第一篇:风力发电技术知识问答总
风力发电技术知识问答总合集(精华)
电力法的基本原则包括哪些内容?
答1电力事业应当根据国民经济和社会发展的需要,适当超前发展2国家鼓励国内外经济组织和个人依法投资开发电源,兴办电力生产企业,实行谁投资,谁受益的原则。3电力设施和电能受国家保护的原则。4电力建设和电力生产要依法保护环境防治公害。5国家鼓励和支持利用可再生资源和清洁能源发电。6电力企业依法实行自主经营,自负盈亏,并接受电力管理部门的监督。7国家帮助和扶持少数民族地区,边远地区和贫困地区发展电力事业。8国家鼓励采用先进的科学技术和管理方法发展电力事业。
什么叫污闪,哪些情况下容易发生污闪
答,瓷质绝缘表面由于环境污秽和潮湿而引起瓷表面沿面放电以致发生闪络的现象,通常称为污闪,一般在毛毛雨,大雾,雪淞等气候条件下容易发生污闪。
电力变压器的正常巡视检查项目有哪些
答,1声响,油位,温度是否正常,2气体继电器是否充满油,变压器外壳是否清洁,有无渗漏,防爆管是否完整,无裂缝。3套管是否清洁,无裂文,无打火放电现象,引线接头是否良好,有无过热现象。4冷却系统是否正常,吸湿器是否畅通,吸潮剂有无潮体。5负荷是否正常,有载调压装置的运行是否正常,分接开关的位置是否符合电压的要求。
电气绝缘材料在电工技术中有何作用
答,1,使导电体与其他部分相互隔离,2把不同电位的导体分隔开,3提供电容器储能的条件,4改善高压电场中的电位梯度。
试述补偿电容器采用星形,三角形连接各有什么优缺点。
答,1星形连接的补偿效果,仅为三角形连接的1/3,这是因为 1在三相系统中采用三角形连接法时,电容器所受的为线电压,可获得较大的补偿效果。2当彩星形接法时,电容器所受电压为相电压,其值为线电压的1比根号3,而无功出力与电容器电压平方成正比,即QC=U2C/XC故星形接线的无功出力将下降1/3。2星形连接时,当电容器发生单相短路,短路相电流为未短路两相电流的几何和,其值不会超过电容器额定电流的三倍,而三角形连接发生单相短路时,短路电流会超过电容器额定电流的很多倍,易引起事故的扩大。故从短路全方面考虑,采用星形接线比较合理。
试述电气设备接地的巡视内容
答,1电气设备接地线,接地网的连接有无松动,脱落现象,2接地线有无损伤,腐蚀,断股,固定螺栓是否松动,3人工接地体周围地面是否堆放或倾倒有易腐蚀性物质。3人工接地体周围地面是否堆放或倾倒有易腐蚀性物质,4移动电气设备每次使用前,应检查接地线是否良好;5地中埋设件是否被水冲刷,裸露地面,5接地电阻是否超过规定值。试述1000V以上电气设备的接地情况
答:凡电压在1000V以上的电气设备,在各种情况下,均应进行保护接地,而与变压器或发电机的中性点是否直接接地无关
试述液压油的分类及它们的基本情况
答,液压油分矿物油型,乳化型和合成型。矿物油型又分机械油,汽轮机油,通用液压油,液压导轨油和专用液压油。专用液压油有,耐磨液压油,低凝液压油,清净液压油和数控液压油。乳化型又分油包水乳化液和水包油乳化液。合成型又分磷酸酸基液压油和水一二元醇基液压油。
试述淮压系统中滤油器的各种可能安装位置
答,1淮压泵回油管路上,2系统压力管道上,3系统旁通油路上4系统回油管路上,5单独设立滤油器管路上。
流量阀的节流口为什么通常要采用薄壁孔而不采用细长小孔
答,1薄壁小孔的流量特性好,2薄壁小孔不容易堵塞,可以获得最小开充,故可以获得比细长小孔更小的稳定流量。3薄壁小孔的流量公式中不含黏度参数,流量受温度的影响小。试述直流电磁换向阀和交流电磁换向阀的特点
答,交流电磁换向阀用交流电磁铁,操作力较大,启动性能好,换向时间短,但换向冲机和噪声较大,当阀芯被卡阻时,线圈容易因电流增大而烧坏,换向可靠性差,允许的换向频率低。而直流电磁换向阀频率高,冲机小,寿命长,工作可靠但操作力小,换向时间长。
保谓液压系统的爬行现象,如何寻找产生爬行的原因
答,液压传动系统中,当液压刚或液压马达低速运行时,可能产生时断时续的运动现象,这种现象称为爬行。产生爬行的原因道德是和磨擦力特性有关,若静磨擦力与动摩擦力相等,摩擦力没有降落特性,就不易产生爬行,因此检查液压刚内密封件安装正确与否,对消除爬行是很重要的,爬行的产生与转动系统的刚度有关,当油中混入空气时,则油的有效体职弹性系数大大降低,系统刚度减小,就容易产生爬行,因此必须防止空气进行液压系统,并设法排出系统中的空气。另外,供油流量不稳定,油液变质或污染等也会引起爬行现象。
试述液压传动的工作原理
答液压传动的工作原理就是利用液体的压力传递运动和动力,先利用动力元件(液压泵)将原动机的机械能转换为液体的压力能,再利用执行元件液压刚将液体的压力能转换为机械能,驱动工作部件运动。液压系统工作时,还可利用各种控制元件如溢流阀和换向阀等对油液进行压力,流量和方向的控制与调节,以满足工作部件对压力,速度和方向上的要求。
与其他传动方式相比,液压传动有哪些优缺点
