c)d)被测量遮蔽光通量d)133121-被测物 2-光电元件 3-恒光源 6.2超声波有哪些传播特性? 答:超声波是一种在弹性介质中的机械振荡,它是由与介质相接触的振荡源所引起的。振荡源在介质中可产生两种形式的振荡,即横向振荡和纵向振荡。横向振荡只能在固体中产生,而纵向振荡可在固体、液体和气体中产生。 超声波的一种传播特性是在通过两种不同的介质时,产生折射和反射现象,超声波的另一种传播特性是在通过同种介质时,随着传播距离的增加,其强度因介质吸收能量而减弱。 9.2(1)如图所示为光纤传感器中光线传播原理,请推导入射角的临界入射角与空气折射率n0、纤芯折射率n1及包层折射率n2的关系式。 (2)解释光纤数值孔径的物理意义。 解:(1) 在纤芯和包层界面A处,当入射角逐渐增大到临界角时,折射角等于90度,此时 光线由折射率为0n的空气,从界面O处射入纤芯时实现全反射的临界角为 9.3试计算n1=1.48和n2=1.46的阶跃折射率光纤的数值孔径。如果外部是空气n0=1,试问:对于这种光纤来说,最大入射角是多少? 解:根据光纤数值孔径NA定义 浅谈创新型人才的体会 摘要: 建设创新型国家,人才是关键因素。创新型人才的成长是一个综合培养的过程,教育是这个过程的源头和关键环节 关键字: 创新 人才教育思维 创新型人才指富于开拓性,具有创造能力,能开创新局面,对社会发展做出创造性贡献的人才。通常表现出灵活、开放、好奇的个性,具有精力充沛、坚持不懈、注意力集中、想像力丰富以及富于冒险精神等特征。 作为新时代的创新型人才还必须具备一定的条件:一是有可贵的创新品质 当前,我国正处于发展的重要战略机遇期,大力培育创新型人才,为建设创新型国家、国家创新体系和全面建设小康社会,提供坚强的人才保证和智力保障,显得尤为迫切和重要。从一定意义上说,创新型人才正以前所未有的时代需求承载着推进国家自主创新,在激烈的国际竞争中占据主动,实现中华民族伟大复兴的历史使命。二是有坚韧的创新意志 创新是一个探索未知领域和对已知领域进行破旧立新的过程,充满各种阻力和风险,可能遇到重重的困难、挫折甚至失败。人类科学技术发展到今天,要获得每一点进步相当困难。因此,创新型人才每前进一步都是需要非凡的胆识和坚忍不拔的毅力,为了既定的目标必须始终不懈地进行奋斗,锲而不舍,遭到阻挠和诽谤不气馁,遇到挫折和挫败不退却,牺牲个人利益也在所不惜,不达目的誓不罢休,不 自暴自弃,不轻言放弃。 三是有敏锐的创新观察 历史上的科学发现和技术突破,无一不是创新的结果。从这个意义上讲,创新就是发现,而且是突破,要实现突破,就要求创新型人才必须具有敏锐的观察能力、深刻的洞察能力、见微知著的直觉能力和一触即发的灵感和顿悟,不断地将观察到的事物与已掌握的知识联系起来,发现事物之间的必然联系,及时地发现别人没有发现的东西。创新型人才的观察力同时还应当是准确的,能够入木三分,发现事物的真谛,具有善于在于常中求不寻常的创新观察能力。 四是有超前的创新思维 创新思维是创新的基本前提,创新型人才具备思维方式的前瞻性、独创性、灵活性等良好思维品质,才能保证在对事物进行分析、综合和判断时做到独辟蹊径。 五是有丰富的创新知识 创新是对已有知识的发展,在人类知识越来越丰富和深奥的今天,要求创新型人才的知识结构既有广度,又有深度。因此,创新型人才须具有广博而精深的文化内涵,既要有深厚而扎实的基础知识,了解相邻学科及必要的横向学科知识,又要精通自己专业并能掌握所从事学科专业的最新科学成就和发展趋势,这是从事创新研究的必要条件。只有通过知识的不断积累才能用更为宽广的眼界进行创新实践。创新型人才拥有的信息量越大,文化素养越高,思路便越开阔。同时,完备的知识结构使他们具有料学综合化、一体化意识,有助于 增强综合思维能力和创新能力。 