第一篇:视频传输类型及原理简介
视频传输类型及原理简介
视频传输
规定:视频设备的输入输出阻抗75Ω(相互配接和通用性)
种类:
1、基带同轴传输。
2、基带双绞线传输。
3、射频调制解调传输。
4、光缆调制解调传输。
5、视频数字(网络)传输。
6、微波传输。
7、无线天线视频监控系统。
一、基带同轴传输:{0~6M,1Vp-p,75Ω}
图:
同轴电缆是唯一可以不用附加传输设备也能有效传输视频信号方法。(绝对衰减最小)。突出矛盾就是频率失真,在传输通道视频失真度条件下,75-5可传输120m(200m以上可观察到失真)。
“频率加权放大技术”目前已成熟,仅用一个末端补偿设备,75-5→2000m;若前后补偿,可到3000m。
单端不平衡传输,一根为信号线;一根为零线,优点:传输阻抗,不受外界干扰和不对外产生干扰。缺点:分布参量值较大,损耗严重。线越长越严重。线缆衰减是指线缆传输信息期发生的能量降低或损耗,它遵循一种叫趋肤效应和近似效应的物理定理,随着频率的增加会增大,导体内部的电子流产生的磁场迫使电子向导体表面聚集,频率越高这个表层越薄,这一效应对电缆的衰减影响相当显著,且衰减与频率的平方根近似成正比。
可知要求75-5≤200m
75-7≤400m
75-9≤600m
75-13≤800m
如超过800m,不建议用同轴传输,由于分布参数更大,寄生干扰引入,图像质量下降。
二、双绞线传输:
图:
平衡传输方式:不平衡输入的视频经发送器A转换为平衡输出,传输回路的两根线分别是幅度相等相位相反的差分信号,在接收器B中将平衡信号再转换回不平衡信号,以便与现行设备配接。
由于双绞线上的两个信号大小相等,极性相反,且两线相绞(不断改变方向),这样线间的寄生电抗与其相邻电抗也极性相反大小相等。(两线完全平衡时)图:
C1、C2、„Cn是每对双绞线每一绕结的分布电容。
L1、L2、„Ln是每对双绞线每一绕结的感应电感。
电容C总= C1+C2+„+Cn+(-Cn+1)总感应电感L总LALB LALB
LA=L1+(-L3)+„+Ln
LB=-L2+L4+„+(-Ln+1)
当绕结基本平衡时:Cn= Cn+1,L总=0,C总=0
这表明从传输信号的角度分析两线间的寄生电容、寄生电感趋于零,但对外界干扰信号而言上述结果并不存在。(干扰信号在两根线上幅度极性都一样)
由于一般通信双绞线的特征阻抗都不是75Ω,为了同输入设备和输出设备匹配,收、发器,有的设备在收、发器设定了调节旋钮,以保证正确匹配。
由于双绞线的特征阻抗不稳定,视双绞线种类、长度和布线环境不用而变化,上述的阻抗变换调节只是一种常用典型双绞线时的大约阻抗,在实际工程中布线环境的千差万别,走线不可避免地拐弯打折,使其特征阻抗无法调整准确(施工中要注意)。
双绞线传输视频信号具有优势,但并非所有双绞线都可用于该系统,目前普遍采用5类超五类UTP,该类线8芯,除传输图像信号外,同时可传送音频信号,控制信号,供电电流和其他信号,布线方便,利用率高。
从线缆本身的传输特性看,双绞线是各类传输方式中,传输衰减和频率失真最大的一种线缆,400m双绞线同同轴电缆1000m相当。
所以,需要频率加权放大补偿能力。
由于分布电容原因,选择这种传输方式时不能使用屏蔽双绞线。
在室外使用注意防雷:因输入端对感应电压非常敏感,一旦电缆在某一段被雷电感应,运算放大时会被瞬间击穿。(速记室外不使用双绞线)
三、射频调制解调传输(“宽频共缆”“一线通”电控技术)
“宽频”是针对视频“0~6MHz”而言,充分利用5~550MHz可同时传输四十多、音频信号,并在系统中预留了报警,广播布线传输空间。
“共缆”指的是多系统,多信号可以通过“一根电缆”双向传输。
图:
原理:通过宽频调制器将图像信号调制到高频载波,使多路信号可在同轴电缆中上行传输,传输到控制室经过单路或多路视频解调,解调出标准视频信号。
对前端镜头、云台等控制信号通FSK数据调制器进行数据载波调制,调制到38MHz载波上通过同轴电缆下行传输,经过宽带调制器把控制信号解调为RS485控制模式输出给解码器,从而达到对云台的控制。
宽频共缆监控采用成熟稳定的,FDM(频分复用)和FSK(移频键控)技术。首先将同轴电缆的0~1000MHz划分为不同的传输通道(上行、下行、报警传输、隔离带),8MHz为一频道。然后将利用移频键控(指视频调幅调制、音频调频调制及FSK数据调制)技术,将不同的信号调制到不同的通道上,通过一根“电缆”上行、下行同时传输,使多系统、多信号共缆。
传输距离:(1~5km)适用(成本)
具有抗干扰能力强、传输距离远、布局易、价格低等。
四、光缆调制解调传输
光缆是一种频带最宽,传输衰减非常低,抗干扰性能非常高的优质传输介质。光端机传输技术也很成熟,单路、多路、单向、双向、音频、视频、控制、模拟、数字等。
图:
视频信号的传输路径:“C”VF进入发射机的(VTDEOIN)接口,经PFM调制,电光转换,变成光信号经适配器注入光纤,经光纤传输至光接收机,光电转换,PLL锁相解调,还原成VF信号进入
控制数据传输路径:从指挥中心发出的控制数字信号从光接收机数据入口(DATEIN)进入光端机,经PFM调制,电光转换,变成光信号经适配器注入光纤,经光→前端光端机,经光电转换,PLL锁相解调,恢复控制码,经数据接口输出到解码箱,控制
光端机传输视频,一般都用两次调制解调(模拟光端机:调幅—调光;数字光端机:数字调制—调光)
传输过程需配件:
1、光跳线:连接作用,光端机与光纤连接起来。有FC、ST、SC跳线(从光跳线的连接上看),有3m、5m、10m(从光跳线长度看)。
2、终端盒:(熔接盒)主要是保护光跳线和光纤之间熔接处,光纤熔接机将光纤和跳线熔接进终端盒。(前端复处一个,终端一个)。
3、法兰盘:一种连接器,通常光端机上有一个光纤接口,这就是法兰盘,也就是连接光跳线和光端机连接器(规格有:FC、ST、SC)
主要问题:铺设和后期维护难度大,成本较高,由于采用两次调制解调,其信噪比,特别对高频信噪比影响较大。采样位数不大,图像还原比较“硬”(高频细节丢失)。还要了解:信噪比、光功率、接收灵敏度、动态范围。
五、视频数字(网络)传输
数字传输从原理上彻底避免了模拟传输对信号失真度的苛刻要求以及信号干扰等。技术上也有足够高的传输分辨率和图像清晰度。
同模拟系统区别:有损传输,无论何种方式、还原后图像质量比模拟差。由于受网络传输带限制,目前主流的视频压缩方式为MPEG4或者H.264。我国AVS-S(AVS安防标准)也是未来的主要视频压缩方式。
数字视频图像分辨力一般在CIF—4CIF之间(352×288—704×576像素PAL)MPEG4压缩方式在4CIF、4Mbps、低压缩比时,水平方向分辨率可以对应到480TVL(704×0.7),H.264较MPEG4有近1~1.5 倍的效率,是压缩技术的发展方向。目前能够完全支持H.264算法的高运算性能DSP还没有出现。
原理:本地就近存储、用现有网络(校园网等)传输终端还原。
技术瓶颈:网络带宽限制。
谈一下比特与字节
存储的量度标准一般是字节(B),宽带的量度原理是bps(比特每秒)就CCTV而言:1个字节就是8比特,谈论网络时“比特率”,涉及存储能力时“字节”。
举例:如果一个摄像机一秒钟记录十张图像,每个图像15kB,那么在经过100兆比特每秒的以太网线路时,有多少个摄像机能够共享?另一终端上,记录
满一个200GB硬盘驱动需要多长时间?
