第一篇:因数与倍数概念记忆口诀
本资料由包头市金鹏教育培训学校智立方数学立体教学法发明人李树茂老师提供。网址:http://jinpeng.2008jy.net/
★因数与倍数概念记忆口诀★
我们这里说的数,都是非零自然数。
被除数与积倍数,商与除数皆因数。
数中的1最孤独,一个因数占熬头。
非质非合就是它,是数就是它倍数。
质数两因1本身,合数3因或更多。
最小质数就是2,4是最小的合数。
个位零二四六八,2的倍数不离它。
我们管它叫偶数,其中的2很特殊。
个位一三五七九,统统不能被二除。
它的名字叫奇数,奇偶分清不用愁。
偶数中只2质数,奇数中也多合数。
奇偶只用2去除,质合要看因个数。的倍数也好找,数字之和用3除。
5的倍数看个位,零五出现5倍数。
个位如果是鸡蛋,是2又是5倍数。
下面我们记质数,百内质数不遗漏。
二三五七九十七,十一十三一七九。
三六后面跟一七,二五八后带三九,四一四三四十七,七的后面一三九。
因倍奇偶质合数,学好分数打基础。
包头市金鹏教育培训学校——专业、权威、高效、优质的中小学课外全科培训专家。一对
一、超小班、小班教学。
第二篇:倍数与因数
《倍数和因数》教学设计
教学内容:
北师大版小学数学四年级上册第31--32页 教学目标:
1、通过动手操作并写出不同的乘法算式,认识倍数和因数,初步理解倍数和因数相互依存的关系。
2、使学生在认识倍数和因数以及探索一个数的倍数或因数的过程中,进一步体会数学知识之间的内在联系,并总结找一个数的倍数和因数的方法,从而提高数学思考的水平。
教学重点、难点:
掌握求一个数的所有因数的方法,学会有序地思考。教学过程:
一、谈话导入,激发兴趣
同学们,你们和老师是什么关系?你和妈妈呢?
我们在表达时要讲清谁是谁的什么,生活中许多关系都是相对应的。数学中自然数和自然数之间也有着对应的关系,这节课我们就来研究数和数之间的对应关系。
二、操作实践,认识倍数和因数
1、操作实践。
(1)你会用12 个同样大的正方形拼成一个长方形吗?同桌合作,动手摆一摆,想一想:每排摆几个?摆了几排?并用乘法算式把自己的摆法表示出来。(2)全班交流摆法和算式。
(3)用12个同样的正方形,大家摆出了三种不同的长方形,得出三道不同的乘法算式,我们要根据这些算式研究新的知识。
根据3×4=12,我们就说,3是12的因数,4也是12的因数;反过来,我们还可以说,12是3的倍数,12也是4的倍数。
(4)对照算式你能说一说吗?
(5)根据这两道乘法算式:2×6=12、1×12=12,你能分别说一说谁是谁的因数?谁是谁的倍数?
(6)你知道哪些是12的因数?你能用一句简洁的话说说吗?反过来呢?
(7)你能按顺序把12的因数都写出来吗?
2、举例内化。
(1)师:你理解什么是倍数,什么是因数吗?你能举一个乘法算式,让大家说说谁是谁的因数,谁是谁的倍数。
(2)同桌合作,你写一个给我说,我写一个给你说。(3)老师也想来出个算式。(板书:24÷3=8)你能说说谁是谁的因数,谁是谁的倍数吗?
