风力发电的研究

时间:2019-05-14 03:32:33下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《风力发电的研究》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《风力发电的研究》。

第一篇:风力发电的研究

网络教育学院

《新能源发电》课 程 设 计

题目:风力发电技术

学习中心:河南许昌奥鹏学习中心【14】层次:专升本

专业:电气工程及其自动化

年级:2011年秋 季

学号:20110804076

3学生:陈懿凡

辅导教师:康永红

完成日期:2013 年08月30日

一、风力发电的现状

能源、环境问题是当今人类生存和发展所面临的关键问题。常规能源以煤、石油、天然气为主,不仅资源有限,而且会造成严重的环境污染。因此,对可再生能源的开发与利用,已受到世界各国的高度重视。“开发与利用可再生能源,改善能源结构,减排温室气体,保护环境”已成为世界共识。一场世界性的开发与利用新能源的浪潮已经到来。新能源与可再生能源包括水能、太阳能、风能、地热能和海洋能等,它们在消耗之后还可以得到恢复和补充,不会污染环境。其中,人类对风能的利用已有上千年的历史。地球上可利用的风能为106MW,是可利用的水能的10 倍以上。在可再生能源中,风能是一种非常可观的、有前途的能源。风力发电(简称风电)作为一种绿色电力,受到人们广泛的关注。它具有资源蕴藏量巨大、可再生、无污染、占地少、周期短等优点,但是风电也存在着风能利用率低以及具有随机性、不稳定和分布不均匀性等缺陷。

1.国外风力发电发展现状

2012 年新增风电装机容量最多的10 个国家占世界风电装机的87%。与2007 年相比,美国保持第1 名,中国超过西班牙从第3 名上升到第2 名,印度超过德国和西班牙从第5名升至第3 名,前3 名的国家合计新增装机容量占全世界的60%。

根据世界风能协会的统计,2012 年全世界风电装机容量新增约2726 万kW,增长率约为29%。累计达到1.21 亿kW,增长率为42%,突破1 亿kW 大关。风电总量为2600 亿kWh,占全世界总电量的比例从2000 年的0.25%增加到2012 年的1.5%。

尽管风电的发展仍然存在着很多困难,如电网适应能力、风能资源、海上风电发展等,但相比于常规能源,经济性优势逐步凸显,世界各国都对风电发展充满了信心。例如,欧美都公布了2030 年风电满足20%甚至更多电力需求的宏大目标,这也为全球风电的长期发展定下了基调。从国际能源署(IEA)2012 年颁布的《2050 年能源技术情景》判断,2012-2050年,全球风电平均每年增加7000 万千瓦,风电将成为一个庞大的新兴电力市场。

2.国内风力发电发展现状

我国是世界上风力资源占有率最高的国家之一,同时也是世界上最早利用风能的国家之一。据资料统计,我国10 m 高度层风能资源总量为3226GW,其

中陆上可开采风能总量为253GW,加上海上风力资源,我国可利用风力资源约为1000GW。如果风力资源开发率可达到60%,仅风电一项就可支撑我国目前的全部电力需求。我国利用风电起步较晚,和世界上风电发达国家如德国、美国、西班牙等相比还有很大差距。风电是20 世纪80 年代开始迅速发展起来的,初期研制的风机主要是1kW、10kW、55kW、220kW 等小型风电机组,后期开始研发可充电型风电机组,并在海岛和风场广泛应用。至今,我国已经在河北张家口、内蒙古、山东荣城、辽宁营口、黑龙江富锦、新疆达坂城、广东南澳和海南等地建成了多个大型风电场,并且计划在江苏南通、灌云及盐城等地兴建GW 级风电场。

截止2007 年底,我国风机装机总量已达6.05 GW,年发电量占全国发电量的0.8%左右,比2000 年风电发电量增加近10 倍。2012 年一年新增风电装机容量625 万千瓦,比过去20年累计的总量还多,新增装机增长率约为89%。累计风电装机容量约1215 万千瓦,占全国装机总量的1.5%,累计装机增长率为106%。风电装机主要分布在24 个省,比2007 年增加了重庆、云南和江西三个省。2006 至2012 年风电增长状况。

中国政府为了推动并网风电的商业化发展,国家发改委明确提出我国风电发展的规划目标:2005 年全国风电装机总量达到100 万千瓦,2012 年全国风电装机总量达到400 万千瓦,2015 年全国风电装机总量达到1000 万千瓦,2020 年全国风电装机总量达到2000 万千瓦,占全国总装机容量的2%左右。可以预计,中国即将成为世界风电发展令人瞩目的国家之一。

二、风力发电机的优缺点

要比较风力发电机的优缺点首先要对其类型进行了解。由于风力发电机类型的不同。不同风电机组的工作原理、数学模型都不相同,因此分析方法也有所差异。目前国内风电机组的主要机型有3种,每种机型都有其特点。

1.异步风力发电机

国内已运行风电场大部分机组是异步风电发电机。主要特点是结构简单、运行可靠、价格便宜。这种发电机组为定速恒频机沮,运行中转速基本不变,风力发电机组运行在风能转换最佳状态下的几率比较小,因而发电能力比新型机组低。同时运行中需要从电力系统中吸收无功功率。为满足电网对风电场功率因数的要求,多采用在机端并联补偿电容器的方法,其补偿策略是异步发电机配有若干组固定容量的电容器。

由于风速大小随气候环境变化,驱动发电机的风力机不可能经常在额定风速下运行,为了充分利用低风速时的风能,增加全年的发电量,近年广泛应用双速异步发电机。这种双速异步发电机可以改变极对数,有大、小电机2种运行方式。

2.双馈异步风力发电机

国内还有一些风电场选用双馈异步风力发电机,大多来源于国外,价格较贵。这种机型称为变速恒频发电系统,其风力机可以变速运行,运行速度能在一个较宽的范围内调节,使风机风能利用系数Cp得到优化,获得高的利用效率;可以实现发电机较平滑的电功率输出;发电机本身不需要另外附加无功补偿设备,可实现功率因数在一定范围内的调节,例如功率因数从领先0.95调节到滞后0.95范围内,因而具有调节无功功率出力的能力。

