储能技术在风力发电系统中的应用(写写帮推荐)

时间:2019-05-12 15:11:50下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《储能技术在风力发电系统中的应用(写写帮推荐)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《储能技术在风力发电系统中的应用(写写帮推荐)》。

第一篇:储能技术在风力发电系统中的应用(写写帮推荐)

储能技术在风力发电系统中的应用.txt和英俊的男人握握手,和深刻的男人谈谈心,和成功的男人多交流,和普通的男人过日子。本文由liuxycn贡献

doc文档可能在WAP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机查看。储能技术在风力发电系统中的应用

摘要: 阐述了储能技术的原理和特点,具体介绍了飞轮储能、超导储能、蓄电池储能和超级电容器储能在 风力发电系统中的应用;分析了各种储能技术的优缺点和应用前景;指出了混合式储能技术是最可行的方 案;介绍了功率转化系统的结构特点和最优化控制技术的进展。关键词: 风力发电系统;储能技术;功率转化系统 中图分类号: TM614; TK82 文献标志码: A 文章编号: 1671-5292(2009)06-0010-06 0 引言 根据新能源振兴规划,预计到 2020 年我国风力装机容量将达到 1.5 亿 kW,将超过电力总装机容量的 10%。从电网运行的现实及大规模开发风电的长远利益考虑,提高风电场输出功率的可控性,是目前风力发电技 术的重要发展方向。把风力发电技术引入储能系统,能有效地抑制风电功率波动,平滑输出电压,提高电 能质量,是保证风力发电并网运行、促进风能利用的关键技术和主流方式。随着电力电子学、材料学等学科的发展,高效率飞轮储能、新型电池储能、超导储能和超级电容器储能等 中小规模储能技术取得了长足的进步,拓宽了储能技术的应用领域,特别是在风力发电中起到了重要作用。储能系统一般由两大部分组成: 由储能元件(部件)组成的储能装置和由电力电子器件组成的功率转换系 统(PCS)。储能装置主要实现能量的储存和释放;PCS 主要实现充放电控制、功率调节和控制等功能。1 储能技术的分类和特性 储能技术有物理储能、电磁储能、电化学储能和相变储能等 4 类。物理储能主要有飞轮储能、抽水蓄能和 压缩空气储能方式; 电磁储能主要有超导储能方式;电化学储能主要有蓄电池储能、超级电容器储能和燃 料电池储能; 相变储能主要有冰蓄冷储能等[1],[2]。1.1 飞轮储能系统 飞轮储能(FESS)是一种机械储能方式,其基本原理是将电能转换成飞轮运动的动能,并长期蓄存起来,需要时再将飞轮运动的动能转换成电能,供电力用户使用。高强度碳素纤维和玻璃纤维材料、大功率电力电子变流技术、电磁和超导磁悬浮轴承技术促进了储能飞轮 的发展。飞轮储能的功率密度大于 5 kW/kg,能量密度超过 20 kWh/kg,效率大于 90%,循环使用寿命长 达 20 a,工作温区为-40~50 ℃,无噪声,无污染,维护简单,可连续工作。若通过积木式组合后,飞轮 储能可以达到 MW 级,输出持续时间为数分钟乃至数小时。飞轮储能主要用于不间断电源(UPS)/应急电源(EPS)、电网调峰和频率控制,国外不少科研机构已将储能飞轮引入风力发电系统[3]。文献[4]利用飞轮储能电池取代传统的柴油发电机和蓄电池来充当孤岛型风力发电系统中的电能调节器和 储存器,建立了系统的电流前馈控制数学模型,实验结果表明,这一方法能有效地改善电能质量,解决 风力发电机的输出功率与负载吸收的功率相匹配的问题。美国的 Vista 公司将飞轮引入到风力发电系统,实现全程调峰,飞轮机组的发电功率为 300kW,大容量 储能飞轮的储能为 277 kWh,风力发电系统的电能输出性能及经济性能良好。中国科学院电工研究所已经研制出飞轮储能用高速电机; 华北电力大学研制出储能 2 MJ、最高发电功率 10 kW 的准磁悬浮飞轮储能装置。飞轮储能技术正在向大型机发展,其难点主要集中在转子强度设计、低功耗磁轴承、安全防护等方面。1.2 超导储能系统 超导储能系统(SMES)利用由超导线制成的线圈,将电网供电励磁产生的磁场能量储存起来,需要时再将 储存的能量送回电网。超导储能技术的优点: ①可以长期无损耗储存能量,能量返回效率很高; ②能量的释放速度快,功率输 送时无需能源形式的转换,响应速度快(ms 级),转换效率高(>96%),比容量(1~10kWh/kg)和比

功率(104~105 kW/kg)大; ③采用 SMES 可调节电网电压、频率、有功和无功功率,可实现与电力系统 的实时大容量能量交换和功率补偿。20 世纪 90 年代,在 超导储能技术已被应用于风力发电系统[5],[6],[7]。中国科学院电工研究所已研制出 1 MJ/0.5MW的高温超导储能装置。清华大学、华中科技大学、华北电力 大学等都在开展超导储能装置的研究。文献[5]采用电压偏差作为 SMES 有功控制信号,在改善风电场稳定性方面具有优良的性能。SMES 的发展重点:基于高温超导涂层导体,研发适于液氮温区运行的 MJ 级系统; 解决高场磁体绕组力 学支撑问题;与柔性输电技术相结合,进一步降低投资和运行成本; 结合实际系统探讨分布式 SMES 及其 有效控制和保护策略。

1.3 蓄电池储能技术 蓄电池储能系统(Battery Energy Storage System,BESS)主要是利用电池正负极的氧化还原反应进行充 放电,一般由电池、直—交逆变器、控制装置和辅助设备(安全、环境保护设备)等组成。目前,蓄电池 储能系统在小型分布式发电中应用最为广泛。根据所使用化学物质的不同,蓄电池可以分为铅酸电池、镍 镉电池、镍氢电池、锂离子电池、钠硫(NaS)电池、液流电池等[8],[9]。(1)铅酸电池 铅酸电池应用在储能方面的历史较早,技术较为成熟,并逐渐以密封型免维护产品为主,目前储能容量已 达 20 MW。铅酸电池的能量密度适中,价格便宜,构造成本低,可靠性好,技术成熟,已广泛应用于电力 系统。基于密封阀控型的铅酸电池具有较高的运行可靠性,在环境影响上的劣势已不甚明显,但运行数 年之后的报废电池的无害化处理和不能深度放电的问题,使其应用受到一定限制。(2)镍氢电池 与铅酸电池相比,作为碱性电池的镍氢电池具有容量大、结构坚固、充放循环次数多的特点,但价格较高。镍氢电池是密封免维护电池,不含铅、铬、汞等有毒物质,正常使用过程中不会产生任何有害物质。北京 2008 年奥运会使用的混合电动车大都采用镍氢蓄电池作为电源。镍氢电池的自放电速度明显大于镍镉电 池,需要定期对它进行全充电。须注意的是,镍氢电池只有在小电流放电时才具有 80~90 kWh/kg 的高比 能量输出,在大电流放电高功率输出时,其能量密度会降至 40kWh/kg 或更低。(3)锂离子电池 锂离子电池比能量/比功率高、自放电小、环境友好,但由于工艺和环境温度差异等因素的影响,系统指 标往往达不到单体水平,使用寿命仅是单体电池的几分之一,甚至十几分之一。大容量集成的技术难度和 生产维护成本使这种电池在短期内很难在电力系统中规模化应用。磷酸亚铁锂电池是最有前途的锂电池。磷酸亚铁锂材料的单位价格不高,其成本在几种电池材料中是最低的,而且对环境无污染。磷酸亚铁锂比 其他材料的体积要大,成本低,适合大型储能系统。

