第一篇:风力发电技术综述
风力发电技术综述
摘要:风能是目前全球发展最快的可再生绿色能源,风力发电系统是将风能转化为电能的关键系统,它直接关系到风力发电的性能与效率。它主要对风力发电的发展现状和前景、风电系统的控制技术、风力发电机及其风电系统和风力发电中的关键技术作了简单的介绍。
关键词:风力发电;控制技术;并网技术;低电压穿越
引言
在全球生态环境恶化和化石能源逐渐枯竭的双重压力下,对新能源的研究和利用已成为全球各国关注的焦点。风能作为一种可再生的清洁能源,受世界各国的重视程度越来越高,也越来越多的被应用到风力发电中。除水力发电技术外,风力发电是新能源发电技术中最成熟、最具大规模开发和最有商业化发展前景的发电方式。由于它可以在改善生态环境、优化能源结构、促进社会经济可持续发展等方面有非常突出的作用,目前世界各国都在大力发展和研究风力发电及其相关技术。
1.国内外风力发电的现状和前景
1.1 国外风力发电发展现状世纪80 ~90 年代,风力发电技术得到了飞速的发展并且逐渐成熟。风力发电凭借它自身的优点,已经延伸到了电网难以达到的地方,给他们带来了很多方便。据全球风能理事会(GWEC)发布的全球风电市场装机数据显示,全球风电产业 2011 年新增风电装机容量达四万一千兆瓦。这一新增容量使全球累计风电装机达到二十三万八千兆瓦。这一数据表明全球累计装机实现了两成多的年增长,新增装机增长达到6%。到目前为止,全球七十多个国家有商业运营的风电装机,其中二十二个国家的装机容量超过 1GW。据估计到 2030 年,欧洲风电装机可达三百亿瓦,可满足欧洲百分之二十的电力需求。
1.2国内风力发电发展现状
我国风力资源储量丰富,分布广泛。陆上可开发的储量为2.53亿kW,海上可开发的储量为7.5亿kW。“大规模、高集中开发,远距离和高电压输送”是我国风电发展的重要特征。近年来,我国风电发展迅猛,2006~2010 年风电总装机容量从260万kW增长到4 182.7万kW,2010年新增风电装机1 600万kW,累计装机容量和新增装机容量均居世界第一。预计2020年我国风电累计装机可以达到2.3亿kW。这意味着未来十年中,风电总装机容量
平均每年需新增1 800万kW。预计每年需新增机组及其配套变流器约9 000台。
2.风电系统的控制技术
风力发电系统的运行方式有三种:独立型、并网型和联合型。并网型风力发电系统由风力机控制器、风力机、传动装置、励磁调节器、发动机、变频器和变压器等组成。
风力发电机组包括风力机、发电机、变速传动装置及相应的控制器等,用来实现风能与电能的能量转换。风力发电的关键问题是风力机和发电机的功率和速度控制。
风电机组中将风能转换成机械能的能量转换装置是风力机,它由风轮、迎风装置和塔架等组成。按结构不同,风力机可分为水平轴式和立轴式两种;按功率调节方式不同,风力机可分为定桨距失速、变桨距和主动失速 3 种。
风电机组中的发电机将机械能转化为电能,发电机在并入电网时必须输出恒定频率(一般为 50 Hz)的电能。按照发电机转速的不同,发电机可分为恒速和变速两类,其中变速需要通过变频器来实现。变频器采用电力电子变流技术和控制技术,将发电机发出的频率变化交流电转换为与电网频率相同、能与电网柔性连接的交流电,并且能实现最大风能跟踪控制。按照拓扑结构的不同,变频器可分为交-交型、交-直-交型和矩阵型三种;按照变频器容量的不同可将变频器分为部分容量和全部容量(全额)两种。
变速传动装置可将风轮的低转速转换为发电机的较高转速,按传动链类型将其分为齿轮箱驱动和直接驱动两种,其中前者包括单级和多级两种齿轮箱驱动。
3.风力发电机及其风电系统
实现恒速或变速风力发电系统有许多种方案,所选发电机的类型主要取决于风电系统的形式。
传统的恒速/变速风电系统共有四种:基于SCIG 的恒速风电系统[1]、基于WRIG 的受限变速风电系统[2]、基于ESC-SCIG 的变速风电系统[3]和基于MMG 的变速风电系统[4]。
现代风电系统一般采用变速恒频技术,这种技术通过变流装置或改造发电机结构来实现。现代变速恒频风电系统共有六种:基于SCIG 的风电系统[5]、基于DFIG 的风电系统[6]、基于直驱式EESG 的风电系统[7]、基于直驱式PMSG 的风电系统[8]、基于半直驱PMSG 的风电系统[9]和基于PMBDCG 的风电系统[10]。
近年来,一些具有商业化潜力的新型风力发电机及其风力发电系统不断涌现。新型变速恒频风电系统主要有以下八种:基于 SRG 的风电系统[11]、基于 BDFIG 的风电系统[12]、基于CPG 的风电系统[13]、基于HVG 的风电系统[14]、基于DWIG 的风电系统[15]、基于
TFPMG 的风电系统[16]、基于DSPMG 的风电系统[17]和基于EVT 的风电系统[18]。
4.风力发电中的关键技术
4.1并网技术的研究和最大风能的捕获
并网技术是通过对全功率电力变换器的控制算法来实现控制目的。并网控制方面,文献
[19]提出了直流侧并网的新方法。在直流电容与 DC/AC 之间安装并网开关。并网前并网开关断开,DC/AC 通过限流电阻对电容进行充电,此时发电机在风力机的带动下转速从 0 上升。当电容充电达到交流电网线电压幅值时闭合并网开关,同步风力发电机并网。正常情况下,发电机转速从低到高逐渐上升,并在某一转速下并入电网。当由于某种原因,发电机在高转速下脱网需要重新并网,由于此时电容已经充电且直流母线电压高于网侧交流线电压幅值,因此只要将并网开关闭合就可实现并网。