答,1传动平衡,易于频繁换向,2质量轻体积小,动作灵敏,3承载能力大;4调速范围大,易实现无级调速,5易于实现过载保护;6液压元件能够自动润滑,元件的使用寿命长,7简易实现各种复杂的动作。8简化机械结构9便于实现自动化控制,10便于实现系列化,标准化和通用化。缺点有:1液压元件制造精度要求高,2实现定比传动困难,3油液易受温度的影响,4不适宜远距离输送动力,5油液中混入空气容易影响工作性能,6油液容易被污染,7发生故障不容易检查与排除。
液压泵的分类和主要参数有哪些
答,液压泵,按其结构形式分为齿轮泵,叶片泵,柱塞泵和螺杆泵;按泵的流量能否调节,分为定量泵和变量泵;按泵的输油方向能否改变,又分为单向泵和双向泵。液压泵的主要参数有压力和流量。
液压基本回路有哪几大类,它们各自的作用是什么
答,液压基本回路通常分为方向控制回路,压力控制回路和速度控制回路三大类。1方向控制回路其作用是利用换向阀控制执行元件的启动,停止,换向及锁紧等。2压力控制回路的作用是通过压力控制阀来完成系统的压力控制,实现调压,增压,减压,卸荷和顺序动作等,以满足执行元件在力或转矩及各种动作变化时对系统压力的要求。3速度在控制回路的作用是控制液压系统中执行元件的运动速度或速度切换。
什么是变浆距控制,它有哪些特点
答,变桨距控制主要是指通过改变翼型迎角,使翼型升力发生变化来进行输出功率的调节,变桨距控制风轮的特点如下,优点1启动性好,2刹车机构简单,叶片瞬浆及风轮转速可以逐渐下降;3额定点前的功率输出饱满;4额定点后的输出功率平滑,5风轮叶根随的静动载荷小,6叶宽小,叶片轻,机头质量比失速机组小。缺点1由于有叶片变距机构,轮毂较复杂,可靠性设计要求高,维护费用高。
齿轮箱常见故障有哪几种
答1齿轮损伤。2轮齿折断,断齿又分过载折断,疲劳折断以及随机断裂等。3齿面疲劳,4胶合,5轴承损伤,6断轴,7油温高等。
如何检查齿轮箱异常高温
答,首行要检查润滑油供应是否充分,特别是在各主要润滑点处,必须要有足够的油液润滑和冷却;再次要检查各传动零部件有无卡滞现象,还要检查机组的振动情况,前后连接接头是否松动等
风力发电机组的整体检查包括哪些内容
答,1检查法兰间隙,2检查风电机组防水,防尘,防沙暴,防腐蚀情况。3一年一次风电机组防雷系统检查,4一年一次风电机组接地电阻检查,5检查并测试系统的命令和功能是否正常,6检查电动吊车,7根据需要进行超速试验,飞车试验,正常停机试验,安全停机,事故停机试验。8检查风电机组内外环境卫生状况。
风力发电机组机械制动系统的检查包括哪些项目
答,1接线端子有无松动,2制动盘和制动块间隙,间隙不得超过厂家规定数值;3制动块磨损程度,4制动盘有无磨损和裂缝,是否松动,如埯更换按厂家规定标准执行。5液压系统各测压点压力是否正常;6液压连接软管和液压刚的泄露与磨损情况;7根据力矩表100%紧固机械制动器相应螺栓;8检查液压油位是否正常9按规定更新过滤器;10测量制动时间,并按规定进行调整。
哪些事故出现,风力发电机组应进行停机处理
答,1叶片处于不正常位置与正常运行状态不符时;2风电机组主要保护装置拒动或失灵时,3风电机组因雷机损坏时。4风电机组发生叶片断裂等严重机械故障时,5出现制动系统故障时。
如何处理风力发电机组故障性自动停机
答,对由故障引起的不定期自动停机,即操作手册规定外的停机,操作者在重新启动风电机组之前,应检查和分析引起停机产生的原因,对这类停机都应认真记录,应检查和分析引起停机产生的原因,对这类停机都应认真记录,而未造成临界安全损伤的外部故障,如电网无电后又恢复的情况,在完成停机检查程序后,允许其自动恢复到正常状态。
为什么风电场要进行运行分析
答,风电场进行运行分析主要是对风电设备的运行状况,安全运行,经济运行以及运行管理进行综合性或专题性分析,通过分析可以摸索出运行规律,找出设备的薄弱环节,有针对性地制定防止事故的措施。从而提高风电设备运行的技术管理水平和风电场的经济效益。
试述风力发电对环境的影响
答,1优点,风力发电利用的是可再生性的风能资源,属于绿色洁净能源,它的使用对大气环境不造成任何污染,从另一角度来看充分利用风力发电,也可降低矿物燃料的使用,从而减少污染物的排放量,相应地保留了矿物质第一次性能源。风力发电对场内的土地利用不受限制,未占的大面积土地仍可按计划继续留做他用。2缺点,视觉侵扰,噪声,电磁干扰及对微气候和生态影响都是风力发电的不足之处,便这些负面影响可以通过精心设计而减少。
风力发电机组的日常运行工作内容主要包括哪些
答,1通过中控室的监控计算机,监视机组的各项参数变弯及运行状态,并按规定认真填写风电场运行日志,当发现异常变化趋势时,应对该机组的运行状态实施连续监视,并根据实际情况采取相应的处理措施。2遇到常规故障,应及时通知维护人员,应根据当时的气象条件做相应的检查处理,并在风电场运行日志上做好相应的故障处理记录及质量验收记录。3对于非常规故障,应及时通知相关部门,并积极配合处理解决。
风力发电机组的巡视检查工作重点应是哪些机组
答,在风力发电机组巡检工作中,要根据设备近期的实际情况有针对性地重点检查,1故障处理后重新投运的机组,2启停频繁的机组,3负荷重,温度偏高的机组4带病运行的机组,5新投入运行的机组。
风力发电机组因液压故障停机后应如何检查处理