(4)钠硫电池 钠硫和液流电池被视为新兴、高效、具广阔发展前景的大容量电力储能电池。目前钠硫和液流电池均已实 现商业化运作,MW 级钠硫和 100kW 级液流电池储能系统己步入试验示范阶段[10],[11]。钠硫储能电池是在温度 300 ℃左右充放电的高温型储能电池,负极活性物质为金属钠,正极活性物质为液 态硫。迄今为止,只有日本京瓷公司成功开发出钠硫储能电池系统。钠硫电池系统在电力系统和负荷侧成功应用 100 余套,总容量超过 100 MW,其中近2/3 用于平滑负荷。日本 NEDO 支持的八仗岛风力发电机组采用钠硫电池储能来平滑和稳定输出功率。目前,钠硫电池已被日 本列为政府资助的风力发电储能电源,并有具体的推进计划。上海电力公司正进行不同容量等级(10~1 000 kW)的钠硫电池系统的研制,用于 UPS/EPS,力图掌握核 心部件制备技术,建立标准和规范,并实现模块化、规模化生产。(5)全钒液流电池 液流电池分多种体系,其中全钒电池是技术发展主流。全钒液流储能电池(Vanadium RedoxFlow Battery,VRB)是将具有不同价态的钒离子溶液分别作为正极和负极的活性物质,分别储存在各自的电解液储罐中。在对电池进行充、放电实验时,电解液通过泵的作用,由外部贮液罐循环分别流经电池的正极室和负极室,并在电极表面发生氧化和还原反应,实现对电池的充放电[12],[13]。液流电池的储能容量取决于电解液容量和密度,配置上相当灵活,只需增大电解液容积和浓度即可增大储 能容量,并且可以进行深度充放电。日本住友电气、加拿大 VRB 等公司进行全钒液流电池储能系统的商业化开发。在日本共有 15 套全钒液流 储能电池系统进行示范运行,其中北海道的一套功率为 6 MW 的全钒液流储能电池用于对 30 MW 风电场的 调频和调峰。“十五”期间,中国科学院大连化学物理研究所开发出 10 kW 全钒液流储能电池系统。2008 年,中国电 力科学研究院研发用于风电场的 100kW 级储能系统,并考核其运行的可靠性和耐久性。表 1 列出了几种 主要蓄电池的基本特性。1.4 超级电容器储能技术 超级电容器(Supercapacitor)是根据电化学双电层理论研制而成,可提供强大的脉冲功率,充电时处于 理想极化状态的电极表面,电荷将吸引周围电解质溶液中的异性离子,使其附于电极表面,形成双电荷层,构成双电层电容。超级电容器储能系统(SCES)历经 3 代及数 10 年的发展,已形成电容量 0.5~1 000 F、工作电压 12~400 V、最大放电电流 400~2 000 A 的系列产品,储能系统的最大储能量达到了 30 MJ。在电力系统中多用于短时 间、大功率的负载平滑和电能质量高峰值功率场合,在电压跌落和瞬态干扰期间提高供电水平[14],[15]。日本松下、EPCOS、NEC,美国 Maxwell、Powerstor、Evans,法国 SAFT,澳大利亚 Cap-xx 和韩国 NESS 等 公司的产品,几乎占据了整个超级电容器市场。2005 年,美国加利福尼亚州建造了 1 台 450kW 的超级电容器储能装置,用以减轻 950 kW 风力发电机组 向电网输送功率的波动。2005 年,由中国科学院电工所承担的“863”项目,完成了用于光伏发电系统的 300 Wh/1 kW 超级电容 器储能系统的研究开发工作。文献[16]提出了一种将串、并联型超级电容器储能系统应用于基于异步发电机的风力发电系统的新思路,该储能系统可同时双向、大范围、快速调节有功功率和无功功率,很好地改善了风电的电能质量和稳定性。

1.5 其它储能形式 除了上述的几种储能方式外, 在电力系统中还应用较多的储能方式,有抽水蓄能、压缩空气储能和氢燃料 电池储能等。抽水蓄能装置(Pumped Hydro Storage)在现代电网中大多用来调峰,在集中式发电中应用较多。受地理 条件限制,绝大多数风电场不具备建抽水蓄能电站的条件。

压缩空气储能(CAES)是一种调峰用燃气轮机,对于同样的电力输出,它所消耗的燃气要比常规燃气轮机 少 40%。100 MW 级燃气轮机技术成熟,利用渠式超导热管技术可使系统的能量转换效率达到 90%。大容量 和复合化发电将进一步降低成本。随着分布式能量系统的发展以及减小储气库容积和提高储气压力至 10~14 MPa 的需要,8~12 MW 微型压缩空气储能系统(micro-CAES)已成为研究热点[17]。美国爱荷华州的 CAES 蓄能项目采用风能和低谷电组合来驱动压缩机组,将空气压缩至地下含水层,发电 装机容量为 200 MW,风能发电装机容量为 100 MW。氢燃料电池是将燃料的化学能直接转化为电能的装置。为了实现氢气作为能源载体的应用,必须解决氢的 廉价制取、安全高效储运以及大规模应用这 3 个问题。未来氢能的广泛应用很可能改变风电场的职能,风 电场可能成为大型的氢制造厂,为氢燃料电池电站及氢燃料电池汽车提供氢。目前,燃料电池价格还很昂 贵,距离大规模应用还有很长的路要走。2 各种储能技术在风力发电中的应用前景分析 在各种储能技术中,抽水蓄能和压缩空气储能比较适用于电网调峰; 电池储能和相变储能比较适用于中 小规模储能和用户需求侧管理; 超导电磁储能和飞轮储能比较适用于电网调频和电能质量保障; 超级电 容器储能比较适用于电动汽车储能和混合储能。图

1、图 2 是根据美国电力储能协会提供的资料给出的各 种储能技术的功率、能量和成本比较。

成本过高是限制储能技术在风力发电中大量推广应用的共同问题,提高能量转换效率和降低成本是今后储 能技术研究的重要方向。随着风力发电的不断发展和普及,各种储能技术的发展进步,储能技术将在风 力发电系统中得到更加广泛的应用。在风力发电中,储能方式的选择需考虑额定功率、桥接时间、技术成熟度、系统成本、环境条件等多种因 素。风电场的储能首先要实现电能质量管理功能,超级电容器、高速飞轮、超导、钠硫和液流电池储能系 统能使风电场的输出功率平滑,在外部电网故障时能够提供电压支撑,维护电网稳定;其次,铅酸电池、新型钠硫和液流电池储能系统具有调峰功能,比较适合风电的大规模储存。采用超级电容器和蓄电池、超导和蓄电池、超级电容器和飞轮组合等混合式储能系统,能够兼顾电能质量 管理和能量管理,提高储能系统的经济性,是比较可行的储能方案。

国内外已经开始这方面的研究[18],[19]。3 功率转换系统 功率转换系统(PCS),是实现储能单元与负载之间的双向能量传递,将储能系统接入电力系统的重要设 备。根据储能装置所处位置的不同,PCS 主要有以下的结构形式和拓扑结构(图 3)[20]。

3.1 单台风机直流侧并联 PCS 单台风机直流侧并联 PCS 的优点是可以利用风电机组现有的功率单元(图 3a)。对于直驱型的永磁同步发电机,交流电通过全功率变流后接入电网,储能单元通过 PCS 并联于直流母线侧,可以与发电机共用 DC/AC 逆变单元,实现与电网的联接。对于双馈风力发电机,PCS 也可以并联在转子 直流母线侧,这时需要加大网侧变流器(DC/AC)的功率,以便于储能单元的功率回馈到电网。