六、微波传输系统
无线传输监控视频信号的几种方式:
1、300~1400MHz移动视频传输系统:该系统采用COFDM(车载移动系统)调制及MPEG2压缩技术,新闻采访、现场直播等。缺点一路图像。
2、1.2GHz以2.4GHz无线传输器。(只能在室内使用),避开900MHz频段干扰,干扰小,传输距离有限:10~50束。图像有限,没有云台控制。(小型仓库、超市、办公室等)
3、2.4GHz无线网络(11M×40→4M带宽)(20km)
是基于802.11B/G无线局域网,发展成室外点对多点组网应用而来,由于是基于无线IP传输技术,监控信息传输都是基于数字化传输,传输质量、传输距离、云台控制都能实现。
无委会有规定:2.4GHz频段不允许在室外使用,频道少,易受干扰。(不建议用此频段)
4、2.5~2.7GHz,3.5GHz宽带无线接入系统。(专用网络)
基于点对多点的数字调制的宽带无线传输系统,满足视频
无委会规定申请、审批(广电、运营商),才能用5、5.8GHz宽带无线接入系统(基于IEEE802.11A标准的无线网络)(20km)高吞吐量、高可靠性、卓越的传输距离和高性价比,5.8GHz无线宽带接入产品一般采用DFDM(正交频分多路复用技术)
可接供高达54Mbps(或以上)的空中速率,信道宽度为(54M的40%→20MHz)支持MPEG4、H.264等格式的数字视频流。
方案实现:无线网络(视距);中继(非视距)
示意图:每个监控区装置固定在装有固定云台摄像机,通过开放的S、C无线,将监控机实时图像传回指挥中心,并可通过局域网、广域网、因特网实现多媒体通信,达到资源信息共享。
七、无线视频监控系统
传统的有线视频监控有一个弊端。用线缆、用因特网(往往图像传输质量不变、带宽、时延)
实现中这距离视频监控:基于IP协议的无线视频监控更方便:
摄像机、视频服务器、无线连接器→传至用户计算机网络上
在网络中任意一台计算机上面都可以通过授权观看,用鼠标或键盘可控制前端。火车上:利用防区无线可实现每节车厢视频监控。
以上所有视频监控传输方式,在安防系统应用很普遍,有的一种、二种、甚至更多。设计者可根据实际情况、用户要求进行设计。
第二篇:视频传输问题
一、工程常用同轴电缆类型及性能:
1)SYV75-3、5、7、9„,75欧姆,聚乙烯绝缘实心同轴电缆。近些年有人把它称为“视频电缆”;
2)SYWV75-3、5、7、9„75欧姆,物理发泡聚乙烯绝缘同轴电缆。有人把它称为“射频电缆”;
3)基本性能:
* SYV物理结构是100%聚乙烯绝缘;SYWV 是发泡率占70-80%的物理发泡聚乙烯绝缘电缆;*由于介电损耗原因,SYV实心电缆衰减明显要大于SYWV物理发泡电缆;在常用工程电缆中,目前物理发泡电缆仍然是传输性能最好价格最低的电缆,在视频、射频、微波各个波段都是这样的。厂家给出的测试数据也说明了这一点;*同轴电缆都可以在直流、射频、微波波段应用。按照“射频”/“视频”来区分电缆,不仅依据不足,还容易产生误导:似乎视频传输必须或只能选择实心电缆(选择衰减大的,价格高的?);从工程应用角度看,还是按“实芯”和“发泡”电缆来区分类型更实用一些;*高编(128)与低编(64)电缆特性的区别:eie实验室实验研究表明,在200KHz以下频段,高编电缆屏蔽层的“低电阻”起主要作用,所以低频传输衰减小于低编电缆。但在200-300KHz以上的视频、射
频、微波波段,由于“高频趋肤效应”起主要作用,高编电缆已失去“低电阻”优势,所以高频衰减两种电缆基本是相同的。
二、了解同轴电缆的视频传输特性——“衰减频率特性”
同轴电缆厂家,一般只给出几十到几百兆赫的几个射频点的衰减数据,都还没有提供视频频段的详细
