赵达夫终极考研高等数学典型题型[范文模版]

时间:2019-05-12 20:35:32下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《赵达夫终极考研高等数学典型题型[范文模版]》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《赵达夫终极考研高等数学典型题型[范文模版]》。

第一篇:赵达夫终极考研高等数学典型题型[范文模版]

鲤鱼网()

赵达夫:考研高等数学重点复习与典型题型 重视历年试题的强化训练。统计表明,每年的研究生入学考试高等数学内容较之前几年都有较大的重复率,近年试题与往年考题雷同的占50%左右,这些考题或者改变某一数字,或改变一种说法,但解题的思路和所用到的知识点几乎一样。通过对考研的试题类型、特点、思路进行系统的归纳总结,并做一定数量习题,有意识地重点解决解题思路问题。对于那些具有很强的典型性、灵活性、启发性和综合性的题,要特别注重解题思路和技巧的培养。

一.函数、极限与连续

求分段函数的复合函数;求极限或已知极限确定原式中的常数;讨论函数的连续性,判断间断点的类型;无穷小阶的比较;讨论连续函数在给定区间上零点的个数,或确定方程在给定区间上有无实根。

二.一元函数微分学

求给定函数的导数与微分(包括高阶导数),隐函数和由参数方程所确定的函数求导,特别是分段函数和带有绝对值的函数可导性的讨论;利用洛比达法则求不定式极限;讨论函数极值,方程的根,证明函数不等式;利用罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒中值定理证明有关命题,如“证明在开区间内至少存在一点满足......”,此类问题证明经常需要构造辅助函数;几何、物理、经济等方面的最大值、最小值应用问题,解这类问题,主要是确定目标函数和约束条件,判定所讨论区间;利用导数研究函数性态和描绘函数图形,求曲线渐近线。

三.一元函数积分学

计算题:计算不定积分、定积分及广义积分;关于变上限积分的题:如求导、求极限等;有关积分中值定理和积分性质的证明题;定积分应用题:计算面积,旋转体体积,平面曲线弧长,旋转面面积,压力,引力,变力作功等;综合性试题。

四.向量代数和空间解析几何

计算题:求向量的数量积,向量积及混合积;求直线方程,平面方程;判定平面与直线间平行、垂直的关系,求夹角;建立旋转面的方程;与多元函数微分学在几何上的应用或与线性代数相关联的题目。

五.多元函数的微分学

判定一个二元函数在一点是否连续,偏导数是否存在、是否可微,偏导数是否连续;求多元函数(特别是含有抽象函数)的一阶、二阶偏导数,求隐函数的一阶、二阶偏导数;求二元、三元函数的方向导数和梯度;求曲面的切平面和法线,求空间曲线的切线与法平面,该类型题是多元函数的微分学与前面向量代数与空间解析几何的综合题,应结合起来复习;多元函数的极值或条件极值在几何、物理与经济上的应用题;求一个二元连续函数在一个有界平面区域上的最大值和最小值。这部分应用题多要用到其他领域的知识,考生在复习时要引起注意。

六.多元函数的积分学

二重、三重积分在各种坐标下的计算,累次积分交换次序;第一型曲线积分、曲面积分计算;第二型(对坐标)曲线积分的计算,格林公式,斯托克斯公式及其应用;第二型(对坐标)曲面积分的计算,高斯公式及其应用;梯度、散度、旋度的综合计算;重积分,线面积分应用;求面积,体积,重量,重心,引力,变力作功等。数学一考生对这部分内容和题型要引起足够的重视。

七.无穷级数

判定数项级数的收敛、发散、绝对收敛、条件收敛;求幂级数的收敛半径,收敛域;求幂级数的和函数或求数项级数的和;将函数展开为幂级数(包括写出收敛域);将函数展开为傅立叶级数,或已给出傅立叶级数,要确定其在某点的和(通常要用狄里克雷定理);综合证明题。

八.微分方程

求典型类型的一阶微分方程的通解或特解:这类问题首先是判别方程类型,当然,有些方程不直接属于我们学过的类型,此时常用的方法是将x与y对调或作适当的变量代换,把原方程化为我们学过的类型;求解可降阶方程;求线性常系数齐次和非齐次方程的特解或通解;根据实际问题或给定的条件建立微分方程并求解;综合题,常见的是以下内容的综合:变上限定积分,变积分域的重积分,线积分与路径无关,全微分的充要条件,偏导数等。