3.直驱式交流永磁同步发电机

大型风力发电机组在实际运行中,齿轮箱是故障较高的部件。采用无齿轮箱结构能大大提高风电机组的可靠性,降低故障率,提高风电机组的寿命。目前国内有风电场使用了直驱式交流永磁同步发电机,运行时全部功率经A-D-A变换,接入电力系统并网运行。与其他机型比较,需考虑谐波治理问题。

三、风力发电的控制技术

风力发电机组控制系统是风力发电机的核心系统,因此研究控制技术具有重要的现实意义,可靠保证了风力发电机组的经济、安全并网运行。下面对风力发电机组控制技术及相关软件改进进行系统地阐述。

风力发电机组控制系统由本体系统和电控(总体控制)系统组成,本体系统包括空气动力学系统、发电机系统、变流系统及其附属结构;电控系统由不同的模块构成,主模块包括变桨控制、偏航控制、变流控制等,辅助模块则包括通讯、监控、健康管理控制等。而且,在本体系统与电控系统间实现系统的联系及信号的变换。例如,空气动力系统的桨距由变桨控制系统控制,保证了风能转化的最大化,功率输出的稳定等作用。风轮的自动对风及连续跟踪风向引起电缆缠绕的自动解缆受偏航控制系统控制,分为主、被动迎风两种模式,目前大型并网风电系统多采用主动偏航模式。变流控制常和变桨距系统结合,对变速恒频的运行及最大额定功率进行控制。

根据风电机组不同的分类标准,可将机组控制系统分为不同种类。目前风力发电的主流机型主要是依据桨距特性,发电机类型等分类,通过技术不断改

进,控制系统由最先的定桨距恒速恒频控制到变桨距恒速恒频控制,随之发展为变桨距变速恒频控制。此外,据连接电网类型可将风电控制系统分为离网型和并网型,前者已步入大规模稳定发展阶段。后者则成为现阶段控制系统的主要发展方向。

风电机组控制系统软件设计

整个风力发电机组控制系统需要一种完善的系统软件配置以实现发电机正常运行。目前,控制系统软件的模块化、参数化、功能化逐渐实现软件的兼容性与继承性。

1.模块化

控制系统整个软件是许多硬件的整合,我们可以讲每一个硬件子系统座位独立的模块,子系统与PLC之间的数据交互即为模块的输入输出,这种模块化的形式通过固化被选择性的调用执行程序,从而实现程序的兼容性,并做到小范围的软件修改和工作量的最小化。

2.参数化

参数设置是对软件灵活性的优化。对于多配置整合的程序,我们将软件开关作为一种参数,完成配置间切换,来决定程序模块是否正常执行。包括动作事件参数、故障参数、控制参数等,对不同属性结构体的形式进行设置,执行程序时只需读入相应参数即可。

3.功能化

软件功能化包括协议解析功能化、故障判断功能化及控制功能化。协议解析功能化即依据特定的子系统定义不同的功能块,当调用特定的配置参数时,可以执行相应的功能块程序,完成功能块内部的所有数据库的处理。故障判断涉及对所有控制监测的判断,应用功能块可简化并统一故障的判断。将软件中大量的逻辑控制(如水冷的风扇控制,变桨控制等)整合到功能块中,制定全面的输入输出接口,既完成现有控制功能,又增加了其拓展功能。因此功能模块化使得程序执行逻辑性与可读性均有所提高。

四、风力发电的展望

作为一种自然资源,风电正受到发展中国家的重视。中国西部、印度北部、巴西西北部、拉丁美洲的安第斯山脉和北非,都是风能资源丰富的地区。在我国西部地区,如新疆、内蒙古、西藏、青海、甘肃等地,由于地理位置特殊,又缺少水源,风力发电就成为能源发展的首选项目。目前,我国在新疆、内蒙

古、河北等地,均已建成大规模的风力发电站。

目前,我国已形成年产30万台100瓦至5000瓦独立运行小型风力发电机组的能力。在内蒙古,已有60万居住在偏远地区的牧民用风力发电解决了生活、生产用电,每套小型风力发电机(含蓄电池)价格在2000元左右。风力发电可用来照明、看电视、提井水饮牲畜、分离牛奶、剪羊毛等,极大地提高了劳动生产率。

由于风向变幻不定,风力大小无常,这些问题也给大规模开发利用风能带来了不少困难。

人们依靠先进的科学技术制造的新型风轮发电机,能够随着风向的变化和风力的大小随意轻快地旋转,在风速较大或较小的情况下都能正常工作。它的运行和控制完全实现了自动化,通过几百个传感器及时收集风速、风力、风向等信息,再经电脑处理、调整,使风轮机得以在最佳的状态下运行。

随着风轮机的大型化和高效化,风力发电的成本也在不断下降。目前,风电价格已经可以与石油、煤、天然气发电和核电的价格相竞争,进而还将能与水电价格一比高低。此外,国家在税收等方面也给予风电适当的照顾和优惠,使风电上网电价不断下降。

国家电力公司已将风电作为我国电力工业的重要组成部分,并制定了发展规划。2000年,全国风力发电装机容量将达到40万千瓦。

21世纪将是高效、洁净和安全利用新能源的时代。目前,世界各国都在做这方面的努力,都把能源开发利用作为关键科技领域给予关注。在这方面,风能将成为其中的主要角色,为21世纪的人类服务。

第二篇:风力发电研究现状及发展趋势

风力发电研究现状及发展趋势

摘要:本文首先针对风力发电与其他能源的优势进行对比;接着阐述我国风力发电产业的研究现状;再对我国未来风力发电发展趋势进行了分析。

关键词:风力发电;可再生能源;现状;趋势

The Status and Development Trend of Chinese Wind

Power Abstract: The wind power generation and the Other forms of energy are compared;The status of wind power in China are introduced;Our future wind power status are analyzed.Key words: wind power;renewable energy;present situation;status

引言

风能是由地球表面大量空气流动所产生的动能。由于地面各处受太阳辐照后气温变化不同和空气中水蒸气的含量不同从而引起各地气压的差异,在水平方向高压空气向低压地区流动,即形成风。风能资源决定于风能密度和可利用的风能年累积小时数。风能密度是单位迎风面积可获得的风的功率,与风速的三次方和空气密度成正比关系。