(4)小结:我们不仅可以用乘法算式认识因数和倍数,同样也可以用除法算式认识因数和倍数。两个数之间的倍数、因数关系,不能单说哪个数是倍数,哪个数是因数,要说清()是()的倍数,()是()的因数
三、自主探究,意义建构,找倍数和因数。
1、自主探究。
(1)师:从古诗中找到3、6、9都是3的倍数,3还有其它的倍数吗?请你写一写,1分钟内,比一比谁写出的3的倍数最多。(教师巡视)(2)请写得又多又快的同学介绍自己的好方法、小窍门。在此基础上交流评价小结方法,评价时突出有序思维的策略。(板书:有序)(3)师:如果给你足够的时间,写得完吗?那我们就用……表示。
2、迁移内化。
(1)用自己喜欢的方法写出2和5的倍数。
(2)引导观察:请学生观察以上这些数的倍数,有什么发现?(一个数的倍数的个数是无限的,一个数最小的倍数是它本身。)
3、拓展提升。
(1)迁移尝试:请学生试着找出36的所有因数。(2)交流方法。
(3)启迪思考:怎样找才能不重复不遗漏?在小组里说一说。(4)尝试写出24的所有因数。
观察:对照36和24的所有因数,看一看你有什么发现?(一个数最小的因数是1,最大的因数是它本身。)
四、全课总结.同学们,今天这节课你有什么收获?还有什么不明白的地方?
《因数和倍数》教学反思
这节课我在教学中充分体现以学生为主体,为学生的探究发现提供足够的时空和适当的指导,同时,为提高课堂教学的有效性,我在本课的教学中体现了自主化、活动化、合作化和情意化。我创设有效的数学学习情境,数形结合,变抽象为直观。在学生已有的知识基础上,从动手操作到直观感知,概念的揭示突破了从抽象到具体。让学生自主体验数与形的结合,进而形成因数与倍数的意义。使学生初步建立了“因数与倍数”的概念。这样,充分学习、利用、挖掘教材,用学生已有的数学知识引出了新知识,减缓难度,效果较好。
第三篇:倍数与因数
一、自然数无限大,所以奇数和偶数无限大。
二2、5的倍数特征 : 个位是0或5的数是5的倍数
个位是0、2、4、6、8的数是2的倍数
个位是0的数是2和5的倍数
三、3的倍数特征: 一个数的各个数字之和是3的倍数,这个数就是3的倍数
四、撑握:同时是2和3的倍数(末位数是偶数,而且这个数的每个位数相加之和是3的倍数)
同时是2和5的倍数(10、20、30…… 个位是零的都是)
同时是3和5的倍数(第一:数字和是3的倍数第二:个位数是0或5)
同时是2、3、5的倍数(末位数是0,而且这个数的每个位数相加之和是3的倍数)
五、100以内质数表共25个:2、3、5、7、11、13、17、1923、27、2931、3741、43、4753、5961、6771、73、7983、89
六、判断一个数是不是另一个数的倍数(用除法)
判断一个数是不是质数(只有1和它本身两个因数)
判读是不是合数(至少有3个因数)
找一个数的倍数(用乘法)
找一个数的因数(用乘法算式,注意有序思考,明确一个数的因数的个数是有限的,最小的因数是1,最大的因数是它本身)
七、偶数+偶数=偶数
奇数+奇数=偶数
偶数+奇数=奇数
偶数-偶数=偶数
奇数-奇数=偶数
偶数-奇数=奇数
奇数-偶数=奇数
第四篇:因数和倍数的概念教学设计
第二单元第一课时 因数和倍数的概念
教材分析:
因数与倍数的概念,教材首先给出9个除法算式,让学生进行分类;接着出示分成两类的一种结果,分类的标准“是整数而没有余数”(“没有余数”也可以说成“余数为0”)。在此基础上,由第一类中的整数除法,引出因数与倍数的概念。最后教材指出了本单元中数的研究范围是大于0的自然数。
学情分析:
学生在给除法算式分类时,可能容易出现把算式分成三类(即把第二类按是否有余数分成两类)的现象。因此教师可以让学生讨论。为什么商是小数没有余数、商是整数有余数这两种情况归为一类?只要学生能够举例说明即可。要引导学生明确因数与倍数概念的条件与依存性。
