初二上册数学一次函数经典知识点总结(优秀范文五篇)

时间:2019-05-12 20:35:28下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《初二上册数学一次函数经典知识点总结》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《初二上册数学一次函数经典知识点总结》。

第一篇:初二上册数学一次函数经典知识点总结

1变量:在一个变化过程中可以取不同数值的量。

常量:在一个变化过程中只能取同一数值的量。

2、函数:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y是x的函数。

3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。

4、确定函数定义域的方法:

(1)关系式为整式时,函数定义域为全体实数;

(2)关系式含有分式时,分式的分母不等于零;

(3)关系式含有二次根式时,被开放方数大于等于零;

(4)关系式中含有指数为零的式子时,底数不等于零;

(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。

函数性质:

1.y的变化值与对应的x的变化值成正比例,比值为k.即:y=kx+b(k,b为常数,k≠0)。

2.当x=0时,b为函数在y轴上的点,坐标为(0,b)。

3当b=0时(即 y=kx),一次函数图像变为正比例函数,正比例函数是特殊的一次函数。

4.在两个一次函数表达式中:

当两一次函数表达式中的k相同,b也相同时,两一次函数图像重合;

当两一次函数表达式中的k相同,b不相同时,两一次函数图像平行;

当两一次函数表达式中的k不相同,b不相同时,两一次函数图像相交;

当两一次函数表达式中的k不相同,b相同时,两一次函数图像交于y轴上的同一点(0,b)。

图像性质

1.作法与图形:

(1)列表.(2)描点;一般取两个点,根据“两点确定一条直线”的道理,也可叫“两点法”。一般的y=kx+b(k≠0)的图象过(0,b)和(-b/k,0)两点画直线即可。

正比例函数y=kx(k≠0)的图象是过坐标原点的一条直线,一般取(0,0)和(1,k)两点。

2.性质:

(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b(k≠0)。

(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像都是过原点。

3.函数不是数,它是指某一变化过程中两个变量之间的关系。

一次函数的图象特征和性质:

4、特殊位置关系:当平面直角坐标系中两直线平行时,其函数解析式中K值(即一次项系数)相等

当平面直角坐标系中两直线垂直时,其函数解析式中K值互为负倒数(即两个K值的乘积为-1)

了解如何设一次函数解析式:

点斜式 y-y1=k(x-x1)(k为直线斜率,(x1,y1)为该直线所过的一个点)

两点式(y-y1)/(y2-y1)=(x-x1)/(x2-x1)(已知直线上(x1,y1)与(x2,y2)两点)

截距式(y=-b/ax+ba、b分别为直线在x、y轴上的截距 ,已知(0,b),(a,0))

实用型(由实际问题来做)

扩展

1.求函数图像的k值:(y1-y2)/(x1-x2)

222.求任意线段的长:√(x1-x2)+(y1-y2)

3.求两个一次函数式图像交点坐标:解两函数式,就是解方程组

4.求任意2点所连线段的中点坐标:[(x1+x2)/2,(y1+y2)/2 ]

5.若两条直线y1=k1x+b1平行y2=k2x+b2,那么k1=k2,b1≠b.向右平移n个单位y=k(x-n)+b

向左平移n个单位y=k(x+n)+b向上平移n个单位y =kx+b+n

向下平移n个单位y =kx+b-n

总结与前几章的关系

1、一元一次方程与一次函数的关系

任何一元一次方程到可以转化为ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值.2、一次函数与一元一次不等式的关系

任何一个一元一次不等式都可以转化为ax+b>0或ax+b<0(a,b为常数,a≠0)的形式,所以解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量的取值范围.3、一次函数与二元一次方程组

(1)以二元一次方程ax+by=c的解为坐标的点组成的图象与一次函数y=

(2)二元一次方程组的解可以看作是两个一次函数和的图象交点.acx的图象相同.bb

第二篇:初二数学一次函数知识点小结

第一次课

一次函数知识点总结

基本概念

1、变量:在一个变化过程中可以取不同数值的量。常量:在一个变化过程中只能取同一数值的量。

例题:在匀速运动公式svt中,v表示速度,t表示时间,s表示在时间t内所走的路程,则变量是________,常量是_______。在圆的周长公式C=2πr中,变量是________,常量是_________.2、函数:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y是x的函数。