答,应检查,1油泵工作是否正常,2液压回路是否渗漏,3若油压异常,应检查液压泵电动机,液压管路,液压刚及有关阀体和压力开关等,必要是应进一步检查液压泵本体工作是否正常。4待故障排除后再恢复机组运行。
当风力发电机组在运行中发生主开关跳闸现象应如何检查处理
答,1目测检查主回路元件外观及电缆接头处有无异常,2在拉开台变侧开关后应当测量发电机主回路绝缘以及可控硅是否正常,若无异常可重新试送电,3借助就地临近机提供的有关故障信息进一步检查主开关动作的原因,若有必要应考虑检查就地监控机跳闸信号回路及主开关自动跳闸机构是否正常。4经检查处理并确认无误后,才允许重新启动风电机组。
当风力发电机组发生事故后,应如何处理
答,发事事故时,值班负责人应当组织人员采取有效措施,防止事故扩大并及时上报有关部门及人员,同时应保护事故现场,为事故调查提供便利,事故发生后,运行人员还
请阐述风的测量及自动测风系统的主要组成部分
答,风的测量包括风向和风速测量。风向测量是指测量风的走向,风速测量是测量单位时间内空气在水平方向所移动的距离。自动测风系统主要由六部分组成。即传感器,主机,数据存储装置,电源,安全与保护装置。传感器分风速传感器,风向传感器,温度传感器,气压传感器,输出信息为频率或模拟信号。主机利用微处理器对传感器发送的信号进行采集,计算和存储,由数据记录装置,数据读取装置,微处理器,就地显示装置组成。
试述风力发电机组巡视检查的主要内容,重点和目的
答,风力发电机组巡视检查工作主要内容包括,机组在运行中有无异常声响。叶轮及运行的状态,偏航系统是否正常,塔架外表有无油迹污染等。巡视过程中要根据设备近期的实际情况有针对性地重点检查,1故障处理后重新投运的机组;2起停频繁的机组;3负荷重,温度偏高的机组,4带病运行的机组,5新投入运行的机组,若发现故障隐患,则应及时报告和处理,查明原因,从而达到避免事故发生,减少经济损失的目的,同时要做好相应的巡视检查记录进行备案
风力发电机组因异常情况需要立即停机应如何进行操作? 答,操作顺序是,1,利用主控计算机遥控停机,2遥控停机无效时,则就地按正常停机按钮停机,3当正常按钮仍无效时,拉开几力发电机组主开关或连接此台机组的线路断路器,之后疏散现场人员做好秘要的安全措施,避免事故范围扩大。
试述风务发电机组手动启动和停机的操作方式有哪些
答,1,主控室操作。在主控室操作计算机启动键和停机键。2,就地操作,断开遥控操作开关,在风电机组的控制盘上,操作启动或停机按钮,操作后再合上遥控开关。3远程操作,在远程终端上操作启动键和停机键。4机舱上操作。在机舱的控制盘上操作启动键或停机键,但机舱上操作权限于调试时使用。
什么是图标,图标的主要内容包括哪些
答,图标又称标题栏,一般在图样的右下角,其内容主要包括,图名,图号,工程名称,设计单位,设计,制图,描图者,审批及批准者,以及比例,单位,日期等。
试述电气图的主要特点
答,电气图的特点主要有,1其主要表达形式是简图。2其主要表达内容是元件和连接线,3电气图中的元件都是按正常状态绘制的,5电气图往往与主体工程及其他配套工程的图有密切关联
电工测量仪表有哪几方面的作用
答,1反映电力装置的运行参数,监测电力装置回路的运行状况,2计量一次系统消耗的电能,3保证一次系统安全,可靠,优质和经济合理的运行。
为什么三相照明负载要采用三相四线制,假若中线断开时,将有什么问题出现
答,三相照明负载属于不对称负载,且它的额定电压均为相电压。采用三相四线制,有中线是为了各相负载电压对称,使其正常安全工作,若中线断开,则各相电压不对称,有的相电压低于额定值,不能正常工作,有的相电压则高于额定电压,将损坏负载。
在三相全控桥整流装置中,若改变电网电源进线程序,则可能会出现什么情况
答,电路工作不正常,直流输出电压波形不规则,不稳定,缺相,移相等,调节控制不能进行。
试述低压保护的种类及其基本概述。
答,低压保护一般分为;短路保护,过负荷保护和漏电保护(即触电保护,接地保护)三种,短路保护是由熔断器或自动开关中的电磁脱扣器来实现;过负荷保护一般是由热继电器,过流继电器或自动开关中的热脱扣器来实现,漏电保护一般是由漏电继电器或自动开关中的漏电脱扣器来实现。为什么在电力安全生产中一定要始终贯彻安全第一的方针
答,电力生产的特点是高度的自动化及产供,销同时进行,许多发电厂,输电线路,变电站和用电设备组成一个电网联合整体运营,这类生产本身就要求具备极高的可靠性,另外电能不能大量储存,所以电力生产安全的重要性远大于其他行业,2就电力企业在国民经济中所处的地位来说,它既为各行各业提供动力,又是一个广大人民群众所离不开的服务行业。它一旦发生事故,不仅是影响电业本身的职工人身安全和设备安全,而且还可能造成重大的社会影响,所以电力生产安全第一的方针不是暂决定的一项方针,而是由电力生产的客观规律所决定的。3从电力企业本身来说,生产不安全,就不可能做到满发,稳发,多供,少损和文明生产,就不能创造出好的经济效益,所以电力生产必须要始终贯彻安全第一的方针。
为什么要采用三相交流电,三相交流电是如何产生的