直驱式永磁同步风力发电机经电力电子变换器并入电网以后的控制目标是风速小于额定风速时实现最大风能捕获,风速超过额定风速时使系统以额定功率输出[20]。
最大风能捕获的目的就是通过适当的控制,使风力机转速随风速变化,始终沿着最佳功率曲线运行,从而使风能转化最大化。最大风能追踪可以有变桨距调节,也可以通过调节发电机功率来调节转速以保持最佳叶尖速比实现。出于可行性、经济性和可靠性的考虑,当前使用的主要是通过控制发电机输出功率以调节其电磁功率,进而调节发电机转速。
具体实现时,在发电机有功和无功功率解耦控制的基础上,根据有功功率给定的提取方法的不同,又有有速度传感器和无速度传感器的控制方法之分。有速度传感器的控制方法是根据风力机最佳功率曲线和风力机转速实时计算发电机输出功率给定。而无速度传感器的控制方法又有扰动法[21,22,23]、参数估计法、查表法和人工在智能法几类。
4.2低电压穿越的研究
电网电压跌落时,由于受变流器通流能力的限制,网侧逆变器注入电网功率减小。而此刻机侧整流器的功率并没有改变,造成直流侧的过电压。如果维持直流侧电压稳定,则必然造成逆变器过电流。过电压和过电流都将导致电力电子器件的损坏,为了保护变流器不被损坏,风力发电机组将在电压跌落时退出运行。电网穿透率小时,风力发电机组在电压跌落时退出运行还是可以接受的。
然而,随着风力发电规模的不断扩大,若风电机组在电压跌落时仍然采取被动保护式脱网,则会增加整个系统的恢复难度,甚至使故障更加严重,最终导致系统其他机组全部解列。目前在风力发电技术发展领先的一些国家,如丹麦、德国等已相继制定了新的电网运
行准则, 定量给出了风电系统离网的条件(如最低电压跌落深度和跌落持续时间),只有当电网电压跌落低于规定曲线以后才允许风力机脱网,当电压在凹陷部分时,发电机应提供无功功率。这就要求风电系统具有较强的低电压穿越能力,能方便地为电网提供无功支持。因此必须研究低电压穿越的措施,实现电网电压跌落时风力发电机不脱网运行。
文献[24]通过在逆变器交流侧加装无功补偿装置和低通滤波器来应对电网电压不对称跌落对系统所造成的影响,使逆变器只能感受到电网的正序电压,保持其对称工作状态,从而实现低电压穿越;文献[25-28]通过直流侧加卸荷负载以消除电压跌落时直流侧的功率拥堵,避免直流侧的过电压和逆变器的过电流,实现低电压穿越。这些方法都要增加专门的元件,降低了系统的可靠性和经济性,使控制变得复杂。
结论
风电作为我国今后大力重点发展的 3 类新能源之一,在今后将具有广阔的发展和应用前景,风力发电在摆脱对化石能源的过度依赖、缓解中国能源紧缺、改善生态环境和扩大社会效益等方面将做出较大的贡献。本文对风力发电的发展状况,如传统的恒速/变速风电系统、现代变速恒频风电系统和新型变速恒频风电系统进行了简单介绍。随着风电技术的不断变革以及机组制造工艺的持续改进,将来风力发电的竞争力必定逐渐提升,其发展前景广阔。
参考文献:
[1]程明,张运乾,张建忠.风力发电机发展现状及研究进展[J].电力科学与技术学报,2009,24(3):2 -9.
[2]李辉,薛玉石,韩力.并网风力发电机系统的发展综述[J].微特电机,2009,37(5):55 -61. [3]杨培宏,刘文颖.基于 DSP 实现风力发电机组并网运行[J].可再生能源,2007,25(4):79 -82.
[4]吴聂根,程小华.变速恒频风力发电技术综述[J].微电机,2009,42(8):69 -72.
[5]荆龙.鼠笼异步电机风力发电系统优化控制[D].北京:北京交通大学,2008.
[6]林成武,王凤翔,姚兴佳.变速恒频双馈风力发电机励磁控制技术研究[J].中国电机工程学报,2003,23(11):122 -125.
[7]周扬忠,胡育文,黄文新.基于直接转矩控制电励磁同步电机转子励磁电流控制策略[J].南京航空航天大学学报:自然科学版,2007,39(4):429 -434.
[8]张岳,王凤翔.直驱式永磁同步风力发电机性能研究[J].电机与控制学报,2009,13(1):78 -
82.
[9]陈昆明,汤天浩,陈新红,等.永磁半直驱风力机控制策略仿真[J].上海海事大学学报:自然科学版,2008,29(4):39 -44.
[10]夏长亮,张茂华,王迎发,等.永磁无刷直流电机直接转矩控制[J].中国电机工程学报,2008,28(6):104 -109.
[11]胡海燕,潘再平.开关磁阻风力发电系统综述[J].机电工程,2004,21(10):48 -52.
[12]刘伟,沈宏,高立刚,等.无刷双馈风力发电机直接转矩控制系统研究[J].电力系统保护与控制,2010,38(5):77 -81.
[13] 桓毅,汪至中.风力发电机及其控制系统的对比分析[J].中小型电机,2002,29(4):41 -45.
[14]杜新梅,刘坚栋,李泓.新型风力发电系统[J].高电压技术,2005,31(1):63 -65.
[15]李勇,胡育文,黄文新,等.变速运行的定子双绕组感应电机发电系统控制技术研[J].中国电机工程学报,2008,28(20):124 -130.
[16]董萍,吴捷,陈渊睿,等.新型发电机在风力发电系统中的应用[J].微特电机,2004,32(7):39 -44.
[17]张建忠,程明.新型直接驱动外转子双凸极永磁风力发电机[J].电工技术学报,2007,22(12):15 -21.
[18]袁永杰.开关磁阻四端口机电换能器及在风力发电中的应用研究[D].哈尔滨:哈尔滨工业大学,2008.