六是有科学的创新实践 创新的过程是遵循科学,依据事物的客观规律进行探索的过程,任何一种创新都不能有半点马虎和空想,因此,创新型人才必须具有严谨而求实的工作作风,严格遵循事物的客观规律,从实际出发,以科学的态度进行创新实践。 学习了传感器与技术大家应该都知道什么是创新型人才了,但是如何才能成为创新型人才呢? 成为创新型人才的前提就是更新教育观念: 教育观念的更新对于培养创新型人才有一下几个方面的影响: 第一,教育的目标。传统教育目标是为社会培养合格人才,现在我们谈教育目标主要是促进人的全面发展。前者是以社会为本,后者是以学生个体为本。我们现在要做的就是积极推动学生的自主发展,使其成为积极适应社会的人才。 第二,教育的使命。传统的教育使命是教授前人的知识,现代教育的使命是使人获得持续发展能力。教育不再是简单知识的传递,而是使当代学生获得发展的能力。 第三,教育的特征。传统的学校教育是建立在工业经济基础上的,是按工业经济的要求来培养学生。现代教育则反映的是知识经济对人的需求,教育方式、教育过程强调个体化、个性化。 第四,教育的组织形式。传统的组织形式是以学科、课堂为基础 体系,现代教育强调建立以问题为中心的跨学科结构。现代教育应该突出问题取向的方式,让学生提高面对现代问题的解决能力。 第五,教育思想。传统教育讲人人有受教育的权利,现代教育更加强调机会平等、过程平等,是尊重个人发展性的教育。 第六,教育过程。传统教育过程是传授和读书,现代教育强调实践性的过程和创新。教育的根本结果就是要使人获得广泛的生活经验、完整的生活概念。 以上六条是现代教育的核心理念,如果我们能够把上述思想渗透到创新教育实践中,创新型人才培养必将取得很好的效果。成为创新型人才的核心是自我发展能力 21世纪最伟大成就,不只是在征服自然和物质生产方面的科学发展,而应是在终身教育理念指导下,人的潜能的开发,人的自我发展。学习型社会要求,我们的教育不仅要给学生第一次专业技能和职业能力,更重要的是为学生奠定终身教育、自我发展的牢固基础,后一种功能在当代社会显得愈来愈重要。 成为创新型人才的关键是评价机制 评价机制是导向。现行的评价机制存在一些问题。比如:录取学生的标准单一,就是看分数,过分看重考试成绩,分分学生的命根。对学生的评价,更重要的是学生的健康、道德、兴趣、爱好,如果学生善良、诚实、忠厚和助人为乐,那就不在乎考试高分。学生是人,“人”是高山大海,“分数”只是小丘小溪;“人”是蓝天苍穹,成绩仅是天上的一颗星星。 在当今这样一个信息化的时代里,企业对人才的需求同地方相比,既有专业性,更显通用性、兼容性,与企业对专业人才的短缺有所不同,社会中既包容有众多企业迫切需要的专业人才,又有大量的人才闲置。我们完全可以利用这些专业人才,稍加培训就可以充实到企业中来,既节约了成本,实现企业与地方的人才互补,又解决了企业对人才的迫切需要。 参考文献: [1]21世纪高等院校创新型人才培养系列规划教材•企业管理学胥悦红(编者)(2008年5月版) [2]新型传感器技术及应用宋晓辉(作者)(2009年03月版) [3]传感器技术陈建元 机械工业出版社(2008-10出版) [4]传感器与检测技术高等职业技术教育研究会、宋雪臣 人民邮电出版社(2009-05出版) [4]全国高等院校测控技术与仪器专业创新型应用人才培养规划教材•传感器原理及应用 赵燕 北京大学出版社(2010-02出版) 传感器总结 当今社会的发展,是信息化社会的发展。在信息时代,人们的社会活动将主要依靠对信息资源的开发及获取、传输与处理。而传感器是获取自然领域中信息的主要途径与手段,是现代科学的中枢神经系统。它是指那些对被测对象的某一确定的信息具有感受(或响应)与检出功能,并使之按照一定规律转换成与之对应的可输出信号的元器件或装置的总称。 传感器技术是现代科技的前沿技术,发展迅猛,同计算机技术与通信技术一起被称为信息技术的三大支柱,许多国家已将传感器技术列为与通信技术和计算机技术同等重要的位置。