学习目标:
1、认识因数与倍数以及两者之间的相互依存的关系。
2、初步感受数学知识之间的内在联系,培养概括、分析、比较的能力。学习重点:理解因数和倍数相互依存的关系 解决措施:自主学习、合作探究。
学习难点:认识因数和倍数相互依存的关系 解决措施:交流合作、练习指导。教学准备:ppt课件 导学单 教学过程:
一、自主学习(约7分钟)
让每一个学生根据自己的基础和经验,用自己的思维方式自由地、开放地去自学、自读教材内容,并把学、思、疑、问连结在一起,边学边解决一些问题。
1、认真阅读教材5页。
2、根据自学来填空:
①12÷2=6()是()的因数,()是()的倍数。
12÷6=2()是()的因数,()是()的倍数。
②巧记:因数和倍数,不能单独存在,相互来依靠,永远不分开。
二、合作探究(约10分钟)教师可以有针对性地参与到部分小组的学习中去,并综合学生的疑问,然后再提出一两个重点问题让学生合作探究
小组交流自主学习的内容,交流过程中自己没预习到得知识,要在弄懂、学会的基础上补充到笔记本上。
三、汇报展示(约10分钟)根据学生回答问题情况,教师进行点评和指导。引导学生明白:因数和倍数是互相依存的,不能单独存在。
同桌互相举出一个乘法算式,说出其中的因数和倍数
四、达标检测(约7分钟)
1、2×5=10()和()是()的因数,()是()和()的倍数。
2、说出下面各组数中谁是谁的因数,谁是谁的倍数: 125和25 63和9 54和18
五、拓展延伸
教师检查或小组自查,发现问题教师课堂立即订正。判断下面的说法是否正确,并说明理由:
① 15是倍数,5是因数。
② 6是3的倍数,是24的因数。
③ 4是12的因数,也是36的因数。
④ 48是12和6的倍数。板书设计:
在整数除法中,如果商是整数而没有余数,我们就说被除数是除数和商的倍数,除数和商是被除数的因数。
因数和倍数一般指的是自然数,而且其中不包括0。倍数与因数是相互依存的。教学反思
学习本小节知识,我有两点最深的体会:研读教材,走进去;活用教材,走出来。《因数和倍数》是数学概念课,新教材在引入因数和倍数的概念时与以往的教材有所不同。在以往的教材中,都是通过除法算式来引出整除的概念,每个除法算式对应着一对有整除关系的数,如a÷b=n表示a能被b整除,b能整除a。在此基础上再引出因数和倍数的概念。而现在的人教版教材中没有用数学语言给“整除”下定义,而是利用一个简单的实物图引出一个乘法算式,通过这个乘法算式直接给出因数和倍数的概念。这样编排对于学生来说更容易理解和掌握。因数和倍数是揭示两个整数之间的一种相互依存关系。教材上,探究因数这部分的例题比较少,只有一个:找18的因数。根据学生的实际情况,我进行了重组教材,先让学生根据乘法算式“一对对”地找出18的因数,在此基础上再让学生探究36的因数。通过“质疑”:有什么办法能保证既找全又不遗漏呢?让学生思考并发现:按照一定的顺序一对对的找因数,能既找全又不遗漏。进而又借助体态语言——打手势,让学生说出24和30的因数,达到了巩固练习的目的。又明确了像36当两个因数相等时,只写其中的一个6。这样设计由易到难,由浅入深,符合了学生的认知规律。教材在编排上虽然对于学生来说更容易理解和掌握。但这部分内容学生毕竟初次接触,对于学生来说还是比较难掌握的内容。本来计划因数与倍数一节课讲完,实际操作一节课只能揭示出因数与倍数的概念、求一个数的因数的方法、一个数的因数的特征。
下课后,我想,新内容概念多,一节课讲完,学生确实吃不消。俗话说:“磨刀不误砍柴工”打好前面的知识基础,第二课时讲求一个数的倍数的方法以及一个数的倍数特征自然可以放手让学生自己去探究,并且还有充足的时间对求一个数的因数的方法、一个数的因数的特征和求一个数的倍数的方法、一个数的倍数特征进行对比,从而强化所学知识。