随着世界经济规模的不断增大,世界能源消费量持续增长。能源危机的阴影正日益困扰着人类的生产和生活,世界上越来越多的国家也认识到,一个能够持续发展的社会应该是一个既能满足社会的需要,而又不危及子孙后代前途的社会

[1]。节约能源,提高能源利用效率,尽可能多地利用洁净能源替代高含碳量的矿物燃料,已成为世界利用能源的主题。近年来,人们已经逐渐认识到风力发电在减轻环境污染、调整电网中的能源结构、解决偏远地区居民用电问题等方面的突出作用,无论从调整电网结构,还是从商业化方面都促使人们开始重视发展风力发电[2]。

1风力发电与其他能源相比较有以下几方面的优势

1.1全球拥有丰富的风能资源

风的产生式由于地球表面上的大气受到太阳辐射引起部分空气的流动,是太阳能的一种转化形式,风能是地球与生俱来的资源。世界拥有巨大的风能资源。据估计,世界风能资源高达每53万亿千瓦时,预计到 2020年全球电力需求会上升至年25578万亿千瓦时, 也就是说全球风能资源是世界预期电力需求的2倍[3]。

1.2风能是可再生的清洁能源

风能是不需要开采、运输、不产生任何污染的清洁可再生能源。而且1台单机容量1000千瓦的风机与同容量火电装机相比,每年可减排二氧化碳2000吨、二氧化硫10吨、二氧化氮6吨。仅2007年, 全球940亿瓦风机容量就将减少

[4]二氧化碳排放12200万吨,相当于20个大型燃煤发电站的排放量。

1.3风机建造周期短、运行和维护成本低

风力发电和其他发电方式相比,建设周期一般很短(1台风机的安装时间不超过3个月),1个50万千瓦级的风力发电厂建设期不到1年,而且安装1台投入运行1台,装机规模灵活。目前风电厂造价为 8000-9000元/千瓦,其中,机组(设备)占75%,基础设施占20%,其他为5%;风能利用小时数在2700-3200小时/年,其风电成本约0.45-0.6元/千瓦时。风电机组的设计寿命一般为20-25年,其运行和维护费用一般相当于风电机组成本的 3%-5%[5]。

1.4风力发电占地少,现场所需人员少

风力发电相关建筑仅占风力发电场约7%的土地,其余场地仍可供其他产业使用;可以灵活地建设在山丘、海边、荒漠等地[6]。风电厂建成后,现场几乎不需要运行人员,可进行远程控制操作。中国风电发展的现状

2.1中国风力资源分布情况

我国风能资源比较丰富。根据全国第2次风能资源普查结果,中国陆地风能离地面10米高度的经济可开发量2.53亿千瓦, 离地面50米估计可能增大一倍。近海资源估计比陆地上大3倍,10米高经济可开发量约7.5亿千瓦,50米高约15亿千瓦

[7]。

我国的风力资源主要分布在两大风带: 一是三北地区(东北、华北和西北地区)。包括东北3省和河北、内蒙古、甘肃、青海、西藏、新疆等省区近200千米宽的地带, 可开发利用的风能储量约2亿千瓦, 约占全国可利用储量的79%。该地区风电场地形平坦, 交通方便, 没有破坏性风速, 是我国连成一片的最大风能资源区, 有利于大规模地开发风电场。二是东部沿海陆地、岛屿及近岸海域。冬春季的冷空气、夏秋的台风, 都能影响到沿海及其岛屿, 是我国风能最佳丰富区, 年有效风功率密度在200瓦/平方米以上。如台山、平潭、东山、南鹿、大陈、嵊泗、南澳、马祖、马公、东沙等, 可利用小时数约在7000至8000小时。这一地区特别是东南沿海,由海岸向内陆丘陵连绵, 风能丰富地区仅在距海岸50千米之内。另外, 内陆地区还有一些局部风能资源丰富区[8]。

从上述风力资源分布情况来看, 中国有相当大的地区有着丰富的风能资源, 具有很大的开发利用价值, 商业化、规模化的潜力很大。

2.2 风电场发展迅速,建设规模不断扩大

我国的风力发电始于20世纪50年代后期,在吉林、辽宁、新疆等省建立了单台容量在10kW以下的小型风力发电场,但其后就处于停滞状态。到了20世纪70年代中期以后,在世界能源危机的影响下,特别是在农村、牧区、海岛等地方对电力迫切需求的推动下,我国的一些地区和部门对风力发电的研究、试点和推广应用又给予了重视与支持,但在这一阶段,其风电设备都是独立运行的。直到1986

年,在山东荣城建成了我国第一座并网运行的风电场后,从此并网运行的风电场建设进入了探索和示范阶段,但其特点是规模和单机容量均较小。到1990年已建成4座并网型风电场,总装机容量为4.215兆瓦,其最大单机容量为200千瓦。在此基础上,风力发电从1991年起开始步入了逐步推广阶段,到1995年,全国共建成了5座并网型风电场,装机总容量为36.1兆瓦,最大单机容量为500千瓦。1996年后,风力发电进入了扩大建设规模的阶段,其特点是风电场规模和装机容量均较大,最大单机容量为1500千瓦[9]。据中国风能协会最新统计,2007年中国除台湾省外新增风电机组3,144 台。与2006 年相比,2007年当年新增装机增长率为145.8%,累计装机增长率为126.6%。2008年又新增风电装机容量630万千瓦,新增容量位列全球第2,仅次于美国.截至2008年底总装机容量达到1215.3万千瓦,同比增长106% ,总装机容量超过了印度,位列全球第4,同时跻身世界风电装机容量超千万千瓦的风电大国行列.2007年中国除台湾省外累计风电机组6458

[10]台,装机容5890兆瓦。截至2010年底,我国新增风电装机1600万千瓦,累计装

机容量达到4182.7万千瓦,均居世界第一,其中3100万千瓦装机实现并网发电。目前,甘肃酒泉、蒙东、蒙西、东北、河北、新疆、江苏、山东等多个千万千瓦风电基地正有序推进,蒙西和甘肃酒泉风电基地装机均超过500万千瓦,河北、吉林等多个地区装机超过250万千瓦。上海世博会期间,上海东海大桥10万千瓦海上风电场并网发电,成为除欧洲之外世界上第一座海上风电场。随后,总规模100万千瓦的海上风电特许权项目也在江苏启动。2010年,风电发电量达到450