现代传感器技术具有巨大的应用潜力,拥有广泛的开发空间,发展前景十分广阔。 传感器的定义 国家标准GB7665-87对传感器下的定义是:“能感受规定的被测量件并按照一定的规律转换成可用信号的器件或装置,通常由敏感元件和转换元件组成”。传感器是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。它是实现自动检测和自动控制的首要环节。 结构 很多非电学量(包括物理量,化学量,生物量等),早期都采用非电学 量方法测量。随着科学技术的飞速发展,对被测量的准确度、速度和精度提出了新的要求,传统方法已不能满足测量要求,必须采用传感器电测技术,把非电学量信号转换为电信号。在现代化生产过程中,需用各种传感器来监控生产过程的各个参数,使设备工作在正常状态或最佳状态。特别是传感器与计算机结合,使自动化过程更具有准确、快捷、效率高等优点。 传感器是能够感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置,能完成检测任务,它的输入量是某一被测量,可能是物理量,也可能是化学量、生物量等;输出量是某种物理量,便于传输、转换、处理、显示等,可以是气、光、电物理量,主要是电物理量;输出输入有对应关系,且应有一定的精确程度。传感器的作用包括信息的收集、信息数据的转换和控制信息的采集。传感器一般由敏感元件和转换元件两大部分组成。有时也将转换电路及辅助电路作为其组成部分。 材料 传感器材料分半导体材料、陶瓷材料、金属材料和有机材料四大类。 半导体传感器材料主要是硅,其次是锗、砷化镓、锑化铟、碲化铅、硫化镉等。主要用于制造力敏、热敏、光敏、磁敏、射线敏等传感器。 陶瓷传感器材料主要有氧化铁、氧化锡、氧化锌、氧化锆、氧化 钛、氧化铝、钛酸钡等,用于制造气敏、湿敏、热敏、红外敏、离子敏等传感器。 金属用作传感器的功能材料不如半导体和陶瓷材料广泛,主要用在机械传感器和电磁传感器中,用到的材料有铂、铜、铝、金、银、钴合金等。 有机材料用于传感器还处在开发阶段,主要用于力敏、湿度、气体、离子、有机分子等传感器,所用材料有高分子电解质、吸湿树脂、高分子膜、有机半导体聚咪唑、酶膜等。 性能 传感器性能指标主要有:灵敏度、使用频率范围、动态范围、相移。 灵敏度:指沿着传感器测量轴方向对单位振动量输入x 可获得的电压信号输出值u,即s=u/x。与灵敏度相关的一个指标是分辨率,这是指输出电压变化量△u 可加辨认的最小机械振动输入变化量△x 的大小。为了测量出微小的振动变化,传感器应有较高的灵敏度。 使用频率范围:指灵敏度随频率而变化的量值不超出给定误差的频率区间。其两端分别为频率下限和上限。为了测量静态机械量,传感器应具有零频率响应特性。传感器的使用频率范围,除和传感器本身的频率响应特性有关外,还和传感器安装条件有关(主要影响频率上限)。 动态范围:动态范围即可测量的量程,是指灵敏度随幅值的变化 量不超出给定误差限的输入机械量的幅值范围。在此范围内,输出电压和机械输入量成正比,所以也称为线性范围。动态范围一般不用绝对量数值表示,而用分贝做单位,这是因为被测振值变化幅度过大的缘故,以分贝级表示使用更方便一些。 相移:指输入简谐振动时,输出同频电压信号相对输入量的相位滞后量。相移的存在有可能使输出的合成波形产生崎变,为避免输出失真,要求相移值为零或Π,或者随频率成正比变化。 有机材料用于传感器还处在开发阶段,主要用于力敏、湿度、气体、离子、有机分子等传感器,所用材料有高分子电解质、吸湿树脂、高分子膜、有机半导体聚咪唑、酶膜等。 优缺点 从传感器分类看优缺点 按传感器输出信号分类 模拟式:输出信号为模拟信号。数字式:输出信号为数字信号。 按结构形式分类:柱式、桥式、轮辐式、悬臂梁式、板环式等。柱式:特点是结构简单、紧凑,易于加工,成本费用低,密封性能良好,对于潮湿环境很适用,可设计成压式或拉式的,可以承受很大的载荷;其缺点是位移量小、灵敏度低。 