答,采用三相交流电能够使发电机的体积造得小一些,从而节约材料,在输电方面,若选用截面相同输电线,采用三相交流电能够使导线的根数减少;在用电方面,使用三相电源供电的三相电动机比单相电源供电的电动机结构简单,价格低,性能平稳。三相交流电是由三相交流发电机产生的,在发电机的定子上装有三个几何状,尺寸与匝数都相同的绕组,当转子磁场按瞬时针方向均匀转运时,相对而言,绕组作切割磁力线的运动,每个绕组中将感应出一个交流电动势,这样就产生了三相交流电。
第二篇:风力发电考试
1.电力系统:用于生产,传输,交换,分配,消耗电能的系统:
一次部分:用于能量生产,传输,交换,分配,消耗的部分
二次部分:对一次部分进行检测,监视,控制和保护的部分
2.风电场和常规电厂的区别:单机容量小;电能生产比较分散,发电机数目多;输出的电压等级低;类型多样化;功率输出特性复杂;并网需要电力电子换流设备
3.风电厂电气一次系统组成:风电机组;集电系统;升压站;厂用电系统。
4.变压器铜损:铜导线存在着电阻,电流流过消耗一定功率,变为热量
变压器铁损:铁心中的磁滞损耗和涡流损耗
5.常用的开关电器:断路器(切断电路),隔离开关(在电气设备和熔断器间形成明显的电压断开点,运行方式改变时倒闸操作),熔断丝(有故障电流时断开电路),接触器(电路正常开合闸,无法断开故障电路)。
6.集肤效应:靠近导体表面处的电流密度大于导体内部电流密度的现象。随电流频率升高,集肤效应使导体的电阻增大,电感减小!
7.电流互感器:串接一次系统,将大电流变为小电流
二次开路后果:出现的高压电危机人身及设备安全;铁心中产生大量剩磁;长时间作用铁心过热
8.电压互感器作用:并接一次系统,将高电压变成低电压
二次侧短路:引起很大短路电流,造成互感器烧毁
9.电气设备选择的技术条件:按照正常工作状态选择;按照短路状态校验;电气选择的环境因素;环境保护
10.电流继电器和电压继电器有何作用?他们如何接入电气一次系统?
电流继电器反应一次回路中的电流越限,用于二次系统的保护回路,用以启动时间继电器的动作或直接触发断路器分闸。
电流继电器用于继电保护装置中的过电压保护或欠电压闭锁
11.配电装置的最小净距:无论在正常最高工作电压或出现内,外部过电压时,都不至使空气间隙被击穿。
12.A,B,C,D,E类安全净距的具体含义
A1:带电部分至接地部分之间的最小安全净距
A2:不同相的带电导体之间
B1:带电部分至栅状遮栏间的距离和可移动设备在移动中至带电裸导体间的距离 B2:带电部分至网状遮栏
C:无遮拦裸导体至地面
D:停电检修的平行无遮栏
E:屋内配电装置通向屋外的出线套管中心线
12.雷电类型:直击雷;感应雷;球星雷。
13.雷电防护:避雷针,避雷线,避雷器,避雷带和避雷网,接地装置
14.风电场防雷性能衡量标准:耐雷水平,雷击跳闸率
15.变流系统的功能,电力变换,控制功率,控制转矩,调节功率因素
第三篇:风力发电报告
国内外风力发电技术 的现状与发展趋势
风能是一种可再生的清洁能源。近30年来,国际上在风能的利用方面,无论是理论研究还是应用研究都取得了重大进步。风力发电技术日臻完善,并网型风力发电机单机额定功率最大已经到5MW,叶轮直径达到126m。截止2005年世界装机容量已达58,982MW,风力发电量占全球电量的1%。中国成为亚洲风电产业发展的主要推动者之一,其总装机容量居世界第8位,2005年新增装机容量居世界第6位。今后,国内外风力发电技术和产业的发展速度将明显加快。引
言
风是最常见的自然现象之一,是太阳对地球表面不均衡加热而引起的“空气流动”,流动空气具有的动能称之为风能。因此,风能是一种广义的太阳能。据世界气象组织(WMO)和中国气象局气象科学研究院分析,地球上可利用的风能资源为200亿kW,是地球上可利用水能的20倍。中国陆地10m高度层可利用的风能为2.53亿kW,海上可利用的风能是陆地上的3倍,50m高度层可利用的风能是10m高度层的2倍,风能资源非常丰富。
风能是一种技术比较成熟、很有开发利用前景的可再生能源之一[1]。风能的利用方式不仅有风力发电、风力提水,而且还有风力致热、风帆助航等。因此,开发利用风能对世界各国科技工作者具有极强的魅力,从而唤起了世界众多的科学家致力于风能利用方面的研究。在本文中,将对国内外风力发电技术的现状和发展趋势进行论述。风力发电基本知识
2.1 风能的计算公式
空气运动具有动能。风能是指风所具有的动能。如果风力发电机叶轮的断面积为A,则当风速为V的风流经叶轮时,单位时间风传递给叶轮的风能为
(1)
其中:单位时间质量流量m=ρAV
(2)
在实际中,式中:
PW—每秒空气流过风力发电机叶轮断面面积的风能,即风能功率,W;
(3)Cp—叶轮的风能利用系数;
m—齿轮箱和传动系统的机械效率,一般为0.80—0.95,直驱式风力发电机为1.0; e—发电机效率,一般为0.70—0.98; —空气密度,kg/m3;
A—风力发电机叶轮旋转一周所扫过的面积,m2; V—风速,m/s。
2.2 贝茨(Betz)理论
第一个关于风轮的完整理论是由德国哥廷根研究所的A·贝茨于1926年建立的。
贝茨假定风轮是理想的,也就是说没有轮毂,而叶片数是无穷多,并且对通过风轮的气流没有阻力。因此这是一个纯粹的能量转换器。此外还进一步假设气流在整个风轮扫掠面上的气流是均匀的,气流速度的方向无论在风轮前后还是通过时都是沿着风轮轴线的。