*判断Y是否为X的函数,只要看X取值确定的时候,Y是否有唯一确定的值与之对应

1-12例题:下列函数(1)y=πx(2)y=2x-1(3)y=(4)y=2-3x(5)y=x-1中,是一次函数的有()x

(A)4个(B)3个(C)2个(D3、定义域:

4、确定函数定义域的方法:

(1)关系式为整式时,函数定义域为全体实数;(2(3)关系式含有二次根式时,被开放方数大于等于零;(4(5例题:下列函数中,自变量x的取值范围是x≥2的是()A...D.函数y

已知函数yx的取值范围是___________.1x2,当1x1时,y的取值范围是()

253353535A.yB.yC.yD.y 222222225、函数的图像

6、函数解析式:

7;

各点)。

8列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。

图象法:形象直观,但只能近似地表达两个变量之间的函数关系。

9、正比例函数及性质

一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数.注:正比例函数一般形式 y=kx(k不为零)① k不为零② x指数为1 ③b取零

当k>0时,直线y=kx经过三、一象限,从左向右上升,即随x的增大y也增大;当k<0时,•直线y=kx经过二、四象限,从左向右下降,即随x增大y反而减小.

龙文教育数学讲义

(1)解析式:y=kx(k是常数,k≠0)

(2)必过点:(0,0)、(1,k)

(3)走向:k>0时,图像经过一、三象限;k<0时,•图像经过二、四象限

(4)增减性:k>0,y随x的增大而增大;k<0,y随x增大而减小

(5)倾斜度:|k|越大,越接近y轴;|k|越小,越接近x轴

例题:.正比例函数y(3m5)x,当m时,y随x的增大而增大.若yx23b是正比例函数,则b的值是()

A.0B.223C.D. 3

32.函数y=(k-1)x,y随x增大而减小,则k的范围是()

A.k0B.k1C.k1D.k

1东方超市鲜鸡蛋每个0.4元,那么所付款y元与买鲜鸡蛋个数x.平行四边形相邻的两边长为x、y,周长是30,则y与x的函数关系式是

10、一次函数及性质

一般地,形如y=kx+b(k,b是常数,k≠0),那么y叫做x的一次函数.当+b即y=kx,所以说正比例函数是一种特殊的一次函数.注:一次函数一般形式 y=kx+b(k不为零)① k不为零②x 取任意实数

一次函数y=kx+b的图象是经过(0,b)和(-b,0y=kx+b,它可以看作k

由直线y=kx平移|b|个单位长度得到.(当b>0时,向上平移;当b<0时,向下平移)

(1)解析式:y=kx+b(k、b是常数,k0)

(2)必过点:(0,b)和(-b,0)k

(3)走向: k>0,图象经过第一、三象限;k<0,图象经过第二、四象限

b>0,图象经过第一、二象限;b<0,图象经过第三、四象限

k0k0直线经过第一、三、四象限 b0b0

k0k0直线经过第二、三、四象限 b0b0

(4)增减性,yx的增大而增大;k<0,y随x增大而减小.(5)倾斜度y轴;|k|越小,图象越接近于x轴.(6当b>0时,将直线y=kx的图象向上平移b个单位;

当b<0时,将直线y=kx的图象向下平移b个单位.例题:若关于x的函数y(n1)xm1是一次函数,则m,n.函数y

=ax+b与y=bx+a的图象在同一坐标系内的大致位置正确的是()

将直线y=3x向下平移5个单位,得到直线;将直线y=-x-5向上平移5个单位,得到直线.若直线yxa和直线yxb的交点坐标为(m,8),则ab____________.已知函数y=3x+1,当自变量增加m时,相应的函数值增加()