3.2 风电场交流侧并联 PCS PCS 的安装位置一般在风电场出口处的低压侧(图 3b)。每台风机所处位置的风速不同,而风电场自身具有一定的功率平滑功能,采用风电场交流侧并联 PCS 结 构,PCS 的总功率有所降低,需要双向 AC/DC 变流器;储能单元集中放置,便于维护和扩容。3.3 风电场 HVDC 输电直流侧并联 PCS 风电场通过电压源高压直流(VSC-HVDC)输电并网。由于 VSC-HVDC 系统具有立即导通和立即关断的控制阀,通过对控制阀的开和关,实现对交流侧电压幅值和相角的控制,从而达到独立控制有功功率和无功功率的 目的,且换流站不需要无功补偿、不存在换相失败等问题。这些特点使得 VSC-HVDC 技术在连接风电场并 网方面具有一定的优越性,特别适用于需要长距离传输的海上风电场的并网[21]。PCS 并联在 VSC-HVDC 系 统的直流母线上(图 3c),通过控制储能单元的充放电功率,使其补偿风能的波动,从而使风电通过直流 输电注入到电网的功率稳定。3.4 混合储能系统 PCS 拓扑结构 采用超级电容器和蓄电池混合储能系统的 PCS 主要有 2 种结构: 一种是两者都通过 DC/DC 并联于直流母 线侧; 另一种是通过蓄电池单元的适当串并联,蓄电池直接并联在直流母线上,节省了一组 DC/DC 变流 器(图 4)。

文献[19]把超级电容器和全钒液流电池用于 PMSG 直流侧储能,超级电容器用来处理瞬时大功率问题,从 而降低全钒液流电池容量 55%,减少全钒液流电池深度放电次数 8%,延长了电池寿命,减低电池损耗 15%,提高了系统效率。在超级电容和蓄电池的容量匹配和控制策略上,还需要进一步的研究。4 结束语 研发高效储能装置及其配套设备,使之与风电/光伏发电机组容量相匹配,支持充放电状态的迅速切换,确保并网系统的安全稳定,已成为可再生能源充分利用的关键。随着风力发电系统的不断发展,各种储能 技术的发展进步,第二代高温超导储能、高速飞轮储能、全钒液流和钠硫储能、超级电容储能等技术将得 到更加广泛的应用。

目前,电力储能系统推广应用的最大障碍在于国外少数企业的技术垄断,由此造成其价格高企。要推动 电力储能系统在电网中的规模化应用,一靠掌握自主知识产权,使其价格大幅下降;二靠政府的政策鼓励 和资金推动。如果能实现电力储能系统国产化,使其成本达到或接近应用水平,那么风电场对电力储能系 统的需求将迅速加大。混合式储能技术将在风力发电系统中得到广泛应用,同时,先进的电力电子技术和控制技术也将得到发展 与应用。参考文献: [1] 张文亮,丘明,来小康.储能技术在电力系统中的应用[J].电网技术,2008,32(7):1-9.[2] 张宇,俞国勤,施明融,等.电力储能技术应用前景分析[J].华东电力,2008,36(4):91-93.[3] 阮军鹏,张建成,汪娟华.飞轮储能系统改善并网风电场稳定性的研究[J].电力科学与工程,2008,24(3):5-8.[4] R CARDENAS, R PENA, J CLRE.Control strategy forpower smoothing vector controlled induction machineand flywheel [J].Electronics Letters,2000,36(8):765-766.[5] 吴俊玲,吴畏,周双喜.超导储能改善并网风电场稳定性的研究[J].电工电能新技术,2004,23(3): 59-63.[6] 石晶,唐跃进,陈磊,等.基于超导磁储能的变速恒频风力发电机励磁系统[J].科技导报,2007,26(1):43-46.[7] 刘昌金,胡长生,李霄,等.基于超导储能系统的风电场功率控制系统设计[J].电力系统自动化,2008,32(16):83-88.[8] 桂长清.风能和太阳能发电系统中的储能电

池[J].电池工业,2008,13(1):50-54.[9] 张步涵,曾杰,毛承雄,等.电池储能系统在改善并网风电场电能质量和稳定性中的应用[J].电网技 术,2006,30(15):54-58 [10] 温兆银.钠硫电池及其储能应用[J].上海节能,2007(2):7-10.[11] ROBERTS B P.Sodium-Sulfur(NaS)batteries for utilityenergy storage applications [A].IEEE power andenergy society general meeting-conversion anddelivery of electrical energy in the 21st century [C].IEEE,2008.[12] 杨根生.液流电池储能技术的应用与发展[J].湖南电力,2008,28(3):59-62.[13] BAROTE L,WEISSBACH R.,TEODORESCU R,et al.Stand-alone wind system with vanadium redox batteryenergy storage [A].11th international conference onoptimization of electrical and electronic equipment2008[C].OPTIM 2008.407-412.[14] CHAD ABBEY, GEZA JOOS.Supercapacitor energystorage for wind energy applications [J].IEEE Transactionson Industry Applications,2007,43(3):769-776.[15] KINJO T,SENJYU T,URASAKI N, et al.Output levelingof renewable energy by electric double-layer capacitorapplied for energy storage system [J].IEEE Transactionon Energy Conversion,2006,21(1):221-227.[16] 张步涵,曾杰,毛承雄,等.串并联型超级电容器储能系统在风力发电中的应用[J].电力自动化设备,2008,28(4):1-4.[17] DERK J S.Compressed air energy storage in an electricitysystem with significant wind power generation[J].IEEE Transaction on Energy Conversion,2007, 22(1):95-102.[18] 王斌,施正荣,朱拓,等.超级电容器-蓄电池应用于独立光伏系统的储能设计[J].能源工程,2007(5):37-41.[19] WEI LI,GEZA JOOS.A power electronic interface for abattery supercapacitor hybrid energy storage system forwind applications [A].Power electronics specialistsconference 2008[C].PESC,IEEE,2008.1762-1768.[20] WEI LI, GEZA JOOS.Performance comparison of aggregatedand distributed energy storage systems in awind farm for wind power fluctuation suppression [A].Power engineering society general meeting 2007[C].IEEE, 2007.1-6.[21] 李国杰,阮思烨.应用于并网风电场的有源型电压源直流输电系统控制策略

[J].电网技术,2009,33(1):52-55.

第二篇:风力发电技术

风力发电技术和风能利用方式

1973年发生石油危机以后,西方发达国家为寻求替代石化燃料的能源,在风力发电技术的研究与应用上投入了相当大的人力和资金,充分综合利用空气动力学、新材料、新型电机、电力电子技术、计算机、自动控制及通信技术等方面的最新成果,开创了风能利用的新时期。

德国、美国、丹麦等国开发建立了评估风力资源的测量及计算机模拟系统,发展了变桨距控制及失速控制的风力机设计理论,采用了新型风力机叶片材料及叶片翼型,研制出了变极、变滑差、变速恒频及低速永磁等新型发电机,开发了由微机控制的单台和多台风力发电机组成的机群的自动控制技术,从而大大提高了风力发电的效率和可靠性。

风电场是大规模利用风能的有效方式,20世纪80年代初在美国加利福尼亚州兴起。而海岸线附近的海域风能资源丰富,风力强,风速均匀,可大面积采获能量,适合大规模开发风电。然而在海上建造难度也大:巨大的基座必须固定入海底30m深度,才能使装置经受得住狂风恶浪的冲击;水下的驱动装置和电子部件必须得能防止高盐度海水的腐蚀;与陆地连接还得需要几公里长的海底电缆。

2.2风电装机容量

德国的风力发电装机容量已达610.7万kW,占德国发电装机容量的33%,居世界第1位。西班牙风电装机容量283.6万kW,居世界第2位。美国风力发电装机容量已达261万kW,居世界第3位。丹麦风电技术也很先进,装机容量234.1万kW。印度风电增长很快,到2000年累积装机容量已达到122万kW。日本的风电装机容量46万kW,运行较稳定的是海岸线或岛上的风力发电站,已达576台风电设备。