通过分析一个放置在移动空气中的“理想”风轮得出风轮所能产生的最大功率为
—空气密度,kg/m3;
(4)
式中:Pmax—风轮所能产生的最大功率;
A—风力发电机叶轮旋转一周所扫过的面积,m2; V—风速,m/s。
这个表达式称为贝茨公式。其假定条件是风速与风轮轴方向一致并在整个风轮扫掠面上是均匀的[2]。将(4)式除以气流通过扫掠面A时风所具有的动能,可推得风力机的理论最大效率
(5)
(5)式即为有名的贝兹(Betz)理论的极限值。它说明,风力机从自然风中所能索取的能量是有限的,其功率损失部分可以解释为留在尾流中的旋转动能。
能量的转换将导致功率的下降,它随所采用的风力机和发电机的型式而异,因此,风力机的实际风能利用系数Cp<0.593[3]。
2.3 温度、大气压力和空气密度
通过温度计和气压计测试出实验地点的环境温度和大气压,由下式计算出空气密度。
(6)
式中:ρ—空气密度,kg/m3; h—当地大气压力,Pa; t—温度,℃。
从空气密度公式可以看出,空气密度的大小与大气压力、温度有关。
2.4 风力机的主要组成
1)小型风力发电机
小型水平轴风力机主要组成部分有:风轮、发电机、塔架、调向机构、蓄能系统、逆变器等。(1)风轮 风轮是风力机从风中吸收能量的部件,其作用是把空气流动的动能转变为风轮旋转的机械能。水平轴风力发电机的风轮是由1~3个叶片组成的。叶片的结构形式多样,材料因风力机型号和功率大小而定,如木心外蒙玻璃钢叶片、玻璃纤维增强塑料树脂叶片等。
(2)发电机
在风力发电机中,已采用的发电机有3种,即直流发电机、同步交流发电机和异步交流发电机。小型风力发电机多采用同步或异步交流发电机,发出的交流电通过整流装置转换成直流电。
(3)塔架
塔架用于支撑 发电机和调向机构等。因风速随离地面的高度增加而增加,塔架越高,风轮单位面积捕捉的风能越多,但造价、安装费等也随之加大。
(4)调向机构
垂直轴风力机可接受任何方向吹来的风,因此不需要调向机构。对于水平轴风力机,为了得到最高的风能利用效率,应用风轮的旋转面经常对准风向,需要对风装置。常用的调向机构主要有尾舵、舵轮、电动对风装置。
(5)限速机构
当风速高于风力机的设计风速时,为了防止叶片损坏,需要对风轮转速进行控制。(6)贮能装置
贮能装置对独立运行的小型风力机是十分重要的。其贮能方式有热能贮能、化学能贮存。(7)逆变器
用于将直流电转换为交流电,以满足交流电气设备用电的要求。2)大型风力发电机
大型风力发电机组由两大部分组成:气动机械部分和电气部分。气动机械部分包括风轮、低速轴、增速齿轮箱、高速轴,其功能是驱动发电机转子,将风能转换为机械能。电气部分包括异步发电机、电力电子变频器、变压器和电网,其功能是将机械能转换为频率恒定的电能。近年来,又研制成功了直驱式变速恒频风力发电机组(无增速齿轮箱)。风力机与风力发电技术
3.1 风力机与风力发电技术的发展史
风能,是人类最早使用的能源之一。远在公元前2000年,埃及、波斯等国已出现帆船和风磨,中世纪荷兰与美国已有用于排灌的水平轴风车。我国是世界上最早利用风能的国家之一,早在距今1800年前,我国就有风力提水的记载。1890年丹麦的P·拉库尔研制成功了风力发电机,1908年丹麦已建成几百个小型风力发电站。自二十世纪初至二十世纪六十年代末,一些国家对风能资源的开发,尚处于小规模的利用阶段[4]。
随着大型水电、火电机组的采用和电力系统的发展,1970年以前研制的中、大型风力发电机组因造价高和可靠性差而逐渐被淘汰,到二十世纪六十年代末相继都停止了运转。这一阶段的试验研究表明,这些中、大型机组一般在技术上还是可行的,它为二十世纪七十年代后期的大发展奠定了基础。
1980年以来,国际上风力发电机技术日益走向商业化。主要机组容量有300kW、600kW、750kW、850kW、1MW、2MW。1991年丹麦在Vindeby建成了世界上第一个海上风电场,由11台丹麦Bonus 450kW单机组成,总装机4.95MW。随后荷兰、瑞典、英国相继建成了自己的海上风电场。
目前,已经备离岸风力发电设备商业生产能力的厂家,主要有丹麦的Vestas(包括被其整合的NEG-Micon),美国的GE风能,德国的Nordex、Repower、Pfleiderer/Prokon、Bonus和德国著名的Enercon公司。单机额定功率覆盖范围从2MW、2.3MW、3.6MW、4.2MW、4.5MW到5MW。叶轮直径从80m、82.4m、100m、110m、114m、116m到126m。
3.2 风力机的种类
风力发电机是把风能转换为电能的装置,鉴于风力发电机种类繁多,因此分类法也是多种。按叶片数量分,单叶片,双叶片,三叶片,四叶片和多叶片;按主轴与地面的相对位置分,水平轴、垂直轴(立轴)式;按桨叶工作原理分,升力型、阻力型。目前风力发电机三叶片水平轴类型居多。
水平轴风力机,风轮的旋转轴与风向平行,如图1所示;垂直轴风力机,风轮的旋转轴垂直于地面或气流方向,如图2所示。国内外风力发电的现状
4.1 世界风力发电的现状