[11]亿千瓦时,比上年增长63%。

2.3 国家及政府有关部门重视和支持风力发电

风电的迅速发展与国家的政策扶持密不可分。“十一五”时期,我国陆续出台了《可再生能源法》、《关于风电建设管理有关要求的通知》及《可再生能源中长期发展规划》等一系列配套政策和实施细则,这些政策不仅为风电长远发展提供了法律保障、政策支持,也明确提出了装备先行、市场化的发展战略。截至目前,风电企业享受所得税“三免三减半”、“增值税减免50%”、“即征即退”等一系列优惠政策。除了国家推出的标杆电价外,部分省份还另外推出风电补贴,[12]山东、广东的风电上网电价均高于国家标杆电价。

2.4 专业队伍和国产化水平逐渐提高

风力发电的“装备先行”战略使风电快速发展[13]。据统计,2004年全国装机的风电设备中,进口设备占90%,2010年全国装机的风电设备中国产设备占90%。随着国内风电市场的发展,有10余家风电设备制造企业实现了规模化生产,华锐、金风等7家制造企业已经跻身2010年世界风电设备制造15强,其中华锐风电已经跃居世界第二。经过多年的技术积累和资本投入,国内风电设备生产水平不断提高,兆瓦级风机等科技难关被相继攻克。

风电设备的国产化,带动了国内风电技术水平和运营质量的快速提升。目前,国内风电机组普遍采用当今世界主流技术,世界领先的3兆瓦机和海上风电项目均在国内落户。单位千瓦造价已从“十一五”初期的7000元左右降到4000元以

[14]下,降幅达40%。

2010年全国累计风电装机容量已突破40000兆瓦,海上风电大规模开发正式起步。国内风电市场竞争形势日趋激烈,使得企业在满足国内需求的基础上,积

极拓展海外市场。中国风力发电行业发展前景广阔,预计未来很长一段时间都将保持高速发展,同时盈利能力也将随着技术的逐渐成熟稳步提升。“十二五”期间,我国风电产业仍将持续每年10000兆瓦以上的新增装机速度,风电场建设、[15]并网发电、风电设备制造等领域成为投资热点,市场前景看好。

3全球风力发电的趋势

风力发电是一种主要的风能利用形式,风力发电已经开展了多年,随着能源环境的变化和风力发电产业的成熟,未来几年风力发电将呈现新的趋势。

3.1风力发电投资成本降低

风力发电相对于太阳能、生物质等可再生能源技术更为成熟、成本更低、对环境破坏更小。在过去20多年里,风力发电技术不断取得突破,规模经济性日益明显。

根据美国国家可再生能源实验室NREL的统计,从1980年至2005年期间,风力发电的成本下降超过90%,下降速度快于其他几种可再生能源形式[16]。根据丹麦RIS国家研究实验室对安装在丹麦的风力发电机组所进行的评估,从1981~2002年间,风力发电成本由15.8欧分/千瓦时下降到4.04欧分/千瓦时,预计2010电成本下降至3欧分/千瓦时,2020年降低至2.34欧分/千瓦时[17]。

随着风力发电技术的改进,风力发电机组将越来越便宜和高效。增大风力发电机组的单机容量就减少了基础设施的投入费用,而且同样的装机容量需要更少数目的机组,这也节约了成本。随着融资成本的降低和开发商的经验丰富,项目开发的成本也相应得到降低。风力发电机组可靠性的改进也减少了运行维护的平均成本。总体上,风力发电成本将得到大幅降低[18]。

3.2风力发电国产化必要性

实现风力发电技术装备国产化的目的是提高我国风力发电装备的制造能力和技术水平,降低风力发电成本,提高市场竞争能力,为推动我国风力发电技术大规模商业化发展奠定基础。加大风力发电机组的国产化力度,一方面可为风力发电场建设采用国产设备提供优质廉价的选择;另一方面,也可迫使国外同类企业在参与我国市场竞争时大幅度降低产品价格。风力发电技术装备国产化的指导思想是以市场为导向,以工程为依托,在引进消化吸收国际先进技术的基础上,进行创新提高,开发具有自主知识产权的风力发电设备[19]。

风力发电国产化水平日益提高,如全部实现风力发电机组国产化,预计可降低风力发电机组成本30%,在不改变其它条件的前提下,可使风力发电成本降至0.332元/千瓦时。为此,国家必须加大科研开发投资力度,在目前条件下以风力发电场建设投资1.5%-3%的比例支持我国的风力发电技术科研开发和国产化是适宜的[20]。其重要意义不仅仅在于降低风力发电成本,还将推动我国风力发电机组产业的形成,利用我们的优势走向国际市场。

3.3海上风力发电将成为风力发电的新视点

海上有丰富的风能资源和广阔平坦的区域,使得近海风力发电技术成为近来研究和应用的热点。多兆瓦级风力发电机组在近海风力发电场的商业化运行是国内外风能利用的新趋势。

国际上,到2003年末,围绕欧洲海岸线的海上风力发电总装机已达到600兆瓦,其中大部分都集中在丹麦、瑞典、荷兰和英国。目前最大的海上风力发电场是位于丹麦南海岸的Nysted风力发电场,容量为165.6兆瓦,由72台Bonus2.3兆瓦海上风力发电机组组成,于2003年12月开始发电。到2010年,欧洲海上风力发电的装机容量已达到10000兆瓦。海上风速大且稳定,年利用小时数可达到3000小时以上。同容量装机,海上比陆上成本增加60%,电量增加50%以上。随着风力发电的发展,陆地上的风机总数已经趋于饱和,海上风力发电场将成为未来发展的重点。海上发电是近年来国际风力发电产业发展的新领域。[21]

海上风能资源储量远大于陆地风能,储量10米高度可利用的风能资源超过7亿千瓦,而且距离电力负荷中心很近。目前上海已开始海上风力发电项目的建设,到2010年,上海的风力发电总装机容量将达到200-300兆瓦[22]。为达到这一目标,第一座长距离跨海大桥东海大桥两侧将建成内地首个海上风力发电场。随着海上风力发电场技术的发展成熟,经济上可行,将来必然会成为重要的可持续能源。

