第一篇:国内外风力发电技术趋势
国内外风力发电技术趋势
1.风力发电新技术
地球上风力资源蕴藏量很大,是一种既清洁又廉价的再生资源。世界气象组织(WMO)估计地球上海洋和陆地的风能源约为200亿kW,其中陆地约占一半。在全球范围内能源短缺和生态环境日益恶化的今天,各国对风能的开发利用越来越重视。许多国家把风电建设作为重要的能源政策。目前有些发达国家成功地使每千瓦风电投资接近火电投资,并将进一步降低发电成本。风电工业将在全世界有较大的发展前景。我国有丰富的风力资源。国家发改委和国家科委共同制定的“1996—2010年中国新能源和可再生能源发展纲要”及“新能源可再生能源优先发展项目”也体现出风力发电是我国可再生能源的发展方向,它可改善我国能源工业面临的经济增长和环境保护的双重压力。
绿色能源中,风能不仅储量大,可利用率高,而且便于大规模开发。1990年以来,全球风力发电设备总装机容量增长了15%,年平均增长率达到20%。截至2001年底,全世界风力发电装机容量已达24100MW。已运行机组的最大单机容量已达5MW。我国可开发利用的风能资源陆地为2.53亿kW,近海7.5亿kW,合计10.03亿kW,仅次于前苏联和美国。近年来,我国风力发电装机容量增加较快,2003年达567MW。按照国家发展规划,我国风电装机容量到2005年将达1000MW;2010年将达4000MW;2015年将达10000MW;2020年将达到20000MW。目前我国新建和在建的风电场的机组基本上是由丹麦、德国等国提供成套设备或引进技术和部件在国内制造组装。
在风力发电中,当风力发电机与电网并联运行时,要求风电的频率与电网频率保持一致,即频率保持恒定。恒速恒频指在风力发电过程中,保持发电机转速不变,从而得到恒频的电能;变速恒频指在风力发电过程中发电机的转速可随风速变化,而通过其他控制方式来得到恒频电能。
当风速在一定范围变化时,若允许风力机做变速运行,则能达到更好利用风能的目的。这是由于风力机的输出功率系数Cp在某一确定的尖速比(叶轮尖的线速与风速的比值)TSR(tip speed ratio)下达到最大值。恒速恒频的风力机转速保持不变,而风速又经常变化,显然Cp不可能保持在最大值。变速恒频风力发电系统的特点是风力机和发电机的转速可在很大范围内变化而不影响输出电能的频率。由于风力机的转速可变,可以通过适当的控制,使风力机的尖速比处于或接近于最佳值,从而最大限度的利用风能。
为充分利用风能电源,风力发电系统应采用变速恒频控制策略。4种变速恒频控制方案的性能对比见下表,通过以上的对比分析可知:(1)方案一和方案囚的风力发电系统,其变频器的容量与系统容量相同,因此一般适用于小容量的风力发电系统。(2)对于大、中容量的风力发电系统,适于采用方案二或方案三,因为变频器的容量仅为系统总容量的一小部分。(3)方案二和方案三的风力发电系统,皆可在亚同步和超同步状态下运行,具有更宽的转速运行范围。(4)方案一、三和四的风力发电系统,所采用的发电机转子结构无电刷和滑环,坚固耐用,具有较高的可靠性。(5)若采用直接驱动方案,无需增速齿轮箱,则可降低系统运行噪声,进一步提高可靠性。实际上,直接驱动和变速恒频是风力发电的两个重要发展方向。
3.国内风力发电情况
3.1沈阳工业大学风能技术研究所
该所承担的一项国家“863”计划课题,一台兆瓦级风力发电机将矗立在康平县的一风口处。有关专家(所长姚兴佳教授)称,这台兆瓦级风力发电机底径4米,白色锥形塔柱高达60米,在顶部安装机仓和叶轮,叶片直径长达62米,这样,整机距地面垂直高度达90米。2001年,在国家科技部举行的兆瓦级风力发电机招标上,沈阳工业大学风能技术研究所提出的这个设计方案头榜中标,获得1500万元的研制经费。目前该所正在组织相关企业进行安装。我国对大型并网型风电机组的研究工作始于80年代,并相继研制出了20千瓦到600千瓦的风力发电机组。但相当或更大容量的、当前在中国风电场的主流机组,基本上都是从国外引进的,国内目前还没有一台兆瓦级风电机组。
3.2兰州电机厂 与清华大学合作研制开发双馈绕线型三相异步风力发电机及励磁控制系统。可向风电场
整机成套单位提供750—2000kW电机及励磁系统的成套产品。
3.3为国家“863”项目生产的国内首台双馈绕线型三相异步风力发电机(YRFF500-41000kW 690V)
已制造完成,并通过地面模拟试验。
双馈绕线型三相异步风力发电机主要适用于风电场的并网发电机组。1
第二篇:风力发电技术
风力发电技术和风能利用方式