总之,对考生来说,要想在数学考试中取得好成绩,必须认真系统地按照各类考试大纲的要求全面复习,掌握数学的基本概念、基本方法和基本定理。平时注意抓题型的解决方法和技巧,不断总结。最后按规定时间做几份模拟题,了解一下究竟掌握到什么程度,同时知道薄弱环节,抓紧时间补上。如果考生能够通过做题,将遇到的各种题进行延伸或变式,做到融会贯通,一定会取得好的成绩。

鲤鱼网——成功在于执着

第二篇:2012年考研数学复习重点与典型题型

2012年考研数学复习重点与典型题型

来源:跨考教育发布时间:2011-11-15 16:28:26

近年来考研数学试题难度比较大,平均分比较低,而高等数学又是考研数学的重中之重,如何备考高等数学已经成为广大考生普遍关心的重要问题,要特别注意以下三个方面。第一,按照大纲对数学基本概念、基本方法、基本定理准确把握(也即三基的重要性务必引起重视)。数学是一门逻辑学科,靠侥幸押题是行不通的。只有对基本概念有深入理解,对基本定理和公式牢牢记住,才能找到解题的突破口和切入点。分析近几年考生的数学答卷可以发现,考生失分的一个重要原因就是对基本概念、定理理解不准确,数学中最基本的方法掌握不好,给解题带来思维上的困难。

第二,要加强解综合性试题和应用题能力的训练,力求在解题思路上有所突破。在解综合题时,迅速地找到解题的切入点是关键一步,为此需要熟悉规范的解题思路,考生应能够看出面前的题目与他曾经见到过的题目的内在联系。为此必须在复习备考时对所学知识进行重组,搞清有关知识的纵向与横向联系,转化为自己真正掌握的东西。解应用题的一般步骤都是认真理解题意,建立相关数学模型,如微分方程、函数关系、条件极值等,将其化为某数学问题求解。建立数学模型时,一般要用到几何知识、物理力学知识和经济学术语等。第三,重视历年试题的强化训练。统计表明,每年的研究生入学考试高等数学内容较之前几年都有较大的重复率,近年试题与往年考题雷同的占50%左右,这些考题或者改变某一数字,或改变一种说法,但解题的思路和所用到的知识点几乎一样。通过对考研的试题类型、特点、思路进行系统的归纳总结,并做一定数量习题,有意识地重点解决解题思路问题。对于那些具有很强的典型性、灵活性、启发性和综合性的题,要特别注重解题思路和技巧的培养。尽管试题千变万化,其知识结构基本相同,题型相对固定。提练题型的目的,是为了提高解题的针对性,形成思维定势,进而提高考生解题的速度和准确性。

下面以数学一为主总结一下高数各部分常见题型。

一、函数、极限与连续

求分段函数的复合函数;求极限或已知极限确定原式中的常数;讨论函数的连续性,判断间断点的类型;无穷小阶的比较;讨论连续函数在给定区间上零点的个数,或确定方程在给定区间上有无实根。

二、一元函数微分学

求给定函数的导数与微分(包括高阶导数),隐函数和由参数方程所确定的函数求导,特别是分段函数和带有绝对值的函数可导性的讨论;利用洛比达法则求不定式极限;讨论函数极值,方程的根,证明函数不等式;利用罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒中值定理证明有关命题,如“证明在开区间内至少存在一点满足....。.”,此类问题证明经常需要构造辅助函数;几何、物理、经济等方面的最大值、最小值应用问题,解这类问题,主要是确定目标函数和约束条件,判定所讨论区间;利用导数研究函数性态和描绘函数图形,求曲线渐近线。

三、一元函数积分学

计算题:计算不定积分、定积分及广义积分;关于变上限积分的题:如求导、求极限等;有关积分中值定理和积分性质的证明题;定积分应用题:计算面积,旋转体体积,平面曲线弧长,旋转面面积,压力,引力,变力作功等;综合性试题。(注;高数中解答题的最后一步往往是求解一个积分,故积分的各种求解方法务必熟练再熟练!)