3.4大型发电机组是风力发电必然的趋势

随着现代风力发电技术发展的日趋成熟,风力发电机组正不断向大型化发展。2002年前后,国际风力发电市场上主流机型已经达到1500千瓦以上。目前,欧洲已批量安装3600千瓦风力发电机组,美国已研制成功7000千瓦风力发电机组,而英国正在研制巨型风力发电机组。目前风力发电机组的规模一直在不断增大,国际上主流的风力发电机组已达到2-3兆瓦。国家2008年7月发改委共核准了222.45万千瓦大型风电项目,是2007年底全国累计装机600万千瓦的[23]37%。

大体上大型风力发电机组有两种发展模式。陆地风力发电,其方向是低风速发电技术,主要机型是2-5兆瓦的大型风力发电机组,这种模式关键是向电网输电。近海风力发电,主要用于比较浅的近海海域,安装5兆瓦以上的大型风力发电机,布置大规模的风力发电场,这种模式的主要制约因素是风力发电场的规划和建设成本,但是近海风力发电的优势是明显的,即不占用土地,海上风力资源较好[24]。

4结论

风力发电具有既能保证能源的有序利用,又能战胜全球气候变化,更有利于全球的环境资源保护的优点。通过对我国风能资源及利用状况的调查,我国的风能开发和利用已经进入一个崭新时期,尤其是小型风机的生产和应用已经相当广泛,效果也非常不错,并且前景非常广阔。我们要充分有效地利用风能这种可再生、无污染、环保节净的自然资源,通过致力于风力发电的技术创新与科研开发,使我国的风力发电得到长足发展,使风电在我国得到更加广泛的应用。

参考文献:

[1] 刘宝兰,文华里.世界风力发电现状与前景[J].能源工程,2000,(4):12-14.[2] 宋正良.世界风力发电发展概况[J].上海大中型电机,2004,(2):1-3.[3] 黎发贵,郭太英.风力发电在中国电力可持续发展中的作用[J].贵州水利水电,2006(2):7-12.[4] 李俊峰,高虎,马玲娟.我国风力发电现状和展望[J].中国科技投资,2007,(11):1-7.[5] 严陆光.力促大规模非水可再生能源发展[J].山西能源与能,2009(5):1-3.[6] 杨磊.浅析风力发电可持续发展[J].应用能源技术,2007(9):33-34.[7] 李贤明,张霄,刘红雷,等.浅谈我国风力发电产业的现状和市场前景[J].上海大中型电机,2006,(3):1-4.[8] 邓杉杉.我国风电发展的现状、问题与对策研究[D].西南交通大学(成都),2006.[9] 郑源,张德虎.风力发电机组控制技术[M].北京:中国水利水电出版社,2009:33-41.[10] 施鹏飞.2008年国内外风电持续快速发展[J].可再生能源,2009,27(2):6-10.[11] 李俊峰,高虎,王仲颖,等.2008 中国风电发展报告[M].北京:中国环境科学出版社, 2008:7-17.[12] 王玉萍,赵媛.对我国风电电价政策的分析与建议[J].电力需求管理,2007,(06):13-19

[13] 吴庆广.中国风力发电公司融资模式探讨[J].环境科学与管理,2008,(01):5-9.[14] 赵子健.促进风电产业发展的政策分析[D].上海交通大学(上海),2009.[15] 宋艳霞.我国风电产业发展的财税支持政策研究[D].财政部财政科学研究所(北京),2010.[16] 王素霞.国内外风力发电的情况及发展趋势[J].电力技术经济,2007,19(1):29—31.

[17] 刘晓林.漫谈风力发电[J].电气应用,2009,28(3):82-85.[18] 宋辉.我国可再生能源供给的市场特征与激励机制研究[D].中国矿业大学(江苏),2011.[19] 易跃春.风力发电现状、发展前景及市场分析[J].国际电力,2004,8(5):2-6.[20] 李书锋,蒋永穆.政策导向、企业行为与我国风电特许权招标制度的再设计[J].科技进步与对策,2009,(09):1-7.[21] 姚兴佳,隋红霞,刘颖明等.海上风电技术的发展与现状[J].海上风电场,2007(2):111-118.[22] 宋础,刘汉中.海上风力发电场开发现状及发展趋势[J].太阳能,2006(2):1-5.[23] 未瑞.风力发电项目技术经济综合评价理论及应用研究[D].华北电力大学(北京),2009.[24] 刘定邦.大型风力发电机组的模糊控制研究[D].重庆大学(重庆),2007.

第三篇:风力发电技术

风力发电技术和风能利用方式

1973年发生石油危机以后,西方发达国家为寻求替代石化燃料的能源,在风力发电技术的研究与应用上投入了相当大的人力和资金,充分综合利用空气动力学、新材料、新型电机、电力电子技术、计算机、自动控制及通信技术等方面的最新成果,开创了风能利用的新时期。

德国、美国、丹麦等国开发建立了评估风力资源的测量及计算机模拟系统,发展了变桨距控制及失速控制的风力机设计理论,采用了新型风力机叶片材料及叶片翼型,研制出了变极、变滑差、变速恒频及低速永磁等新型发电机,开发了由微机控制的单台和多台风力发电机组成的机群的自动控制技术,从而大大提高了风力发电的效率和可靠性。

风电场是大规模利用风能的有效方式,20世纪80年代初在美国加利福尼亚州兴起。而海岸线附近的海域风能资源丰富,风力强,风速均匀,可大面积采获能量,适合大规模开发风电。然而在海上建造难度也大:巨大的基座必须固定入海底30m深度,才能使装置经受得住狂风恶浪的冲击;水下的驱动装置和电子部件必须得能防止高盐度海水的腐蚀;与陆地连接还得需要几公里长的海底电缆。