[19] 徐科,胡敏强,杜炎森,等.直流母线电压控制实现并网与最大风能跟踪[J].电力系统自动化,2007,31
(11):53-58.[20] 吴迪,张建文.变速直驱永磁风力发电机控制系统的研究[J]大电机技术,2006(6): 51-55
[21] 王生铁,张润和,田立欣.小型风力发电系统最大功率控制扰动法及状态平均建模与分析[J].太阳能学报,2006,27(8):828-837.[22] 闫耀民,范瑜,汪至中.永磁同步电机风力发电系统的自寻优控制[J].电工技术学报,2002,17
(6):82-86.[23] 房泽平,王生铁.小型风电系统变步长扰动 MPPT 控制仿真研究[J].计算机仿真,2007,24
(9):241-244.[24] MARIUS F, CRISTIAN L, GHEORGHE-DANIEL A, etal.Voltage Sags Ride-Through of Motion SensorlessControlled PMSG for Wind Turbines[C].Industry Applications Conference, 2007.[25] 李建林,胡书举,孔德国,等.全功率变流器永磁直驱风电系统低电压穿越特性研究[J].电力系统自动化,2008,32(19):92-95.[26] 胡书举,李建林, 许洪华.直驱式 VSCF 风电系统直流侧Crowbar 电路的仿真分析[J].电力系统及其自动化学报,2008,20(3):118-123.[27] 李建林,胡书举,孔德国,等.全功率变流器永磁直驱风电系统低电压穿越特性研究[J].电力系统自动化,2008,32(19):92-95.[28] 胡书举,李建林,许洪华.变速衡频风电系统应对电网故障的保护电路分析[J].变流技术与电力牵引,2008(1):45-51.
第二篇:风力发电技术
风力发电技术和风能利用方式
1973年发生石油危机以后,西方发达国家为寻求替代石化燃料的能源,在风力发电技术的研究与应用上投入了相当大的人力和资金,充分综合利用空气动力学、新材料、新型电机、电力电子技术、计算机、自动控制及通信技术等方面的最新成果,开创了风能利用的新时期。
德国、美国、丹麦等国开发建立了评估风力资源的测量及计算机模拟系统,发展了变桨距控制及失速控制的风力机设计理论,采用了新型风力机叶片材料及叶片翼型,研制出了变极、变滑差、变速恒频及低速永磁等新型发电机,开发了由微机控制的单台和多台风力发电机组成的机群的自动控制技术,从而大大提高了风力发电的效率和可靠性。
风电场是大规模利用风能的有效方式,20世纪80年代初在美国加利福尼亚州兴起。而海岸线附近的海域风能资源丰富,风力强,风速均匀,可大面积采获能量,适合大规模开发风电。然而在海上建造难度也大:巨大的基座必须固定入海底30m深度,才能使装置经受得住狂风恶浪的冲击;水下的驱动装置和电子部件必须得能防止高盐度海水的腐蚀;与陆地连接还得需要几公里长的海底电缆。
2.2风电装机容量
德国的风力发电装机容量已达610.7万kW,占德国发电装机容量的33%,居世界第1位。西班牙风电装机容量283.6万kW,居世界第2位。美国风力发电装机容量已达261万kW,居世界第3位。丹麦风电技术也很先进,装机容量234.1万kW。印度风电增长很快,到2000年累积装机容量已达到122万kW。日本的风电装机容量46万kW,运行较稳定的是海岸线或岛上的风力发电站,已达576台风电设备。
2.3各国的风力发电政策
目前风电机组成本仍比较高,但随着生产批量的增大和技术的进一步改进,成本将会继续下降(见表1)。许多国家建立了众多的中型和大型风力发电场,并形成了一整套有关风力发电场的规划方法、运行管理和维护方式、投融资方式、国家扶持的优惠政策及规范、法规等。
表1世界风电装机容量(万kW)和发电成本(美分/kW·h)
年份******97199819992000
容量******1393184
5成本15.310.97.26.66.15.65.35.15.04.94.8
数据来源:丹麦BTM咨询公司
欧洲发展风电的动力主要来自于改善环境的压力,将风电的发展作为减少二氧化碳等气体排放的措施。德国、丹麦、西班牙等国都制定了比较高的风电收购电价,保持了稳定高速的增长,1996年以后年增长率超过30%,使风电成为发展最快的清洁电能。丹麦风电技术的发展策略是政府不直接支持制造厂商,而是对购买风电机组的用户提供补贴。英国的《可再生能源责任法规》要求到2010年,每个电力供应商必须使可再生能源的电力供应量达到总电量的10%。
美国政府为鼓励开发可再生能源,在20世纪80年代初出台了一系列优惠政策。联邦政府和加利福尼亚州政府对可再生能源的投资者分别减免了25%的税赋,规定有效期到198
5年底,另外立法还规定电力公司必须得收购风电,并且价格应是长期稳定的。这些政策吸引了大量的资金采购风电机组,使刚刚建立起来的丹麦风电机组制造业获得了大批量生产和改进质量的机会。到1986年这3个风电场的总装机容量达到160万kW。2002年美国德州的风电容量为118万kW。德州政府规定,到2009年可再生能源的发电容量至少应达到200万kW,并拟订了110.4万kW的风电建设计划。
印度是一个缺电的发展中国家,政府制定了许多鼓励风电的政策,如投资风电的企业,可将风电的电量储蓄,在电网拉闸限电时,使有储蓄的企业能够得到优先供电。
澳大利亚的发电能源主要依靠煤炭。政府为改善电能结构,制定了一项强制性的可再生能源发电计划,太阳能——风力电站将成为可再生能源利用的重要组成部分。
3我国风力发电的开发现况
我国拥有丰富的风能资源,若采用10m高度的风速测算,陆地风能资源理论储量为32.26亿kW,可开发的风能资源储量为2.53亿kW。我国近海风能资源约为陆地的3倍,由此可算出我国可开发的风能资源约为10亿kW。
风能资源富集区主要在西北、华北北部、东北及东南沿海地区。20世纪70年代末80年代初,我国通过自主开发研制,额定容量低于10kW小型风力发电机实现了批量生产,在解决居住分散的农牧民和岛屿居民的用电方面有着重要意义。在国家有关部委的支持下,额定功率为200、250、300、600 kW的风力发电机组已研制出来,并在全国11个省区建立了27个风电场,浙江、福建、广东沿海及新疆、内蒙古自治区都有较大功率的风力发电场。东部沿海有丰富的风能资源,距离电力负荷中心又近,海上风电场将成为新兴的能源基地。国家计委在20世纪90年代中期制定了“光明工程”和“乘风计划”, 1997年当年装机超过10万kW,到2001年底总装机容量约40万kW。