桥式:传感器弹性体为桥式,其两端用两只螺栓紧固到下面的支撑体上,其弹性体与支撑体之间有一间隙,为弹性体的受力变形空间。 该类传感器的特点如下:由于传感器与秤体之间的连接为要求很低的间隙配合,所以安装方便,维护简单,重复性好。 轮辐式:高度低、精度高、抗偏心载荷和侧向力强。 剪切梁式:该类传感器有以下特点:输出信号不受称重点位置变化的影响;线性好、精度高;传感器受拉伸与压缩时,切应力的幅度与分布基本相同,即传感器的拉伸、压缩灵敏度基本相同,所以特别适用于同时受拉和压的测量;外形低、体积小、重量轻,易于安装和维修;结构简单易于密封;抗侧向力强。 板环式:特点是输出灵敏度高、受力状态稳定、温度均匀性好、结构简单、易于加工,可制成拉压2种型号,对于0.5~30吨的拉压方式称重传感器,这种方式是很好的。 发展方向 对比传感器技术的发展历史与研究现状可以看出,随着科学技术的迅猛发展以及相关条件的日趋成熟,传感器技术逐渐受到了更多人士的高度重视。当今传感器技术的研究与发展,特别是基于光电通信和生物学原理的新型传感器技术的发展,已成为推动国家乃至世界信息化产业进步的重要标志与动力。 由于传感器具有频率响应、阶跃响应等动态特性以及诸如漂移、重复性、精确度、灵敏度、分辨率、线性度等静态特性,所以外界因素的改变与动荡必然会造成传感器自身特性的不稳定,从而给其实际应用造成较大影响。这就要求我们针对传感器的工作原理和结构,在 不同场合对传感器规定相应的基本要求,以最大程度优化其性能参数与指标,如高灵敏度、抗干扰的稳定性、线性、容易调节、高精度、无迟滞性、工作寿命长、可重复性、抗老化、高响应速率、抗环境影响、互换性、低成本、宽测量范围、小尺寸、重量轻和高强度等。 同时,根据对国内外传感器技术的研究现状分析以及对传感器各性能参数的理想化要求,现代传感器技术的发展趋势可以从四个方面分析与概括:一是开发新材料的开发与应用;二是实现传感器集成化、多功能化及智能化;三是实现传感技术硬件系统与元器件的微小型化;四是通过传感器与其它学科的交叉整合,实现无线网络化。 1.7 什么是传感器的静态特性?它有哪些性能指标?如何用公式表征这些性能指标? 答:传感器的静态特性是指被测量的值处于稳定状态时传感器的输出与输入的关系,指标:线性度,灵敏度,迟滞,重复性等。 1.8什么是传感器的动态特性?其分析方法有哪几种? 答:传感器的动态特性是指传感器的输出对随时间变化的输入量的响应特性,反映输出值真实再现变化量的输入量的能力。可以从时域和频域两个方面,采用瞬态响应法和频率响应法分析。2.2金属电阻应变片与半导体应变片的工作原理有何区别?各有何优缺点? 答:金属应变片的工作原理是基于金属的应变效应。半导体应变片的工作原理是基于半导体的压阻效应。半导体应变片的主要优点是灵敏系数比金属电阻应变片的灵敏系数大数十倍,且它的横向效应和机械滞后极小。但半导体应变片的温度稳定性和线性度比金属电阻应变片差得多。2.5试述应变片温度误差的概念,产生原因和补偿方法? 答:由于测量现场环境温度改变而给测量带来的附加误差,成为应变片的温度误差。产生原因:电阻温度系数的影响,材料和电阻丝材料的线膨胀系数的影响。补偿方法:电桥补偿法,应变片的自补偿法,热敏电阻补偿法。3.1何谓零点残余电压?说明该电压产生的原因以及消除方法。 答:零点残余电压的存在使传感器输出特性在零点附近的范围内不灵敏,限制着分辨率的提高,零点残余电压太大,将使线性度变坏,灵敏度下降,甚至回使放大器饱和阻塞有用信号的通过,致使一起不在反映被测量的变化。 产生原因:(1)由于两个二次测量线圈的等效参数不对称,使其输出的基波感应电动势的幅值和相位不同,调整磁芯位置时,也不能达到幅值和相位同时相同;(2)由于铁心的B-H特性的非线性,产生高次谐波不同,不能互相抵消。 