1973年发生石油危机以后,西方发达国家为寻求替代石化燃料的能源,在风力发电技术的研究与应用上投入了相当大的人力和资金,充分综合利用空气动力学、新材料、新型电机、电力电子技术、计算机、自动控制及通信技术等方面的最新成果,开创了风能利用的新时期。
德国、美国、丹麦等国开发建立了评估风力资源的测量及计算机模拟系统,发展了变桨距控制及失速控制的风力机设计理论,采用了新型风力机叶片材料及叶片翼型,研制出了变极、变滑差、变速恒频及低速永磁等新型发电机,开发了由微机控制的单台和多台风力发电机组成的机群的自动控制技术,从而大大提高了风力发电的效率和可靠性。
风电场是大规模利用风能的有效方式,20世纪80年代初在美国加利福尼亚州兴起。而海岸线附近的海域风能资源丰富,风力强,风速均匀,可大面积采获能量,适合大规模开发风电。然而在海上建造难度也大:巨大的基座必须固定入海底30m深度,才能使装置经受得住狂风恶浪的冲击;水下的驱动装置和电子部件必须得能防止高盐度海水的腐蚀;与陆地连接还得需要几公里长的海底电缆。
2.2风电装机容量
德国的风力发电装机容量已达610.7万kW,占德国发电装机容量的33%,居世界第1位。西班牙风电装机容量283.6万kW,居世界第2位。美国风力发电装机容量已达261万kW,居世界第3位。丹麦风电技术也很先进,装机容量234.1万kW。印度风电增长很快,到2000年累积装机容量已达到122万kW。日本的风电装机容量46万kW,运行较稳定的是海岸线或岛上的风力发电站,已达576台风电设备。
2.3各国的风力发电政策
目前风电机组成本仍比较高,但随着生产批量的增大和技术的进一步改进,成本将会继续下降(见表1)。许多国家建立了众多的中型和大型风力发电场,并形成了一整套有关风力发电场的规划方法、运行管理和维护方式、投融资方式、国家扶持的优惠政策及规范、法规等。
表1世界风电装机容量(万kW)和发电成本(美分/kW·h)
年份******97199819992000
容量******1393184
5成本15.310.97.26.66.15.65.35.15.04.94.8
数据来源:丹麦BTM咨询公司
欧洲发展风电的动力主要来自于改善环境的压力,将风电的发展作为减少二氧化碳等气体排放的措施。德国、丹麦、西班牙等国都制定了比较高的风电收购电价,保持了稳定高速的增长,1996年以后年增长率超过30%,使风电成为发展最快的清洁电能。丹麦风电技术的发展策略是政府不直接支持制造厂商,而是对购买风电机组的用户提供补贴。英国的《可再生能源责任法规》要求到2010年,每个电力供应商必须使可再生能源的电力供应量达到总电量的10%。
美国政府为鼓励开发可再生能源,在20世纪80年代初出台了一系列优惠政策。联邦政府和加利福尼亚州政府对可再生能源的投资者分别减免了25%的税赋,规定有效期到198
5年底,另外立法还规定电力公司必须得收购风电,并且价格应是长期稳定的。这些政策吸引了大量的资金采购风电机组,使刚刚建立起来的丹麦风电机组制造业获得了大批量生产和改进质量的机会。到1986年这3个风电场的总装机容量达到160万kW。2002年美国德州的风电容量为118万kW。德州政府规定,到2009年可再生能源的发电容量至少应达到200万kW,并拟订了110.4万kW的风电建设计划。
印度是一个缺电的发展中国家,政府制定了许多鼓励风电的政策,如投资风电的企业,可将风电的电量储蓄,在电网拉闸限电时,使有储蓄的企业能够得到优先供电。
澳大利亚的发电能源主要依靠煤炭。政府为改善电能结构,制定了一项强制性的可再生能源发电计划,太阳能——风力电站将成为可再生能源利用的重要组成部分。
3我国风力发电的开发现况
我国拥有丰富的风能资源,若采用10m高度的风速测算,陆地风能资源理论储量为32.26亿kW,可开发的风能资源储量为2.53亿kW。我国近海风能资源约为陆地的3倍,由此可算出我国可开发的风能资源约为10亿kW。
风能资源富集区主要在西北、华北北部、东北及东南沿海地区。20世纪70年代末80年代初,我国通过自主开发研制,额定容量低于10kW小型风力发电机实现了批量生产,在解决居住分散的农牧民和岛屿居民的用电方面有着重要意义。在国家有关部委的支持下,额定功率为200、250、300、600 kW的风力发电机组已研制出来,并在全国11个省区建立了27个风电场,浙江、福建、广东沿海及新疆、内蒙古自治区都有较大功率的风力发电场。东部沿海有丰富的风能资源,距离电力负荷中心又近,海上风电场将成为新兴的能源基地。国家计委在20世纪90年代中期制定了“光明工程”和“乘风计划”, 1997年当年装机超过10万kW,到2001年底总装机容量约40万kW。
