第一篇:高三数学《第82课 利用空间向量证明平行与垂直问题》基础教案
大家网高考论坛
第82课时利用空间向量证明平行与垂直问题
考点解说
利用直线的方向向量和平面的法向量判定直线与直线,直线与平面,平面与平面的位置关系,掌握用向量方法处理空间中的平行与垂直问题.一、基础自测
1.已知向量a(2,4,5),b(3,x,y)分别是直线l1,l2的方向向量,若l1∥l2,则xy2.已知m(8,3,a),n(2b,6,5),若m//n ,则ab.3.已知a,b,c分别为直线a,b,c的方向向量且ab(0),bc0,则a与c的位置关系是.4.在空间四边形ABCD中,E、F是分别是AB、AD上的点,且AE:EB=AF:FD=1:4,又H,G分别是BC、CD的中点,则EFGH是形.5.正三棱柱ABCA1B1C1中,底面边长AB=1,且AB1BC1,则侧棱AA1的长为.06.已知平行六面体ABCDA1BC11D1底面为菱形,C1CB60,BDCA1,则C1CD的大小为.7.正方体ABCDA1BC11D1中,M、N、P分别是棱CC1、BC、CD的中点,则直线A1P与平面MND所成角为.8.空间四边形ABCD中,ABCD,BCAD,则AC与BD的位置关系为.二、例题讲解
例1.如图,正方体ABCD-A1B1C1D1中,O是AC和BD的交点,M是CC1的中点,求证:A1O⊥平面
MBD.例2.正方体ABCD-A1B1C1D1中,E,F分别是BB1,CD的中点,求证:平面AED⊥平面A1FD
1.大家网,全球第一学习门户!
例3.如图正方体ABCD-A1B1C1D1中,M,N,E,F分别是所在棱的中点,求证:平面AMN∥平面
EFBD.例4.在棱长为1的正方体ABCD-A1B1C1D1中,点E是棱BC的中点,点F是棱CD上的动点,试确定点F的位置,使得D1E平面AB1
F.板书设计
教后感
三、课后作业
1.在直二面角MN中,AB,CD,ABMN,CDMN,B、C为垂足,AD2,BC1,求AD与BC所成的角.2.已知M为长方体AC1的棱BC的中点,则点P在长方体AC1的面CC1D1D内,且PM//面BB1D1D,则点P的位置应落在003.直三棱柱ABCA,AA1B1C1中,ACB90,BAC30,BC11M是CC
1的中点,则AB1与A1M所成的角为4.正方体ABCDA1B1C1D1中,E,F,G,H,M,N分别是正方体六个面得中心,则平面EFGB与平面平行.AED与面.5.正方体ABCDA1BC11D1中,E,F分别是BB1,CD的中点,则面6.已知ABCD是平行四边形,若A(4,1,3),B(2,-5,1),C(3, 7,-5),则顶点D的坐标为___________.7.已知a(8,1,4),b(2,2,1),则以a,b为邻边的平行四边形的面积为.8.过三棱柱 ABC-A1B1C1 的任意两条棱的中点作直线,其中与平面ABB1A1平行的直线共 有条.9.若三个平面,,两两垂直,它们的法向量分别为(1,2,z),(x,2,4),(1,y,3),则xyz
11.如图在正方体ABCD-A1B1C1D1中,PQ与AC、C1D都垂直,试确定P在AC,Q在C1D上的位置
.12.已知空间四边形OABC中,AB=OC,M为BC的中点,N为AC的中点,P为OA的中点,Q为OB的中点,求证:PM
QN.13.如图长方体ABCD-A1B1C1D1中,AD=AA1,AB=2AD,点E是线段C1D1的中点,求证:DE面EBC.14.(选做题)如图甲,在直角梯形PBCD中,PB//CD,CDBC,BCPB2CD,A
是PB的中点.现沿AD把平面PAD折起,使得PAAB(如图乙所示),E、F分别为BC、AB边的中点.(1)求证PA平面ABCD;(2)求证平面PAE平面PDE;(3)在PA上找一点G,使得FG//平面PDE.附件1:律师事务所反盗版维权声明
附件2:独家资源交换签约学校名录(放大查看)
学校名录参见:
第二篇:2014年高考数学空间向量证明平行问题
4.2 直线的方向向量、平面的法向量及其应用
一、直线的方向向量及其应用
1、直线的方向向量
直线的方向向量就是指和这条直线所对应向量平行(或共线)的向量,显然一条直线的方向向量可以有无数个.