我国风电技术还处于发展初期,较欧美落后,关键原材料或零部件主要依靠进口。风电机组是风电场的核心设备,主要依靠进口机组,在风电场的建设投资中是主要部分,占总投资的60%~80%。为鼓励风电的开发,我国对300kW以上机组免征进口税。风电随着技术的发展和批量生产,成本会继续下降。
第三篇:风力发电技术与电价分析
风力发电技术与电价分析
本文主要介绍风电电价的构成,发展风力发电的必要性和现阶段我国发展风电面临的论难和机遇。通过对国内外的电力来源,能源结构,风能储量及分布,风电的社会价值等方面的评价入手阐述我国发展风电的必要性和紧迫性。
通过对风电场建设规模,风力发电成本要素,风电电价构成,减低成本途径,政府现行对风电的税收鼓励政策,现行风电产业特点和风电设备制造技术以及风电的社会效益等方面的分析,为政府,风电产业,融资领域和社会关注层面为解决风电产业中得各种矛盾以及为促进和发展风电产业建设提供理论依据和解决方案。
阐明我国积极发展风力发电事业,风电技术国产化和提高风电市场竞争力在我国具备着巨大的潜力。积极利用和发展风电这一再生能源,推动我国走可持续发展的能源之路,在我国已是势在必行。
关键词:风力发电,能源结构,政府鼓励,风电电价
1.绪论
1.1 引言
能源,是人类生存的基本要素,也是国民经济发展的主要物质基础。随着国际工业化的进程,全球未来能源消耗预计仍将以3的速度增长,常规能源资源面临日益枯竭的窘境。进入20世纪,由于对能源的渴求,人们无节制地开采石油,煤炭,天然气等这些埋在地层深处的维系人类生存的“能源食粮”,不仅严重地污染了我们的生存空间,恶化了自然环境,而且带来了更可怕的恶果 — 能源枯竭。进入70年代,世界能源发生危机,石油价格剧烈上涨,极大的刺激了那些能源消耗大国,使他们把研究开发其他能源放到了重要位置,要生存就必须寻求开发新能源。为此,各国政府纷纷制定自己的能源政策,给新能源开发以特殊优惠政策和政府税收补贴,从而使风能,原子能,太阳能,潮汐能,地热能等的开发利用得以迅速发展。进入21世纪,可再生能源的发展与研究将在全球的资源利用中得到越来越多的重要,可再生能源在资源消耗中也将占据越来越高的比例。
世界能源危机为风电发展提供了机遇,但由于起步较晚,存在很多不确定因素阻碍风电行业的发展。我国风电行业发展比较迅速,但与国际风电行业的发展水平还有很大差距,国内的风电发动设备主要依靠进口,对外依赖性强,虽然风电成本已下降很多,但相比火电成本的优势在短期内并不会明显突出,风电行业的发展还有很多的阻碍因素。正是风电行业投资的高风险,必然为风电行业发展带来高收益,不论是风电产业的经济效益、对社会的效益,还是我国目前奉行的可持续发展和节约战略,这些都为发电行业提供了很大的发展空间。
《中国风电产业市场发展研究及投资分析报告》根据国家统计局、国家发改委、国研网、欧洲风能协会和其他的一些权威渠道,内容丰富、翔实。在撰写过程中,运用了大量的图、表等分析工具,结合相关的经济学理论,综合运用定量和定性的分析方法,对风电行业的运行及发展趋势做了比较详细的分析,对影响行业发展的基本因素进行了审慎的剖析,报告还对国外风电行业发展迅速的国家相关政策进行了介绍和分析判断,为我国风电行业的发展提供依据和选择,是能源企业以及相关企事业单位、计划投资于风电行业的企业和风电设备业行业准确了解目前我国风电市场动态,把握风电行业发展趋势,制定企业战略的重要参考依据 1.2 风力发电的历史和现状
风能是人类最早利用的能源之一。早在公元前 2000 年,埃及,波斯等国就己出现帆船和风磨,中世纪荷兰与美国已有用于排灌的水平轴风车。中国是世界上最早利用风能的国家之一,早在 1800 年前,中国就有风车提水的纪录。下面简单介绍一下国内外现代风力机研制的历史和现状。
1.2.1中国风电的历史和现状
中国对现代风力机的研制可以追溯到二十世纪 50 年代,但有系统地研究还是从二十世纪 70 年代开始的。中国为了解决西部草原牧区,东部海岛及边远山区的用电问题,国家鼓励开发离网型风力机,国内各风电科研机构主要从事离网型的研制,并形成了一定的规模。根据中国的具体情况,重点推广了户用微型发电机,功率一般为 1001000W,目前已形成了一个生产,销售,维修服务较完善的体系,部分产品出口。这为电网不能通达 3的地区约 60 万居民解决了基本用电问题。电灯,电视进入千家万户,提高了人民群众的生活质量。据世界能源组织统计,世界上十个最大的小型风力发电机生产企业中,中国占七个。截至 2000 年底,全国累计生产了离网型风力发电机组近二十万台。
1.3 中国风电电价定价机制的演变过程
中国的并网风电从 20 世纪 80 年代开始发展,尤其是“十一五”期间,风电发展非常迅速,总装机容量从1989 年底的4200kW增长到2008年的 1,200 万 kW,跃居世界第四位,标志着中国风电进入了大规模开发阶段。总体看来,中国并网风电场的发展经历了三个阶段,即初期示范阶段、产业化建立阶段、规模化及国产化阶段。各阶段的电价特点及定价机制概括如下:
1.3.1 初期示范阶段(1986-1993 年)
中国并网型风电发展起步于 1986 年。1986 年 5 月,第一个风电场在山东荣成马兰湾建成,其安装的Vestas V15-55/11风电机组,是由山东省政府和航空工业部共同拨付外汇引进的。此后,各地又陆续使用政府拨款或国外赠款、优惠贷款等引进了一些风电机组,建设并网型风电场。由于这些风电场主要用于科研或作为示范项目,未进入商业化运行,因此,上网电价参照当地燃煤电价,由风力发电厂与电网公司签订购电协议后,报国家物价部门核准,电价水平在 0.28 元/kWh 左右,例如 20世纪90 年代初期建成的达坂城风电场,上网电价不足0.3元/kWh总体来说,此阶段风电装机累积容量为4200kW,风电发展的特点是利用国外赠款及贷款,建设小型示范电场。政府的扶持主要是在资金方面,如投资风电场项目及风力发电机组的研制。风电电价水平基本与燃煤电厂持平。