A.3m+1B.3mC.mD.3m-

111、一次函数y=kx+b的图象的画法.根据几何知识:经过两点能画出一条直线,并且只能画出一条直线,即两点确定一条直线,所以画一次函数的图象时,只要先描出两点,再连成直线即可.一般情况下:是先选取它与两坐标轴的交点:(0,b),即横坐标或纵坐标为0的点..若m<0, nA.12时,向上平移;当

13、直线(1(212(3)两直线重合:k1=k2且b1=b214、用待定系数法确定函数解析式的一般步骤:

(1)根据已知条件写出含有待定系数的函数关系式;

(2)将x、y的几对值或图象上的几个点的坐标代入上述函数关系式中得到以待定系数为未知数的方程;

(3)解方程得出未知系数的值;

(4)将求出的待定系数代回所求的函数关系式中得出所求函数的解析式.15、一元一次方程与一次函数的关系

任何一元一次方程到可以转化为ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横

坐标的值.16、一次函数与一元一次不等式的关系

任何一个一元一次不等式都可以转化为ax+b>0或ax+b<0(a,b为常数,a≠0)的形式,所以解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量的取值范围.17、一次函数与二元一次方程组

(1)以二元一次方程ax+by=c的解为坐标的点组成的图象与一次函数y=acx的图象相同.bb

a1xb1yc1acac(2)二元一次方程组的解可以看作是两个一次函数y=1x1和y=2x2的图象b2b2b1b1a2xb2yc2

交点.

第三篇:初中数学一次函数知识点总结

一次函数知识点总结: 一次函数:一次函数图像与性质是中考必考的内容之一。中考试题中分值约为10分左右题型多样,形式灵活,综合应用性强。甚至有存在探究题目出现。主要考察内容:①会画一次函数的图像,并掌握其性质。②会根据已知条件,利用待定系数法确定一次函数的解析式。③能用一次函数解决实际问题。④考察一ic函数与二元一次方程组,一元一次不等式的关系。突破方法:①正确理解掌握一次函数的概念,图像和性质。②运用数学结合的思想解与一次函数图像有关的问题。③掌握用待定系数法球一次函数解析式。④做一些综合题的训练,提高分析问题的能力。

函数性质:

1.y的变化值与对应的x的变化值成正比例,比值为k.即:y=kx+b(k,b为常数,k≠0),∵当x增加m,k(x+m)+b=y+km,km/m=k。

2.当x=0时,b为函数在y轴上的点,坐标为(0,b)。

3当b=0时(即 y=kx),一次函数图像变为正比例函数,正比例函数是特殊的一次函数。

4.在两个一次函数表达式中:

当两一次函数表达式中的k相同,b也相同时,两一次函数图像重合;

当两一次函数表达式中的k相同,b不相同时,两一次函数图像平行;

当两一次函数表达式中的k不相同,b不相同时,两一次函数图像相交;

当两一次函数表达式中的k不相同,b相同时,两一次函数图像交于y轴上的同一点(0,b)。

若两个变量x,y间的关系式可以表示成Y=KX+b(k,b为常数,k不等于0)则称y是x的一次函数

图像性质

1.作法与图形:通过如下3个步骤:

(1)列表.(2)描点;[一般取两个点,根据“两点确定一条直线”的道理,也可叫“两点法”。

一般的y=kx+b(k≠0)的图象过(0,b)和(-b/k,0)两点画直线即可。

正比例函数y=kx(k≠0)的图象是过坐标原点的一条直线,一般取(0,0)和(1,k)两点。

(3)连线,可以作出一次函数的图象——一条直线。因此,作一次函数的图象只需知道2点,并连成直线即可。(通常找函数图象与x轴和y轴的交点分别是-k分之b与0,0与b).2.性质:

(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b(k≠0)。

(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像都是过原点。

3.函数不是数,它是指某一变化过程中两个变量之间的关系。

4.k,b与函数图像所在象限:

y=kx时(即b等于0,y与x成正比例):

当k>0时,直线必通过第一、三象限,y随x的增大而增大;

当k<0时,直线必通过第二、四象限,y随x的增大而减小。

y=kx+b时:

当 k>0,b>0, 这时此函数的图象经过第一、二、三象限;

当 k>0,b<0, 这时此函数的图象经过第一、三、四象限;

当 k<0,b>0, 这时此函数的图象经过第一、二、四象限;

当 k<0,b<0, 这时此函数的图象经过第二、三、四象限;

当b>0时,直线必通过第一、二象限;

当b<0时,直线必通过第三、四象限。

特别地,当b=0时,直线通过原点O(0,0)表示的是正比例函数的图像。

这时,当k>0时,直线只通过第一、三象限,不会通过第二、四象限。当k<0时,直线只通过第二、四象限,不会通过第一、三象限。

4、特殊位置关系:

当平面直角坐标系中两直线平行时,其函数解析式中K值(即一次项系数)相等

当平面直角坐标系中两直线垂直时,其函数解析式中K值互为负倒数(即两个K值的乘积为-1))

③点斜式 y-y1=k(x-x1)(k为直线斜率,(x1,y1)为该直线所过的一个点)

④两点式(y-y1)/(y2-y1)=(x-x1)/(x2-x1)(已知直线上(x1,y1)与(x2,y3)两点)

⑤截距式(a、b分别为直线在x、y轴上的截距)⑥实用型(由实际问题来做)

公式

1.求函数图像的k值:(y1-y2)/(x1-x2)

2.求与x轴平行线段的中点:|x1-x2|/2

3.求与y轴平行线段的中点:|y1-y2|/2

4.求任意线段的长:√(x1-x2)^2+(y1-y2)^2(注:根号下(x1-x2)与(y1-y2)的平方和)

5.求两个一次函数式图像交点坐标:解两函数式

两个一次函数 y1=k1x+b1 y2=k2x+b2 令y1=y2 得k1x+b1=k2x+b2 将解得的x=x0值代回y1=k1x+b1 y2=k2x+b2 两式任一式 得到y=y0 则(x0,y0)即为 y1=k1x+b1 与 y2=k2x+b2 交点坐标

6.求任意2点所连线段的中点坐标:[(x1+x2)/2,(y1+y2)/2]

7.求任意2点的连线的一次函数解析式:(X-x1)/(x1-x2)=(Y-y1)/(y1-y2)(其中分母为0,则分子为0)

x y

+,+(正,正)在第一象限,-(负,负)在第三象限

+,-(正,负)在第四象限

8.若两条直线y1=k1x+b1∥y2=k2x+b2,那么k1=k2,b1≠b2

9.如两条直线y1=k1x+b1⊥y2=k2x+b2,那么k1×k2=-1

10.y=k(x-n)+b就是向右平移n个单位

中考要求

1.经历函数、一次函数等概念的抽象概括过程,体会函数及变量思想,进一步发展抽象思维能力;经历一次函

数的图象及其性质的探索过程,在合作与交流活动中发展合作意识和能力.

2.经历利用一次函数及其图象解决实际问题的过程,发展数学应用能力;经历函数图象信息的识别与应用过程,发展形象思维能力.

3.初步理解一次函数的概念;理解一次函数及其图象的有关性质;初步体会方程和函数的关系.

4.能根据所给信息确定一次函数表达式;会作一次函数的图象,并利用它们解决简单的实际问题.中考热点

一次函数知识是每年中考的重点知识,是每卷必考的主要内容.本知识点主要考查一次函数的图象、性质及应用,这些知识能考查考生综合能力、解决实际问题的能力.因此,一次函数的实际应用是中考的热点,和几何、方程所组成的综合题是中考的热点问题.中考命题趋势及复习对策

一次函数是数学中重要内容之一,题量约占全部试题的5%~10%,分值约占总分的5%~10%,题型既有低档的填空题和选择题,又有中档的解答题,更有大量的综合题,近几年中考试卷中还出现了设计新颖、贴近生活、反映时代特征的阅读理解题、开放探索题、函数应用题,这部分试题包括了初中代数的所有数学思想和方法,全面地考查计算能力,逻辑思维能力、空间想象能力和创造能力.