数据和特性;eie实验室对典型的SYWV75-
5、7/64编电缆进行了研究测试,结果如下: 同轴传输特性基本特点:
1.电缆越细,衰减越大:如75-7电缆1000米的衰减,与75-5电缆600多米衰减大致相当,或者说1000米的75-7电缆传输效果与75-5电缆600多米电缆传输效果大致相当;
2.电缆越长,衰减越大:如75-5电缆750米,6M频率衰减的“分贝数”,为1000米衰减“分贝数”的75%,即15db;2000米(1000+1000)衰减为20+20=40db,其他各频率点的计算方法一样。依照上面1000米电缆测试数据,计算不同长度电缆衰减时,请记住“分贝数是加碱关系”或“衰减分贝数可以按照长度变化的百分比关系计算”,就可以灵活运用了;3.频率失真特性:低频衰减少,高频衰减大。高/低边频衰减量之差,可叫做“边频差值”,这是一个十分重要参数。电缆越长,“边频差值”越大;充分认识和掌握同轴电缆的这种 “频率失真特性”,这在工程上具有十分重要的意义;这是影响图像质量最关键的特性,也是工程中最容易被忽视的问题;
三、工程应用设计要点
网上技术论坛里经常有人问:75-5电缆能传多远?回答有300米,500米,600米,还有说1000多米也可以的。为什么会有这么多答案呢?原因是没有一个统一的标准。既然工程中同轴电缆是用来传输视频信号的,而视频传输最后又体现为图像,所以谈同轴电缆和同轴视频传输技术应用,就离不开图像质量,离不开决定图像质量的“视频传输质量”和标准。
1.视频传输标准的参数很多,这里仅举一个十分重要的“频率特性”例子来理解。视频图像信号是由0-6M不同频率分量组成的。低频成分主要影响亮度和对比度,高频分量主要影响色度、清晰度和分辨率。显然,对视频传输的基本要求,不是只恢复摄像机原信号亮度、对比度就行了,而且还必须恢复摄像机原信号中各种频率份量的相对比例关系。“恢复”不可能是100%,而是允许有一个“失真度”
范围要求的标准。这个“标准”的“失真度范围”,在图像上用肉眼应该是分辨不出来的。反过来说,如果在图像上已经能够观察出一点“失真”了,那不管你主观认为图像“还行,可以,不错”甚至“双方认可验收”等等,这时的视频传输质量,都是“不合格的”。要把工程图像做好,首先就应该选择合格的传输设备,追求视频传输质量符合标准。这一点,从网站技术论坛讨论的情况看,还远没引起足够认识。宏观来看,我国监控行业发展了20多年,工程图像质量不仅没有提高反而有些下降,这不能不引起我们的关注和思考。
2.“视频传输”标准:
由图二可见,对于视频传输,我国广播级视频失真度标准要求如图a):5M以下幅频特性误差范围为±0.75db, 即91.7—109%;6M频点为70.7—109%;监控行业的要求略低一些,如图b),0—6M全范围为±1.5db,即84—118.8%;这个传输频率特性要求,与一般“3db通频带”的概念一样;这里须强调:要保证图像质量,视频传输系统(产品)的频率失真范围应小于3db;“3db带宽”这个标准,适用于光缆、射频、微波、同轴和双绞线等各种视频传输系统产品;这是为了保证图像质量,对视频传输系统的要求。但还有一个误区:在工程中还是有不少人用主观评价“工程图像质量好坏”,甚至于用双方是否认可验收来说明“传输系统(设备)”是否合格,这就有些本末倒置了。工程商这么做可能是“糊涂”;传输设备厂家如果这么做,那可就是“蒙人”了,如果再利用媒体这么宣传,那就是诚心“误导”了。
3..摄像机信号不加放大补偿,只用同轴电缆传输时,按照“3db带宽”这个标准要求,并结合上面的电缆衰减特性,75-5电缆,不超过3db失真度的电缆长度计算方法是:1000米