所以我认为,课堂容量大使学生学得不够深入。我们教师总是想在一节课中让学生掌握尽量多的知识,其实这样反而会减少学生的思考时间,也使老师无法照顾差生,知道差生接受的程度,今后要多思考怎样合理安排。
第五篇:倍数和因数
倍数和因数
【教学内容】第70-72页的例题和相应的试一试,想想做做1-3 【教学目标】 【基础性目标】
1.让学生理解倍数和因数的意义,掌握找一个数的倍数和因数的方法,发现一个数的倍数、因数中最大的数、最小的数及其个数方面的特征。【提高性目标】
2.让学生初步意识到可以从一个新的角度来研究非零自然数的特征及其相互关系,培养学生的观察、分析和抽象概括能力,体会数学内容的奇妙、有趣,产生对数学的好奇心。【教学重点】
理解倍数和因数的意义,掌握找一个数的倍数和因数的方法。【教学难点】
理解倍数和因数的意义,掌握找一个数的倍数和因数的方法。【教学准备】教学光盘 【教学过程】 板块一:
(一)教学内容:教学倍数的意义,找一个数的倍数
(二)教学目标:目标
(三)教学过程:
一、导入 谈话:回忆一下,我们学过了哪些数?(学生自由发言)刚才有的同学谈到我们学习了自然数,你能举例说一说哪些数是自然数吗?(指名回答)对,o、l、2、3、4……都是自然数。这个单元我们将从一个特定的角度来对除了0之外的自然数进行研究,研究这些数的特征和相互关系,这个单元的题目就是倍数和因数。(板书课题)
二、教学倍数和因数的意义
1.那么什么是倍数和因数呢?我们还要从最熟悉的事只有一个自然数是两个自然数的乘积的时候,才能谈上它们之间具有倍数和因数的关系。
2.做“想想做做”第1题。(1)指名读题。
(2)指名口答,共同评议。
3.板书:24÷4=6。谈话:我能说24是4和6的倍数,4和6都是24的因数吗?(学生自由发言,可能引起争论,最后统一到根据24÷4=6,可以得到4×6=24,实际上24是6和4的乘积,所以24是4和6的倍数,4和6都是24的因数)
三、教学找一个数的倍数
1.谈话:下面我们研究如何找一个数的倍数。请大家找3的倍数。想想用什么办法找,能找多少个?在小组内讨论找的方法,然后动手找。2.谈话:谁来说一下你是怎样找3的倍数的?你找到了多少个? 学生发言时教师板书:3×1=3 3×2=6 3×3=9 3的倍数有3、6、9、12、15、18…… 提问:能写完吗?为什么? 3.提问:谁能总结一下找一个数的倍数的方法?(用这个数分别与1、2、3……相乘)4.谈话:你能不列式计算直接写出2的倍数和5的倍数吗? 学生独立书写。
指名回答,教师板书:2的倍数有2、4、6、8、10、12…… 5的倍数有5、10、15、20、25、30……
5.提问:观察上面的三个例子,你有什么发现?在小组内讨论。指名汇报,相机出示以下结论:一个数的最小的倍数是它本身,没有最大的倍数。一个数的倍数的个数是无限的。【设计意图】
找一个数的倍数相对比较容易,在比较中让学生感受有顺序的找可以避免重复遗漏,强化数学思维有序性的培养。为下面找一个数的因数打下比较好的伏笔。板块二:
(一)教学内容:教学找一个数的因数
(二)教学目标:目标1、2
(三)教学过程:
1.谈话:下面我们研究如何找一个数的因数。你能找出36的所有因数吗?边想边写出来。
指名说出自己找的结果,学生很可能找不全.或顺序很乱。
2.谈话:刚才同学们找到了36的一些因数,感觉到往往找不全,而且小一个大一个地没有规律。那么怎样找才能不重复、不遗漏呢?我们一起研究。
先这样想,根据因数的意义,我们知道()×()=36,括号内的数就是36的因数。
如果第一个括号里填1,那么怎样算出第二个括号里的数(指名回答,板书:36÷1=36)这样一次找到了36的几个因数?是哪两个?