2.2风电装机容量

德国的风力发电装机容量已达610.7万kW,占德国发电装机容量的33%,居世界第1位。西班牙风电装机容量283.6万kW,居世界第2位。美国风力发电装机容量已达261万kW,居世界第3位。丹麦风电技术也很先进,装机容量234.1万kW。印度风电增长很快,到2000年累积装机容量已达到122万kW。日本的风电装机容量46万kW,运行较稳定的是海岸线或岛上的风力发电站,已达576台风电设备。

2.3各国的风力发电政策

目前风电机组成本仍比较高,但随着生产批量的增大和技术的进一步改进,成本将会继续下降(见表1)。许多国家建立了众多的中型和大型风力发电场,并形成了一整套有关风力发电场的规划方法、运行管理和维护方式、投融资方式、国家扶持的优惠政策及规范、法规等。

表1世界风电装机容量(万kW)和发电成本(美分/kW·h)

年份******97199819992000

容量******1393184

5成本15.310.97.26.66.15.65.35.15.04.94.8

数据来源:丹麦BTM咨询公司

欧洲发展风电的动力主要来自于改善环境的压力,将风电的发展作为减少二氧化碳等气体排放的措施。德国、丹麦、西班牙等国都制定了比较高的风电收购电价,保持了稳定高速的增长,1996年以后年增长率超过30%,使风电成为发展最快的清洁电能。丹麦风电技术的发展策略是政府不直接支持制造厂商,而是对购买风电机组的用户提供补贴。英国的《可再生能源责任法规》要求到2010年,每个电力供应商必须使可再生能源的电力供应量达到总电量的10%。

美国政府为鼓励开发可再生能源,在20世纪80年代初出台了一系列优惠政策。联邦政府和加利福尼亚州政府对可再生能源的投资者分别减免了25%的税赋,规定有效期到198

5年底,另外立法还规定电力公司必须得收购风电,并且价格应是长期稳定的。这些政策吸引了大量的资金采购风电机组,使刚刚建立起来的丹麦风电机组制造业获得了大批量生产和改进质量的机会。到1986年这3个风电场的总装机容量达到160万kW。2002年美国德州的风电容量为118万kW。德州政府规定,到2009年可再生能源的发电容量至少应达到200万kW,并拟订了110.4万kW的风电建设计划。

印度是一个缺电的发展中国家,政府制定了许多鼓励风电的政策,如投资风电的企业,可将风电的电量储蓄,在电网拉闸限电时,使有储蓄的企业能够得到优先供电。

澳大利亚的发电能源主要依靠煤炭。政府为改善电能结构,制定了一项强制性的可再生能源发电计划,太阳能——风力电站将成为可再生能源利用的重要组成部分。

3我国风力发电的开发现况

我国拥有丰富的风能资源,若采用10m高度的风速测算,陆地风能资源理论储量为32.26亿kW,可开发的风能资源储量为2.53亿kW。我国近海风能资源约为陆地的3倍,由此可算出我国可开发的风能资源约为10亿kW。

风能资源富集区主要在西北、华北北部、东北及东南沿海地区。20世纪70年代末80年代初,我国通过自主开发研制,额定容量低于10kW小型风力发电机实现了批量生产,在解决居住分散的农牧民和岛屿居民的用电方面有着重要意义。在国家有关部委的支持下,额定功率为200、250、300、600 kW的风力发电机组已研制出来,并在全国11个省区建立了27个风电场,浙江、福建、广东沿海及新疆、内蒙古自治区都有较大功率的风力发电场。东部沿海有丰富的风能资源,距离电力负荷中心又近,海上风电场将成为新兴的能源基地。国家计委在20世纪90年代中期制定了“光明工程”和“乘风计划”, 1997年当年装机超过10万kW,到2001年底总装机容量约40万kW。

我国风电技术还处于发展初期,较欧美落后,关键原材料或零部件主要依靠进口。风电机组是风电场的核心设备,主要依靠进口机组,在风电场的建设投资中是主要部分,占总投资的60%~80%。为鼓励风电的开发,我国对300kW以上机组免征进口税。风电随着技术的发展和批量生产,成本会继续下降。

第四篇:风力发电课程设计

1.风力发电发展的现状

1.1世界风力发电的现状

近20年风电技术取得了巨大的进步。1995—2006年风力发电能力以平均每年30%以上的速度增长,已经成为各种能源中增长速度最快的一种。今年来欧洲、北美的风力发电装机容量所提供的电力2成为仅次于天然气发电电力的第二大能源。欧洲的风力风力发电已经开始从“补充能源”向“战略替代能源”的方向发展。

到2008年,世界风能利用嘴发达的国家是德国、美国和西班牙,中国名列世界第四位。丹麦是世界上使用风能比例最高的国家,丹麦能源消费的1/5来自于风力。

欧洲在开发海上风能方面也依然走在世界前列,其中丹麦、美国、爱尔兰、瑞典和荷兰等国家发展较快。尤其是在一些人口密度较高的国家,随着陆地风电场殆尽,发展海上风电场已成为新的风机应用领域而受到重视。丹麦、德国、西班牙、瑞典等国家都在计划较大的海上风电场项目。目前海上风电机组的平均单机容量在3MW左右,最大已达6MW。世界海上风电总装机容量超过80万千瓦。

有余风力发电技术已经相对成熟,因此许多国家对风发电的投入较大,其发展较快,从而使风电价格不断下降。若考虑环保及地理因素,加上政府税收优惠政策和相关支持,在有些地区风力发电已可与火力发电等展开竞争。在全球范围内,风力发电已形年产值超过50亿美元的产业。

1.2我过风力发电的发展现状

我国风力发电从20世纪80年代开始起步,到1985年以后逐步走向产业化发展阶段。

自2005年起,我国风电规模连续三年实现翻倍增长。风电新增容量每年都增加超过100%,仅次于美国、西班牙,成为世界风电快速增长的市场之一。根据国家能源局2009年公布的统计数据,截止2008年底,我国风电装机容量已达1271万千瓦,居世界第4位,但是风电在我国整个电力能源结构中所占的比重仍然比较低。

我国将在内蒙古、甘肃、河北、吉林、新疆、江苏沿海等省区建设十多个百万千瓦级和几个千瓦级风电基地。根据目前国内增长趋势,预计到2020年,中国风电总装机容量将达到1.3亿~1.5亿千瓦。风力发电机