我国风电技术还处于发展初期,较欧美落后,关键原材料或零部件主要依靠进口。风电机组是风电场的核心设备,主要依靠进口机组,在风电场的建设投资中是主要部分,占总投资的60%~80%。为鼓励风电的开发,我国对300kW以上机组免征进口税。风电随着技术的发展和批量生产,成本会继续下降。
第三篇:风力发电技术综述
风力发电技术综述
摘要:风能是目前全球发展最快的可再生绿色能源,风力发电系统是将风能转化为电能的关键系统,它直接关系到风力发电的性能与效率。它主要对风力发电的发展现状和前景、风电系统的控制技术、风力发电机及其风电系统和风力发电中的关键技术作了简单的介绍。
关键词:风力发电;控制技术;并网技术;低电压穿越
引言
在全球生态环境恶化和化石能源逐渐枯竭的双重压力下,对新能源的研究和利用已成为全球各国关注的焦点。风能作为一种可再生的清洁能源,受世界各国的重视程度越来越高,也越来越多的被应用到风力发电中。除水力发电技术外,风力发电是新能源发电技术中最成熟、最具大规模开发和最有商业化发展前景的发电方式。由于它可以在改善生态环境、优化能源结构、促进社会经济可持续发展等方面有非常突出的作用,目前世界各国都在大力发展和研究风力发电及其相关技术。
1.国内外风力发电的现状和前景
1.1 国外风力发电发展现状世纪80 ~90 年代,风力发电技术得到了飞速的发展并且逐渐成熟。风力发电凭借它自身的优点,已经延伸到了电网难以达到的地方,给他们带来了很多方便。据全球风能理事会(GWEC)发布的全球风电市场装机数据显示,全球风电产业 2011 年新增风电装机容量达四万一千兆瓦。这一新增容量使全球累计风电装机达到二十三万八千兆瓦。这一数据表明全球累计装机实现了两成多的年增长,新增装机增长达到6%。到目前为止,全球七十多个国家有商业运营的风电装机,其中二十二个国家的装机容量超过 1GW。据估计到 2030 年,欧洲风电装机可达三百亿瓦,可满足欧洲百分之二十的电力需求。
1.2国内风力发电发展现状
我国风力资源储量丰富,分布广泛。陆上可开发的储量为2.53亿kW,海上可开发的储量为7.5亿kW。“大规模、高集中开发,远距离和高电压输送”是我国风电发展的重要特征。近年来,我国风电发展迅猛,2006~2010 年风电总装机容量从260万kW增长到4 182.7万kW,2010年新增风电装机1 600万kW,累计装机容量和新增装机容量均居世界第一。预计2020年我国风电累计装机可以达到2.3亿kW。这意味着未来十年中,风电总装机容量
平均每年需新增1 800万kW。预计每年需新增机组及其配套变流器约9 000台。
2.风电系统的控制技术
风力发电系统的运行方式有三种:独立型、并网型和联合型。并网型风力发电系统由风力机控制器、风力机、传动装置、励磁调节器、发动机、变频器和变压器等组成。
风力发电机组包括风力机、发电机、变速传动装置及相应的控制器等,用来实现风能与电能的能量转换。风力发电的关键问题是风力机和发电机的功率和速度控制。
风电机组中将风能转换成机械能的能量转换装置是风力机,它由风轮、迎风装置和塔架等组成。按结构不同,风力机可分为水平轴式和立轴式两种;按功率调节方式不同,风力机可分为定桨距失速、变桨距和主动失速 3 种。
风电机组中的发电机将机械能转化为电能,发电机在并入电网时必须输出恒定频率(一般为 50 Hz)的电能。按照发电机转速的不同,发电机可分为恒速和变速两类,其中变速需要通过变频器来实现。变频器采用电力电子变流技术和控制技术,将发电机发出的频率变化交流电转换为与电网频率相同、能与电网柔性连接的交流电,并且能实现最大风能跟踪控制。按照拓扑结构的不同,变频器可分为交-交型、交-直-交型和矩阵型三种;按照变频器容量的不同可将变频器分为部分容量和全部容量(全额)两种。
变速传动装置可将风轮的低转速转换为发电机的较高转速,按传动链类型将其分为齿轮箱驱动和直接驱动两种,其中前者包括单级和多级两种齿轮箱驱动。
3.风力发电机及其风电系统
实现恒速或变速风力发电系统有许多种方案,所选发电机的类型主要取决于风电系统的形式。
传统的恒速/变速风电系统共有四种:基于SCIG 的恒速风电系统[1]、基于WRIG 的受限变速风电系统[2]、基于ESC-SCIG 的变速风电系统[3]和基于MMG 的变速风电系统[4]。