消除方法:(1)在设计和工艺上,力求做到此路对称、线圈对称,铁心材料要均匀,要经过热处理去除机械应力和改善磁性。两个二次侧线圈窗口一致,两线圈绕制要均匀一致。一次侧线圈绕制也要均匀;(2)采用拆圈的试验方法减小残余误差。其思路是,由于两个二次侧线圈的等效参数不相等;(3)在电路上进行补偿。线路补偿主要有:加串联电阻、加并联电容、加反馈电阻或加反馈电容等。 3.2如何改善单极式边极距型电容传感器的非线性? 答:在实际中,为了改善非线性,电容传感器常做成差动形式。3.3为什么电容式传感器易受干扰?如何减少干扰? 答:电容式传感器的容量受其电极的几何尺寸等限制,一般为几十到几百皮法,使传感器的输出阻抗很高。因此传感器的负载能力差,易受外界干扰影响而产生不稳定现象。3.11什么是压磁效应?什么是正压磁伸缩,什么是负压磁伸缩? 答:某些铁磁物质在外界机械力的作用下,其内部产生机械应力,从而引起磁导率的改变,这种现象称为压磁效应。 当某种材料受拉时,在受力方向上磁导率升高,而在与作用力相垂直的方向上,磁导率降低,这种现象称为正压磁伸缩。相反,某些材料受拉时,在受力方向上,磁导率降低,而在与作用力相垂直的方向上,磁导率升高,这种现象称为负压磁伸缩。 4.1光电传感器的特点是什么?若采用光电传感器可能测量的物理量有哪些? 答:光电传感器就是以光电器件为检测元件的传感器。电绝缘抗电线位移,线速度,角位移,角速度。 4.3二进制码和循环码各有何特点? 答:二进制:(1)n位的二进制码盘具有2种不同编码,其容量为2,其最小分辨率 nn(2)二进制码为有权码,编码Cn,Cn1……C1对应于1=360°/2n,它的最外圈角节距为21。由零位算起的转角为=C12i11(3)码盘转动中,C1变化时,所有Cj(j i1n 循环码:(1)n位循环码码盘与二进制码一样具有2种不同码制,最小分辨率为 n1=360°/2n。最内阻为Rn码道,一半透光,一半不透光。其它第i码道相当于二进制码盘第i+1码道向零位方向转过1角,它的最外圈R1码道的角节距为41;(2)循环码码盘具有轴对称性,其最高位相反,而其余各位相同;(3)循环码为无权码;(4)循环码码盘转到相邻区域时,编码中只有一位发生变化,不会产生粗大误差。 4.7说明光导纤维的组成并分析其导光原理,指出光导纤维导光的必要条件是什么? 答:光导纤维是用比头发丝还细的石英玻璃丝制成的,每一根光导纤维由一个圆柱形内芯和包层组成,而且内芯的折射率略大于包层的折射率。真空中光是沿直线传播的,然而入射到纤维中的光栈都能限制在光导纤维中,随光导纤维弯曲而走弯曲的路线,并能传播很远的距离,在光导纤维中,传输信息的载体为光,当光导纤维的直径比光的波长大的多时,可以用几何光学原理,说明光在光纤内的传播。 5.1试述磁电式传感器的基本结构及其工作原理。 答:磁电式传感器由两部分组成,一部分是磁路系统,由它产生恒定直流磁场,为减少传感器的体积,一般采用永久磁铁;另一部分是线圈,有它运动切割磁力线产生感应电动势。另外,还有一些外壳、支撑、阻尼器、接线装置。磁电式传感器以电磁感应原理为基础。根据法拉第电磁感应定律dE=—kdt,如果线圈是N匝,磁场强度为B,每匝线圈平均长度为la,线圈相对磁场运动的速度为ddx=-NBla=-NBlav,可以用来来直接测量速度,如果dtdt在传感器的信号调节电路上加一个积分电路或微分电路,就可以用来测量位移或加速度。v=dx/dt,则整个线圈产生的电动势为E=-N5.2试述霍尔效应的定义及霍尔传感器的告你工作原理。 答:半导体薄片至于磁场中,当他的电流方向与磁场方向不一致时,半导体薄片上平行与电流和磁场方向的两个面之间产生电动势,这种现象称为霍尔效应。 工作原理:在垂直与外磁场B的方向上放置半导体薄片,当半导体薄片流有电流I时,在半导体薄片前、后两个端面之间产生霍尔电势UH,霍尔电动势的大小和激励电流I和磁场的磁感应强度成IB,RH为霍尔常数。