第一篇:函数单调性定义证明
用函数单调性定义证明
例
1、用函数单调性定义证明:
(1)为常数)在 上是增函数.(2)在 上是减函数.分析:虽然两个函数均为含有字母系数的函数,但字母对于函数的单调性并没有影响,故无须讨论.证明:(1)设
则 是 上的任意两个实数,且,=
由 得,由
得,.于是,即即..(2)设在 是 上是增函数.上的任意两个实数,且,则
由 得,由
得
于是 即.又,..在 上是减函数.小结:由(1)中所得结论可知二次函数的单调区间只与对称轴的位置和开口方向有关,与常数 无关.若函数解析式是分式,通常变形时需要通分,将分子、分母都化成乘积的形式便于判断符号.根据单调性确定参数
例
1、函数
在上是减函数,求的取值集合.分析:首先需要对 前面的系数进行分类讨论,确定函数的类型,再做进一步研究.解:当
具备增减性.当,解得
.故所求的取值集合为
.时,函数此时为,是常数函数,在上不时,为一次函数,若在上是减函数,则有
小结:此题虽比较简单,但渗透了对分类讨论的认识与使用.
第二篇:专题:函数单调性的证明
函数单调性的证明
函数的单调性需抓住单调性定义来证明,这是目前高一阶段唯一的方法。
一、证明方法步骤为:
① 在给定区间上任取两个自变量x1、x2且x1<x2 ② 将fx1与fx2作差或作商(分母不为零)
③ 比较差值(商)与0(1)的大小 ④ 下结论,确定函数的单调性。
在做差比较时,我们常将差化为积讨论,常用因式分解(整式)、通分(分式)、有理化(无理式)、配方等手段。
二、常见的类型有两种:
(一)已知函数的解析式:
1例1:证明:函数fx=在x∈(1,+∞)单调递减
x-
1例2:证明:函数fx=x+x+1在x∈R时单调递增
3[1,+)时单调递增 例3:证明:函数fx=x-1在x∈2
例4:讨论函数fx=x+
1在(1,+)的单调性,并求最小值 x-1
例5:求函数fx= x+2的单调区间 x-1+)单调递增 练习:
1、证明函数fx=x+(a>0)在(a,2、讨论函数fx=1+x-x的单调性
2ax
(二)fx抽象函数的单调性:
抽象函数的单调性关键是抽象函数关系式的运用,同时,要注意选择作差还是作商,这一点可观察题意中与0比较,应作差;与1比较,应作商。如下三例:
例1:已知函数满足x、y∈R时,f(xy)f(x)f(y)恒成立,且当x>0时,>0.证明:f(x)在R上单调递增.例2:已知函数满足x、y∈R时,f(xy)f(x)f(y)恒成立,且当x>1时,0.证明:f(x)在(0,+∞)上单调递增.例3:已知函数满足x、y∈R时,f(xy)f(x)f(y)恒成立,且当x>1时,1.若f(x)0.证明:f(x)在(0,+∞)上单调递增.练习:
1、已知函数
fx对于任意的x、y∈R,fx+fy=fx+y,且当x>0时,fx<0;f1=-23.f(x)>f(x)>总有(1)求证:fx在R上是减函数
(2)求fx在[-3,3]上的最大值与最小值
2、已知函数fx的定义域为R,且m、n∈R,恒有fm+fn=fm+n+1,且f->-1=0,当x21时,fx>0.2(1)求证:fx是单调递增函数(2)求fx在[-2,2]的最大值与最小值.3、定义在R上的函数fx恒为正,且满足fx+y=fxfy,当x>0时,fx>1.(1)证明:fx在R上单调递增.2(2)若函数fx的定义域为[-1,1]时,解不等式fx-1>f2x
4、函数fx的定义域为R,对于任意的a、b∈R皆有fa+fb=fa+b+1,且x>0时,fx>1(1)求证:fx是R上的增函数
2(2)若f4=5,解不等式f3m-m-2<3
3
第三篇:函数的单调性证明
函数的单调性证明
一.解答题(共40小题)
1.证明:函数f(x)=在(﹣∞,0)上是减函数.
2.求证:函数f(x)=4x+在(0,)上递减,在[,+∞)上递增.
3.证明f(x)=
在定义域为[0,+∞)内是增函数.
4.应用函数单调性定义证明:函数f(x)=x+在区间(0,2)上是减函数.
第1页(共23页)
5.证明函数f(x)=2x﹣在(﹣∞,0)上是增函数.
6.证明:函数f(x)=x2+3在[0,+∞)上的单调性.
7.证明:函数y=
在(﹣1,+∞)上是单调增函数.