针对中考命题趋势,在复习时应先理解一次函数概念.掌握其性质和图象,而且还要注重一次函数实际应用的练习.

复习要点

一次函数的图象和性质

正比例函数的图象和性质

考点讲析

1.一次函数的意义及其图象和性质

⑴.一次函数:若两个变量x、y间的关系式可以表示成y=kx+b(k、b为常数,k ≠0)的形式,则称y是x的一

次函数(x是自变量,y是因变量〕特别地,当b=0时,称y是x的正比例函数.

⑵.一次函数的图象:一次函数y=kx+b的图象是经过点(0,b),(-,0)的一条直线,正比例函数y=kx的图

象是经过原点(0,0)的一条直线,如下表所示.

⑶.一次函数的性质:y=kx+b(k、b为常数,k ≠0)当k >0时,y的值随x的值增大而增大;当k<0时,y的值随x值的增大而减小.

⑷.直线y=kx+b(k、b为常数,k ≠0)时在坐标平面内的位置与k在的关系.

④直线经过第一、二、三象限(直线不经过第四象限); 直线经过第一、三、四象限(直线不经过第二象限); 直线经过第一、二、四象限(直线不经过第三象限); 直线经过第二、三、四象限(直线不经过第一象限);

2.一次函数表达式的求法

⑴.待定系数法:先设出式子中的未知系数,再根据条件列议程或议程组求出未知系数,从而写出这个式子的方法,叫做待定系数法,其中的未知系数也称为待定系数。

⑵.用待定系数法求出函数表壳式的一般步骤:⑴写出函数表达式的一般形式;⑵把已知条件(自变量与函数的对应值)公共秩序 函数表达式中,得到关于待定系数的议程或议程组;⑶解方程(组)求出待定系数的值,从而写出函数的表达式。

⑶.一次函数表达式的求法:确定一次函数表达式常用 待定系数法,其中确定正比例函数表达式,只需一对x与y的值,确定一次函数表达式,需要两对x与y的值。

第四篇:初中数学一次函数知识点总结

初中数学一次函数知识点总结

一、定义与定义式:

自变量x和因变量y有如下关系:

y=kx+b

则此时称y是x的一次函数。

特别地,当b=0时,y是x的正比例函数。即:y=kx(k为常数,k≠0)二、一次函数的性质:

1.y的变化值与对应的x的变化值成正比例,比值为k 即:y=kx+b(k为任意不为零的实数 b取任何实数)

2.当x=0时,b为函数在y轴上的截距。三、一次函数的图像及性质:

1.作法与图形:通过如下3个步骤

(1)列表;

(2)描点;

(3)连线,可以作出一次函数的图像——一条直线。因此,作一次函数的图像只需知道2点,并连成直线即可。(通常找函数图像与x轴和y轴的交点)

2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。

3.k,b与函数图像所在象限:

当k>0时,直线必通过一、三象限,y随x的增大而增大;

当k<0时,直线必通过二、四象限,y随x的增大而减小。

当b>0时,直线必通过一、二象限;

当b=0时,直线通过原点

当b<0时,直线必通过三、四象限。

特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。

四、确定一次函数的表达式:

已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。

(1)设一次函数的表达式(也叫解析式)为y=kx+b。

(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。所以可以列出2个方程:y1=kx1+b …… ① 和 y2=kx2+b …… ②

(3)解这个二元一次方程,得到k,b的值。

(4)最后得到一次函数的表达式。五、一次函数在生活中的应用:

1.当时间t一定,距离s是速度v的一次函数。s=vt。

2.当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。设水池中原有水量S。g=S-ft。

六、常用公式:

1.求函数图像的k值:(y1-y2)/(x1-x2)

2.求与x轴平行线段的中点:|x1-x2|/2

3.求与y轴平行线段的中点:|y1-y2|/2

4.求任意线段的长:√(x1-x2)^2+(y1-y2)^2(注:根号下(x1-x2)与(y1-y2)的平方和)