四、向量代数和空间解析几何

计算题:求向量的数量积,向量积及混合积;求直线方程,平面方程;判定平面与直线间平行、垂直的关系,求夹角;建立旋转面的方程;与多元函数微分学在几何上的应用或与线性代数相关联的题目。此题型考研中占的分值较少,且若考的话直接考查概念。

五、多元函数的微分学

判定一个二元函数在一点是否连续,偏导数是否存在、是否可微,偏导数是否连续;求多元函数(特别是含有抽象函数)的一阶、二阶偏导数,求隐函数的一阶、二阶偏导数;求二元、三元函数的方向导数和梯度;求曲面的切平面和法线,求空间曲线的切线与法平面,该类型题是多元函数的微分学与前面向量代数与空间解析几何的综合题,应结合起来复习;多元函数的极值或条件极值在几何、物理与经济上的应用题;求一个二元连续函数在一个有界平面区域上的最大值和最小值。这部分应用题多要用到其他领域的知识,考生在复习时要引起注意。

六、多元函数的积分学

二重、三重积分在各种坐标下的计算,累次积分交换次序;第一型曲线积分、曲面积分计算;第二型(对坐标)曲线积分的计算,格林公式,斯托克斯公式及其应用;第二型(对坐标)曲面积分的计算,高斯公式及其应用;梯度、散度、旋度的综合计算;重积分,线面积分应用;求面积,体积,重量,重心,引力,变力作功等。数学一考生对这部分内容和题型要引起足够的重视。每年会有一道解答题出现!

七、无穷级数

判定数项级数的收敛、发散、绝对收敛、条件收敛;求幂级数的收敛半径,收敛域;求幂级数的和函数或求数项级数的和;将函数展开为幂级数(包括写出收敛域);将函数展开为傅立叶级数,或已给出傅立叶级数,要确定其在某点的和(通常要用狄里克雷定理);综合证明题。

八、微分方程

求典型类型的一阶微分方程的通解或特解:这类问题首先是判别方程类型,当然,有些方程不直接属于我们学过的类型,此时常用的方法是将x与y对调或作适当的变量代换,把原方程化为我们学过的类型;求解可降阶方程;求线性常系数齐次和非齐次方程的特解或通解;根据实际问题或给定的条件建立微分方程并求解;综合题,常见的是以下内容的综合:变上限定积分,变积分域的重积分,线积分与路径无关,全微分的充要条件,偏导数等。

总之,对考生来说,要想在数学考试中取得好成绩,必须认真系统地按照各类考试大纲的要求全面复习,掌握数学的基本概念、基本方法和基本定理。平时注意抓题型的解决方法和技巧,不断总结。最后按规定时间做几份模拟题,了解一下究竟掌握到什么程度,同时知道薄弱环节,抓紧时间补上。如果考生能够通过做题,将遇到的各种题进行延伸或变式,做到融会贯通,一定会取得好的成绩。数学的学习要做到一步一个脚印,步步为营才能取得理想中的成绩,未来是属于我们的也是属于你们的,但归根结底还是属于你们的!

考研数学教材三大重视原则

基础功夫要做牢:数学教材的三大“重视”原则

基础阶段的学习,我们的目标是通过对教材的复习理解大纲中要求的三基本--基本概念、基本理论、基本方法。考研试卷中大部分试题是以考察基本概念,基本的公式,基本的理论为主。在这个阶段,大家在看教材应遵循下面的三大主要原则。

重视结合大纲复习

大纲不仅是命题人要遵循的法律也是我们复习的依据。现在大家用08年的大纲也完全可以。数学的试题不同于政治的试题,数学试题具有连续性和稳定性。细心的同学可能注意到了,对不同知识点大纲有不同的要求,有要求理解的,有要求了解的,有要求掌握的,也有要求会求会计算的。那么我们应该怎么来对待呢?在基础阶段复习中,大家不要在意这几个字的区别,从历年试卷的内容分布上可以看出,凡是考试大纲中提及的内容,都有可能考到,甚至某些不太重要的内容,也可以以大题的形式在试题中出现。由此可见,以押题、猜题的复习方法来对付考研靠不住的,很容易在考场上痛失分数而败北,应当参照考试大纲,全面复习,不留遗漏。

当然,全面复习不简单的就是生记硬背所有的知识,相反,是要抓住问题的实质和各内容、各方法的本质联系,把要记的东西缩小到最小程度,要努力使自已理解所学知识,多抓住问题的联系,少记一些死知识,而且记住了就要牢靠,事实证明,有些记忆是终生不忘的,而其它的知识又可以在记住基本知识的基础上,运用它们的联系而得到。这就是全面复习的含义我们都需要把它掌握了。而在以后提高阶段中,我们就需要有针对性的复习,在考试大纲的要求中,对内容有理解,了解,知道三个层次的要求;对方法有掌握,会(能)两个层次的要求,一般地说,要求理解的内容,要求掌握的方法,是考试的重点。在历年考试中,这方面考题出现的概率较大;在同一份试卷中,这方面试题所占有的分数也较多。“猜题”的人,往往要在这方面下功夫。一般说来,也确能猜出几分来。但遇到综合题,这些题在主要内容中包含着次要内容。这时,“猜题”便行不通了。我们讲的这时要突出重点,不仅要在主要内容和方法上多下功夫,更重要的是要去寻找重点内容与次要内容间的联系,以主带次,用重点内容提挈整个内容。主要内容理解透了,其它的内容和方法迎刃而解。即抓出主要内容不是放弃次要内容而孤立主要内容,而是从分析各内容的联系,从比较中自然地突出主要内容要求理解,掌握的考的频率高,常常是以大题的形式出现,大家需要重点来复习,把它吃透;要求了解,会求,会计算的知识点考得频率低一点,所以要求也稍微弱一点,大家花在上面的时间可以相对少一点。这样复习的时候才能做到有的放矢。