2、直线方向向量的应用
利用直线的方向向量,可以确定空间中的直线和平面.
(1)若有直线l, 点A是直线l上一点,向量a是l的方向向量,在直线l
上取ABa,则对于直线l上任意一点P,一定存在实数t,使得APtAB,这
样,点A和向量a不仅可以确定l的位置,还可具体表示出l上的任意点.
(2)空间中平面α的位置可以由α上两条相交直线确定,若设这两条直线
交于点O,它们的方向向量分别是a和b,P为平面α上任意一点,由平面向量基
本定理可知,存在有序实数对(x,y),使得OPxayb,这样,点O与方向
向量a、b不仅可以确定平面α的位置,还可以具体表示出α上的任意点.
1.若A(-1,0,1),B(1,4,7)在直线l上,则直线l的一个方向向量为()
A.(1,2,3)B.(1,3,2)
C.(2,1,3)D.(3,2,1)
2.从点A(2,-1,7)沿向量a=(8,9,-12)的方向取线段长AB=34,则B点的坐标为()
A.(-9,-7,7)B.(18,17,-17)
C.(9,7,-7)D.(-14,-19,31)
二、平面的法向量
1、所谓平面的法向量,就是指所在的直线与平面垂直的向量,显然一个平面的法向量也有无数个,它们是共线向量.
2、在空间中,给定一个点A和一个向量a,那么以向量a为法向量且经过点
A的平面是唯一确定的.
三、直线方向向量与平面法向量在确定直线、平面位置关系中的应用
1、若两直线l1、l2的方向向量分别是u1、u2,则有l1// l2u1//u2,l1⊥l2u1
⊥u2.
2、若两平面α、β的法向量分别是v1、v2,则有α//βv1//v2,α⊥βv1
⊥v2.
若直线l的方向向量是u,平面的法向量是v,则有l//αu⊥v,l⊥α
u//v
b分别是直线l1、l2的方向向量,根据下列条件判断l1与l2的位置关系。1.设a、
(1)a=(2,3,-1),b=(-6,-9,3);(2)a=(5,0,2),b=(0,4,0);(3)a=(-2,1,4),b=(6,3,3)
四、平面法向量的求法
若要求出一个平面的法向量的坐标,一般要建立空间直角坐标系,然后用待定系数法求解,一般步骤如下:
1、设出平面的法向量为n(x,y,z).
2、找出(求出)平面内的两个不共线的向量的坐标a(a1,b1,c1),b(a2,b2,c2)
na0nb0
3、根据法向量的定义建立关于x,y,z的方程组
4、解方程组,取其中一个解,即得法向量
v分别是平面α、β的法向量,根据下列条件判断α、β的位置关系: 1.设u、
(1)u=(1,-1,2),v=(3,2,
2);
(2)u=(0,3,0),v=(0,-5,0);(3)u=(2,-3,4),v=(4,-2,1)。
2.已知点A(3,0,0),B(0,4,0),C(0,0,5),求平面ABC的一个单位法向量。
3.若直线l的方向向量是a=(1,2,2),平面α的法向量是n=(-1,3,0),试求直线l与平面α所成角的余弦值。
4.若n=(2,-3,1)是平面α的一个法向量,则下列向量能作为平面α的一个法向量的是()
A.(0,-3,1)B.(2,0,1)
C.(-2,-3,1)D.(-2,3,-1)
5.已知平面α上的两个向量a=(2,3,1),b=(5,6,4),则平面α的一个法向量为()
A.(1,-1,1)B.(2,-1,1)C.(-2,1,1)D.(-1,1,-1)
五、用向量方法证明空间中的平行关系和垂直关系
(一)用向量方法证明空间中的平行关系
空间中的平行关系主要是指:线线平行、线面平行、面面平行.