20db,20/3=6.67,1000/6.67=150米,75-7电缆为236米。不同厂家不同批次的电缆特性有一定差别,实际工程设计中,参照这个数据设计和施工,图像质量一般会有保证的。(准确计算应按照“边频差值”计算,上面计算忽略了低频衰减——原作注)4.实心聚乙烯绝缘电缆,衰减量大于物理发泡电缆。所以3db带宽有效传输距离少于上面计算值,工程上大致可按90%左右估算。如实芯75-5电缆“3db带宽”传输距离大约为150*0.9=135米;5.高编电缆:尽管200k以下的衰减小于低编电缆,但200-300k以上的传输衰减与低编电缆一样,所以
3db带宽传输距离,反而低于上述计算值,这是由于高编电缆的“边频差值”更大的因素造成的,“边频差值”越大,放大补偿的难度越大;6.同轴电缆加放大补偿的视频传输方式:这时系统传输特性是同轴电缆的衰减频率特性和放大补偿的者应该始终保持相反、互补关系,这才可以有效扩展同轴电缆的传输距离。目前这项同轴视频传输技术,产品已经达到的技术水平是:只用一级末端补偿(无前端无中继),75-5电缆在2km,75-7电缆在3km范围以内的任意距离上,都可以实现上述传输标准;传输距离和传输质量已经和多模光端机相当,而在传输成本、施工维护和图像质量可控恢复功能方面,都具有独特的实用优势和竞争优势;这就是说,同轴视频传输技术,以将有效监控范围扩展到了2-3公里,且是我国自有知识产权技术。7.工程中确有不少工程是按照“只要图像质量双方认可验收”就是“硬道理”的做法,这实际是无标
准可言,不属本文讨论范围。
四、同轴电缆的抗干扰性能
工程经验:一路本来没有干扰的图像,运行中偶然出现了干扰,经检查是BNC电缆头接地不良引起的。重新焊好后,干扰消失了,图像恢复正常。
这说明什么问题呢?一是说明周围环境确有外界电磁干扰存在,二是说明在正常情况下,同轴电缆可以把这类干扰屏蔽掉,三是说明BNC电缆头接地不良,破坏了电缆的屏蔽性能,使原来已经被屏蔽掉的干扰,在新的条件下又显现出来了。这就是我们探讨干扰产生原理的启发点。对于干扰的探讨,eie实验室的研究成果表明:
1.同轴干扰形成原理:就像天线接收电磁波原理一样,电缆外部客观存在的交变电磁场,可以在电缆外导体上产生干扰感应电流——干扰感应电流在电缆“纵向电阻(阻抗)”Rd上,会形成干扰感应电动势(电压)Vi——干扰感应电动势刚好串联在视频信号传输回路里,与视频信号一起加到末端负载Rh上,形成了干扰。这就是同轴干扰形成原理。
2.显然:当电缆外导体电阻很小,或当外界电磁干扰不是很强,感应电流很小,感应电动势也就很小,而且远远小于视频信号,这时就可以认为“没有干扰”。这就是同轴电缆屏蔽干扰的作用;3.在上面工程经验中,当BNC头没有焊接好、接触良、编织层在穿管时被拉断、或在电梯随行电缆中,长时间反复弯曲加上垂直重力作用编织层被逐步拉断时,都会造成外导体电阻增加,导致“干扰感应电压”升高,视频信号传输效率(分压比例)降低,使原来没有显现出来的“干扰”也出现了;4.工程中的“地电位”干扰也是通过同轴电缆外导体电阻才起作用的,所以单端接地可有效排除;5.四屏蔽高编(128)电缆外导体电阻比低编电缆小,所以形成的干扰感应电动势也要低一些,这种“低一些”的效果,只是对低频干扰而言的(欧姆电阻为主)。对于高频干扰,由于趋肤效应,高、低编电缆的表面阻抗基本一样,所以对高频的抗干扰效果区别不大;需要明确的是:与低编电缆比较,四屏蔽高编(128)电缆这种能够“适当减弱”低频干扰的效果,其减弱程度是与两种电缆外导体电阻成反比关系;工程上值得认真考虑的是这点减弱干扰的效果,与高编电缆的高投入成本是否值得?