1.3.2产业化建立阶段(1994-2003 年)
1994年起,中国开始探索设备国产化推动风电发展的道路,推出了“乘风计划”,实施了“双加工程”,制定了支持设备国产化的专项政策,风电场建设逐渐进入商业期。这些政策的实施,对培育刚刚起步的中国风电产业起到了一定作用,但由于技术和政策上的重重障碍,中国风电发展依然步履维艰。每年新增装机不超过十万千瓦。到2003年底,全国风电装机容量仅56.84 万千瓦。
这一阶段,风电电价经历了还本付息电价和经营期平均电价两个阶段。1994 年,国家主管部门规定,电网管理部门应允许风电场就近上网,并收购全部上网电量,上网电价按发电成本加还本付息、加合理利润的原则确定,高出电网平均电价部分的差价由电网公司负担,发电量由电网公司统一收购。随着中国电力体制改革的深化,电价根据“厂网分开,竞价上网”的目标逐步开始改革。
总体来说,这一时期的电价政策呈现出如下特点:上网电价由风力发电厂与电网公司签订购电协议,各地价格主管部门批准后,报国家物价部门备案,因此,风电价格各不相同。最低的仍然是采用竞争电价,与燃煤电厂的上网电价相当,例如,中国节能投资公司建设的张北风电场上网电价为 0.38 元/千瓦时;而最高上网电价每千瓦时超过 1 元,例如浙江的括苍山风电场上网电价高达每千瓦时1.2元。
由此可见,从初期示范阶段到产业化建立阶段,电价呈现上升趋势。
1.3.3规模化及国产化阶段(2003 后)
为了促进风电大规模发展,2003年,国家发展改革委组织了第一期全国风电特许权项目招标,将竞争机制引入风电场开发,以市场化方式确定风电上网电价。截至2007年,共组织了五期特许权招标,总装机容量达到880万千瓦。
为了推广特许权招标经验,2006年国家发展改革委颁布《可再生能源发电价格和费用分摊管理试行办法》(发改价格[2006]7号)文件,提出了“风力发电项目的上网电价实行政府指导价,电价标准由国务院价格主管部门按照招标形成的价格确定”。根据该文件,部分省(区、市),如内蒙古、吉林、甘肃、福建等,组织了若干省级风电特许权项目.1.3.4目前中国风电电价政策
随着风电的快速发展,“招标加核准”的模式已无法满足风电市场发展和政府宏观引导的现实需要。因此,在当前各地风电进入大规模建设阶段,从招标定价加政府核准并行制度过渡到标杆电价机制,是行业发展的必然,也将引导风电产业的长期健康发展。
2009年 7月底,国家发展改革委发布了《关于完善风力发电上网电价政策的通知》(发改价格[2009]1906号),对风力发电上网电价政策进行了完善。文件规定,全国按风能资源状况和工程建设条件分为四类风能资源区,相应设定风电标杆上网电价。
1.4中国政府对风电的补贴政策
中国政府一直大力支持风电的发展,从2002 年开始,要求电网公司在售电价格上涨的部分中拿出一定份额,补贴可再生能源发电(即高出煤电电价的部分)。,电网和中国政府对风电的政策性补贴力度逐年加大,由 2002 年的 1.38 亿元上升到 2008 年的 23.77 亿元1(见图 4)。由此可见,中国政府的政策是鼓励可再生能源发展的,因此,中国风电迅速发展,三年间装机容量翻番。尽管如此,由于风电运行的不确定性,技术操作能力和管理水平的限制,中国风电企业的盈利仍然是微薄的。结论
从以上分析我们可以看出,中国的风电电价变化和风电行业的发展特点密不可分。风电行业发展经历了初期示范、产业化建立、规模化及国产化、目前逐渐完善等四个阶段。与此相对应,四个阶段的风电电价基本情况为:初期示范阶段:与燃煤电价持平(不足0.3元/kWh);产业化建立阶段:由风力发电厂和电网公司签订购电协议确定,电价各不相同(0.38元/kWh~1.2元/kWh);规模化及国产化阶段:招标电价与核准电价共存,国家招标电价保持上升;目前完善阶段:四类标杆电价(0.51元/kWh,0.54元/kWh,0.58元/kWh,0.61元/kWh)。在这期间,中国政府一直努力探索合理的风电电价市场形成机制。不同阶段的机制不同,风电电价亦有所波动,国家的指导电价逐年上升,核准电价则略微下降,这都符合中国风电产业和世界风电产业的发展规律,使中国的风电电价更趋理性。同时,可以看到,中国政府在探索风电价格机制和规范风电电价的过程中,一直给予风电行业巨大的支持,2002年至2008年,国家对风电的补贴额从1.38亿元上升为23.77亿元,每年都在大幅度增长,这极大地提高了投资者的积极性,促使中国的风电装机容量成倍增加,中国一跃成为风电大国。
因此,我们认为,中国政府是依据风电本身发展的客观规律、电网的承受能力来确定风电电价,在确定电价时从未考虑 CDM 因素,定价过程完全与CDM无关。但是,也应该看到,在中国风力发展的过程中,CDM对风力发电企业克服资金和技术障碍确实发挥了积极作用,如果没有CDM,中国风电发展速度不会如此迅速,更不会为减缓全球温室气体排放做出如此巨大的贡献。因此,我们希望EB在审核中国风电项目时能充分考虑和理解中国特殊的定价机制,推动全球范围内更多高质量 CDM 项目的成功注册,为减缓全球气候变化作出更多贡献。
参考文献:
1.王双(作者)《风力发电发展与风电电价分析研究》(文章)2.中国风力发电网(作者)《中国风电及电价发展研究报告》 3.作者不详 《 中国风电产业市场发展研究及投资分析报告》
第四篇:风力发电考试
1.电力系统:用于生产,传输,交换,分配,消耗电能的系统:
一次部分:用于能量生产,传输,交换,分配,消耗的部分
二次部分:对一次部分进行检测,监视,控制和保护的部分
2.风电场和常规电厂的区别:单机容量小;电能生产比较分散,发电机数目多;输出的电压等级低;类型多样化;功率输出特性复杂;并网需要电力电子换流设备
3.风电厂电气一次系统组成:风电机组;集电系统;升压站;厂用电系统。
4.变压器铜损:铜导线存在着电阻,电流流过消耗一定功率,变为热量
变压器铁损:铁心中的磁滞损耗和涡流损耗
5.常用的开关电器:断路器(切断电路),隔离开关(在电气设备和熔断器间形成明显的电压断开点,运行方式改变时倒闸操作),熔断丝(有故障电流时断开电路),接触器(电路正常开合闸,无法断开故障电路)。
6.集肤效应:靠近导体表面处的电流密度大于导体内部电流密度的现象。随电流频率升高,集肤效应使导体的电阻增大,电感减小!