重视做题质量

基础阶段的学习过程中,教材上的题目肯定是要做的,那是不是教材上的所有题目都需要做呢?具统计,《高等数学》的教材上题目共1900多道,《线性代数》教材上共400多道题目,《概率论与数理统计》教材上共230多道。学习数学,要把基本功练熟练透,但我们不主张“题海”战术,其实上面我们已经清楚大约要做的题目数量,这阶段我们提倡精练,即反复做一些典型的题,做到一题多解,一题多变。要训练抽象思维能力,对些基本定理的证明,基本公式的推导,以及一些基本练习题,要做到不用书写,就象棋手 下“盲棋”一样,只需用脑子默想,即能得到正确答案,这样才叫训练有素,“熟能生巧”。基本功扎实的人,遇到难题办法也多,不易被难倒。相反,作练习时,眼高手低,总找难题作,结果,上了考场,遇到与自己曾经作过的类似的题目都有可能不会;不少考生把会作的题算错了,将其归结为粗心大意,确实,人会有粗心 的,但基本功扎实的人,出了错立即会发现,很少会“粗心”地出错。

重视复习效果

看教材不是看小说,看完就算了。看的过程中一方面要提高数学的复习效率,不和别人比速度。要做到能用自己的语言叙述大纲中的概念和定理,切忌“一知半解”。不要一味做题而不注意及时归纳总结。及时总结可以实现“量变到质变”的飞跃。不要急于做以往的“考研试卷”,等到数学的三门课复习完毕并经过第二阶段的复习再做,这样的效果会更好些。既可了解考什么、怎么考,又可检验自己复习的情况。同学们还要不骄不躁,持之以恒。另外,我们一定要对自己看过的东西进行检验,看完一章后要看下自己是否可以继续下一章节的学习。那如何来检验呢?我们的方法是:做和考研比较接近的测试题。一般来说书后习题是不能反映出大家对每一章的掌握情况的。因为我们的目标不是期末考试而是考研,课后题是不能说明问题的,大家应该通过做一些难度适中的题目才能解决这个问题。

只要坚持并把握好以上三点重视原则,相信你的数学复习一定会顺利。最后,祝愿所有备考考生都能取得令自己满意的数学成绩。

名师指导:2012年考研数学解题技巧

2012年全国硕士研究生入学统一考试数学试卷题型及分值分布:选择题8个,每个4分,共32分;填空题6个,每个4分,共24分;解答题9个,共94分。满分150分。

对于四选一的选择题,其中三个都是干扰项,一个是正确选项,答案只给出正确选项前面的字母,不给出推导过程,选对得满分,选错得0分,不倒扣分。选择题有多种解题方法,常用的方法有:首肯法、排除法、反例法、图示法、逆推法等。如果各种方法都不奏效,鼓励考生猜测选项。选择题属客观题,答案是唯一正确的,数学考试中的多选题也都以单选的形式出现,最终答案只有一个,评分是不偏不倚的。对于考生来说,会做的题目靠扎实的知识得分,不会做的只能靠自身的运气。选择题的难度一般适中,以2011年试卷为例,其中的选择题都是中等难度,没有特别难的题目,也没有一眼就能看出答案的题目。选择题主要考查考生对数学概念、数学性质的理解,要求考生能进行简单的推理、判定、计算和比较。这一部分的32分需要考生在读书的时候深入思考,并要不完全依赖臆想,而要思考与动手相结合才能稳拿。

填空题的答案是确定和唯一的,只填出最终结果,不需给出推导计算过程,答对得满分,答错得0分。这部分题目一般需要进行有一定技巧的计算,但不会有太复杂的计算题。题目

难度与选择题不相上下,即难度适中。方法只有一个:认真审题,高效率计算。填空题总共只有6个,高等数学(4个)、线性代数(1个)、概率论与数理统计(1个)各有分布,主要考查的是数学基本概念、基本原理、基本方法及数学的重要性质。这一部分24分的获取需要基础复习阶段就融会贯通的知识作保障。