第五篇:初二数学上册知识点总结汇总+初二数学分式知识点总结汇总

初二数学上册知识点总结汇总

初二数学上册知识点总结:

全等三角形的对应边、对应角相等

2边角边公理(SAS)

有两边和它们的夹角对应相等的两个三角形全等

角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等

推论(AAS)

有两角和其中一角的对边对应相等的两个三角形全等

边边边公理(SSS)

有三边对应相等的两个三角形全等

斜边、直角边公理(HL)

有斜边和一条直角边对应相等的两个直角三角形全等

定理1

在角的平分线上的点到这个角的两边的距离相等

定理2

到一个角的两边的距离相同的点,在这个角的平分线上

角的平分线是到角的两边距离相等的所有点的集合10

等腰三角形的性质定理

等腰三角形的两个底角相等

(即等边对等角)

推论1

等腰三角形顶角的平分线平分底边并且垂直于底边

等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合13

推论3

等边三角形的各角都相等,并且每一个角都等于60°

等腰三角形的判定定理

如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

推论1

三个角都相等的三角形是等边三角形

推论

有一个角等于60°的等腰三角形是等边三角形

在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半

直角三角形斜边上的中线等于斜边上的一半

定理

线段垂直平分线上的点和这条线段两个端点的距离相等

逆定理

和一条线段两个端点距离相等的点,在这条线段的垂直平分线上

线段的垂直平分线可看作和线段两端点距离相等的所有点的集合22

定理1

关于某条直线对称的两个图形是全等形

定理

如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线

24定理3

两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上

25逆定理

如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称

26勾股定理

直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2

27勾股定理的逆定理

如果三角形的三边长a、b、c有关系a^2+b^2=c^2,那么这个三角形是直角三角形

28定理

四边形的内角和等于360°

29四边形的外角和等于360°

30多边形内角和定理

n边形的内角的和等于(n-2)×180°

31推论

任意多边的外角和等于360°

32平行四边形性质定理1

平行四边形的对角相等

33平行四边形性质定理2

平行四边形的对边相等

34推论

夹在两条平行线间的平行线段相等

35平行四边形性质定理3

平行四边形的对角线互相平分

36平行四边形判定定理1

两组对角分别相等的四边形是平行四边形

37平行四边形判定定理2

两组对边分别相等的四边形是平行四边形

38平行四边形判定定理3

对角线互相平分的四边形是平行四边形

39平行四边形判定定理4

一组对边平行相等的四边形是平行四边形

40矩形性质定理1

矩形的四个角都是直角

41矩形性质定理2

矩形的对角线相等

42矩形判定定理1

有三个角是直角的四边形是矩形

43矩形判定定理2

对角线相等的平行四边形是矩形

44菱形性质定理1

菱形的四条边都相等

45菱形性质定理2

菱形的对角线互相垂直,并且每一条对角线平分一组对角

46菱形面积=对角线乘积的一半,即S=(a×b)÷2

47菱形判定定理1

四边都相等的四边形是菱形

48菱形判定定理2

对角线互相垂直的平行四边形是菱形

49正方形性质定理1

正方形的四个角都是直角,四条边都相等

50正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角

51定理1

关于中心对称的两个图形是全等的52定理2

关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分

53逆定理

如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称

54等腰梯形性质定理

等腰梯形在同一底上的两个角相等

55等腰梯形的两条对角线相等

56等腰梯形判定定理

在同一底上的两个角相等的梯形是等腰梯形

57对角线相等的梯形是等腰梯形

58平行线等分线段定理

如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等

推论1

经过梯形一腰的中点与底平行的直线,必平分另一腰

推论2

经过三角形一边的中点与另一边平行的直线,必平分第三边

三角形中位线定理

三角形的中位线平行于第三边,并且等于它的一半

梯形中位线定理

梯形的中位线平行于两底,并且等于两底和的一半

L=(a+b)÷2

S=L×h

初二数学分式知识点总结汇总

初二数学分式知识点总结:

(一)运用公式法:

我们知道整式乘法与因式分解互为逆变形。如果把乘法公式反过来就是把多项式分解因式。于是有:

a2-b2=(a+b)(a-b)

a2+2ab+b2=(a+b)2

a2-2ab+b2=(a-b)2

如果把乘法公式反过来,就可以用来把某些多项式分解因式。这种分解因式的方法叫做运用公式法。

(二)平方差公式

1.平方差公式

(1)式子:a2-b2=(a+b)(a-b)

(2)语言:两个数的平方差,等于这两个数的和与这两个数的差的积。这个公式就是平方差公式。

(三)因式分解

1.因式分解时,各项如果有公因式应先提公因式,再进一步分解。

2.因式分解,必须进行到每一个多项式因式不能再分解为止。

(四)完全平方公式

(1)把乘法公式(a+b)2=a2+2ab+b2和(a-b)2=a2-2ab+b2反过来,就可以得到:

a2+2ab+b2=(a+b)2

a2-2ab+b2=(a-b)2

这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。

把a2+2ab+b2和a2-2ab+b2这样的式子叫完全平方式。

上面两个公式叫完全平方公式。

(2)完全平方式的形式和特点

①项数:三项

②有两项是两个数的的平方和,这两项的符号相同。

③有一项是这两个数的积的两倍。

(3)当多项式中有公因式时,应该先提出公因式,再用公式分解。

(4)完全平方公式中的a、b可表示单项式,也可以表示多项式。这里只要将多项式看成一个整体就可以了。

(5)分解因式,必须分解到每一个多项式因式都不能再分解为止。

(五)分组分解法

我们看多项式am+an+bm+bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式.如果我们把它分成两组(am+an)和(bm+bn),这两组能分别用提取公因式的方法分别分解因式.原式=(am+an)+(bm+bn)

=a(m+n)+b(m+n)

做到这一步不叫把多项式分解因式,因为它不符合因式分解的意义.但不难看出这两项还有公因式(m+n),因此还能继续分解,所以

原式=(am+an)+(bm+bn)

=a(m+n)+b(m+n)

=(m+n)?(a+b).这种利用分组来分解因式的方法叫做分组分解法.从上面的例子可以看出,如果把一个多项式的项分组并提取公因式后它们的另一个因式正好相同,那么这个多项式就可以用分组分解法来分解因式.(六)提公因式法

1.在运用提取公因式法把一个多项式因式分解时,首先观察多项式的结构特点,确定多项式的公因式.当多项式各项的公因式是一个多项式时,可以用设辅助元的方法把它转化为单项式,也可以把这个多项式因式看作一个整体,直接提取公因式;当多项式各项的公因式是隐含的时候,要把多项式进行适当的变形,或改变符号,直到可确定多项式的公因式.2.运用公式x2+(p+q)x+pq=(x+q)(x+p)进行因式分解要注意:

1.必须先将常数项分解成两个因数的积,且这两个因数的代数和等于

一次项的系数.2.将常数项分解成满足要求的两个因数积的多次尝试,一般步骤:

①列出常数项分解成两个因数的积各种可能情况;

②尝试其中的哪两个因数的和恰好等于一次项系数.3.将原多项式分解成(x+q)(x+p)的形式.(七)分式的乘除法

1.把一个分式的分子与分母的公因式约去,叫做分式的约分.2.分式进行约分的目的是要把这个分式化为最简分式.3.如果分式的分子或分母是多项式,可先考虑把它分别分解因式,得到因式乘积形式,再约去分子与分母的公因式.如果分子或分母中的多项式不能分解因式,此时就不能把分子、分母中的某些项单独约分.4.分式约分中注意正确运用乘方的符号法则,如x-y=-(y-x),(x-y)2=(y-x)2,(x-y)3=-(y-x)3.5.分式的分子或分母带符号的n次方,可按分式符号法则,变成整个分式的符号,然后再按-1的偶次方为正、奇次方为负来处理.当然,简单的分式之分子分母可直接乘方.6.注意混合运算中应先算括号,再算乘方,然后乘除,最后算加减.(八)分数的加减法