7.电流互感器:串接一次系统,将大电流变为小电流
二次开路后果:出现的高压电危机人身及设备安全;铁心中产生大量剩磁;长时间作用铁心过热
8.电压互感器作用:并接一次系统,将高电压变成低电压
二次侧短路:引起很大短路电流,造成互感器烧毁
9.电气设备选择的技术条件:按照正常工作状态选择;按照短路状态校验;电气选择的环境因素;环境保护
10.电流继电器和电压继电器有何作用?他们如何接入电气一次系统?
电流继电器反应一次回路中的电流越限,用于二次系统的保护回路,用以启动时间继电器的动作或直接触发断路器分闸。
电流继电器用于继电保护装置中的过电压保护或欠电压闭锁
11.配电装置的最小净距:无论在正常最高工作电压或出现内,外部过电压时,都不至使空气间隙被击穿。
12.A,B,C,D,E类安全净距的具体含义
A1:带电部分至接地部分之间的最小安全净距
A2:不同相的带电导体之间
B1:带电部分至栅状遮栏间的距离和可移动设备在移动中至带电裸导体间的距离 B2:带电部分至网状遮栏
C:无遮拦裸导体至地面
D:停电检修的平行无遮栏
E:屋内配电装置通向屋外的出线套管中心线
12.雷电类型:直击雷;感应雷;球星雷。
13.雷电防护:避雷针,避雷线,避雷器,避雷带和避雷网,接地装置
14.风电场防雷性能衡量标准:耐雷水平,雷击跳闸率
15.变流系统的功能,电力变换,控制功率,控制转矩,调节功率因素
第五篇:风力发电报告
国内外风力发电技术 的现状与发展趋势
风能是一种可再生的清洁能源。近30年来,国际上在风能的利用方面,无论是理论研究还是应用研究都取得了重大进步。风力发电技术日臻完善,并网型风力发电机单机额定功率最大已经到5MW,叶轮直径达到126m。截止2005年世界装机容量已达58,982MW,风力发电量占全球电量的1%。中国成为亚洲风电产业发展的主要推动者之一,其总装机容量居世界第8位,2005年新增装机容量居世界第6位。今后,国内外风力发电技术和产业的发展速度将明显加快。引
言
风是最常见的自然现象之一,是太阳对地球表面不均衡加热而引起的“空气流动”,流动空气具有的动能称之为风能。因此,风能是一种广义的太阳能。据世界气象组织(WMO)和中国气象局气象科学研究院分析,地球上可利用的风能资源为200亿kW,是地球上可利用水能的20倍。中国陆地10m高度层可利用的风能为2.53亿kW,海上可利用的风能是陆地上的3倍,50m高度层可利用的风能是10m高度层的2倍,风能资源非常丰富。
风能是一种技术比较成熟、很有开发利用前景的可再生能源之一[1]。风能的利用方式不仅有风力发电、风力提水,而且还有风力致热、风帆助航等。因此,开发利用风能对世界各国科技工作者具有极强的魅力,从而唤起了世界众多的科学家致力于风能利用方面的研究。在本文中,将对国内外风力发电技术的现状和发展趋势进行论述。风力发电基本知识
2.1 风能的计算公式
空气运动具有动能。风能是指风所具有的动能。如果风力发电机叶轮的断面积为A,则当风速为V的风流经叶轮时,单位时间风传递给叶轮的风能为
(1)
其中:单位时间质量流量m=ρAV
(2)
在实际中,式中:
PW—每秒空气流过风力发电机叶轮断面面积的风能,即风能功率,W;
(3)Cp—叶轮的风能利用系数;
m—齿轮箱和传动系统的机械效率,一般为0.80—0.95,直驱式风力发电机为1.0; e—发电机效率,一般为0.70—0.98; —空气密度,kg/m3;
A—风力发电机叶轮旋转一周所扫过的面积,m2; V—风速,m/s。
2.2 贝茨(Betz)理论
第一个关于风轮的完整理论是由德国哥廷根研究所的A·贝茨于1926年建立的。
贝茨假定风轮是理想的,也就是说没有轮毂,而叶片数是无穷多,并且对通过风轮的气流没有阻力。因此这是一个纯粹的能量转换器。此外还进一步假设气流在整个风轮扫掠面上的气流是均匀的,气流速度的方向无论在风轮前后还是通过时都是沿着风轮轴线的。
通过分析一个放置在移动空气中的“理想”风轮得出风轮所能产生的最大功率为
—空气密度,kg/m3;
(4)
式中:Pmax—风轮所能产生的最大功率;
A—风力发电机叶轮旋转一周所扫过的面积,m2; V—风速,m/s。
这个表达式称为贝茨公式。其假定条件是风速与风轮轴方向一致并在整个风轮扫掠面上是均匀的[2]。将(4)式除以气流通过扫掠面A时风所具有的动能,可推得风力机的理论最大效率
(5)
(5)式即为有名的贝兹(Betz)理论的极限值。它说明,风力机从自然风中所能索取的能量是有限的,其功率损失部分可以解释为留在尾流中的旋转动能。
能量的转换将导致功率的下降,它随所采用的风力机和发电机的型式而异,因此,风力机的实际风能利用系数Cp<0.593[3]。
2.3 温度、大气压力和空气密度
通过温度计和气压计测试出实验地点的环境温度和大气压,由下式计算出空气密度。
(6)
式中:ρ—空气密度,kg/m3; h—当地大气压力,Pa; t—温度,℃。
从空气密度公式可以看出,空气密度的大小与大气压力、温度有关。
2.4 风力机的主要组成
1)小型风力发电机
小型水平轴风力机主要组成部分有:风轮、发电机、塔架、调向机构、蓄能系统、逆变器等。(1)风轮 风轮是风力机从风中吸收能量的部件,其作用是把空气流动的动能转变为风轮旋转的机械能。水平轴风力发电机的风轮是由1~3个叶片组成的。叶片的结构形式多样,材料因风力机型号和功率大小而定,如木心外蒙玻璃钢叶片、玻璃纤维增强塑料树脂叶片等。
(2)发电机
在风力发电机中,已采用的发电机有3种,即直流发电机、同步交流发电机和异步交流发电机。小型风力发电机多采用同步或异步交流发电机,发出的交流电通过整流装置转换成直流电。
(3)塔架