目前,中、大型风力发电机组已在世界上40多个国家陆地和近海并网运行,风电增长率比其它电源增长率高的趋势仍然继续。如表1所示,截止2005年12月31日世界装机容量已达58,982MW,年装机容量为11,310MW,增长率为24%;风力发电量占全球电量的1%,部分国家及地区已达20%甚至更多。2005年世界风电累计装机容量最多的十个国家见表2,前十名合计51750.9MW,约占世界总装机容量的87.7%。
2005年国际风电市场份额的分布多样化进程呈持续发展趋势:有11个国家的装机容量已高于1,000MW,其中7个欧洲国家(德国、西班牙、意大利、丹麦、英国、荷兰、葡萄牙),3个亚洲国家(印度、中国、日本),还有美国。亚洲正成为发展全球风电的新生力量,其增长率为48%[5]。
2002年欧洲风能协会(EWEA)与绿色和平组织(Greenpeace International)发表了一份标题为“风力 12(Wind Force 12)”的报告,勾画了风电在2020年达到世界电量12%的蓝图。报告声明这份文件不是预测,而是从世界风能资源、世界电力需求的增长和电网容量、风电市场发展趋势和潜在的增长率、与核电和大水电等其他电源技术发展历程的比较以及减排CO2等温室气体的要求,论证了风电达到世界电量12%的可能性。报告还指出中国2020年风电装机有可能达到1.7亿千瓦[6]、[7]。
国内风力发电的现状
根据国家气象科学院的估算[8],我国陆地地面10米高度层风能的理论可开发量为32亿kW,实际可开发量为2.53亿kW。海上风能可开发量是陆地风能储量的3倍。内蒙古 实际可开发量
0.618亿kW 西藏
实际可开发量
0.408亿kW 新疆
实际可开发量
0.343亿kW 青海
实际可开发量
0.242亿kW 黑龙江
实际可开发量
0.172亿kW
2005年中国除台湾省外新增风电机组592台,装机容量50.3万kW。与2004年当年新增装机19.8万kW相比,2005年当年新增装机增长率为254%。
截至2005年底,中国除台湾省外累计风电机组1864台,装机容量126.6万kW,风电场62个。分布在15个省(市、自治区、特别行政区),它们按装机容量排序如表3所示。与2004年累计装机76.4万kW相比,2005年累计装机增长率为65.6%。2005年风电上网电量约15.3亿kW.h[9]。
中国“十一五”国家科技支撑计划重大项目“大功率风电机组研制与示范”支持1.5~2.5MW、2.5MW以上双馈式变速恒频风电机组的研制;1.5~2.5MW、2.5MW以上直驱式变速恒频风电机组的研制;1.5MW以上风电机组叶片、齿轮箱、双馈式发电机、直驱式永磁发电机的研制及产业化;1.5MW以上双馈式风电机组控制系统及变流器、直驱式风电机组控制系统及变流器的研制及产业化;近海风电场建设关键技术的研究;近海风电机组安装及维护专用设备的研制;大型风电机组相关标准制定及风电技术发展分析等16个课题的研究[10]。“十一五”末,我国风电技术的自主研发能力将接近世界前沿水平。
4.3小型风力发电机
4.3.1小型风力发电机行业现状
作为农村可再生能源主要支柱之一的小型风力发电行业在2005得到长足的发展,从事小型风电产业的开发、研制、生产单位达到70家。据23个生产企业报表统计,2005年共生产30kW以下独立运行的小型风力发电机组共33,253台,比上年增长34.4%,其中200W、300W、500W机组共生产24,123台,占全年总产量的72.5%;15个单位共出口小型风力发电机组5,884台,比上年增长40.7%,创汇282.7万美元,主要出口到菲律宾、越南等24个国家和地区。并且,由于汽油、柴油、煤油价格飞涨,且供应渠道不畅通,内陆、江湖、渔船、边防哨所、部队、气象站和微波站等使用柴油发电机的用户逐步改用风力发电机或风光互补发电系统。
4.3.2 小型风力发电机行业发展趋势
1)由于广大农牧民生活水平提高、用电量不断增加,因此小型风力发电机组单机功率在继续提高,50W机组不再生产,100W、150W机组产量逐年下降,而200W、300W、500W和1kW机组逐年增加,占总年产量的80%。
2)由于广大农民迫切希望不间断用电,因此“风光互补发电系统”的推广应用明显加快,并向多台组合式发展,成为今后一段时间的发展方向。
3)随着国家《可再生能源法》及《可再生能源产业指导目录》的制定,相继还会有多种配套措施及税收优惠扶植政策出台,必将提高生产企业的生产积极性,促进产业发展。
4)目前我国尚有2.8万个村、700万户、2,800万人口没有用上电,且分散居住在边远山区、农牧区、常规电网很难达到,有关专家分析700万无电用户中、300万户可用微水电解决用电,而400万户可以用小型风力发电或风光互补发电,满足农牧民用电需要[11]。4.3.3浓缩风能型风力发电机