1、线线平行
设直线l,m的方向向量分别为a=(a1,b1,c1),b=(a2,b2,c2),且a2b2c2≠0,则
l∥m⇔⇔_⇔_______.1.在正方体ABCD-A1B1C1D1中,P为正方形A1B1C1D1四边上的动点,O为底面正方形ABCD的中心,M,N分别为AB,BC的中点,点Q为平面ABCD内
一点,线段D1Q与OP互相平分,则满足MQ=λMN的实数λ的值有()
A.0个C.2个
B.1个 D.3个
2、线面平行
设直线l的方向向量为a=(a1,b1,c1),平面α的法向量为u=(a2,b2,c2),则
l∥α⇔⇔_______⇔1
1.已知直线l的方向向量为(2,m,1),平面α的法向量为1,2,2,且l∥α,
则m=________.2.已知线段AB的两端点的坐标为A(9,-3,4),B(9,2,1),则与线段AB平行的坐标平面是()
A.xOyB.xOz
C.yOzD.xOy或yOz
3.如图所示,在空间图形P—ABCD中,PC⊥平面ABCD,PC=2,在四边形ABCD中,CD∥AB,∠ABC=∠BCD=90°,AB=4,CD=1,点M在PB上,且PB=4PM,∠PBC=30°,求证:CM∥平面PAD
.4.如图,在底面是菱形的四棱锥P—ABCD中,∠ABC=60°,PA⊥平面ABCD,PA=AC=a,点E在PD上,且PE∶ED=2∶1.在棱PC上是否存在一点F,使BF∥平面AEC?证明你的结论.
5.如图, 在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AA1=4,点D是AB的中点,(I)求证:AC⊥BC1;(II)求证:AC 1//平面CDB1;
3、面面平行(3)面面平行 设平面α,β的法向量分别为u=(a1,b1,c1),v=(a2,b2,c2),则α∥β⇔
abc⇔__⇔________a=bc(a2b2c2≠0)_______.22
21.如图,在平行六面体ABCD—A1B1C1D1中,M、P、Q分别为棱AB、CD、BC的中点,若平行六面体的各棱长均相等,则 ①A1M∥D1P; ②A1M∥B1Q;
③A1M∥面DCC1D1;
④A1M∥面D1PQB1.以上结论中正确的是________.(填写正确的序号)
2.如图所示,在正方体ABCDA1B1C1D1中,M、N分别是C1C、B1C1的中点。
求证:(1)MN//平面A1BD;(2)平面A1BD//平面B1D1C。
第三篇:空间几何——平行与垂直证明
三、“平行关系”常见证明方法
(一)直线与直线平行的证明
1)利用某些平面图形的特性:如平行四边形的对边互相平行
2)利用三角形中位线性质
3)利用空间平行线的传递性(即公理4):
平行于同一条直线的两条直线互相平行。
4)利用直线与平面平行的性质定理: a∥ca∥bb∥c
如果一条直线与一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。
a∥
aβ a a∥
b
α b b
5)利用平面与平面平行的性质定理:
如果两个平行平面同时和第三个平面相交,那么它们的交线平行.//aa//b
b
6)利用直线与平面垂直的性质定理:
垂直于同一个平面的两条直线互相平行。
baa∥
b7)利用平面内直线与直线垂直的性质:
8)利用定义:在同一个平面内且两条直线没有公共点
(二)直线与平面平行的证明
1)利用直线与平面平行的判定定理:
平面外的一条直线与此平面内的一条直线平行,则该直线与此平面平行。
ab
a∥
b
a∥b
2)利用平面与平面平行的性质推论:
两个平面互相平行,则其中一个平面内的任一直线平行于另一个平面。
a
∥
a∥
a
β
3)利用定义:直线在平面外,且直线与平面没有公共点
(二)平面与平面平行的证明
常见证明方法:
1)利用平面与平面平行的判定定理:
一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。
a⊂b⊂a∩bPa//b//
//
b
2)利用某些空间几何体的特性:如正方体的上下底面互相平行等 3)利用定义:两个平面没有公共点
三、“垂直关系”常见证明方法
(一)直线与直线垂直的证明
1)利用某些平面图形的特性:如直角三角形的两条直角边互相垂直等。2)看夹角:两条共(异)面直线的夹角为90°,则两直线互相垂直。3)利用直线与平面垂直的性质:
如果一条直线与一个平面垂直,则这条直线垂直于此平面内的所有直线。
a
b
ba
b
a
4)利用平面与平面垂直的性质推论:
如果两个平面互相垂直,在这两个平面内分别作垂直于交线的直线,则这两条直线互相垂直。
l
abalbl
a
b
5)利用常用结论:
① 如果两条直线互相平行,且其中一条直线垂直于第三条直线,则另
一条直线也垂直于第三条直线。
a∥b
ac
b
c
② 如果有一条直线垂直于一个平面,另一条直线平行于此平面,那么
这两条直线互相垂直。
a
b∥
ab
b
(二)直线与平面垂直的证明
1)利用某些空间几何体的特性:如长方体侧棱垂直于底面等
2)看直线与平面所成的角:如果直线与平面所成的角是直角,则这条直线垂
直于此平面。
3)利用直线与平面垂直的判定定理:
ababAlalb
l
l
b
A
a
4)利用平面与平面垂直的性质定理:
两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。
l
aal
a
l
5)利用常用结论:
①
a∥bb
a
② 两个平面平行,一直线垂直于其中一个平面,则该直线也垂直于另一
个平面。
∥
a
a
(三)平面与平面垂直的证明
1)利用某些空间几何体的特性:如长方体侧面垂直于底面等
2)看二面角:两个平面相交,如果它们所成的二面角是直二面角(即平面角
是直角的二面角),就说这连个平面互相垂直。3)利用平面与平面垂直的判定定理
一个平面过另一个平面的垂线,则这两个平面垂直。
aa
a
第四篇:证明空间线面平行与垂直
证明空间平行与垂直
知识梳理
一、直线与平面平行
1.判定方法
(1)定义法:直线与平面无公共点。
(2)判定定理: a
ba//ba//
//
(3)其他方法:a//a
a//
2.性质定理:a
a//b
b
二、平面与平面平行
1.判定方法
(1)定义法:两平面无公共点。
a//
b//
(2)判定定理:a //
b
abP
(3)其他方法:aa// //;// a//
//
2.性质定理:a a//b
b
三、直线与平面垂直
(1)定义:如果一条直线与一个平面内的所有直线都垂直,则这条直线和这个平面垂直。
(2)判定方法
① 用定义.abac
② 判定定理:bcAa
b
c
a
③ 推论: b
a//b
(3)性质 ①
aa
ab②a//bbb
四、平面与平面垂直
(1)定义:两个平面相交,如果它们所成的二面角是直线二面角,就说这两个平面互相垂直。
a
(2)判定定理
a
(3)性质
l
①性质定理
a
al
l②Al
P
PA垂足为A④PA
PPA
“转化思想”
面面平行线面平行 线线平行 面面垂直线面垂直 线线垂直
例题1.如图, 在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AA1=4,点D是AB的中点,(I)求证:AC⊥BC1;(II)求证:AC 1//平面CDB1;例
题2.如图,在棱长为2的正方体
ABCDA1B1C1D1中,O为BD1的中点,M为BC的中点,N为AB的中点,P为BB1的中点.(I)求证:BD1B1C;(II)求证BD1平面MNP;
例题3.如图,在三棱锥VABC中,VC⊥底面ABC,AC⊥BC,D是AB的中点,且ACBCa,∠VDC0(I)求证:平面VAB⊥平面VCD;
π. 2
π
(II)试确定角的值,使得直线BC与平面VAB所成的角为.