塔架用于支撑 发电机和调向机构等。因风速随离地面的高度增加而增加,塔架越高,风轮单位面积捕捉的风能越多,但造价、安装费等也随之加大。
(4)调向机构
垂直轴风力机可接受任何方向吹来的风,因此不需要调向机构。对于水平轴风力机,为了得到最高的风能利用效率,应用风轮的旋转面经常对准风向,需要对风装置。常用的调向机构主要有尾舵、舵轮、电动对风装置。
(5)限速机构
当风速高于风力机的设计风速时,为了防止叶片损坏,需要对风轮转速进行控制。(6)贮能装置
贮能装置对独立运行的小型风力机是十分重要的。其贮能方式有热能贮能、化学能贮存。(7)逆变器
用于将直流电转换为交流电,以满足交流电气设备用电的要求。2)大型风力发电机
大型风力发电机组由两大部分组成:气动机械部分和电气部分。气动机械部分包括风轮、低速轴、增速齿轮箱、高速轴,其功能是驱动发电机转子,将风能转换为机械能。电气部分包括异步发电机、电力电子变频器、变压器和电网,其功能是将机械能转换为频率恒定的电能。近年来,又研制成功了直驱式变速恒频风力发电机组(无增速齿轮箱)。风力机与风力发电技术
3.1 风力机与风力发电技术的发展史
风能,是人类最早使用的能源之一。远在公元前2000年,埃及、波斯等国已出现帆船和风磨,中世纪荷兰与美国已有用于排灌的水平轴风车。我国是世界上最早利用风能的国家之一,早在距今1800年前,我国就有风力提水的记载。1890年丹麦的P·拉库尔研制成功了风力发电机,1908年丹麦已建成几百个小型风力发电站。自二十世纪初至二十世纪六十年代末,一些国家对风能资源的开发,尚处于小规模的利用阶段[4]。
随着大型水电、火电机组的采用和电力系统的发展,1970年以前研制的中、大型风力发电机组因造价高和可靠性差而逐渐被淘汰,到二十世纪六十年代末相继都停止了运转。这一阶段的试验研究表明,这些中、大型机组一般在技术上还是可行的,它为二十世纪七十年代后期的大发展奠定了基础。
1980年以来,国际上风力发电机技术日益走向商业化。主要机组容量有300kW、600kW、750kW、850kW、1MW、2MW。1991年丹麦在Vindeby建成了世界上第一个海上风电场,由11台丹麦Bonus 450kW单机组成,总装机4.95MW。随后荷兰、瑞典、英国相继建成了自己的海上风电场。
目前,已经备离岸风力发电设备商业生产能力的厂家,主要有丹麦的Vestas(包括被其整合的NEG-Micon),美国的GE风能,德国的Nordex、Repower、Pfleiderer/Prokon、Bonus和德国著名的Enercon公司。单机额定功率覆盖范围从2MW、2.3MW、3.6MW、4.2MW、4.5MW到5MW。叶轮直径从80m、82.4m、100m、110m、114m、116m到126m。
3.2 风力机的种类
风力发电机是把风能转换为电能的装置,鉴于风力发电机种类繁多,因此分类法也是多种。按叶片数量分,单叶片,双叶片,三叶片,四叶片和多叶片;按主轴与地面的相对位置分,水平轴、垂直轴(立轴)式;按桨叶工作原理分,升力型、阻力型。目前风力发电机三叶片水平轴类型居多。
水平轴风力机,风轮的旋转轴与风向平行,如图1所示;垂直轴风力机,风轮的旋转轴垂直于地面或气流方向,如图2所示。国内外风力发电的现状
4.1 世界风力发电的现状
目前,中、大型风力发电机组已在世界上40多个国家陆地和近海并网运行,风电增长率比其它电源增长率高的趋势仍然继续。如表1所示,截止2005年12月31日世界装机容量已达58,982MW,年装机容量为11,310MW,增长率为24%;风力发电量占全球电量的1%,部分国家及地区已达20%甚至更多。2005年世界风电累计装机容量最多的十个国家见表2,前十名合计51750.9MW,约占世界总装机容量的87.7%。
2005年国际风电市场份额的分布多样化进程呈持续发展趋势:有11个国家的装机容量已高于1,000MW,其中7个欧洲国家(德国、西班牙、意大利、丹麦、英国、荷兰、葡萄牙),3个亚洲国家(印度、中国、日本),还有美国。亚洲正成为发展全球风电的新生力量,其增长率为48%[5]。
2002年欧洲风能协会(EWEA)与绿色和平组织(Greenpeace International)发表了一份标题为“风力 12(Wind Force 12)”的报告,勾画了风电在2020年达到世界电量12%的蓝图。报告声明这份文件不是预测,而是从世界风能资源、世界电力需求的增长和电网容量、风电市场发展趋势和潜在的增长率、与核电和大水电等其他电源技术发展历程的比较以及减排CO2等温室气体的要求,论证了风电达到世界电量12%的可能性。报告还指出中国2020年风电装机有可能达到1.7亿千瓦[6]、[7]。
国内风力发电的现状
根据国家气象科学院的估算[8],我国陆地地面10米高度层风能的理论可开发量为32亿kW,实际可开发量为2.53亿kW。海上风能可开发量是陆地风能储量的3倍。内蒙古 实际可开发量
0.618亿kW 西藏
实际可开发量
0.408亿kW 新疆
实际可开发量
0.343亿kW 青海
实际可开发量
0.242亿kW 黑龙江
实际可开发量
0.172亿kW
2005年中国除台湾省外新增风电机组592台,装机容量50.3万kW。与2004年当年新增装机19.8万kW相比,2005年当年新增装机增长率为254%。
截至2005年底,中国除台湾省外累计风电机组1864台,装机容量126.6万kW,风电场62个。分布在15个省(市、自治区、特别行政区),它们按装机容量排序如表3所示。与2004年累计装机76.4万kW相比,2005年累计装机增长率为65.6%。2005年风电上网电量约15.3亿kW.h[9]。