2.3各国的风力发电政策

目前风电机组成本仍比较高,但随着生产批量的增大和技术的进一步改进,成本将会继续下降(见表1)。许多国家建立了众多的中型和大型风力发电场,并形成了一整套有关风力发电场的规划方法、运行管理和维护方式、投融资方式、国家扶持的优惠政策及规范、法规等。

表1世界风电装机容量(万kW)和发电成本(美分/kW·h)

年份******97199819992000

容量******1393184

5成本15.310.97.26.66.15.65.35.15.04.94.8

数据来源:丹麦BTM咨询公司

欧洲发展风电的动力主要来自于改善环境的压力,将风电的发展作为减少二氧化碳等气体排放的措施。德国、丹麦、西班牙等国都制定了比较高的风电收购电价,保持了稳定高速的增长,1996年以后年增长率超过30%,使风电成为发展最快的清洁电能。丹麦风电技术的发展策略是政府不直接支持制造厂商,而是对购买风电机组的用户提供补贴。英国的《可再生能源责任法规》要求到2010年,每个电力供应商必须使可再生能源的电力供应量达到总电量的10%。

美国政府为鼓励开发可再生能源,在20世纪80年代初出台了一系列优惠政策。联邦政府和加利福尼亚州政府对可再生能源的投资者分别减免了25%的税赋,规定有效期到198

5年底,另外立法还规定电力公司必须得收购风电,并且价格应是长期稳定的。这些政策吸引了大量的资金采购风电机组,使刚刚建立起来的丹麦风电机组制造业获得了大批量生产和改进质量的机会。到1986年这3个风电场的总装机容量达到160万kW。2002年美国德州的风电容量为118万kW。德州政府规定,到2009年可再生能源的发电容量至少应达到200万kW,并拟订了110.4万kW的风电建设计划。

印度是一个缺电的发展中国家,政府制定了许多鼓励风电的政策,如投资风电的企业,可将风电的电量储蓄,在电网拉闸限电时,使有储蓄的企业能够得到优先供电。

澳大利亚的发电能源主要依靠煤炭。政府为改善电能结构,制定了一项强制性的可再生能源发电计划,太阳能——风力电站将成为可再生能源利用的重要组成部分。

3我国风力发电的开发现况

我国拥有丰富的风能资源,若采用10m高度的风速测算,陆地风能资源理论储量为32.26亿kW,可开发的风能资源储量为2.53亿kW。我国近海风能资源约为陆地的3倍,由此可算出我国可开发的风能资源约为10亿kW。

风能资源富集区主要在西北、华北北部、东北及东南沿海地区。20世纪70年代末80年代初,我国通过自主开发研制,额定容量低于10kW小型风力发电机实现了批量生产,在解决居住分散的农牧民和岛屿居民的用电方面有着重要意义。在国家有关部委的支持下,额定功率为200、250、300、600 kW的风力发电机组已研制出来,并在全国11个省区建立了27个风电场,浙江、福建、广东沿海及新疆、内蒙古自治区都有较大功率的风力发电场。东部沿海有丰富的风能资源,距离电力负荷中心又近,海上风电场将成为新兴的能源基地。国家计委在20世纪90年代中期制定了“光明工程”和“乘风计划”, 1997年当年装机超过10万kW,到2001年底总装机容量约40万kW。

我国风电技术还处于发展初期,较欧美落后,关键原材料或零部件主要依靠进口。风电机组是风电场的核心设备,主要依靠进口机组,在风电场的建设投资中是主要部分,占总投资的60%~80%。为鼓励风电的开发,我国对300kW以上机组免征进口税。风电随着技术的发展和批量生产,成本会继续下降。

第三篇:玻璃钢材料在风力发电的应用

玻璃钢复合材料在风力发电领域中的应用

摘要:本文简单介绍了玻璃钢复合材料的特点,以及玻璃钢制品在风力发电领域常用的成型工艺;重点叙述了玻璃钢复合材料在风机叶片、机舱罩、整流罩及其他附件中的应用;提出了目前玻璃钢复合材料在风电发电领域应用存在的问题。具有一定的现实意义和实用价值。

关键字:玻璃钢复合材料、风机叶片、机舱罩、整流罩

来自世界权威机构的统计:石油、天然气、煤炭等储量的开采年限分别仅有41、61.9、230。日益萎缩的燃料能源使得新能源的发展前景喜人,而新能源的清洁、环保和可再生的突出特点使得其利用与发展在全球经济的发展大局中不断升温。上世纪70年代以来,新能源开发利用受到世界各国的普遍重视,许多国家都将开发利用新能源作为提高能源安全、应对气候变化和实施可持续发展战略的重要途径。最近几年,随着国际石油价格的大幅攀升以及《京都议定书》的生效,新能源发展愈加成为国际能源领域的热点。

从目前新能源的资源状况和技术发展水平来看,水能、风能、生物能和太阳能已经成为发展重点。其中,风电技术已基本成熟,开发成本接近常规能源,未来将会继续保持较快的发展速度。到2006年底,世界风电装机总容量达到了7500万千瓦,过去10年中年均增长28%,已成为继火电、水电和核电之后的第四大主要发电电源。

在风力发电领域玻璃钢复合材料扮演着重要角色,它是风力发电机叶片、机舱罩、整流罩等部件的主要制作材料,它的性能好坏直接决定着风机的工作效率和使用寿命。因此,研究玻璃钢复合材料的特点、性能、制作工艺、常用制品并能在风力发电领域有效的加以利用具有一定的使用价值和重要的现实意义。1.玻璃钢复合材料 1)玻璃钢复合材料简介

玻璃钢学名玻璃纤维增强塑料。它是以玻璃纤维及其制品作为增强材料,以合成树脂作基体材料的一种复合材料。玻璃纤维是由不同成分的玻璃为原料,经熔融后拉丝制得的,其直径为0.1~30微米不等,它是应用很广的一种无机材料。

用于玻璃钢的玻璃纤维主要是玻璃布、玻璃带、玻璃纤维合股纱和攻璃纤维表面毡等。在玻璃钢中,树脂则是基体材料。通常树脂合显约为玻璃钢制品重量的20~80%。树脂的性能对玻璃钢的性能有着直接的影响。常用的热固性树脂中,主要有不饱和聚酯树脂、环氧树脂、酚醛树脂。而目前用得最多的是不饱和聚酯树脂,环氧树脂及酚醛树脂次之。不同的树脂对应不同的玻璃钢制品,其性能有着明显的差异。相对聚酯玻璃钢来说,环氧玻璃钢机械性能、耐腐蚀性都比较优越,但其成型较为困难,价格昂贵,毒性大。在风电领域环氧玻璃钢主要用于叶片的制作,聚酯玻璃钢用于机舱罩、整流罩等其他玻璃钢零部件的制作。2)玻璃钢复合材料的特点

a)轻质高强 相对密度在1.5~2.0之间,只有碳钢的1/4~1/5,可是拉伸强度却接近,甚至超过碳素钢,而比强度可以和高级合金钢相比。

b)耐腐蚀性能好 FRP是良好的耐腐材料,对大气、水和一般浓度的酸、碱、盐以及多种油类和溶剂都有较好的抵抗能力。是优良的绝缘材料,用来制造绝缘体。高频下仍能保护良好介电性。FRP热导率低,是优良的绝热材料,室温下为1.25~1.67kJ /(m·h·k),只有金属的1/100~1/1000。

c)可设计性好 可以根据需要,灵活地设计出各种结构产品,也可以充分选择材料来满足产品的性能。

d)工艺性能优良 以根据产品的形状、技术要求、用途及数量来灵活地选择成型工艺。工艺简单,可以一次成型,经济效果突出,尤其对形状复杂、不易成型的数量少的产品,更突出它的工艺优越性。3)风力发电中的玻璃钢制品主要成型方法