D
例题4.(福建省福州三中2008届高三第三次月考)如图,正三棱柱ABCA1B1C1的所有棱长都是2,D是棱AC的中点,E是棱CC1的中点,AE交A1D于点H.BB
(1)求证:AE平面A1BD;
(2)求二面角DBA1A的大小(用反三角函数表示);
A1
CHA
C
第五篇:第四节 利用空间向量求二面角及证明面面垂直
第四节 利用空间向量求二面角及证明面面垂直一、二面角
二面角l,若的一个法向量为m,的一个法向量为n,则cos,,二面角的大小为m,n或m,n
例1.如图,正三棱柱ABCA1B1C1中,E为BB1的中点,AA1A1B1,求平面A1EC与平面A1B1C1所成锐角的大小。
例2.(05年全国)如图,在四棱锥V-ABCD
VAD是正三角形,平面VAD⊥底面ABCD.(1)证明AB⊥平面VAD;
(2)求面VAD与面VBD所成的二面角的大小.
练习:如图,棱长为1的正方体 ABCDA1B1C1D1中,E是CC1的中点,求二面角BB
1ED的余弦值。
2二.证面面垂直
若平面的一个法向量为,平面的一个法向量为,且,则。
例3.在四棱锥P-ABCD中,侧面PCD是正三角形,且与底面ABCD垂直,已知底面是面积为23的菱形,ADC600,M是PB的中点。
(1)求证:PACD
(2)求二面角PABD的度数;(3)求证:平面PAB平面CDM。
练习:(04年辽宁)已知四棱锥P-ABCD中,底面ABCD是菱形,DAB60,PD平面ABCD,PD=AD,点E为AB的中点,点F为 PD的中点。
(1)证明平面PED⊥平面PAB;
(2)求二面角P-AB-F的平面角的余弦值.作业:
1.(04年广东)如图,在长方体ABCDA1B1C1D1中,已知AB4,AD3,AA12,E,F分别是线段AB,BC上的点,且EBFB1。(Ⅰ)求二面角C-DE-C1的正切值;
(Ⅱ)求直线EC1与FD1所成角的余弦值。
32.(05年全国)已知四棱锥P-ABCD的底面为直角梯形,AB∥DC,DAB90,PA底面ABCD,且PA=AD=DC=
AB=1,M是PB的中点。2
(1)证明:面PAD⊥面PCD;(2)求AC与PB所成的角;
(3)求面AMC与面BMC所成二面角的大小。
3.已知四棱锥P-ABCD的底面是边长为2的正方形,侧棱PA底面ABCD,PA=2,M、N分别是AD、BC的中点,MQPD于Q
(1)求证:平面PMN平面PAD;
(2)求PM与平面PCD所成角的正弦值;(3)求二面角PMNQ的余弦值。
4.(06年全国)如图,在直三棱柱ABC-A1B1C1中,AB=BC,D、E分别为BB1、AC1的中点.
(1)证明:ED为异面直线BB1与AC1的公垂线;(2)设AA1=AC=2AB,求二面角A1-AD-C1的大小.
C
B1 D
E
C
A
B
5.(04年浙江)如图,已知正方形ABCD和矩形ACEF所在的平面互
相垂直,AB=,AF=1,M是线段EF的中点。
(1)求证:AM//平面BDE;(2)求二面角ADFB的大小;
(3)试在线段AC上确定一点P,使得PF与BC所成的角是60。
6.(05年湖南)如图1,已知ABCD是上.下底边长分别为2和6,高为的等腰梯形,将它沿对称轴OO1折成直二面角,如图2.(1)证明:AC⊥BO1;
(2)求二面角O-AC-O1的大小。
7.(06年山东)如图,已知四棱锥P-ABCD的底面ABCD为 等腰梯形,AB∥DC,AC⊥BD,AC与BD相交于点O,且顶点 P在底面上的射影恰为点O,又BO=2,PO=,PB⊥PD.(1)求异面直线PD与BC所成角的余弦值;(2)求二面角P-AB-C的大小;(3)设点M在棱PC上,且PC⊥平面BMD.15
PM
,问为何值时,MC