五、视频传输中的抗干扰措施
工程中产生干扰的情况很多很复杂,但可以大致分为两大类:一类是电缆传输线路“外部电磁干扰”的入侵,如地电位干扰、电台干扰、电火花干扰、并行电缆耦合干扰等。这是影响最大、设计和施工中又很难预测的干扰。第二类是两端设备问题和故障引入的干扰,如设备电源故障引来的50/100周电源干扰,或开关电源的高频电源干扰等,不妨把这一类叫着“内部干扰”,这部分比较好解决。我们主要谈第一类的外部干扰。工程中比较成熟的经验有:
1.防止 “地电位”的单端接地或不接大地;2.电缆穿金属管,或走金属线槽;此法十分有效,但成本较高,施工有一定复杂度;3.埋地;4.“远离”其他动力电缆或信号控制电缆,并尽量避免或减少并行;5.集中供电和控制信号传输采用屏蔽电缆,但屏蔽层不能两端都接视频地;6.施工穿管时,把 “布线这种粗活”在当地雇临时工来做,结果多处拉断同轴电缆编织网,使外导体电阻增大,产生干扰,这种情况十分多。但这属于可以避免,发生概率又最高的“人为因素”。
7.电缆中间接头连接方法,不是采用F型接头和双通连接,而是采用“焊接”或“扭接”的方法,这就破坏了电缆的同轴性和特性阻抗的连续性,容易引起反射和干扰。这属于经验不足的人为因素;8.采用抗干扰器,用平衡抵销原理抗干扰。但局限性较大,现场调试交麻烦;
六、同轴抗干扰技术新进展——抗干扰同轴电缆
在外部强干扰源仍然存在的情况下,为什么电缆穿金属管,或走金属线槽后,就可以有效抗干扰呢? 正确的回答也应该是“屏蔽的效果”。那么这种屏蔽和四屏蔽电缆的屏蔽又有什么不同呢?eie实验室研究结果表明,两种屏蔽情况的根本区别在于“感应电动势是否串联在视频信号的传输回路中”?从上面“同轴电缆的抗干扰性能”一节分析已经知道,干扰在四屏蔽(铝箔+64编网+铝箔+64编网)电缆上形成的干扰感应电动势,仍然是串联在视频信号的传输回路中,所以它的效果只能是“减弱”干扰,而不是真正意义上的抗干扰;“穿管”的情况就不同了,尽管:外界电磁干扰也会在“金属管”上产生感应电动势,但这个感应电动势
与视频信号的传输回路是绝缘隔离的,所以才不会对视频 信号形成干扰。这也是彻底解决同轴电缆抗干扰性能的出路所在。
拥有我国自有知识产权的“e电缆”,实际是一种“双绝缘双屏蔽同轴电缆”,其“芯线——第一绝缘层——第一屏蔽层”仍然组成标准的SYWV75-5电缆,视频信号传输回路的“地”,仍然是第一屏蔽层;外面的第二屏蔽层才是真正的干扰屏蔽层,由于在一、二屏蔽层之间有一个第二绝缘层,这就把第二屏蔽层上的干扰感应电动势,有效排除在视频信号的传输回路之外了。这就是“e电缆”的结构特点和抗干扰原理。
工程应用和实验测试表明,在视频波段,“e电缆”抗交流电源、交流电机、变频电机和电火花等低频强电磁干扰能力,十分强大,是高编电缆无法比拟的。“e电缆”实际是给同轴电缆设计了一个“随行柔性的屏蔽室”。因此,工程中大都可以免去穿金属管、走金属线槽的麻烦。在普通监控工程中,也可以放宽动力电缆、控制电缆与视频电缆不能近距离并行的要求;对建筑物中超强动力电缆,适当拉开一定距离也可以达到抗干扰目的。
“e电缆”的开发和成功应用,是同轴抗干扰技术发展的一次技术进步和技术升级,其应用前景是:
1.有效提高了同轴电缆的视频传输质量,实现远距离、无干扰视频传输;2.有效扩大了同轴电缆的视频传输范围,配合加权视频放大,传输距离2、3km以上,恢复原图像;3.化简了监控工程的设计和施工难度,降低了抗干扰工程成本。也给无法采用金属管或金属线槽抗干扰措施的电梯监控工程提供了有效的抗干扰技术保障——电梯专用抗干扰同轴电缆。