a)手糊法 操作简单、成本低,但产品质量不稳定,主要用于整体制品和机械强度不高的大型制品。目前手糊法是制作叶片、机舱罩、整流罩的主要成型方法。

b)真空导入法

真空导入法的原理是:一个真空袋与模具形成的耐压密闭腔内先填满纤维增强材料,再用压力将液态树脂注入模腔使其浸透增强纤维,然后固化成型。密闭成型,产品尺寸和外型精度高,适合成型高质量的复合材料整体构件;制品表在光洁度高;成型效率高,环境污染小。工艺属于半机械化的复合材料成型工艺,工人只需将设计好的纤维制品按照工艺要求铺好,然后表面铺设真空袋,与模具形成密闭腔,然后用空压机抽真空并保持恒定压力,使真空袋紧贴纤维制品,随后注射已配比好的树脂,注射树脂时通过压力表密切注意密闭腔内压力的变化,出现大的变化时应立即停止注射树脂,检查密闭性并修复,这样形成的产品气泡少、树脂淤积少、纤维得到了充分浸润。与手糊工艺相比,不但节约了粘接工艺的各种工装设备,而且节约了工作时间,提高了生产效率,降低了生产成本。同时由于采用了低粘度树脂浸润纤维以及采用加温固化工艺,大大提高了复合材料的质量和生产效率。

c)夹层结构 夹层结构一般是由三层材料制成的复合材料,采用夹层构方式是为了提高材料的有效利用率和减轻结构重量、增加基体刚度。根据所用的芯材种类和形式的不同,分为泡沫塑料夹层结构、蜂窝夹层结构、梯形和矩形带头作用层结构、圆环形夹层结构。2.玻璃钢复合材料的应用

a)叶片 叶片是整个风力发电机的关键部件,它的性能优劣、设计好坏直接影响到配套的齿轮箱和发电机的设计和正常运行。风力发电机叶片是一个复合材料制成的薄壳结构,结构上分3个部分:第一部分为根部:材质一般为金属。第二部分为外壳:一般为玻璃钢,通常是使用双、多轴向织物为增强体与基体树脂复合而成。织物可以具有不同的结构,与不同的材料进行复合,再用树脂进行连结,模塑成半个外壳。一对半个外壳粘在一起形成一个承载外壳,第三部分为龙骨,即加强筋或加强框,一般为玻璃纤维或碳纤维增强复合材料,双轴向经编织物和多轴向经编织物增强复合材料的基布比经纬交织的机织物具有更明显的优势。这类轴向织物承受载荷的纱线系统按要求排列并绑缚在一起,因此能够处于最佳的承载状态。目前,大型风机叶片主要采用玻璃纤维、玻璃纤维/碳纤维混杂、碳纤维等增强体的复合材料。由于玻璃纤维的价格仅为碳纤维价格的1/10左右,而玻璃纤维增强复合材料叶片因为其质量轻比强度高、可设计性强、价格比较便宜等因素,还是大中型风机叶片材料的主流。

b)机舱罩、整流罩 机舱罩、整流罩是风力发电机抵抗恶劣环境的外壳,同时也给风机维护人员提供了安全闭合的操作空间,它能防沙、防雨、防雷和保温,起到保护风力发电机整机、轮毂及其电器元件的作用,它的性能好坏直接决

定着风机的使用寿命。从材料角度分为两部分玻璃钢部分和非玻璃钢部分(主要是金属附件),玻璃钢部分结构又分为两种:夹层结构和全玻璃钢结构,罩体主要采用的是夹层结构,夹芯以泡沫为主,在需要打孔来安装附件的区域泡沫夹芯用密度较大、硬度较高的材料替代,常用的有木材或聚亚安酯材料。全玻璃钢结构主要用于强度要求比较高的连接法兰和开口翻遍处。机舱罩、整流罩内部布有 纵、横加强筋,以增加罩体的强度和刚度,保证风机能经受住风载、雪载、冰载等综合载荷。

风机排风口罩、风机高速轴护罩等小部件 小部件结构简单、量小、载荷要求不高,基本采用手糊法制作。3.存在的问题

虽然玻璃钢复合材料在风电领域得到了极大的应用,但个人认为以下的问题还是制约着其发展:(1)机舱罩、整流罩制作

目前国内没有统一的国家标准,在材料性能、载荷分析、制品要求等大多参考国内外船级社的规定,严重制约着新产品的设计,加上国内同行业间的技术壁垒,先进的技术得不到广泛推广。(2)玻璃钢制品最大的特点是易变形

如何能有效的控制大型制品的变形量并加以量化,是提高产品质量的一个难点。4.结论

玻璃钢作为一种新型的工程材料拥有突出的性能,在风电发电领域起着举足轻重的作用;相信在不远的将来,随着生产技术的不断发展,玻璃钢产业会成为我国一种新型的支柱产业。

第四篇:风力发电技术综述

风力发电技术综述

摘要:风能是目前全球发展最快的可再生绿色能源,风力发电系统是将风能转化为电能的关键系统,它直接关系到风力发电的性能与效率。它主要对风力发电的发展现状和前景、风电系统的控制技术、风力发电机及其风电系统和风力发电中的关键技术作了简单的介绍。

关键词:风力发电;控制技术;并网技术;低电压穿越

引言

在全球生态环境恶化和化石能源逐渐枯竭的双重压力下,对新能源的研究和利用已成为全球各国关注的焦点。风能作为一种可再生的清洁能源,受世界各国的重视程度越来越高,也越来越多的被应用到风力发电中。除水力发电技术外,风力发电是新能源发电技术中最成熟、最具大规模开发和最有商业化发展前景的发电方式。由于它可以在改善生态环境、优化能源结构、促进社会经济可持续发展等方面有非常突出的作用,目前世界各国都在大力发展和研究风力发电及其相关技术。

1.国内外风力发电的现状和前景

1.1 国外风力发电发展现状世纪80 ~90 年代,风力发电技术得到了飞速的发展并且逐渐成熟。风力发电凭借它自身的优点,已经延伸到了电网难以达到的地方,给他们带来了很多方便。据全球风能理事会(GWEC)发布的全球风电市场装机数据显示,全球风电产业 2011 年新增风电装机容量达四万一千兆瓦。这一新增容量使全球累计风电装机达到二十三万八千兆瓦。这一数据表明全球累计装机实现了两成多的年增长,新增装机增长达到6%。到目前为止,全球七十多个国家有商业运营的风电装机,其中二十二个国家的装机容量超过 1GW。据估计到 2030 年,欧洲风电装机可达三百亿瓦,可满足欧洲百分之二十的电力需求。

1.2国内风力发电发展现状

我国风力资源储量丰富,分布广泛。陆上可开发的储量为2.53亿kW,海上可开发的储量为7.5亿kW。“大规模、高集中开发,远距离和高电压输送”是我国风电发展的重要特征。近年来,我国风电发展迅猛,2006~2010 年风电总装机容量从260万kW增长到4 182.7万kW,2010年新增风电装机1 600万kW,累计装机容量和新增装机容量均居世界第一。预计2020年我国风电累计装机可以达到2.3亿kW。这意味着未来十年中,风电总装机容量

平均每年需新增1 800万kW。预计每年需新增机组及其配套变流器约9 000台。

2.风电系统的控制技术

风力发电系统的运行方式有三种:独立型、并网型和联合型。并网型风力发电系统由风力机控制器、风力机、传动装置、励磁调节器、发动机、变频器和变压器等组成。

风力发电机组包括风力机、发电机、变速传动装置及相应的控制器等,用来实现风能与电能的能量转换。风力发电的关键问题是风力机和发电机的功率和速度控制。

风电机组中将风能转换成机械能的能量转换装置是风力机,它由风轮、迎风装置和塔架等组成。按结构不同,风力机可分为水平轴式和立轴式两种;按功率调节方式不同,风力机可分为定桨距失速、变桨距和主动失速 3 种。