中国“十一五”国家科技支撑计划重大项目“大功率风电机组研制与示范”支持1.5~2.5MW、2.5MW以上双馈式变速恒频风电机组的研制;1.5~2.5MW、2.5MW以上直驱式变速恒频风电机组的研制;1.5MW以上风电机组叶片、齿轮箱、双馈式发电机、直驱式永磁发电机的研制及产业化;1.5MW以上双馈式风电机组控制系统及变流器、直驱式风电机组控制系统及变流器的研制及产业化;近海风电场建设关键技术的研究;近海风电机组安装及维护专用设备的研制;大型风电机组相关标准制定及风电技术发展分析等16个课题的研究[10]。“十一五”末,我国风电技术的自主研发能力将接近世界前沿水平。
4.3小型风力发电机
4.3.1小型风力发电机行业现状
作为农村可再生能源主要支柱之一的小型风力发电行业在2005得到长足的发展,从事小型风电产业的开发、研制、生产单位达到70家。据23个生产企业报表统计,2005年共生产30kW以下独立运行的小型风力发电机组共33,253台,比上年增长34.4%,其中200W、300W、500W机组共生产24,123台,占全年总产量的72.5%;15个单位共出口小型风力发电机组5,884台,比上年增长40.7%,创汇282.7万美元,主要出口到菲律宾、越南等24个国家和地区。并且,由于汽油、柴油、煤油价格飞涨,且供应渠道不畅通,内陆、江湖、渔船、边防哨所、部队、气象站和微波站等使用柴油发电机的用户逐步改用风力发电机或风光互补发电系统。
4.3.2 小型风力发电机行业发展趋势
1)由于广大农牧民生活水平提高、用电量不断增加,因此小型风力发电机组单机功率在继续提高,50W机组不再生产,100W、150W机组产量逐年下降,而200W、300W、500W和1kW机组逐年增加,占总年产量的80%。
2)由于广大农民迫切希望不间断用电,因此“风光互补发电系统”的推广应用明显加快,并向多台组合式发展,成为今后一段时间的发展方向。
3)随着国家《可再生能源法》及《可再生能源产业指导目录》的制定,相继还会有多种配套措施及税收优惠扶植政策出台,必将提高生产企业的生产积极性,促进产业发展。
4)目前我国尚有2.8万个村、700万户、2,800万人口没有用上电,且分散居住在边远山区、农牧区、常规电网很难达到,有关专家分析700万无电用户中、300万户可用微水电解决用电,而400万户可以用小型风力发电或风光互补发电,满足农牧民用电需要[11]。4.3.3浓缩风能型风力发电机
浓缩风能型风力发电机由内蒙古农业大学新能源技术研究所研制,已获得中国实用新型专利(专利号:ZL94244155.9)。该型风电机组将稀薄的风能经浓缩风能装置加速、整流和均匀化后驱动叶轮旋转发电,从而提高了风能的能流密度,降低了自然风的湍流度,改善了风能的不稳定等弱点,提高了风能品位,降低了风电度电成本。该风力发电机具有的切入风速低、发电量大、噪音低、安全性高、寿命长、度电成本低等特点。浓缩风能型风力发电机可独立运行、风光互补运行、多机联网运行和并入低压电网运行。现已研制开发的系列产品有200W、300W、600W、1kW、2kW等机组。浓缩风能型风力发电机经过中试后,可以向中、大型机组发展。这种新型风电技术在中国和世界的应用,将有效地提高风电系统的供电水平和质量,有效地利用低品位的风能,提高风电商品竞争力,具有重要的经济益和生态环保效益[12]。结
论
在今后的20年内,国际上风力发电产业将是增长速度最快的产业,风力发电技术也将进入快速发展的黄金时期;在中国,并网型风力发电机组装机容量增长速度将明显加快,令世界瞩目,离网型风力发电机组发展的地域广、潜力大,装机总容量最终将超过并网型风力发电机组。
田德,吉林松原人,1958年8月生。内蒙古农业大学教授,华北电力大学教授,博士生导师。1985年赴日本留学,1992年9月获得日本明星大学电气工程学博士学位。现任中国农业工程学会理事、中国太阳能学会理事、《太阳能学报》编委、全国“百千万人才工程”第一、二层次人选。享受国务院政府特殊津贴。省级中青年突贡专家。省级优秀留学回国人员。主持完成的项目获内蒙古自治区科技进步一等奖1项,已获得中国实用新型专利1项。正申请国家发明专利3项。发表研究论文50余篇,多篇被EI收录。主持完成和正在主持的科研项目有:3项国家自然科学基金资助项目、3项国际合作项目、1项国家“十一五”科技攻关项目、9项省部级项目、3项横向项目。现从事离网型风力发电系统、并网型风力发电系统和可再生能源利用的研究。
[参考文献] [1]贺德馨.2020年中国的科学和技术发展研究[J].科技和产业,2004,4(1):36.[2][法]D·勒古里雷斯(著),施鹏飞(译).风力机的理论与设计[M].北京:机械工业出版社,1987:31~33.[3]叶杭冶.风力发电机组的控制技术[M].北京:机械工业出版社,2006:11~13.[4]陈云程,陈孝耀,朱成名,等.风力机设计与应用[M].上海:上海科学技术出版社,1990:1~11,48~51 [5]世界风能协会.2005年全球风能统计[J].中国风能,2006(1):17~20
[6] The European Wind Energy Association, Greenpeace International.Wind Force 12.2002.http://,2006.12.17.[11]李德孚.2005年小型风力发电行业现状与发展[J].中国风能,2006,(2):9~11 [12]田
德,王海宽,韩巧丽.浓缩风能型风力发电机的研究与进展[J].农业工程学报(增刊),中国农业工程学会第七次全国会员代表大会暨学术年会论文集,2003,19:177~181.