解答题占总分的百分之六十多,其中有计算题、证明题及其他解答题,一般都会有多种解题方法和证明思路,有些甚至有初等解法,但考试解答时尽量用与《考试大纲》规定的考试内容和考试目标相一致的解法和证明方法,步骤表述清楚,避免因表达不清而失分。每题的分值与完成该题所花费的时间以及考核目标的有关,综合性较强的试题,推理过程较多的试题和应用性的试题分值较高。基本计算题、常规性试题和简单应用题的分值较低。解答题属主观题,其答案有时并不唯一,这就要求考生不仅要能处理一个题目,更要能看到出题人的考核意图,选择合适的方法解答。

计算题的正确解答要靠平时对各种计算方法,以及对综合题如何选择有效的解题方法的熟练掌握。如二元函数求最值的方法和步骤,曲线积分、曲面积分的计算方法及其与重积分的关系,以及格林公式、高斯公式等,重积分的计算方法及一些特殊结论(如积分区域对称,被积对象具有一定的奇偶性时的情形)等都需要非常熟悉。证明题是大多数考生感到无从下手的题目,所以一些简单的证明题在考试中也会得分率极低。证明题考查最多的是中值定理(微分中值定理及积分中值定理),其次从题型来说就是不等式的证明,方法却比较庞杂,但仍然是有章可寻的。考生如果在平时就没有留太多的精力在证明题上,那么在考前的这两个月可以给出一点时间琢磨一下推理的问题,只要腾出一点脑力思考一下,这个东西并不难。解答题除考查基本运算外,还考查考生的逻辑推理能力和综合运用能力,需要考生在强化阶段加强提高这方面的能力。

考研复习新大纲刚刚出台,考生应仔细阅读《大纲导读》一类的辅导书,以求更准确的瞄准目标进行重点复习备考!

高等数学(微积分)推荐绿皮儿的同济大学第五版(或之后更新的)《高等数学》,里面有大量对定理的证明过程;线性代数当然是清华的黄蓝相间的教材《线性代数》最权威,但千万别通读;而概率论首选浙江大学出版的《概率论与数理统计》,比较通俗易懂。教材一定要吃透,把基础打牢,每一个公式、定理、每一道例题都要信手拈来,不能有丝毫差错。建议教材至少要过三遍,第一遍认真学习每一个知识点,做每一道习题,注意做题前不要看参考答案,做到独立思考。第二遍总结各知识点,做到所有的知识点都能够记在心里面,张嘴就能从头到尾说出来,甚至于达到能说出来在哪里能出什么题。第三遍查找自己的知识死角,弱点,难点,重点。三遍之后,可以开始大量的做题,包括市面上或者辅导班发的类似100题、200题的这种,而且每个题集最好做两遍,第二遍主要是针对那些在第一遍中做错的题,通过不断地纠错来提高自己的数学水平。考研数学主要是考查对基础知识的掌握,里面并没有特别难的题,只要我们对所有的知识点都有深刻的了解,再通过大量的做题来掌握做题技巧,那考试的时候就会感觉所有的考题平时都见过,做起来当然就得心应手了。

说到做题,数学最忌讳眼高手低。一定要动手做,不过也不能纯粹求量搞题海战术,而是要更重视质的提高,同时数学是一门讲究手感的东西,中断它的复习,要花更多的时间找回手感,得不偿失。所以从你决定考研开始到考研前一天,都不能停止数学的复习。

经过前面试间的复习,到大四开学的时候,建议开始做套题,而且最好是每天的上午,而时间也是按照考试的3小时来控制。首推的当然是《历年考研试题》,基本上要做十年的吧。这十套真真正正的考研题要陪你度过余下的时光。作完第一遍十套真题,开始找权威的《模拟试题》,但是这是要有极好的心理承受能力,因为极有可能模拟试题是在考察你没有复习到的漏洞,这时要端正态度,不必过分担心自己的水平不够。事实是,把这些漏洞补上,你就是个考研数学的高手了。

最后,还有一点要建议:考前买本背公式背概念的小册子,随时忘随时翻,尤其是概率论那一块儿的参数估计、假设检验、线性代数的概念性质,确实要既深刻理解又可以快速写出来。(海天教育)

高等数学:同济五版

线性代数:同济六版

概率论与数理统计:浙大三版

推荐资料:

1、李永乐考研数学3--数学复习全书+习题全解(经济类)

2、李永乐《经典400题》

3、《李永乐考研数学历年试题解析(数学三)真题》

考研数学规划:

课本+复习指导书+习题集+模拟题+真题= KO

复习资料来说:李永乐的不错,注重基础;陈文灯的要难一些。

经济类一般都用李永乐的(经济类数学重基础不重难度),基础好的话可以考虑下陈文灯的书。

李永乐的线性代数很不错 陈文灯的高等数学很不错

第三篇:考研数学切比雪夫不等式证明及题型分析

武汉文都 wh.wendu.com 考研数学切比雪夫不等式证明及题型分析

在考研数学概率论与数理统计中,切比雪夫不等式是一个重要的不等式,利用它可以证明其它一些十分有用的结论或重要的定理,如切比雪夫大数定律等,然而有些同学对这个不等式不是很理解,也不太会利用该不等式去解决相关问题,另外,很多资料上也没有对该不等式进行完整的分析或证明,为此,在这里对比雪夫不等式及其典型例题做些分析总结,供各位2016考研的朋友和其它学习的同学参考。

一、切比雪夫不等式的分析证明

武汉文都 wh.wendu.com

武汉文都 wh.wendu.com

从上面的分析我们看到,利用切比雪夫不等式可以对随机变量在其均值附近的对称区间内取值的概率进行估计,它也说明了方差的基本特性,即随机变量的方差越小,随机变量取值越集中,方差越大,则取值越分散,不论对于什么随机变量,它在区间内取值的概率基本都是约90%。以上分析希望对大家理解和应用切比雪夫不等式有所帮助,最后预祝各位考生2016考研成功。

第四篇:高等数学考研题型分析:连加活连乘的求极限

凯程考研,为学员服务,为学生引路!

高等数学考研题型分析:连加活连乘的求极限

考研数学中高数一直是考生的难点,下面凯程教育为大家解析2014考研高数题型:连加活连乘的求极限,希望对大家有所帮助。

凯程考研,为学员服务,为学生引路!

高等数学考研题型分析:变积分限函数求极限

考研数学中高数一直是考生的难点,下面凯程教育为大家解析2014考研高数题型:变积分

凯程考研,为学员服务,为学生引路!

限函数求极限,希望对大家有所帮助。

考研数学初期备考规划

2-3月份可以说是一年之中开始考研备考复习最关键的一个点,在这期间考生开始确认自己的目标,在院校和专业间做好抉择从而开始真正备考复习。打算的比较早的考生复习战已经打响了,对于刚刚开始进行复习的考生可能对于考研的了解和规划都还很模糊,这里凯程教育老师就以多年进行考研辅导的经验为大家总结一些考研数学在考试初始阶段需要明白的常识和复习技巧,希望能对考研考试起到帮助。

最开始的复习不得不提基础,数学是理科中的龙头科目,基础不打好,往后的备考复习都会受影响。考生在复习前要明白基础与提高的辩证关系,根据自身情况合理安排复习进度,处理好打基础和提高能力两者的关系。现阶段的复习应该以基础为主,打得好地基才能盖的好楼房,基础与提高是交插和分段进行的,现阶段应该以基础为主,基础扎实了,再行提高,对后面的复习才能做到事半功倍的效果。

在最初的复习中,重视基础是对的,但是很多考生对基础的重视理解有些偏,大多数人都是将基础知识灌进脑子的方式背下来,但是在基础阶段的复习中我们想要长久的将知识记在脑子里,就不能使用临时抱佛脚的方法。考生在备考时还要多做例题,而不仅仅是练习题。因为是初期的复习,在做题的同时认真地将遇到的解答中好的或者陌生的解题思路以及自己的 3页共3页

凯程考研,为学员服务,为学生引路!

思考记录下来,久而久之基础知识就会和解题一起印在脑子里,这样的基础复习才能在后期产生效用而不是无用功。

对于基础好的考生也不能在初期复习就好高骛远,抛弃书本直接进行难的练习。但数学基础不分功底好坏,从始至终都不能落下的要素就是基础的练习和记忆。踏踏实实的学习起来,而不要受周围人影响,影响力自己的判断力,投入到题海战术中。等你基础阶段很好的时候你的能力就慢慢的提升了,所谓量变而引起质变。最后的复习才能在这个基础上慢慢的进行提高,而且不会因为临时抱佛脚而在考试时丢三落四。

一个完善的计划可以将考生的复习一直带上正轨,善于最长期学习计划的考生能很轻易的将一年的时间安排的合理,凯程教育数学老师提醒考生,在最初的复习中就做好全年的计划,根据自己的情况,定期做适当的调整。

凯程教育:

凯程考研成立于2005年,国内首家全日制集训机构考研,一直从事高端全日制辅导,由李海洋教授、张鑫教授、卢营教授、王洋教授、杨武金教授、张释然教授、索玉柱教授、方浩教授等一批高级考研教研队伍组成,为学员全程高质量授课、答疑、测试、督导、报考指导、方法指导、联系导师、复试等全方位的考研服务。凯程考研的宗旨:让学习成为一种习惯;

凯程考研的价值观口号:凯旋归来,前程万里; 信念:让每个学员都有好最好的归宿;

使命:完善全新的教育模式,做中国最专业的考研辅导机构; 激情:永不言弃,乐观向上;

敬业:以专业的态度做非凡的事业;

服务:以学员的前途为已任,为学员提供高效、专业的服务,团队合作,为学员服务,为学员引路。

如何选择考研辅导班:

在考研准备的过程中,会遇到不少困难,尤其对于跨专业考生的专业课来说,通过报辅导班来弥补自己复习的不足,可以大大提高复习效率,节省复习时间,大家可以通过以下几个方面来考察辅导班,或许能帮你找到适合你的辅导班。

师资力量:师资力量是考察辅导班的首要因素,考生可以针对辅导名师的辅导年限、辅导经验、历年辅导效果、学员评价等因素进行综合评价,询问往届学长然后选择。判断师资力量关键在于综合实力,因为任何一门课程,都不是由

一、两个教师包到底的,是一批教师配合的结果。还要深入了解教师的学术背景、资料著述成就、辅导成就等。凯程考研名师云集,李海洋、张鑫教授、方浩教授、卢营教授、孙浩教授等一大批名师在凯程授课。而有的机构只是很普通的老师授课,对知识点把握和命题方向,欠缺火候。

对该专业有辅导历史:必须对该专业深刻理解,才能深入辅导学员考取该校。在考研辅导班中,从来见过如此辉煌的成绩:凯程教育拿下2015五道口金融学院状元,考取五道口15

凯程考研,为学员服务,为学生引路!

人,清华经管金融硕士10人,人大金融硕士15个,中财和贸大金融硕士合计20人,北师大教育学7人,会计硕士保录班考取30人,翻译硕士接近20人,中传状元王园璐、郑家威都是来自凯程,法学方面,凯程在人大、北大、贸大、政法、武汉大学、公安大学等院校斩获多个法学和法硕状元,更多专业成绩请查看凯程网站。在凯程官方网站的光荣榜,成功学员经验谈视频特别多,都是凯程战绩的最好证明。对于如此高的成绩,凯程集训营班主任邢老师说,凯程如此优异的成绩,是与我们凯程严格的管理,全方位的辅导是分不开的,很多学生本科都不是名校,某些学生来自二本三本甚至不知名的院校,还有很多是工作了多年才回来考的,大多数是跨专业考研,他们的难度大,竞争激烈,没有严格的训练和同学们的刻苦学习,是很难达到优异的成绩。最好的办法是直接和凯程老师详细沟通一下就清楚了。

建校历史:机构成立的历史也是一个参考因素,历史越久,积累的人脉资源更多。例如,凯程教育已经成立10年(2005年),一直以来专注于考研,成功率一直遥遥领先,同学们有兴趣可以联系一下他们在线老师或者电话。

有没有实体学校校区:有些机构比较小,就是一个在写字楼里上课,自习,这种环境是不太好的,一个优秀的机构必须是在教学环境,大学校园这样环境。凯程有自己的学习校区,有吃住学一体化教学环境,独立卫浴、空调、暖气齐全,这也是一个考研机构实力的体现。此外,最好还要看一下他们的营业执照。

第五篇:2011年考研数学线性代数重点内容和典型题型分析

2011年考研数学线性代数重点内容和典型题型分析

2010年9月3日教育部考试中心发布了2011年全国硕士研究生入学统一考试数学考试大纲,试卷题型结构为:单项选择题 8小题,每小题4分,共32分;填空题6小题,每小题4分,共24分,解答题(包括证明题)9小题,共94分;均与2010年全国硕士研究生入学统一考试数学考试大纲相同。对于考生来说,不会有任何复习范围的调整之忧,可以按照自己原来的计划进行下去,那么接下来如何复习就成为考生关注的焦点。为了帮助考生有效地进行考研复习,我们认识一下考研数学线性代数部分的重点内容和典型题型。