风电机组中的发电机将机械能转化为电能,发电机在并入电网时必须输出恒定频率(一般为 50 Hz)的电能。按照发电机转速的不同,发电机可分为恒速和变速两类,其中变速需要通过变频器来实现。变频器采用电力电子变流技术和控制技术,将发电机发出的频率变化交流电转换为与电网频率相同、能与电网柔性连接的交流电,并且能实现最大风能跟踪控制。按照拓扑结构的不同,变频器可分为交-交型、交-直-交型和矩阵型三种;按照变频器容量的不同可将变频器分为部分容量和全部容量(全额)两种。

变速传动装置可将风轮的低转速转换为发电机的较高转速,按传动链类型将其分为齿轮箱驱动和直接驱动两种,其中前者包括单级和多级两种齿轮箱驱动。

3.风力发电机及其风电系统

实现恒速或变速风力发电系统有许多种方案,所选发电机的类型主要取决于风电系统的形式。

传统的恒速/变速风电系统共有四种:基于SCIG 的恒速风电系统[1]、基于WRIG 的受限变速风电系统[2]、基于ESC-SCIG 的变速风电系统[3]和基于MMG 的变速风电系统[4]。

现代风电系统一般采用变速恒频技术,这种技术通过变流装置或改造发电机结构来实现。现代变速恒频风电系统共有六种:基于SCIG 的风电系统[5]、基于DFIG 的风电系统[6]、基于直驱式EESG 的风电系统[7]、基于直驱式PMSG 的风电系统[8]、基于半直驱PMSG 的风电系统[9]和基于PMBDCG 的风电系统[10]。

近年来,一些具有商业化潜力的新型风力发电机及其风力发电系统不断涌现。新型变速恒频风电系统主要有以下八种:基于 SRG 的风电系统[11]、基于 BDFIG 的风电系统[12]、基于CPG 的风电系统[13]、基于HVG 的风电系统[14]、基于DWIG 的风电系统[15]、基于

TFPMG 的风电系统[16]、基于DSPMG 的风电系统[17]和基于EVT 的风电系统[18]。

4.风力发电中的关键技术

4.1并网技术的研究和最大风能的捕获

并网技术是通过对全功率电力变换器的控制算法来实现控制目的。并网控制方面,文献

[19]提出了直流侧并网的新方法。在直流电容与 DC/AC 之间安装并网开关。并网前并网开关断开,DC/AC 通过限流电阻对电容进行充电,此时发电机在风力机的带动下转速从 0 上升。当电容充电达到交流电网线电压幅值时闭合并网开关,同步风力发电机并网。正常情况下,发电机转速从低到高逐渐上升,并在某一转速下并入电网。当由于某种原因,发电机在高转速下脱网需要重新并网,由于此时电容已经充电且直流母线电压高于网侧交流线电压幅值,因此只要将并网开关闭合就可实现并网。

直驱式永磁同步风力发电机经电力电子变换器并入电网以后的控制目标是风速小于额定风速时实现最大风能捕获,风速超过额定风速时使系统以额定功率输出[20]。

最大风能捕获的目的就是通过适当的控制,使风力机转速随风速变化,始终沿着最佳功率曲线运行,从而使风能转化最大化。最大风能追踪可以有变桨距调节,也可以通过调节发电机功率来调节转速以保持最佳叶尖速比实现。出于可行性、经济性和可靠性的考虑,当前使用的主要是通过控制发电机输出功率以调节其电磁功率,进而调节发电机转速。

具体实现时,在发电机有功和无功功率解耦控制的基础上,根据有功功率给定的提取方法的不同,又有有速度传感器和无速度传感器的控制方法之分。有速度传感器的控制方法是根据风力机最佳功率曲线和风力机转速实时计算发电机输出功率给定。而无速度传感器的控制方法又有扰动法[21,22,23]、参数估计法、查表法和人工在智能法几类。

4.2低电压穿越的研究

电网电压跌落时,由于受变流器通流能力的限制,网侧逆变器注入电网功率减小。而此刻机侧整流器的功率并没有改变,造成直流侧的过电压。如果维持直流侧电压稳定,则必然造成逆变器过电流。过电压和过电流都将导致电力电子器件的损坏,为了保护变流器不被损坏,风力发电机组将在电压跌落时退出运行。电网穿透率小时,风力发电机组在电压跌落时退出运行还是可以接受的。

然而,随着风力发电规模的不断扩大,若风电机组在电压跌落时仍然采取被动保护式脱网,则会增加整个系统的恢复难度,甚至使故障更加严重,最终导致系统其他机组全部解列。目前在风力发电技术发展领先的一些国家,如丹麦、德国等已相继制定了新的电网运

行准则, 定量给出了风电系统离网的条件(如最低电压跌落深度和跌落持续时间),只有当电网电压跌落低于规定曲线以后才允许风力机脱网,当电压在凹陷部分时,发电机应提供无功功率。这就要求风电系统具有较强的低电压穿越能力,能方便地为电网提供无功支持。因此必须研究低电压穿越的措施,实现电网电压跌落时风力发电机不脱网运行。

文献[24]通过在逆变器交流侧加装无功补偿装置和低通滤波器来应对电网电压不对称跌落对系统所造成的影响,使逆变器只能感受到电网的正序电压,保持其对称工作状态,从而实现低电压穿越;文献[25-28]通过直流侧加卸荷负载以消除电压跌落时直流侧的功率拥堵,避免直流侧的过电压和逆变器的过电流,实现低电压穿越。这些方法都要增加专门的元件,降低了系统的可靠性和经济性,使控制变得复杂。

结论

风电作为我国今后大力重点发展的 3 类新能源之一,在今后将具有广阔的发展和应用前景,风力发电在摆脱对化石能源的过度依赖、缓解中国能源紧缺、改善生态环境和扩大社会效益等方面将做出较大的贡献。本文对风力发电的发展状况,如传统的恒速/变速风电系统、现代变速恒频风电系统和新型变速恒频风电系统进行了简单介绍。随着风电技术的不断变革以及机组制造工艺的持续改进,将来风力发电的竞争力必定逐渐提升,其发展前景广阔。

参考文献:

[1]程明,张运乾,张建忠.风力发电机发展现状及研究进展[J].电力科学与技术学报,2009,24(3):2 -9.

[2]李辉,薛玉石,韩力.并网风力发电机系统的发展综述[J].微特电机,2009,37(5):55 -61. [3]杨培宏,刘文颖.基于 DSP 实现风力发电机组并网运行[J].可再生能源,2007,25(4):79 -82.

[4]吴聂根,程小华.变速恒频风力发电技术综述[J].微电机,2009,42(8):69 -72.

[5]荆龙.鼠笼异步电机风力发电系统优化控制[D].北京:北京交通大学,2008.

[6]林成武,王凤翔,姚兴佳.变速恒频双馈风力发电机励磁控制技术研究[J].中国电机工程学报,2003,23(11):122 -125.

[7]周扬忠,胡育文,黄文新.基于直接转矩控制电励磁同步电机转子励磁电流控制策略[J].南京航空航天大学学报:自然科学版,2007,39(4):429 -434.

[8]张岳,王凤翔.直驱式永磁同步风力发电机性能研究[J].电机与控制学报,2009,13(1):78 -

82.

[9]陈昆明,汤天浩,陈新红,等.永磁半直驱风力机控制策略仿真[J].上海海事大学学报:自然科学版,2008,29(4):39 -44.