现代风电系统一般采用变速恒频技术,这种技术通过变流装置或改造发电机结构来实现。现代变速恒频风电系统共有六种:基于SCIG 的风电系统[5]、基于DFIG 的风电系统[6]、基于直驱式EESG 的风电系统[7]、基于直驱式PMSG 的风电系统[8]、基于半直驱PMSG 的风电系统[9]和基于PMBDCG 的风电系统[10]。
近年来,一些具有商业化潜力的新型风力发电机及其风力发电系统不断涌现。新型变速恒频风电系统主要有以下八种:基于 SRG 的风电系统[11]、基于 BDFIG 的风电系统[12]、基于CPG 的风电系统[13]、基于HVG 的风电系统[14]、基于DWIG 的风电系统[15]、基于
TFPMG 的风电系统[16]、基于DSPMG 的风电系统[17]和基于EVT 的风电系统[18]。
4.风力发电中的关键技术
4.1并网技术的研究和最大风能的捕获
并网技术是通过对全功率电力变换器的控制算法来实现控制目的。并网控制方面,文献
[19]提出了直流侧并网的新方法。在直流电容与 DC/AC 之间安装并网开关。并网前并网开关断开,DC/AC 通过限流电阻对电容进行充电,此时发电机在风力机的带动下转速从 0 上升。当电容充电达到交流电网线电压幅值时闭合并网开关,同步风力发电机并网。正常情况下,发电机转速从低到高逐渐上升,并在某一转速下并入电网。当由于某种原因,发电机在高转速下脱网需要重新并网,由于此时电容已经充电且直流母线电压高于网侧交流线电压幅值,因此只要将并网开关闭合就可实现并网。
直驱式永磁同步风力发电机经电力电子变换器并入电网以后的控制目标是风速小于额定风速时实现最大风能捕获,风速超过额定风速时使系统以额定功率输出[20]。
最大风能捕获的目的就是通过适当的控制,使风力机转速随风速变化,始终沿着最佳功率曲线运行,从而使风能转化最大化。最大风能追踪可以有变桨距调节,也可以通过调节发电机功率来调节转速以保持最佳叶尖速比实现。出于可行性、经济性和可靠性的考虑,当前使用的主要是通过控制发电机输出功率以调节其电磁功率,进而调节发电机转速。
具体实现时,在发电机有功和无功功率解耦控制的基础上,根据有功功率给定的提取方法的不同,又有有速度传感器和无速度传感器的控制方法之分。有速度传感器的控制方法是根据风力机最佳功率曲线和风力机转速实时计算发电机输出功率给定。而无速度传感器的控制方法又有扰动法[21,22,23]、参数估计法、查表法和人工在智能法几类。
4.2低电压穿越的研究
电网电压跌落时,由于受变流器通流能力的限制,网侧逆变器注入电网功率减小。而此刻机侧整流器的功率并没有改变,造成直流侧的过电压。如果维持直流侧电压稳定,则必然造成逆变器过电流。过电压和过电流都将导致电力电子器件的损坏,为了保护变流器不被损坏,风力发电机组将在电压跌落时退出运行。电网穿透率小时,风力发电机组在电压跌落时退出运行还是可以接受的。
然而,随着风力发电规模的不断扩大,若风电机组在电压跌落时仍然采取被动保护式脱网,则会增加整个系统的恢复难度,甚至使故障更加严重,最终导致系统其他机组全部解列。目前在风力发电技术发展领先的一些国家,如丹麦、德国等已相继制定了新的电网运
行准则, 定量给出了风电系统离网的条件(如最低电压跌落深度和跌落持续时间),只有当电网电压跌落低于规定曲线以后才允许风力机脱网,当电压在凹陷部分时,发电机应提供无功功率。这就要求风电系统具有较强的低电压穿越能力,能方便地为电网提供无功支持。因此必须研究低电压穿越的措施,实现电网电压跌落时风力发电机不脱网运行。
文献[24]通过在逆变器交流侧加装无功补偿装置和低通滤波器来应对电网电压不对称跌落对系统所造成的影响,使逆变器只能感受到电网的正序电压,保持其对称工作状态,从而实现低电压穿越;文献[25-28]通过直流侧加卸荷负载以消除电压跌落时直流侧的功率拥堵,避免直流侧的过电压和逆变器的过电流,实现低电压穿越。这些方法都要增加专门的元件,降低了系统的可靠性和经济性,使控制变得复杂。
结论
风电作为我国今后大力重点发展的 3 类新能源之一,在今后将具有广阔的发展和应用前景,风力发电在摆脱对化石能源的过度依赖、缓解中国能源紧缺、改善生态环境和扩大社会效益等方面将做出较大的贡献。本文对风力发电的发展状况,如传统的恒速/变速风电系统、现代变速恒频风电系统和新型变速恒频风电系统进行了简单介绍。随着风电技术的不断变革以及机组制造工艺的持续改进,将来风力发电的竞争力必定逐渐提升,其发展前景广阔。
参考文献:
[1]程明,张运乾,张建忠.风力发电机发展现状及研究进展[J].电力科学与技术学报,2009,24(3):2 -9.