2.1恒速恒频的笼式感应发电机

恒速恒频式风力发电系统,特点是在有效风速范围内,发电机组的运行转速变化范围很小,近似恒定;发电机输出的交流电能频率恒定。通常该类风力发电系统中的发电机组为鼠笼式感应发电机组。

恒速恒频式发电机组都是定桨距失速调节型。通过定桨距失速控制的风力机使发电机转速保持在恒定的数值,继而使风电机并网后定子磁场旋转频率等于电网频率,因而转子、风轮的速度变化范围较小,不能保持在最佳叶尖速比,捕获风能的效率低。

2.2变速恒频的双馈感应式发电机

变速恒频式风力发电系统,特点是在有效风速范围内,允许发电机组的运行转速变化,而发电机定子发出的交流电能的频率恒定。通常该类风力发电系统中的发电机组为双馈感应式异步发电机组。

双馈感应式发电机结合了同步发电机和异步发电机的特点。这种发电机的定子和转子都可以和电网交换功率,双馈因此而得名。

双馈感应式发电机,一般都采用升级齿轮箱将风轮的转速增加若干倍,传递给发电机转子转速明显提高,因而可以采用高速发电机,体积小,质量轻。双馈交流器的容量仅与发电机的转差容量相关,效率高、价格低廉。这种方案的缺点是升速轮箱价格贵,噪声大、易疲劳损坏。

2.3变速变频的直驱式永磁同步发电机

变速变频式风力发电系统,特点是在有效风速范围内,发电机组的转速和发电机组定子侧产生的交流电能的频率都是变化的。因此,此类风力 需要在定子侧串联电力变流装置才能实现联网运行。通常该类风力发电系统中的发电机组为永磁同步发电机组。

直驱式风力发电机组,风轮与发电机的转子直接耦合,而不经过齿轮箱,“直驱式”因此而得名。由于风轮的转速一般较低,因此只能采用低速的永磁式发电机。因而无齿轮箱,可靠性高;但采用低速永磁发电机,体积大,造价高;而且发电机的全部功率都需要交流器送入电网,变流器的容量大,成本高。

如果将电力变流装置也算作是发电机组的一部分,只观察最终送入电网的电能特征,那么直驱式永磁同步发电机组也属于变速恒频的风力发电系统。

3介绍相关风力发电控制技术

3.1风力发电控制系统的目的由于风力发电机组是复杂多变量非线性系统,具有不确定性和多干扰等特点。风力发电控制系统的基本目标分为4个层次:保证可靠运行,获取最大能量,提供良好电力质量,延长机组寿命。控制系统实现以下具体功能:

(1)运行风俗范围内,确保系统稳定运行。

(2)低风速时,跟踪最优叶尖速比,实现最大风能捕获。

(3)高风速时,限制风能捕获,保持风力发电机组的额定输出功率。

(4)减少阵风引起的转矩峰值变化,减少风轮机械应力和输出功率波动。

(5)控制代价小。不同输入信号的幅值应有限制,比如桨距角的调节范围和变桨距速率有一

定限制。

(6)抑制可能引起机械共振的频率。

(7)调节机组功率,控制电网电压、频率稳定。

3.2风力发电控制系统

除了风轮和发电机这两个核心部分,风力发电机组换包括一些辅助部件,用来安全、高效的利用风能,输出高质量的电能。

(1)传动机构

虽说用于风力发电的现代水平轴风力机大多采用高速风轮,但相对于发电的要求而言,风轮的转速其实并没有那么高。考虑到叶片材料的强度和最佳叶尖速必的要求,风轮转速大约是18~33r/min。而常规发电机的转速多为800r/min或1500r/min。

对于容量较大的风电机组,由于风轮的转速很低,远达不到发电机发电的要求,因而可以通过齿轮箱的增速作用来实现。风力发电机组中的齿轮箱也称增速箱。在双馈式风力发电机组中,齿轮箱就是一个不可缺少的重要部件。大型风力发电机的传动装置,增速比一般为40~50。这样,可以减轻发电机质量,从而节省成本。

也有一些采用永磁同步发电机的风力发电系统,在设计时由风轮直接驱动发电机的转子,而省去齿轮箱,以减轻质量和噪声。

对于小型的风电机组,由于风轮的转速和发电机的额定转速比较接近,通常可以将发电机的轴直接连到风轮的轮毂。

(2)对风系统(偏航系统)

自然界的风方向多变。只有让风垂直地吹向风轮转动面,风力机才能最大限度地获得风能。为此,常见的水平轴的风力机需要配备调向系统,使风轮的旋转面经常对准风向。

对于小容量风力发电机组,往往在风轮后面装一个类似风向标的尾舵,来实现对风功能。对于容量较大的风力发电机组,通常配有专门的对风装置——偏航系统,一般由风向传感器

和伺服电动机组合而成。大型机组都采用主动偏航系统,即采用电力或液压拖动来完成对风动作,偏航方式通常采用齿轮驱动。

一般大型风力机在机舱后面的顶部有两个互相独立的传感器。当风向发生改变时,风向标登记这个方位,并传递信号到控制器,然后控制器控制偏航系统转动机舱。

(3)限速装置

风轮转速和功率随着风速的提高而增加,风速过高会导致风轮转速过高和发电机超负荷,危及风力发电机组的运行安全。限速安全机构的作用是使风轮单位转速在一定的风速范围内基本保持不变。

(4)液压制动装置

机组的液压系统用于偏航系统刹车、机械刹车盘驱动,当风速过高时使风轮停转,保证强风下风电机组安全。

机组正常时,需维持额定压力区间运行。液压泵控制液压系统压力,当压力下降至设定值后,启动油泵运行,当压力升高至某设定值后,停泵。

4风力发电技术发展趋势的展望

4.1风力发电的发展方向

风力发电技术是目前可再生能源利用中技术最成熟的、最具商业化发展前景的利用方式,也是本世纪最具规模开发前景的新能源之一合理利用风能,既可减少环境污染,有可减轻目前越来越大的能源短缺给人类带来的压力。

未来风力发电技术将向着以下几个方向发展。

(1)单机容量大。主流的新增风力机的单机容量将从750KW~1.5MW向2MW甚至更大的容量发展。目前世界上单机容量最大的风机,为5MW风力发电机,海上风力发电的6MW风电机组也已研制成功。