浓缩风能型风力发电机由内蒙古农业大学新能源技术研究所研制,已获得中国实用新型专利(专利号:ZL94244155.9)。该型风电机组将稀薄的风能经浓缩风能装置加速、整流和均匀化后驱动叶轮旋转发电,从而提高了风能的能流密度,降低了自然风的湍流度,改善了风能的不稳定等弱点,提高了风能品位,降低了风电度电成本。该风力发电机具有的切入风速低、发电量大、噪音低、安全性高、寿命长、度电成本低等特点。浓缩风能型风力发电机可独立运行、风光互补运行、多机联网运行和并入低压电网运行。现已研制开发的系列产品有200W、300W、600W、1kW、2kW等机组。浓缩风能型风力发电机经过中试后,可以向中、大型机组发展。这种新型风电技术在中国和世界的应用,将有效地提高风电系统的供电水平和质量,有效地利用低品位的风能,提高风电商品竞争力,具有重要的经济益和生态环保效益[12]。结
论
在今后的20年内,国际上风力发电产业将是增长速度最快的产业,风力发电技术也将进入快速发展的黄金时期;在中国,并网型风力发电机组装机容量增长速度将明显加快,令世界瞩目,离网型风力发电机组发展的地域广、潜力大,装机总容量最终将超过并网型风力发电机组。
田德,吉林松原人,1958年8月生。内蒙古农业大学教授,华北电力大学教授,博士生导师。1985年赴日本留学,1992年9月获得日本明星大学电气工程学博士学位。现任中国农业工程学会理事、中国太阳能学会理事、《太阳能学报》编委、全国“百千万人才工程”第一、二层次人选。享受国务院政府特殊津贴。省级中青年突贡专家。省级优秀留学回国人员。主持完成的项目获内蒙古自治区科技进步一等奖1项,已获得中国实用新型专利1项。正申请国家发明专利3项。发表研究论文50余篇,多篇被EI收录。主持完成和正在主持的科研项目有:3项国家自然科学基金资助项目、3项国际合作项目、1项国家“十一五”科技攻关项目、9项省部级项目、3项横向项目。现从事离网型风力发电系统、并网型风力发电系统和可再生能源利用的研究。
[参考文献] [1]贺德馨.2020年中国的科学和技术发展研究[J].科技和产业,2004,4(1):36.[2][法]D·勒古里雷斯(著),施鹏飞(译).风力机的理论与设计[M].北京:机械工业出版社,1987:31~33.[3]叶杭冶.风力发电机组的控制技术[M].北京:机械工业出版社,2006:11~13.[4]陈云程,陈孝耀,朱成名,等.风力机设计与应用[M].上海:上海科学技术出版社,1990:1~11,48~51 [5]世界风能协会.2005年全球风能统计[J].中国风能,2006(1):17~20
[6] The European Wind Energy Association, Greenpeace International.Wind Force 12.2002.http://,2006.12.17.[11]李德孚.2005年小型风力发电行业现状与发展[J].中国风能,2006,(2):9~11 [12]田
德,王海宽,韩巧丽.浓缩风能型风力发电机的研究与进展[J].农业工程学报(增刊),中国农业工程学会第七次全国会员代表大会暨学术年会论文集,2003,19:177~181.
第四篇:风力发电简介(定稿)
广州绿欣风力发电机提供更多绿色环保服务请登录查询
风力发电简介
风能作为一种清洁的可再生能源,越来越受到世界各国的重视。其蕴量巨大,全球的风能约为2.74×109MW,其中可利用的风能为2×107MW,比地球上可开发利用的水能总量还要大10倍。风很早就被人们利用--主要是通过风车来抽水、磨面等,而现在,人们感兴趣的是如何利用风来发电。
风是一种潜力很大的新能源,人们也许还记得,十八世纪初,横扫英法两国的一次狂风力发电图暴大风,吹毁了四百座风力磨坊、八百座房屋、一百座教堂、四百多条帆船,并有数千人受到伤害,二十五万株大树连根拔起。仅就拔树一事而论,风[1]在数秒钟内就发出了一千万马力(即750万千瓦;一马力等于0.75千瓦)的功率!有人估计过,地球上可用来发电的风力资源约有100亿千瓦,几乎是现在全世界水力发电量的10倍。目前全世界每年燃烧煤所获得的能量,只有风力在一年内所提供能量的三分之一。因此,国内外都很重视利用风力来发电,开发新能源。
利用风力发电的尝试,早在本世纪初就已经开始了。三十年代,丹麦、瑞典、苏联和美国应用航空工业的旋翼技术,成功地研制了一些小型风力发电装置。这种小型风力发电机,广泛在多风的海岛和偏僻的乡村使用,它所获得的电力成本比小型内燃机的发电成本低得多。不过,当时的发电量较低,大都在5千瓦以下。
目前,据了解,国外已生产出15,40,45,100,225千瓦的风力发电机了。1978年1月,美国在新墨西哥州的克莱顿镇建成的200千瓦风力发电机,其叶片直径为38米,发电量足够60户居民用电。而1978年初夏,在丹麦日德兰半岛西海岸投入运行的风力发电装置,其发电量则达2000千瓦,风车高57米,所发电量的75%送入电网,其余供给附近的一所学校用。
1979年上半年,美国在北卡罗来纳州的蓝岭山,又建成了一座世界上最大的发电用的风车。这个风车有十层楼高,风车钢叶片的直径60米;叶片安装在一个塔型建筑物上,因此风车可自由转动并从任何一个方向获得电力;风力时速在38公里以上时,发电能力也可达2000千瓦。由于这个丘陵地区的平均风力时速只有29公里,因此风车不能全部运动。据估计,即使全年只有一半时间运转,它就能够满足北卡罗来纳州七个县1%到2%的用电需要。