d5.7说明单晶体和多晶体压电效应原理,比较石英晶体和压电陶瓷各自的特点。答:(1)石英晶体是天然的六角形晶体,在直角坐标系中,x轴平行于它的棱线,称为电轴,通常把沿电轴方向的作用下产生电荷的压电效应称为纵向压电效应;y轴垂直于它的棱面,称为机械轴,把沿机械轴方向的力作用下产生电荷的压电效应称为横向压电效应;z轴表示其纵轴,称为光轴,正比,与半导体薄片厚度d成反比,级UH=RH 2 在光轴方向时,不产生压电效应。 压电陶瓷是人工制造的多晶体,在极化处理以前,各晶粒的电畴按任意方向排列,当陶瓷施加外电场时,电畴由自发极化方向转到与外加电场方向一致,此时,压电陶瓷具有一定极化强度,这种极化强度称为剩余极化强度。由于束缚电荷的作用,在陶瓷片的电极表面上很快就吸附了一层来自外界的自由电荷,正负电荷距离大小因压力变化而变化,这种由机械能转变成电能的现象就是压电陶瓷的正压电效应,放电电荷的多少与外力的大小成比例关系,Q=d33F(2)石英晶体作为常用的压电传感器具有转换效率和装换精度高,线性范围宽,重复性好,固有频率高,动态特性好,工作温度高达550℃(压电系数不随温度变化而改变),工作湿度高达100%等优点,它的稳定性是其它压电材料无法比拟的,刚刚极化后的压电陶瓷的特性是不稳定的,经过两三个月以后,压电系数才近似保持为一定常数,经过两年以后,压电常数又会下降,所以做成的压电传感器要经常校准,另外,压电陶瓷也存在逆压电效应。5.9简述压电传感器的特点及应用 答:压电式传感器具有体积小,重量轻,结构简单,工作可靠,动态特性好,静态特性差的特点,该传感器多用于加速度和动态力或压力的测量。6.4什么是电阻温度计的三线制连接?有何优点? 答:如图所示(背面),G为检流计,R1,R2,R3为固定电阻,Ra为零位调节电阻,热电阻Rt通过电阻为r1,r2,r3的三根导线与电桥连接,r1和r2分别接在相邻的两桥臂内,当温度变化时,只要他们的长度和电阻温度系数相等,它们的电阻变化就不会影响电桥的状态。电桥在零位调整时,使用R3=Ra+Rt0,Rt0为热电阻在参考温度时的电阻值。优点,能够有效的消除由于连接导线电阻随环境温度变化而造成的测量误差。6.5简述热电偶的工作原理 答:热电偶传感器是一种将温度变化转换为电势变化的传感器,它由两种不同的金属A和B构成一个闭合回路,当两个接触端温度不同,即T>T0时,回路中会产生热电势EAB(T,T0),其中,T称为热端,T0称为冷端,A和B称为热电极。热电势的大小由两种材料的接触电势和单一材料的温差电势所决定。 6.6试用热电偶的基本原理,证明热电偶的中间导体定则 6.7简述热电偶冷端补偿的必要性,常用的冷端补偿有几种方法?并说明补偿原理?p175 答:由热电偶的测温公式可知,热电偶的热电势大小不仅与热端温度有关,而且也与冷端温度有关。只有当冷端温度恒定时,才能通过测量热电势的大小得到热端的温度。当热电偶冷端处在温度波动较大的地方时,必须首先使用补偿导线将冷端延长到一个温度稳定的地方,再考虑将冷端处理为0℃,这就是热电偶的冷端处理和补偿。 补偿导线法:补偿导线在100℃(或200℃)以下的温度范围内,具有与热电偶相同的热电特性,用它连接热电偶可起到延长热电偶冷端的作用。 热电偶冷端温度恒温法:在一个保温瓶里放冰水混合物,1个标准大气压(101.325KPa)的冰和纯水的平衡温度为0℃。在密封的盖子上插上若干支试管,试管的直径应尽量小,并有足够的插入深度。试管底部有少量高度相同的水银或变压器油,若放水银则可把补偿导线与铜导线直接插入试管中的水银里,形成导电通路。不过在水银面上应加少量蒸馏水并用石蜡封结,以防止水银蒸发和溢出。 计算修正法:在实际应用中,热电偶的参比端往往不是0℃,而是环境温度T1,这时测量出的回路热电势要小。因此,必须加上环境温度T1与冰点T0之间温差所产生的热电势后才能符合热电偶分度表的要求。