如果第一个括号里填2,那么怎样算出第二个括号里的数?(指名回答,板书:36÷2—18)这样又找到了36的哪两个因数? 你能接着写出几个这样的除法算式吗?(学生回答后教师板书:36÷3=1236÷4=936÷6=6)从36÷6这道除法算式中找到了36的几个因数? 还要再写除法算式吗?为什么? 现在你能按从小到大的顺序说出36的所有因数了吗?指名到黑板前指着算式中的数说答案,教师板书:36的因数有1、2、3、4、6、9、12、18、36。
3.谈话:在小组里讨论一下,我们可以用什么办法找一个数的因数。4.谈话:你能找出15的因数和16的因数吗?如果用除法找,算式可以写出来,也可以想在心里,不写出来。学生独立做题后,指名回答,教师板书:
15的因数有:l、3、5、15。16的因数有:1、2、4、8、16。
5.提问:观察上面的三个例子,你有什么发现? 学生自由发言,教师相机出示以下结论:
一个数最小的因数是1,最大的因数是它本身。一个数的因数的个数是有限的。【设计意图】
教学的开始主要是对找一个数因数的方法进行指导,无论是乘法还是除法算式都能找到一个数的两个因数。然后以小组的形式,引导象找倍数一样有顺序的去找一个数的因数,尽可能找全。教学的层次有坡度,能照顾到绝大多数学生。板块三:
(一)教学内容:巩固练习
(二)教学目标:目标2、3
(三)教学过程:
一、组织练习
1.做“想想做做”第2题。(1)让学生自己读题填表。(2)提问:表中的“应付元数”都是4的倍数吗?为什么? 2.做“想想做做”第3题。(1)让学生自己读题填表。
(2)提问:题中的排数都是24的因数吗?每排人数呢?为什么排数和每排人数都是总人数的因数?(3)提问:通过以上两题的练习,你对倍数和斟数有什么新的认识?(倍数和因数在生活中被广泛应用)3.做“想想做做”第4题。(1)学生各自在书上填写。
(2)展示部分学生的答案,全班共同校对、评议。(3)发现做错的学生,找出错误原因。
4.游戏每人发一张卡片,标有1—30的数。(正好30名同学)a.要求:全体活动起来:7的倍数站起来。30的因数站起来。1的倍数站起来。
得出:任何非0的自然数都是1的倍数,反过来1是任何非0的自然数的因数。
b.小组内说说数与数之间的倍数和因数关系。
c.这里要注意了,我们在研究倍数和因数时,都是指非0的自然数。
二、全课总结
提问:这节课你学到了哪些知识?掌握了哪些方法?你理解了哪些结论? 【设计意图】
这节课的容量比较大,所以后面的练习我没有选择都做,主要是后面的游戏需要花一定的时间。这个游戏的设计主要想通过几的倍数、几的因数站起来这样一个全体同学互动活动,充分调动学生参与学习、主动学习的积极性。并渗透了任何非0的自然数都是1的倍数,1也是任何非0的自然数的因数。【课堂练习设计与布置】
【必做题】课本第72页“想想做做”第1题。【选做题】《补充习题》第53页 【板书设计】 倍数和因数
4*3=123*1=3()*()=36 2*6=123*2=636÷1=36 1*12=123*3=936÷2=18 一个数最小的倍数是它本身36÷3=12 没有最大的倍数36÷4=9 一个数倍数的个数是无限的36÷6=6 一个数最小的因数是1最大的……
因数是它本身,一个数因数的个数是无限的。