1.通分与约分虽都是针对分式而言,但却是两种相反的变形.约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来.2.通分和约分都是依据分式的基本性质进行变形,其共同点是保持分式的值不变.3.一般地,通分结果中,分母不展开而写成连乘积的形式,分子则乘出来写成多项式,为进一步运算作准备.4.通分的依据:分式的基本性质.5.通分的关键:确定几个分式的公分母.通常取各分母的所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.6.类比分数的通分得到分式的通分:

把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.7.同分母分式的加减法的法则是:同分母分式相加减,分母不变,把分子相加减。

同分母的分式加减运算,分母不变,把分子相加减,这就是把分式的运算转化为整式运算。

8.异分母的分式加减法法则:异分母的分式相加减,先通分,变为同分母的分式,然后再加减.9.同分母分式相加减,分母不变,只须将分子作加减运算,但注意每个分子是个整体,要适时添上括号.10.对于整式和分式之间的加减运算,则把整式看成一个整体,即看成是分母为1的分式,以便通分.11.异分母分式的加减运算,首先观察每个公式是否最简分式,能约分的先约分,使分式简化,然后再通分,这样可使运算简化.12.作为最后结果,如果是分式则应该是最简分式.(九)含有字母系数的一元一次方程

1.含有字母系数的一元一次方程

引例:一数的a倍(a≠0)等于b,求这个数。用x表示这个数,根据题意,可得方程ax=b(a≠0)

在这个方程中,x是未知数,a和b是用字母表示的已知数。对x来说,字母a是x的系数,b是常数项。这个方程就是一个含有字母系数的一元一次方程。

含有字母系数的方程的解法与以前学过的只含有数字系数的方程的解法相同,但必须特别注意:用含有字母的式子去乘或除方程的两边,这个式子的值不能等于零。

下载初二上册数学一次函数经典知识点总结(优秀范文五篇)word格式文档
下载初二上册数学一次函数经典知识点总结(优秀范文五篇).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    初二数学上册知识点总结[合集五篇]

    初二数学上册知识点总结 1 过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 5 过一点有且只有一条直线和已知直线垂直 6 直线外......

    一次函数主要知识点总结

    一次函数知识点总结一、常量与变量在一个变化过程中,数值保持不变的量叫常量,数值发生改变的量叫变量。 实际上,常量就是具体的数,变量就是表示数的字母。(注意“π”是常量) 二、......

    一次函数知识点总结

    八年级数学上册 一次函数知识点总结 基本概念 1、变量:在一个变化过程中可以取不同数值的量。常量:在一个变化过程中只能取同一数值的量。 2、函数:一般的,在一个变化过程中,如果......

    初二数学知识点总结

    初二数学知识点总结 1全等三角形的对应边、对应角相等 2边角边公理有两边和它们的夹角对应相等的两个三角形全等3 角边角公理有两角和它们的夹边对应相等的两个三角形全等 4......

    初中数学一次函数知识点总结5篇

    一次函数知识点总结:一次函数主要考察内容:①会画一次函数的图像,并掌握其性质。②会根据已知条件,利用待定系数法确定一次函数的解析式。③能用一次函数解决实际问题。④考察......

    初二数学一次函数单元测试题

    函数表示每个输入值对应唯一输出值的一种对应关系。下面是小编为你带来的初二数学一次函数单元测试题 ,欢迎阅读。一、选择题(每题3分,共30分)1、下列函数关系中表示一次函数......

    初二地理上册知识点总结

    初二地理 上册 第一章 1、中国位于亚洲的,太平洋的;东西的半球,南北的半球,所处的温度带以为主,南部一小部分位于,没有带,是一个海陆的国家。 2、我国陆地面积是,仅次于、两国,居第位......

    初二历史上册知识点总结.

    初二历史上册复习提纲 1、 19世纪上半期, 是最强大的资本主义国家, 为了 它 向中国走私鸦片。 2、 向 皇帝上书要求严禁鸦片。 成为英国发动鸦片 战争的直接原因,而英国发动......