[2]李辉,薛玉石,韩力.并网风力发电机系统的发展综述[J].微特电机,2009,37(5):55 -61. [3]杨培宏,刘文颖.基于 DSP 实现风力发电机组并网运行[J].可再生能源,2007,25(4):79 -82.
[4]吴聂根,程小华.变速恒频风力发电技术综述[J].微电机,2009,42(8):69 -72.
[5]荆龙.鼠笼异步电机风力发电系统优化控制[D].北京:北京交通大学,2008.
[6]林成武,王凤翔,姚兴佳.变速恒频双馈风力发电机励磁控制技术研究[J].中国电机工程学报,2003,23(11):122 -125.
[7]周扬忠,胡育文,黄文新.基于直接转矩控制电励磁同步电机转子励磁电流控制策略[J].南京航空航天大学学报:自然科学版,2007,39(4):429 -434.
[8]张岳,王凤翔.直驱式永磁同步风力发电机性能研究[J].电机与控制学报,2009,13(1):78 -
82.
[9]陈昆明,汤天浩,陈新红,等.永磁半直驱风力机控制策略仿真[J].上海海事大学学报:自然科学版,2008,29(4):39 -44.
[10]夏长亮,张茂华,王迎发,等.永磁无刷直流电机直接转矩控制[J].中国电机工程学报,2008,28(6):104 -109.
[11]胡海燕,潘再平.开关磁阻风力发电系统综述[J].机电工程,2004,21(10):48 -52.
[12]刘伟,沈宏,高立刚,等.无刷双馈风力发电机直接转矩控制系统研究[J].电力系统保护与控制,2010,38(5):77 -81.
[13] 桓毅,汪至中.风力发电机及其控制系统的对比分析[J].中小型电机,2002,29(4):41 -45.
[14]杜新梅,刘坚栋,李泓.新型风力发电系统[J].高电压技术,2005,31(1):63 -65.
[15]李勇,胡育文,黄文新,等.变速运行的定子双绕组感应电机发电系统控制技术研[J].中国电机工程学报,2008,28(20):124 -130.
[16]董萍,吴捷,陈渊睿,等.新型发电机在风力发电系统中的应用[J].微特电机,2004,32(7):39 -44.
[17]张建忠,程明.新型直接驱动外转子双凸极永磁风力发电机[J].电工技术学报,2007,22(12):15 -21.
[18]袁永杰.开关磁阻四端口机电换能器及在风力发电中的应用研究[D].哈尔滨:哈尔滨工业大学,2008.
[19] 徐科,胡敏强,杜炎森,等.直流母线电压控制实现并网与最大风能跟踪[J].电力系统自动化,2007,31
(11):53-58.[20] 吴迪,张建文.变速直驱永磁风力发电机控制系统的研究[J]大电机技术,2006(6): 51-55
[21] 王生铁,张润和,田立欣.小型风力发电系统最大功率控制扰动法及状态平均建模与分析[J].太阳能学报,2006,27(8):828-837.[22] 闫耀民,范瑜,汪至中.永磁同步电机风力发电系统的自寻优控制[J].电工技术学报,2002,17
(6):82-86.[23] 房泽平,王生铁.小型风电系统变步长扰动 MPPT 控制仿真研究[J].计算机仿真,2007,24
(9):241-244.[24] MARIUS F, CRISTIAN L, GHEORGHE-DANIEL A, etal.Voltage Sags Ride-Through of Motion SensorlessControlled PMSG for Wind Turbines[C].Industry Applications Conference, 2007.[25] 李建林,胡书举,孔德国,等.全功率变流器永磁直驱风电系统低电压穿越特性研究[J].电力系统自动化,2008,32(19):92-95.[26] 胡书举,李建林, 许洪华.直驱式 VSCF 风电系统直流侧Crowbar 电路的仿真分析[J].电力系统及其自动化学报,2008,20(3):118-123.[27] 李建林,胡书举,孔德国,等.全功率变流器永磁直驱风电系统低电压穿越特性研究[J].电力系统自动化,2008,32(19):92-95.[28] 胡书举,李建林,许洪华.变速衡频风电系统应对电网故障的保护电路分析[J].变流技术与电力牵引,2008(1):45-51.