(2)风电场规模增大。将从10MW级向100MW、1000MW级发展。

(3)从陆地向海上发展。

(4)生产成本进一步降低。

4.2未来风力发电的展望

据专家们测估,全球可利用的风能资源为200亿千瓦,约是可利用水力资源的10倍。如果利用1%的风能能量,可产生世界现有发电总量8%~9%的电量。“风力12”、欧洲风能联合会、能源和发展论坛以绿色和平组织于2002年联合发表了一篇报告,以上述估计值作为基础,制定了风能的目标:到2020年,风力发电将占到全球发电总量的12%。为了达到这个目标,需要建立总容量大约为1260GW的风能装置,每年可发电3000TW·h左右。这相当于现在欧盟的用电量。世界风能协会预计,从世界范围来看,预计2020年,风电装机容量会达到1231GW。年发电量相当于届时世界电力需求的12%,与上述报告的结论一致。风电会向满足世界20%电力需求的方向发展,相当于今天的水电,有研究显示到2040年大致可以实现这一目标。届时将创造179万个就业机会,风电成本下降40%,减少排放100多亿吨二氧化碳。因此,在建设资源节约型社会的国度里,风力发电已不再是无足轻重的补充能源,而是最具有商业化发展前景的新兴能源产业。

第五篇:风力发电考试

1.电力系统:用于生产,传输,交换,分配,消耗电能的系统:

一次部分:用于能量生产,传输,交换,分配,消耗的部分

二次部分:对一次部分进行检测,监视,控制和保护的部分

2.风电场和常规电厂的区别:单机容量小;电能生产比较分散,发电机数目多;输出的电压等级低;类型多样化;功率输出特性复杂;并网需要电力电子换流设备

3.风电厂电气一次系统组成:风电机组;集电系统;升压站;厂用电系统。

4.变压器铜损:铜导线存在着电阻,电流流过消耗一定功率,变为热量

变压器铁损:铁心中的磁滞损耗和涡流损耗

5.常用的开关电器:断路器(切断电路),隔离开关(在电气设备和熔断器间形成明显的电压断开点,运行方式改变时倒闸操作),熔断丝(有故障电流时断开电路),接触器(电路正常开合闸,无法断开故障电路)。

6.集肤效应:靠近导体表面处的电流密度大于导体内部电流密度的现象。随电流频率升高,集肤效应使导体的电阻增大,电感减小!

7.电流互感器:串接一次系统,将大电流变为小电流

二次开路后果:出现的高压电危机人身及设备安全;铁心中产生大量剩磁;长时间作用铁心过热

8.电压互感器作用:并接一次系统,将高电压变成低电压

二次侧短路:引起很大短路电流,造成互感器烧毁

9.电气设备选择的技术条件:按照正常工作状态选择;按照短路状态校验;电气选择的环境因素;环境保护

10.电流继电器和电压继电器有何作用?他们如何接入电气一次系统?

电流继电器反应一次回路中的电流越限,用于二次系统的保护回路,用以启动时间继电器的动作或直接触发断路器分闸。

电流继电器用于继电保护装置中的过电压保护或欠电压闭锁

11.配电装置的最小净距:无论在正常最高工作电压或出现内,外部过电压时,都不至使空气间隙被击穿。

12.A,B,C,D,E类安全净距的具体含义

A1:带电部分至接地部分之间的最小安全净距

A2:不同相的带电导体之间

B1:带电部分至栅状遮栏间的距离和可移动设备在移动中至带电裸导体间的距离 B2:带电部分至网状遮栏

C:无遮拦裸导体至地面

D:停电检修的平行无遮栏

E:屋内配电装置通向屋外的出线套管中心线

12.雷电类型:直击雷;感应雷;球星雷。

13.雷电防护:避雷针,避雷线,避雷器,避雷带和避雷网,接地装置

14.风电场防雷性能衡量标准:耐雷水平,雷击跳闸率

15.变流系统的功能,电力变换,控制功率,控制转矩,调节功率因素

下载风力发电的研究word格式文档
下载风力发电的研究.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    风力发电前景

    风能作为一种清洁的可再生能源,越来越受到世界各国的重视。中国风能储量很大、分布面广,风力发电产业迅速发展,成为继欧洲、美国和印度之后的全球风力发电主要市场之一。 从200......

    风力发电报告

    国内外风力发电技术 的现状与发展趋势 风能是一种可再生的清洁能源。近30年来,国际上在风能的利用方面,无论是理论研究还是应用研究都取得了重大进步。风力发电技术日臻完善,并......

    风力发电的研究结题报告

    风力发电的研究结题报告 -----高一八班 研究组成员: 孙金泽于鸿业关智博杜嘉诚陶冶王佳宁凌仕桓张沐天孙亦翾 一、摘要: 风是一种具有很大潜力的新能源,有人做过统计:地球上可用......

    风力发电技术综述

    风力发电技术综述摘要:风能是目前全球发展最快的可再生绿色能源, 风力发电系统是将风能转化为电能的关键系统, 它直接关系到风力发电的性能与效率。它主要对风力发电的发展现状......

    风力发电简介(定稿)

    广州绿欣风力发电机提供更多绿色环保服务请登录查询 风力发电简介 风能作为一种清洁的可再生能源,越来越受到世界各国的重视。其蕴量巨大,全球的风能约为2.74×109MW,其中可利......

    风力发电原理教学大纲

    中等职业学校风力发电教学大纲课程编号:«978-7-111-35345-4»课程名称:«风力发电原理»总 学 时:«64»先修课程:«风力发电基础,电子电工技术,电力电子»一、课程性质、目的和......

    1500KW风力发电 机组

    1500KW风力发电机组 基础施工技术规范浙江运达风电股份有限公司2010年11月13日一、总则1.1为确保风力发电机组基础施工质量和促进技术进步,制定本规范。1.2本规范适用于1500K......

    风力发电背景总结

    1众所周知,地球上可供人类开发和使用的化石能源是有限的,且是不可能再生的。 然而随着全球工业化进程的逐步展开并加速,世界各国对能源的需求急剧上升,而常 见的煤炭、石油和天......