第三篇:双绞线视频传输
在整个监控系统中,视频图象的传输是十分重要的环节。用来传输图象信号的介质主要有同轴电缆、光纤和双绞线。
由于同轴电缆自身的特性,当视频信号在同轴电缆内传输时其受到的衰减与传输距离和信号本身的频率有关。视频信号在同轴电缆内传输时不仅信号整体幅度受到衰减,而且各频率分量衰减量相差很大,特别是色彩部分衰减最大,因此同轴电缆只适合于传输距离200米左右的视频。
光纤是为了解决远距离的视频信号传输而使用的。由于光纤整体传输系统价格太高,光纤铺设、连接需要专门设备,并且安装调试困难,故障难找,损坏不易维修等缺陷,对于3000米以内近距离视频传输而言,光纤并不是一个很好的选择。
寻求一种经济、传输质量高、传输距离远的解决方案十分必要。常州市鹏凌电子有限公司根据这种情况,结合国外近年的视频音频及数据传输的发展趋势,开发出双绞线视频音频及数据传输设备,可以将双绞线应用于监控传输系统中,很好地解决了上面的难题,在今后的监控系统中必将被大量使用。
在很多工业控制系统中和干扰较大的场所传输中都使用了双绞线,例如电话传输使用的就是双绞线,我们今天广泛使用的局域网也是使用双绞线。双绞线之所以使用如此广泛,是因为它具有抗干扰能力强、传输距离远、布线容易、价格低廉等许多优点。由于双绞线对信号也存在着较大的衰减,所以传输距离远时,信号的频率不能太高,而高速信号比如以太网则只能限制在100m以内。对于视频信号而言,带宽达到6MHz,如果直接在双绞线内传输,也会衰减很大,因此视频信号在双绞线上要实现远距离传输,必须进行放大和补偿,双绞线传输设备就是完成这种功能。加上一对双绞线收发设备后,可以将图象传输到1至2km,如果采用中继方式,还可以成倍增加传输距离,而且,传输图象的质量可以与光端机媲美(如近距离双绞线视/音频传输设备加权信噪比≥60dB,微分增益≤2%,微分相位≤2°)。双绞线和双绞线传输设备价格都很便宜,不但没有增加系统造价,反而在距离增加时其造价与同轴电缆相比下降了许多。所以,监控系统中使用双绞线进行传输具有明显的优势:
1. 传输距离远、传输质量高。由于在双绞线收发器中采用了先进的处理技术,极好地补偿了双绞线对视频信号幅度的衰减以及不同频率间的衰减差,保持了原始图象的亮度和色彩以及实时性,在传输距离达到1km或更远时,图象信号基本无失真。如果采用中继方式,传输距离会更远。
2. 布线方便、线缆利用率高。一对普通电话线就可以用来传送视频信号。楼宇大厦内广泛铺设的5类非屏蔽双绞线中任取一对就可以传送一路视频信号,无须另外布线;即使是重新布线,5类电缆也比同轴电缆及光纤容易的多。一根5类电缆内有4对双绞线,如果使用一对线传送视频信号,另外的几对线还可以用来传输音频信号、控制信号、供电电源或其它信号;若全部用来传送视频,可传送4路视频,提高了线缆利用率,同时避免了各种信号单独布线带来的麻烦,减少了工程造价。
3. 抗干扰能力强。双绞线能有效抑制共模干扰,即使在强干扰环境下,双绞线也能传送极好的图象信号。而且,使用一根缆内的几对双绞线分别传送不同的信号,相互之间不会发生干扰。
4. 可靠性高、使用方便。双绞线传输设备带有防雷击措施,按工业级设计,使用起来也很简单,无需专业知识,也无太多的操作,一次安装,长期稳定工作。
5.价格便宜,取材方便。由于使用的是目前广泛使用的普通5类非屏蔽电缆或普通电话线,购买容易,而且价格也很便宜,给工程应用带来极大的方便。
国外大量使用双绞线传输设备,来传输视频音频数据,给国内的双绞线传输设备的应用带来了广阔的前景。
第四篇:电力传输简介
电力传输简介