线性代数在考研数学中占有重要地位,必须予以高度重视。线性代数试题的特点比较突出,以计算题为主,证明题为辅,因此,必须注重计算能力。线性代数在数学一、二、三中均占22%,所以考生要想取得高分,学好线代也是必要的,下面就将线代中重点内容和典型题型做了总结,希望对大家学习有帮助。

行列式在整张试卷中所占比例不是很大,一般以填空题、选择题为主,它是必考内容,不只是考察行列式的概念、性质、运算,与行列式有关的考题也不少,例如方阵的行列式、逆矩阵、向量组的线性相关性、矩阵的秩、线性方程组、特征值、正定二次型与正定矩阵等问题中都会涉及到行列式。如果试卷中没有独立的行列式的试题,必然会在其他章、节的试题中得以体现。行列式的重点内容是掌握计算行列式的方法,计算行列式的主要方法是降阶法,用按行、按列展开公式将行列式降阶。但在展开之前往往先用行列式的性质对行列式进行恒等变形,化简之后再展开。另外,一些特殊的行列式(行和或列和相等的行列式、三对角行列式、爪型行列式等等)的计算方法也应掌握。常见题型有:数字型行列式的计算、抽象行列式的计算、含参数的行列式的计算。关于每个重要题型的具体方法以及例题见《全国硕士研究生入学统一考试数学120种常考题型精讲》。

矩阵是线性代数的核心,是后续各章的基础。矩阵的概念、运算及理论贯穿线性代数的始终。这部分考点较多,重点考点有逆矩阵、伴随矩阵及矩阵方程。涉及伴随矩阵的定义、性质、行列式、逆矩阵、秩及包含伴随矩阵的矩阵方程是矩阵试题中的一类常见试题。这几年还经常出现有关初等变换与初等矩阵的命题。常见题型有以下几种:计算方阵的幂、与伴随矩阵相关联的命题、有关初等变换的命题、有关逆矩阵的计算与证明、解矩阵方程。关于每个重要题型的具体方法以及例题见《全国硕士研究生入学统一考试数学120种常考题型精讲》。

向量组的线性相关性是线性代数的重点,也是考研的重点。考生一定要吃透向量组线性相关性的概念,熟练掌握有关性质及判定法并能灵活应用,还应与线性表出、向量组的秩及线性方程组等相联系,从各个侧面加强对线性相关性的理解。常见题型有:判定向量组的线性相关性、向量组线性相关性的证明、判定一个向量能否由一向量组线性表出、向量组的秩和极大无关组的求法、有关秩的证明、有关矩阵与向量组等价的命题、与向量空间有关的命题。关于每个重要题型的具体方法以及例题见《全国硕士研究生入学统一考试数学120种常考题型精讲》。

往年考题中,方程组出现的频率较高,几乎每年都有考题,也是线性代数部分考查的重点内容。本章的重点内容有:齐次线性方程组有非零解和非齐次线性方程组有解的判定及解的结构、齐次线性方程组基础解系的求解与证明、齐次(非齐次)线性方程组的求解(含对参数取值的讨论)。主要题型有:线性方程组的求解、方程组解向量的判别及解的性质、齐次线性方程组的基础解系、非齐次线性方程组的通解结构、两个方程组的公共解、同解问题。关于每个重要题型的具体方法以及例题见《全国硕士研究生入学统一考试数学120种常考题型精讲》。

特征值、特征向量是线性代数的重点内容,是考研的重点之一,题多分值大,共有三部分重点内容:特征值和特征向量的概念及计算、方阵的相似对角化、实对称矩阵的正交相似对角化。重点题型有:数值矩阵的特征值和特征向量的求法、抽象矩阵特征值和特征向量的求法、判定矩阵的相似对角化、由特征值或特征向量反求A、有关实对称矩阵的问题。关于每个重要题型的具体方法以及例题见《全国硕士研究生入学统一考试数学120种常考题型精讲》。

由于二次型与它的实对称矩阵式一一对应的,所以二次型的很多问题都可以转化为它的实对称矩阵的问题,可见正确写出二次型的矩阵式处理二次型问题的一个基础。重点内容包括:掌握二次型及其矩阵表示,了解二次型的秩和标准形等概念;了解二次型的规范形和惯性定理;掌握用正交变换并会用配方法化二次型为标准形;理解正定二次型和正定矩阵的概念及其判别方法。重点题型有:二次型表成矩阵形式、化二次型为标准形、二次型正定性的判别。关于每个重要题型的具体方法以及例题见《全国硕士研究生入学统一考试数学120种常考题型精讲》。

下载赵达夫终极考研高等数学典型题型[范文模版]word格式文档
下载赵达夫终极考研高等数学典型题型[范文模版].doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