风力发电如何利用风力来发电资料参考:
第五篇:风力发电技术
风力发电技术和风能利用方式
1973年发生石油危机以后,西方发达国家为寻求替代石化燃料的能源,在风力发电技术的研究与应用上投入了相当大的人力和资金,充分综合利用空气动力学、新材料、新型电机、电力电子技术、计算机、自动控制及通信技术等方面的最新成果,开创了风能利用的新时期。
德国、美国、丹麦等国开发建立了评估风力资源的测量及计算机模拟系统,发展了变桨距控制及失速控制的风力机设计理论,采用了新型风力机叶片材料及叶片翼型,研制出了变极、变滑差、变速恒频及低速永磁等新型发电机,开发了由微机控制的单台和多台风力发电机组成的机群的自动控制技术,从而大大提高了风力发电的效率和可靠性。
风电场是大规模利用风能的有效方式,20世纪80年代初在美国加利福尼亚州兴起。而海岸线附近的海域风能资源丰富,风力强,风速均匀,可大面积采获能量,适合大规模开发风电。然而在海上建造难度也大:巨大的基座必须固定入海底30m深度,才能使装置经受得住狂风恶浪的冲击;水下的驱动装置和电子部件必须得能防止高盐度海水的腐蚀;与陆地连接还得需要几公里长的海底电缆。
2.2风电装机容量
德国的风力发电装机容量已达610.7万kW,占德国发电装机容量的33%,居世界第1位。西班牙风电装机容量283.6万kW,居世界第2位。美国风力发电装机容量已达261万kW,居世界第3位。丹麦风电技术也很先进,装机容量234.1万kW。印度风电增长很快,到2000年累积装机容量已达到122万kW。日本的风电装机容量46万kW,运行较稳定的是海岸线或岛上的风力发电站,已达576台风电设备。
2.3各国的风力发电政策
目前风电机组成本仍比较高,但随着生产批量的增大和技术的进一步改进,成本将会继续下降(见表1)。许多国家建立了众多的中型和大型风力发电场,并形成了一整套有关风力发电场的规划方法、运行管理和维护方式、投融资方式、国家扶持的优惠政策及规范、法规等。
表1世界风电装机容量(万kW)和发电成本(美分/kW·h)
年份******97199819992000
容量******1393184
5成本15.310.97.26.66.15.65.35.15.04.94.8
数据来源:丹麦BTM咨询公司
欧洲发展风电的动力主要来自于改善环境的压力,将风电的发展作为减少二氧化碳等气体排放的措施。德国、丹麦、西班牙等国都制定了比较高的风电收购电价,保持了稳定高速的增长,1996年以后年增长率超过30%,使风电成为发展最快的清洁电能。丹麦风电技术的发展策略是政府不直接支持制造厂商,而是对购买风电机组的用户提供补贴。英国的《可再生能源责任法规》要求到2010年,每个电力供应商必须使可再生能源的电力供应量达到总电量的10%。
美国政府为鼓励开发可再生能源,在20世纪80年代初出台了一系列优惠政策。联邦政府和加利福尼亚州政府对可再生能源的投资者分别减免了25%的税赋,规定有效期到198
5年底,另外立法还规定电力公司必须得收购风电,并且价格应是长期稳定的。这些政策吸引了大量的资金采购风电机组,使刚刚建立起来的丹麦风电机组制造业获得了大批量生产和改进质量的机会。到1986年这3个风电场的总装机容量达到160万kW。2002年美国德州的风电容量为118万kW。德州政府规定,到2009年可再生能源的发电容量至少应达到200万kW,并拟订了110.4万kW的风电建设计划。
印度是一个缺电的发展中国家,政府制定了许多鼓励风电的政策,如投资风电的企业,可将风电的电量储蓄,在电网拉闸限电时,使有储蓄的企业能够得到优先供电。
澳大利亚的发电能源主要依靠煤炭。政府为改善电能结构,制定了一项强制性的可再生能源发电计划,太阳能——风力电站将成为可再生能源利用的重要组成部分。
3我国风力发电的开发现况
我国拥有丰富的风能资源,若采用10m高度的风速测算,陆地风能资源理论储量为32.26亿kW,可开发的风能资源储量为2.53亿kW。我国近海风能资源约为陆地的3倍,由此可算出我国可开发的风能资源约为10亿kW。
风能资源富集区主要在西北、华北北部、东北及东南沿海地区。20世纪70年代末80年代初,我国通过自主开发研制,额定容量低于10kW小型风力发电机实现了批量生产,在解决居住分散的农牧民和岛屿居民的用电方面有着重要意义。在国家有关部委的支持下,额定功率为200、250、300、600 kW的风力发电机组已研制出来,并在全国11个省区建立了27个风电场,浙江、福建、广东沿海及新疆、内蒙古自治区都有较大功率的风力发电场。东部沿海有丰富的风能资源,距离电力负荷中心又近,海上风电场将成为新兴的能源基地。国家计委在20世纪90年代中期制定了“光明工程”和“乘风计划”, 1997年当年装机超过10万kW,到2001年底总装机容量约40万kW。
我国风电技术还处于发展初期,较欧美落后,关键原材料或零部件主要依靠进口。风电机组是风电场的核心设备,主要依靠进口机组,在风电场的建设投资中是主要部分,占总投资的60%~80%。为鼓励风电的开发,我国对300kW以上机组免征进口税。风电随着技术的发展和批量生产,成本会继续下降。