第四篇:风力发电电控制技术的国内外研究现状
风力发电电控制技术的国内外研究现状
发布者:德明太阳能控制器 发布时间:2011-3-9 9:15:30 阅读:212次 【字体:大 中
双击自动滚屏
小】
国内外风力发电的控制技术按功率调节方式大体上可分为以下两类l川:
第一类是定桨距失速控制的恒速恒频(}SCF]发电方式。这种机组的输出功率随风 速的变化而变化,系统通过一定的调节,保持风力机转速恒定,从而实现发电频率的恒 定。但当风速变化时风力机偏离其与最大风能相对应的最佳速度,导致风力资源浪费,发电效率下降。定桨距风机技术是丹麦风电技术的核心。它主要利用桨叶翼形的失速特 性,在高于额定风速时,达到失速条件后,桨叶表面产生涡流,效率降低,达到限制功 率的目的。定桨距机型优点是调节和控制简单。缺点在于对叶片、轮载、塔架等主要部 件受力增大,而且风力超过额定风速后风机出力反而下降。
第二类是变桨距调节控制的变速恒频仅scF)发电系统。在定桨距基础上加装桨距调 节环节,称为变桨距风力机组。其特点是:通过适当的控制,根据风速的变化调节风力机 的转速,实现各种风速下最大风能捕获。使风力机的叶尖速比达到或接近最佳值,而不 影响输出电能的频率,从而最大限度的利用风能。变桨距风机在风速高于额定风速时,通过调节桨距角的变化,减少吸收的风能,从而使风电机输出的有功保持稳定,这体现 了变桨距风机的优势.但变桨距风机也有缺点:制造成本高,结构复杂,不像定桨距风 机那样易于维护。
恒速恒频风电机组在额定转速附近运行,滑差变化范围较小,从而发电输出频率变 化也较小,所以称为恒速恒频风力发电机组。
恒速恒频风电机组运行中会从电网中吸收无功电流建立磁场,导致电网功率因数变 差,因此,一般在风机出口处装设可投切的并联电容器组提供非连续可变的无功补偿,采用可控硅软并网技术将起动电流限制在额定电流的1i2 } } f倍之内以防止并网失败,还采用气动刹车技术、偏航和自动解缆等技术解决凡力发电机组并网运行的可靠性问 题。
近年来,大规模电力电子技术日趋成熟,变速恒频风力发电机组己成为风力发电设 备的主要选择方向之一。变速恒频机组可以实现转子机械角速度和电网频率的解耦,主 要有两种类型,即直接驱动的同步发电机和双馈感应发电机。
第五篇:风力发电技术与电价分析
风力发电技术与电价分析
本文主要介绍风电电价的构成,发展风力发电的必要性和现阶段我国发展风电面临的论难和机遇。通过对国内外的电力来源,能源结构,风能储量及分布,风电的社会价值等方面的评价入手阐述我国发展风电的必要性和紧迫性。
通过对风电场建设规模,风力发电成本要素,风电电价构成,减低成本途径,政府现行对风电的税收鼓励政策,现行风电产业特点和风电设备制造技术以及风电的社会效益等方面的分析,为政府,风电产业,融资领域和社会关注层面为解决风电产业中得各种矛盾以及为促进和发展风电产业建设提供理论依据和解决方案。
阐明我国积极发展风力发电事业,风电技术国产化和提高风电市场竞争力在我国具备着巨大的潜力。积极利用和发展风电这一再生能源,推动我国走可持续发展的能源之路,在我国已是势在必行。
关键词:风力发电,能源结构,政府鼓励,风电电价
1.绪论
1.1 引言
能源,是人类生存的基本要素,也是国民经济发展的主要物质基础。随着国际工业化的进程,全球未来能源消耗预计仍将以3的速度增长,常规能源资源面临日益枯竭的窘境。进入20世纪,由于对能源的渴求,人们无节制地开采石油,煤炭,天然气等这些埋在地层深处的维系人类生存的“能源食粮”,不仅严重地污染了我们的生存空间,恶化了自然环境,而且带来了更可怕的恶果 — 能源枯竭。进入70年代,世界能源发生危机,石油价格剧烈上涨,极大的刺激了那些能源消耗大国,使他们把研究开发其他能源放到了重要位置,要生存就必须寻求开发新能源。为此,各国政府纷纷制定自己的能源政策,给新能源开发以特殊优惠政策和政府税收补贴,从而使风能,原子能,太阳能,潮汐能,地热能等的开发利用得以迅速发展。进入21世纪,可再生能源的发展与研究将在全球的资源利用中得到越来越多的重要,可再生能源在资源消耗中也将占据越来越高的比例。
世界能源危机为风电发展提供了机遇,但由于起步较晚,存在很多不确定因素阻碍风电行业的发展。我国风电行业发展比较迅速,但与国际风电行业的发展水平还有很大差距,国内的风电发动设备主要依靠进口,对外依赖性强,虽然风电成本已下降很多,但相比火电成本的优势在短期内并不会明显突出,风电行业的发展还有很多的阻碍因素。正是风电行业投资的高风险,必然为风电行业发展带来高收益,不论是风电产业的经济效益、对社会的效益,还是我国目前奉行的可持续发展和节约战略,这些都为发电行业提供了很大的发展空间。