根据连接导体和中间温度则有:E=(T,0)=E(T,T1)+E(T1,0)。可用室温计测出环 境温度T1,从分度表查出E(T1,0)的值,然后加上热电偶回路热电势E(T,T1),得到E=(T,0)的值,反查分度表即可得到准确的被测温度T值。6.8简述热电偶冷端补偿导线的作用。答: 1、实现冷端迁移。 2、降低电路成本 6.9在一测温系统中,用铂铑——铂热电偶测温,当冷端温度为t0=30℃时,在热端温度t时测的热电势E=(t,30℃)=6.63mV,求被测对象的真实温度。解:查表可得:E=(30,0)=0.173mV,E(t,30℃)=6.63mV,所以E(T,0)=6.63+0.173=0.803 mV 反查铂铑——铂分度表可得,t=121℃ 6.10有哪些非接触式测温方法?请简述其工作原理 答:(1)光学高温计:它是目前工业中应用较广的一种非接触式测温仪表。精密光学高温计用于科学实验中的精密测试;标准光学高温计用于量值的传递。光学高温计可用来测量800℃到3200℃的高温。由于用肉眼进行色度比较,所以测量误差与人的经验有关。光学高温计测量的温度称为亮度温度(TL),被测对象为非黑体时,要通过修正才能得到非黑体的真是温度。 (2)光电高温计:光电高温计是由人工操作来完成亮度平衡工作的,其测量结果带有操作者的主观误差。它不能进行连续测量和记录,当被测温度低于800℃时,光学高温计对亮度无法进行平衡。它采用新型的光电器件自动进行平衡,达到连续测量的目的。 (3)辐射温度计:它是根据全辐射强度定理,即物体的总辐射强度与物体的四次方成正比的关系来测量的。它由辐射感温器和显示仪表两部分组成,可用于400℃到2000℃的高温。辐射高温计测量的温度称为辐射温度TE.。被测对象为非黑体时,要通过修正才能得到非黑体的真实温度。 (4)比色温度计:比色温度计是通过测量热辐射体在两个或两个以上波长的光谱辐射亮度之比来测量温度的。其特点是准确度高,响应快,可观察小目标(最小可到2mm)。用比色温度计测得的温度称为比色温度Ts,它与物体的真实温度T很接近,一般可以不进行校正。7.3差压式流量计由哪几部分组成?简述每部分的功能 答:差压式流量计由节流装置、引压导管和差压变送器组成。 节流装置:安装于管道中产生差压,节流件前后的差压与流量成开方关系。引压导管:将节流装置前后产生的差压传送给差压变送器。 差压变送器:将节流装置前后产生的差压转换为标准电线号(4—20mA)。7.6:质量流体计可以分为哪几种类型?科里奥利流体计的工作原理? 答:质量流量计可分为两类:一类是直接式,即直接输出质量流量;另一类为间接式或推导式,如应用超声流量计和密度计组合,对它们的输出再进行乘法运算以得出质量流量。答(1)该流量计是一种直接精密地测量流体质量流量的新颖仪表,以结构主体采用两根并排的U形管,让两根管的回弯部分相向微微振动起来,则两侧的直管会跟着振动,即它们会同时靠拢或同时张开,即两根管的振动是同步的,对称的。科里奥利质量流量计是利用流体在直线运动的同时处于一旋转系中,产生与质量流量成正比的科里奥利原理而制成的一种直接式质量流量仪表。 7.11比较差压流量计,电磁流量计,涡街流量计的优缺点。 答:差压式流量计是一类应用最广泛的流量计,在各类流量仪表中其使用量占居首位。近年来,由于各种新型流量计的问世,它的使用量百分数逐渐下降,但目前仍是最重要的一类流量计。优点:(1)应用最多的孔板式流量, 计结构牢固,性能稳定可靠,使用寿命长; (2)应用范围广泛,至今尚无任何一类流量计可与之相比拟; (3)检测件与变送器、显示仪表分别由不同厂家生产,便于规模经济生产。缺点:(1)测量精度普遍偏低;(2)范围度窄,一般仅3:1~4:1; (3)现场安装条件要求高;(4)压损大(指孔板、喷嘴等)。涡街流量计是属于最年轻的一类流量计,但其发展迅速,目前已成为通用的一类流量计。