[10]夏长亮,张茂华,王迎发,等.永磁无刷直流电机直接转矩控制[J].中国电机工程学报,2008,28(6):104 -109.

[11]胡海燕,潘再平.开关磁阻风力发电系统综述[J].机电工程,2004,21(10):48 -52.

[12]刘伟,沈宏,高立刚,等.无刷双馈风力发电机直接转矩控制系统研究[J].电力系统保护与控制,2010,38(5):77 -81.

[13] 桓毅,汪至中.风力发电机及其控制系统的对比分析[J].中小型电机,2002,29(4):41 -45.

[14]杜新梅,刘坚栋,李泓.新型风力发电系统[J].高电压技术,2005,31(1):63 -65.

[15]李勇,胡育文,黄文新,等.变速运行的定子双绕组感应电机发电系统控制技术研[J].中国电机工程学报,2008,28(20):124 -130.

[16]董萍,吴捷,陈渊睿,等.新型发电机在风力发电系统中的应用[J].微特电机,2004,32(7):39 -44.

[17]张建忠,程明.新型直接驱动外转子双凸极永磁风力发电机[J].电工技术学报,2007,22(12):15 -21.

[18]袁永杰.开关磁阻四端口机电换能器及在风力发电中的应用研究[D].哈尔滨:哈尔滨工业大学,2008.

[19] 徐科,胡敏强,杜炎森,等.直流母线电压控制实现并网与最大风能跟踪[J].电力系统自动化,2007,31

(11):53-58.[20] 吴迪,张建文.变速直驱永磁风力发电机控制系统的研究[J]大电机技术,2006(6): 51-55

[21] 王生铁,张润和,田立欣.小型风力发电系统最大功率控制扰动法及状态平均建模与分析[J].太阳能学报,2006,27(8):828-837.[22] 闫耀民,范瑜,汪至中.永磁同步电机风力发电系统的自寻优控制[J].电工技术学报,2002,17

(6):82-86.[23] 房泽平,王生铁.小型风电系统变步长扰动 MPPT 控制仿真研究[J].计算机仿真,2007,24

(9):241-244.[24] MARIUS F, CRISTIAN L, GHEORGHE-DANIEL A, etal.Voltage Sags Ride-Through of Motion SensorlessControlled PMSG for Wind Turbines[C].Industry Applications Conference, 2007.[25] 李建林,胡书举,孔德国,等.全功率变流器永磁直驱风电系统低电压穿越特性研究[J].电力系统自动化,2008,32(19):92-95.[26] 胡书举,李建林, 许洪华.直驱式 VSCF 风电系统直流侧Crowbar 电路的仿真分析[J].电力系统及其自动化学报,2008,20(3):118-123.[27] 李建林,胡书举,孔德国,等.全功率变流器永磁直驱风电系统低电压穿越特性研究[J].电力系统自动化,2008,32(19):92-95.[28] 胡书举,李建林,许洪华.变速衡频风电系统应对电网故障的保护电路分析[J].变流技术与电力牵引,2008(1):45-51.

第五篇:燃料电池材料及其储能技术

燃料电池材料及其储能技术

姓名:李浩杰

学号:2014050101018

摘要:出于对环境友好、高转换效率、高功率、高能量密度的能源技术的需求,世界各国纷纷开展对于性能优良的燃料电池的研究。其研究重点主要集中在四个方面:电解质膜、电极、燃料、系统结构。其中又以前三个为热点。目前,由于在燃料大规模制备上的困难以及其在工作时需要的一些昂贵的贵金属,燃料电池大规模商业应用受到一定限制。关键字:燃料电池、电解质膜、储能

一、燃料电池原理

燃料电池是一种使用燃料进行化学反应产生电能的装臵。所用的燃料主要包括氢气、甲醇、乙醇、天然气、汽油以及一些含氢有机物。氢气可以直接作为燃料电池的燃料,其他气体一般需要处理为含氢气的重整气。由于其燃料来源广泛,发电后产生纯水和热,能量转换效率高达80%~90%,对环境无污染,所以广泛受到各国科学家的关注,被认为是继火电、水电、核电之后的第四代发电方式。

燃料电池的工作原理图如上所示。在阳极,氢气与碱中氢氧根的在电催化剂的作用下,发生氧化反应生成水和电子:

电子通过外电路到达阴极,在阴极电催化剂的作用下,参与氧的还原反应:

生成的氢氧根通过多孔石棉膜迁移到氢电极。

为保持电池连续工作,除需与电池消耗氢气、氧气等速地供应氢气和氧气外,还需连续、等速地从阳极(氢电极)排出电池反应生成的水,以维持电解液浓度的恒定;排除电池反应的废热以维持电池工作温度的恒定。

容易看出,与其他电池相比,燃料电池内部并不储能,它只是高效地将从外部源源不断通入的燃料转换成电能,所以,它更像是一个微型的发电站。

二、燃料电池发展历程

1、国外

1839年,格罗夫发表世界上第一篇关于燃料电池的报告。初期的燃料电池使用气体为氧化剂和燃料,但因为气体在电解质溶液中溶解度很小,导致电池的工作电流密度极低。后来,多孔气体扩散电极和电化学反应三相界面概念的提出以及实际材料的突破,使燃料电池具备了走向实用化的必备条件。

60年代,由于载人航天器对于大功率、高比功率与高比能量电池的迫切需求,燃料电池开始引起一些国家与军工部门的高度重视。其典型成果为阿波罗登月飞船上的主电源—培根型中温氢氧燃料电池。

70~80 年代,由于出现世界性的能源危机和燃料电池在航天上成功应用及其高的能量转化效率,促使世界上以美国为首的发达国家大力支持民用燃料电池的开发,进而使磷酸型及熔融碳酸盐型燃料电池发展到兆瓦级试验电站的阶段。

20世纪90年代以来,出于可持续发展、保护地球、造福子孙后代等目的,基于质子交换膜的燃料电池开始高度发展。特别是在电动车行业,世界上所有的大汽车公司与石油公司均已介入燃料电池汽车的开发。

总的来说,燃料电池主要经历了经历了第1代碱性燃料电池(AFC),第2代磷酸燃料电池(PAFC),第3代熔融碳酸盐燃料电池(MCFC)后,在20世纪80年代迅速发展起了新型固体氧化物燃料电池(SOFC)。

2、国内

中国燃料电池的研究始于1958年。

1970年前后,开始了燃料电池产品开发工作并在70年代形成了燃料电池产品的研制高潮。主要开发项目是由国家投资的航天用碱性氢氧燃料电池,该产品的研制目标是为了配合中国航天技术发展计划的一个项目。

到70年代末,由于总体计划的变更而中止。但与该项计划实施的同时,一些由地方政府投资与使用部门合作的应用碱性燃料电池项目也进行了开发,只是尚未形成应用。

80年代初、中期,中国燃料电池的研究及开发工作处于低潮。

进入90年代以来,在国外先进国家燃料电池技术取得巨大进展,一些产品已进入准商品化阶段的形势影响下,中国又一次掀起了燃料电池研究开发热潮。

三、几种燃料电池简介

1、分类

(1)按燃料电池的运行机理可分为酸性燃料电池和碱性燃料电池。

(2)按电解质的种类不同,燃料电池可分为碱性燃料电池、磷酸燃料电池、熔融碳酸盐燃料电池、固体氧化物燃料电池、质子交换膜燃料电池等。在燃料电池中,磷酸燃料电池、质子交换膜燃料电池可以冷起动和快起动,可以作为移动电源,满足特殊情况的使用要求,更加具有竞争力。

(3)按燃料类型分,有氢气、甲烷、乙烷、丁烯、丁烷和天然气等气体燃料;甲醇、甲苯、汽油、柴油等有机液体燃料。有机液体燃料和气体燃料必须经过重整器“重整”为氢气后,才能成为燃料电池的燃料。(4)按燃料电池工作温度分,有低温型,工作温度低于200℃;中温型,工作温度为200~750℃;高温型,工作温度高于750℃。