《中国风电产业市场发展研究及投资分析报告》根据国家统计局、国家发改委、国研网、欧洲风能协会和其他的一些权威渠道,内容丰富、翔实。在撰写过程中,运用了大量的图、表等分析工具,结合相关的经济学理论,综合运用定量和定性的分析方法,对风电行业的运行及发展趋势做了比较详细的分析,对影响行业发展的基本因素进行了审慎的剖析,报告还对国外风电行业发展迅速的国家相关政策进行了介绍和分析判断,为我国风电行业的发展提供依据和选择,是能源企业以及相关企事业单位、计划投资于风电行业的企业和风电设备业行业准确了解目前我国风电市场动态,把握风电行业发展趋势,制定企业战略的重要参考依据 1.2 风力发电的历史和现状
风能是人类最早利用的能源之一。早在公元前 2000 年,埃及,波斯等国就己出现帆船和风磨,中世纪荷兰与美国已有用于排灌的水平轴风车。中国是世界上最早利用风能的国家之一,早在 1800 年前,中国就有风车提水的纪录。下面简单介绍一下国内外现代风力机研制的历史和现状。
1.2.1中国风电的历史和现状
中国对现代风力机的研制可以追溯到二十世纪 50 年代,但有系统地研究还是从二十世纪 70 年代开始的。中国为了解决西部草原牧区,东部海岛及边远山区的用电问题,国家鼓励开发离网型风力机,国内各风电科研机构主要从事离网型的研制,并形成了一定的规模。根据中国的具体情况,重点推广了户用微型发电机,功率一般为 1001000W,目前已形成了一个生产,销售,维修服务较完善的体系,部分产品出口。这为电网不能通达 3的地区约 60 万居民解决了基本用电问题。电灯,电视进入千家万户,提高了人民群众的生活质量。据世界能源组织统计,世界上十个最大的小型风力发电机生产企业中,中国占七个。截至 2000 年底,全国累计生产了离网型风力发电机组近二十万台。
1.3 中国风电电价定价机制的演变过程
中国的并网风电从 20 世纪 80 年代开始发展,尤其是“十一五”期间,风电发展非常迅速,总装机容量从1989 年底的4200kW增长到2008年的 1,200 万 kW,跃居世界第四位,标志着中国风电进入了大规模开发阶段。总体看来,中国并网风电场的发展经历了三个阶段,即初期示范阶段、产业化建立阶段、规模化及国产化阶段。各阶段的电价特点及定价机制概括如下:
1.3.1 初期示范阶段(1986-1993 年)
中国并网型风电发展起步于 1986 年。1986 年 5 月,第一个风电场在山东荣成马兰湾建成,其安装的Vestas V15-55/11风电机组,是由山东省政府和航空工业部共同拨付外汇引进的。此后,各地又陆续使用政府拨款或国外赠款、优惠贷款等引进了一些风电机组,建设并网型风电场。由于这些风电场主要用于科研或作为示范项目,未进入商业化运行,因此,上网电价参照当地燃煤电价,由风力发电厂与电网公司签订购电协议后,报国家物价部门核准,电价水平在 0.28 元/kWh 左右,例如 20世纪90 年代初期建成的达坂城风电场,上网电价不足0.3元/kWh总体来说,此阶段风电装机累积容量为4200kW,风电发展的特点是利用国外赠款及贷款,建设小型示范电场。政府的扶持主要是在资金方面,如投资风电场项目及风力发电机组的研制。风电电价水平基本与燃煤电厂持平。
1.3.2产业化建立阶段(1994-2003 年)
1994年起,中国开始探索设备国产化推动风电发展的道路,推出了“乘风计划”,实施了“双加工程”,制定了支持设备国产化的专项政策,风电场建设逐渐进入商业期。这些政策的实施,对培育刚刚起步的中国风电产业起到了一定作用,但由于技术和政策上的重重障碍,中国风电发展依然步履维艰。每年新增装机不超过十万千瓦。到2003年底,全国风电装机容量仅56.84 万千瓦。
这一阶段,风电电价经历了还本付息电价和经营期平均电价两个阶段。1994 年,国家主管部门规定,电网管理部门应允许风电场就近上网,并收购全部上网电量,上网电价按发电成本加还本付息、加合理利润的原则确定,高出电网平均电价部分的差价由电网公司负担,发电量由电网公司统一收购。随着中国电力体制改革的深化,电价根据“厂网分开,竞价上网”的目标逐步开始改革。