优点:(1)结构简单牢固;(2)适用流体种类多;(3)精度较高;(4)范围度宽;(5)压损小。 缺点:(1)不适用于低雷诺数测量;(2)需较长直管段;(3)仪表系数较低(与涡轮流量计相比);(4)仪表在脉动流、多相流中尚缺乏应用经验。电磁流量计 电磁流量计是根据法拉弟电磁感应定律制成的一种测量导电性液体的仪表。 电磁流量计有一系列优良特性,可以解决其它流量计不易应用的问题,如脏污流、腐蚀流的测量。优点:(1)测量通道是段光滑直管,不会阻塞,适用于测量含固体颗粒的液固二相流体,如纸浆、泥浆、污水等;(2)不产生流量检测所造成的压力损失,节能效果好;(3)所测得体积流量实际上不受流体密度、粘度、温度、压力和电导率变化的明显影响;(4)流量范围大,口径范围宽;(5)可应用腐蚀性流体。 缺点:(1)不能测量电导率很低的液体,如石油制品;(2)不能测量气体、蒸汽和含有较大气泡的液体;(3)不能用于较高温度。 7.12:电磁流量计由哪几部分组成以其各部分的功能? 答:电磁流量计由传感器和转换器两部分组成。传感器有一个测量管,测量管上下装有励磁线圈,通过励磁电流后产生磁场穿过测量管,一对电极测量管内壁与液体相接触,引出感应电势,送到转换器。励磁电流则由转换器提供。8.1简述成分分析仪器的基本组成。 答:包括取样装置,预处理系统,分离系统,检测系统,信号处理系统,显示环节等。 8.2热导池的结构和工作原理是什么?双桥检测电路怎样把热导池电阻丝的信号转换为被测气体含量的信号? 答:实现将混合气体导热系数的变化转换为电阻值变化的部件,称为热导池或检测器。它包括圆柱形腔体(由铜、铝或不锈钢制造)和悬在热导池中央的电阻原件(细长电阻丝)组成。当电阻原件通过电流I时,电阻从电源吸收的功率将全部转换成热量,即dQ=I2R。 双桥检测电路中除了测量电桥Ⅰ外,还增加了参比电桥Ⅱ。在测量电桥Ⅰ中,R2和R4是两个密封在测量下限气体的热导池中的电阻丝,而R1和R3的电阻值要随着被分析气体的浓度而变化,因此也使测量电桥Ⅰ的输出电压Ucd发生变化。Ucd的极性和Ugh相反,Ucd和Ugh的差值△U送到放大器中,带动可逆电机,推动滑线电阻RAB上的滑点C左右滑动去寻找平衡点,滑线电阻RAB上面的标尺可以直接刻度被测气体的浓度值。双桥检测由于采用了差动测量方式,可以有效地克服电源电压波动和环境温度变化给测量带来的影响。 8.4磁压式氧量分析仪是怎样把氧浓度转变为电信号的? 答:在不均匀磁场中,氧分子具有瞬时性,朝强磁场方向移动,当不同氧气浓度的两种气体在同一磁场相遇时,它们之间会产生一个压力差,参比气从参比气入口进入,样气从样气入口进入,参比气经过两个参比通道进入样气室,其中一路参比气在磁场区域与样气相遇,由于样气中的氧分子朝磁场方向移动以及左右两个参比通道是想通的,所以与氧气浓度成正比的压力差使得两路参比气在微流量传感器处形成压力气流,安装在微流量传感器处的微流量传感器感知该气流并将其转变为电信号。 8.7气相色谱仪的分析原理和工作流程是什么? 答:在气相色谱分析中,流动相为载气,多数使用N2,H2,He等气体。载气由高压气瓶供给,经干燥净化装置除去杂质和水分,再经过计量、调节仪表使之以稳定的压力和精确的流量先后键入汽化室、色谱柱、检测器,然后放空。被分析试样常用微量注射器打进汽化室,当试样为液体时,要经过汽化室加热使之瞬间汽化,成为气体试样。试样被载气带进色谱柱进行分离,其不同组分将按顺序依次进入检测器(如热导池)。 原理:色谱柱中填充固定相,样品中各组分在固定相和流动相之间的分配情况是不同的。以气—液色谱法为例,在一定温度、压力下,组分在气液两相间分配达到平衡时的质量浓度比称为分配系数,即ki= si。式中,si为组分i在固定相中的质量浓度,mimi为组分 i在流动相中的质量浓度。第三篇:传感器作业
第四篇:传感器总结
第五篇:传感器总结