上图为几种常见燃料电池各种性能,应用环境的简单对比,现主要以电解质分类形式介绍几种常见的燃料电池。

2、质子交换膜燃料电池

质子交换膜燃料电池是最接近商业化的一种燃料电池,最有希望作为未来电动汽车的发动机。在各种燃料电池中,它的工作温度是最低的,也是目前发展规模最大的一种。

上图为典型的单结质子交换膜燃料电池结构。由质子交换膜、催化层、气体扩散层、密封圈、双极板等关键部件组成。通常以全氟磺酸型质子交换膜为电解质膜,用Pt/C或者PtRu/C作为催化剂。以阴阳极催化剂层和电解质膜所组成的三合一组件统称为膜电极,是 它的核心部件。

实际应用的燃料电池电站是一个很复杂的系统,它包括燃料供应、氧化剂供应、电池反应、水热管理等多个子系统。

它的工作原理是是氢气和氧化剂分别由燃料电池的阳极和阴极流道进入电池内部,经过气体扩散层后到达电极催化层。阳极侧的氢气在催化剂的作用下,解离成氢离子和电子,氢离子穿过质子交换膜到达阴极侧,电子则经过外电路形成电流后到达阴极;在阴极催化剂的作用下,氧气接受质子和电子生成水分子,在整个过程中,外电路的电子流动形成电流。

目前限制质子交换膜燃料电池进入商业化的最主要原因是成本和寿命两大问题,寻找和开发新型材料成为解决这两大问题、推进商业化进程的必然选择,也是质子交换膜燃料电池近些年来的研究重点和热点。

3、熔融碳酸盐燃料电池

熔融碳酸盐燃料电池(MCFC)在高温下工作(约 650℃),可以利用排气余热和燃气轮机混合发电,发电效率通常高达50%以上,,可用多种燃料(如天然气和煤),不需要用铂等贵重金属作为催化剂,有望应用到中心电站,工业化或商业化联合发电,是目前燃料电池研究的主流之一,上图为平板式熔融碳酸盐燃料电池单体结构示意。它由电极-电解质、燃料流通道、氧化剂流通道和上下隔板组成。目前,MCFC的主要技术问题已经基本解决。美国、日本等正在进行十万瓦和兆瓦级的实用演示试验,预计距商业化为期不远。

4、固体氧化物燃料电池

固体氧化物燃料电池是20世纪八九十年代燃料电池研究的成果,该燃料电池具有诸多优点。比如避免了使用液态电解质所带来的腐蚀和电解质流失等问题,反应迅速,无须贵金属催化剂,能量利用率高达80%以上,燃料广泛,可以承受较高浓度的硫化物和CO的毒害,因此对电极的要求大大降低。基于此,目前世界各国都在积极投入SOFC技术的研发。

上图为固体氧化物燃料电池的工作原理图。它主要由阴极、阳极、电解质和连接材料组 成。在阳极和阴极分别送入还原、氧化气体后,氧气在多孔的阴极上发生还原反应,生成氧负离子。氧负离子在电解质中通过氧离子空位和氧离子之间的换位跃迁达到阳极,然后与燃料反应,生成水和二氧化碳,因而形成了带电离子的定向流动。

四、燃料电池的应用

1、航天领域

早在上个世纪60年代,燃料电池就成功地应用于航天技术,这种轻质、高效的动力源一直是美国航天技术的首选。比如,以燃料电池为动力的 Gemini宇宙飞船1965年研制成功,采用的是聚苯乙烯磺酸膜,完成了8天的飞行。后来在Apollo宇宙飞船采用了碱性电解质燃料电池,从此开启了燃料电池航天应用的新纪元。

中国科学院大连化学物理研究所早在70年代就成功研制了以航天应用为背景的碱性燃料电池系统。A型额定功率为 500 W,B型额定功率为 300 W,燃料分别采用氢气和肼在线分解氢,整个系统均经过环境模拟实验,接近实际应用。这一航天用燃料电池研制成果为我国此后燃料电池在航天领域应用奠定了一定的技术基础。

2、潜艇

燃料电池作为潜艇AIP动力源,从2002年第一艘燃料电池AIP潜艇下水至今已经有6艘在役。FC-AIP 潜艇具有续航时间长、安静、隐蔽性好等优点,通常柴油机驱动的潜艇水下一次潜航时间仅为 2天,而FC-AIP潜艇一次潜航时间可达3周。

3、电动汽车

随着汽车保有量的增加,传统燃油内燃机汽车造成的环境污染日益加剧,同时,也面临着对石油的依存度日益增加的严重问题.燃料电池作为汽车动力源是解决因汽车而产生的环境、能源问题的可行方案之一。燃料电池汽车示范在国内外不断兴起,较著名的是欧洲城市清洁交通示范项目。

4、固定式分散电站

污染重、能效低一直是困扰火力发电的核心问题,燃料电池作为低碳、减排的清洁发电技术,受到国内外的普遍重视。比如PAFC电站的代表性开发商UTC Power 公司已经开发出了400 k W 磷酸燃料电池发电系统;PEMFC电站的代表性开发商Ballard 公司开发出了 250 k W ~ 1 MW的示范电站。

下载储能技术在风力发电系统中的应用(写写帮推荐)word格式文档
下载储能技术在风力发电系统中的应用(写写帮推荐).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    风力发电现状及复合材料在风力发电上的应用

    风力发电现状及复合材料在风力发电上的应用 班级:材料工程111 学号:205110137 姓名:张宇 摘要:本文对中国风能现状及资源分布,近年来中国风力产业的发展状况以及复合材料在风电......

    风力发电技术与电价分析

    风力发电技术与电价分析 本文主要介绍风电电价的构成,发展风力发电的必要性和现阶段我国发展风电面临的论难和机遇。通过对国内外的电力来源,能源结构,风能储量及分布,风电的......

    国内外风力发电技术趋势(共五则)

    国内外风力发电技术趋势 1. 风力发电新技术 地球上风力资源蕴藏量很大,是一种既清洁又廉价的再生资源。世界气象组织(WMO)估计地球上海洋和陆地的风能源约为200亿kW,其中陆地约......

    光伏发电系统的能量转换及储能方式研究

    随着环境保护的根本要求及化石能源枯竭带来的能源危机,使得以光伏发电为代表的可再生新能源发电越来越受到重视,但是光伏发电的间歇性及与用电峰谷的非同步性,使得新能源发电的......

    学习《风力发电原理与应用》后的心得体会

    学习《风力发电原理与应用》后的心得体会 在湛蓝天空下,四周安静的时候,给人印象深刻的就是风,它从你的耳畔掠过,从你的指尖流过,胸中浊气涤荡一空,在一呼一吸之间,身心也轻盈起来......

    几种典型的风力发电系统对比分析

    几种典型的风力发电系统对比分析 摘要:随着环境和能源问题的日益严峻,可再生能源的开发,尤其是风力发电技术已被越来越多的国家所重视,而对应用在风力发电系统中的逆变器和调制......

    大工16春《新能源发电》大作业-风力发电技术

    网络教育学院 《新能源发电》课 程 设 计 题 目: 风力发电技术 学习中心:奥鹏学习中心 层 次: 专升本 专 业: 电气工程及其自动化年 级: 2016年 春季 学 号: 学 生: 辅导教师:......

    风力发电在基站上的解决方案

    风力发电在基站上的解决方案(含方案)请内行人指教 第 1 章 风力发电系统介绍1.1 概述太阳能是太阳内部连续不断的核聚变反应过程产生的能量。它是地球其他能源的源泉。太阳能......