总体来说,这一时期的电价政策呈现出如下特点:上网电价由风力发电厂与电网公司签订购电协议,各地价格主管部门批准后,报国家物价部门备案,因此,风电价格各不相同。最低的仍然是采用竞争电价,与燃煤电厂的上网电价相当,例如,中国节能投资公司建设的张北风电场上网电价为 0.38 元/千瓦时;而最高上网电价每千瓦时超过 1 元,例如浙江的括苍山风电场上网电价高达每千瓦时1.2元。
由此可见,从初期示范阶段到产业化建立阶段,电价呈现上升趋势。
1.3.3规模化及国产化阶段(2003 后)
为了促进风电大规模发展,2003年,国家发展改革委组织了第一期全国风电特许权项目招标,将竞争机制引入风电场开发,以市场化方式确定风电上网电价。截至2007年,共组织了五期特许权招标,总装机容量达到880万千瓦。
为了推广特许权招标经验,2006年国家发展改革委颁布《可再生能源发电价格和费用分摊管理试行办法》(发改价格[2006]7号)文件,提出了“风力发电项目的上网电价实行政府指导价,电价标准由国务院价格主管部门按照招标形成的价格确定”。根据该文件,部分省(区、市),如内蒙古、吉林、甘肃、福建等,组织了若干省级风电特许权项目.1.3.4目前中国风电电价政策
随着风电的快速发展,“招标加核准”的模式已无法满足风电市场发展和政府宏观引导的现实需要。因此,在当前各地风电进入大规模建设阶段,从招标定价加政府核准并行制度过渡到标杆电价机制,是行业发展的必然,也将引导风电产业的长期健康发展。
2009年 7月底,国家发展改革委发布了《关于完善风力发电上网电价政策的通知》(发改价格[2009]1906号),对风力发电上网电价政策进行了完善。文件规定,全国按风能资源状况和工程建设条件分为四类风能资源区,相应设定风电标杆上网电价。
1.4中国政府对风电的补贴政策
中国政府一直大力支持风电的发展,从2002 年开始,要求电网公司在售电价格上涨的部分中拿出一定份额,补贴可再生能源发电(即高出煤电电价的部分)。,电网和中国政府对风电的政策性补贴力度逐年加大,由 2002 年的 1.38 亿元上升到 2008 年的 23.77 亿元1(见图 4)。由此可见,中国政府的政策是鼓励可再生能源发展的,因此,中国风电迅速发展,三年间装机容量翻番。尽管如此,由于风电运行的不确定性,技术操作能力和管理水平的限制,中国风电企业的盈利仍然是微薄的。结论
从以上分析我们可以看出,中国的风电电价变化和风电行业的发展特点密不可分。风电行业发展经历了初期示范、产业化建立、规模化及国产化、目前逐渐完善等四个阶段。与此相对应,四个阶段的风电电价基本情况为:初期示范阶段:与燃煤电价持平(不足0.3元/kWh);产业化建立阶段:由风力发电厂和电网公司签订购电协议确定,电价各不相同(0.38元/kWh~1.2元/kWh);规模化及国产化阶段:招标电价与核准电价共存,国家招标电价保持上升;目前完善阶段:四类标杆电价(0.51元/kWh,0.54元/kWh,0.58元/kWh,0.61元/kWh)。在这期间,中国政府一直努力探索合理的风电电价市场形成机制。不同阶段的机制不同,风电电价亦有所波动,国家的指导电价逐年上升,核准电价则略微下降,这都符合中国风电产业和世界风电产业的发展规律,使中国的风电电价更趋理性。同时,可以看到,中国政府在探索风电价格机制和规范风电电价的过程中,一直给予风电行业巨大的支持,2002年至2008年,国家对风电的补贴额从1.38亿元上升为23.77亿元,每年都在大幅度增长,这极大地提高了投资者的积极性,促使中国的风电装机容量成倍增加,中国一跃成为风电大国。
因此,我们认为,中国政府是依据风电本身发展的客观规律、电网的承受能力来确定风电电价,在确定电价时从未考虑 CDM 因素,定价过程完全与CDM无关。但是,也应该看到,在中国风力发展的过程中,CDM对风力发电企业克服资金和技术障碍确实发挥了积极作用,如果没有CDM,中国风电发展速度不会如此迅速,更不会为减缓全球温室气体排放做出如此巨大的贡献。因此,我们希望EB在审核中国风电项目时能充分考虑和理解中国特殊的定价机制,推动全球范围内更多高质量 CDM 项目的成功注册,为减缓全球气候变化作出更多贡献。
参考文献:
1.王双(作者)《风力发电发展与风电电价分析研究》(文章)2.中国风力发电网(作者)《中国风电及电价发展研究报告》 3.作者不详 《 中国风电产业市场发展研究及投资分析报告》