电力传输在电力系统内叫电网,即电源点(水电站、火电站、核电站、风力发电站、太阳能发电站、地热发电站、垃圾发电站、生物能发电站等)和用户(居民、工厂、矿山等)之间的连接单元。电网总的来说分为输电线路、变电站、换流站、开关站几个单元,输电线路是连接变电站、换流站、开关站的网络,简单的说变电站、换流站、开关站相当于自来水公司的加压站和储水池,输电线路则相当于各种尺寸自来水管,对用户和自来水公司发电单位电源点都十分重要。输电线路按电压等级分类,110kV以下线路一般丘陵及平地主要采用水泥杆,220kV及以上线路采用铁塔。110kV和35kV线路在大山区大多采用铁塔以保证线路安全运行。10kV及以下线路基本采用水泥杆。
变电站、开关站是交流线路上使用的,主要作用是进行电压电流转换,如110Kv线路上的电要送到用户居民家就必须要通过变电站先将其降压为35Kv,再通过35kv线路送到35kv的变电站转换为10kv,再通过10kv线路送到10kv的变压器转换为220v的民用电到居民家中。
换流站是进行交流电和直流转换的,一般用在网络中间,不出现在电源侧或用户侧。
电力设计施工资质,设计资质按甲乙丙丁戊己进行分级,甲级为最高等级,甲级资质可以进行电力系统内所有等级电网的设计,乙级资质可以进行220kv及以下等级的电网设计。施工资质按一二三四五六
级进行分级,一级为最高等级,一级可以进行电力系统内所有等级电网的施工,二级可以进行220kv及以下等级的电网施工。
第五篇:传输工程简介
《传输工程简介》提纲
--------刘仲明
1、传输的概念及分类
(1)传输的概念
(2)单向、双向
(3)复用、解复用
(4)有线(电缆、光缆)、无线(微波、卫星、激光、红外等)(按通道、媒质分)
(5)PDH、SDH(体系)
(6)引出概念(每线利用率、话务量等)
(7)长途、本地(层次)、传输网通路组织(以GSM为例)
(8)传输站类型(以光传输、微波传输为例):
微波站的建设主要受地理环境等条件的影响,距离为次,有枢纽站、上下话路站、端站、中继站(再生、射频、中频、有源、无源等)。
光站的建设主要受距离的影响,地理环境等条件为次,有ADM、TM、REG、DXC、DWDM等。
2、传输网的地位
是一种支撑网。现代通信网络三大支撑网(传输网、同步网、信令网)之一,它必须依附业务而存在,通常是无效益的,只有投入,无直接的产出。传输网应满足先进性、合理性、安全性、可扩展性等方面的要求。其建设应具有一定的超前性,并应建立全网概念(下级服从上级,局部服从全网,近期服从远期)。
3、传输网的基本网络拓扑形式
(1)线型
(2)星型
(3)环型
(4)网孔型
应注意物理上、逻辑上的区分。
4、传输制式
(1)对PCM传输的基本认识(由来、传统电话的变更等等)
(2)PDH、SDH的基本概念(准同步复用、同步复用、正码速调整
(3)PDH的级别、速率(复用/解复用过程、速率关系)
(4)SDH的级别、速率(帧结构、复用/解复用过程、速率关系)
(5)PDH与SDH的特点及对比
5、微波传输
(1)基础知识(视距传输、设备组成、类型、天线近空要求、空间损耗、余隙等)
(2)站址选择
(3)路由设计
(4)安装设计(定位、高度、方向、俯仰角等)
(5)中继距离预算
6、光缆传输
(1)基础知识(光缆特性、衰减、色散)
(2)站址选择
(3)路由设计
(4)光缆敷设方式(管道、直埋、架空等等)
(5)安装设计
(6)中继距离验算、微波传输与光缆传输的特点及对比
(1)微波传输特点
(2)光缆传输特点
(3)传播机理与保护方式7