8.求证:f(x)=
在(﹣∞,0)上递增,在(0,+∞)上递增.
9.用函数单调性的定义证明函数y=
在区间(0,+∞)上为减函数.
第2页(共23页)
10.已知函数f(x)=x+.
(Ⅰ)用定义证明:f(x)在[2,+∞)上为增函数;(Ⅱ)若
>0对任意x∈[4,5]恒成立,求实数a的取值范围.
11.证明:函数f(x)=
在x∈(1,+∞)单调递减.
12.求证f(x)=x+的(0,1)上是减函数,在[1,+∞]上是增函数.
13.判断并证明f(x)=
在(﹣1,+∞)上的单调性.
14.判断并证明函数f(x)=x+在区间(0,2)上的单调性.
第3页(共23页)
15.求函数f(x)=的单调增区间.
16.求证:函数f(x)=﹣
﹣1在区间(﹣∞,0)上是单调增函数.
17.求函数的定义域.
18.求函数的定义域.
19.根据下列条件分别求出函数f(x)的解析式(1)f(x+)=x2+
(2)f(x)+2f()=3x.
20.若3f(x)+2f(﹣x)=2x+2,求f(x).
第4页(共23页)
21.求下列函数的解析式
(1)已知f(x+1)=x2求f(x)
(2)已知f()=x,求f(x)
(3)已知函数f(x)为一次函数,使f[f(x)]=9x+1,求f(x)
(4)已知3f(x)﹣f()=x2,求f(x)
22.已知函数y=f(x),满足2f(x)+f()=2x,x∈R且x≠0,求f(x).
第5页(共23页)
23.已知3f(x)+2f()=x(x≠0),求f(x).
24.已知函数f(x+)=x2+()2(x>0),求函数f(x).
25.已知2f(﹣x)+f(x)=3x﹣1,求f(x).
26.若2f(x)+f(﹣x)=3x+1,则求f(x)的解析式.
27.已知4f(x)﹣5f()=2x,求f(x).
28.已知函数f(+2)=x2+1,求f(x)的解析式.
第6页(共23页)
29.若f(x)满足3f(x)+2f(﹣x)=4x,求f(x)的解析式.
30.已知f(x)=ax+b且af(x)+b=9x+8,求f(x)
31.求下列函数的解析式:
(1)已知f(2x+1)=x2+1,求f(x);
(2)已知f()=,求f(x).
32.已知二次函数满足f(2x+1)=4x2﹣6x+5,求f(x)的解析式.
33.已知f(2x)=x2﹣x﹣1,求f(x).
34.已知一次函数f(x)满足f(f(f(x)))=2x﹣3,求函数f(x)的解析式.
第7页(共23页)
35.已知f(x+2)=x2﹣3x+5,求f(x)的解析式.
36.已知函数f(x﹣2)=2x2﹣3x+4,求函数f(x)的解析式.
37.若3f(x)+2f(﹣x)=2x,求f(x)
38.f(+1)=x2+2,求f(x)的解析式.
39.若函数f()=+1,求函数f(x)的解析式.
40.已知f(x﹣1)=x2﹣4x.(1)求f(x)的解析式;(2)解方程f(x+1)=0.
第8页(共23页)
第9页(共23页)
函数的单调性证明
参考答案与试题解析
一.解答题(共40小题)
1.证明:函数f(x)=在(﹣∞,0)上是减函数. 【解答】证明:设x1<x2<0,则:
;
∵x1<x2<0;
∴x2﹣x1>0,x1x2>0; ∴f(x1)>f(x2);
∴f(x)在(﹣∞,0)上是减函数.
2.求证:函数f(x)=4x+在(0,)上递减,在[,+∞)上递增. 【解答】证明:设0<x1<x2<,则f(x1)﹣f(x2)=(4x1+)﹣(4x2+)=4(x1﹣x2)+
=(x1﹣x2)(),又由0<x1<x2<,则(x1﹣x2)<0,(4x1x2﹣9)<0,(x1x2)>0,则f(x1)﹣f(x2)>0,则函数f(x)在(0,)上递减,设≤x3<x4,同理可得:f(x3)﹣f(x4)=(x3﹣x4)(又由≤x3<x4,第10页(共23页)),则(x3﹣x4)<0,(4x3x4﹣9)>0,(x1x2)>0,则f(x3)﹣f(x4)<0,则函数f(x)在[,+∞)上递增.
3.证明f(x)=在定义域为[0,+∞)内是增函数.
【解答】证明:设x1,x2∈[0,+∞),且x1<x2,则:
=∵x1,x2∈[0,+∞),且x1<x2; ∴∴f(x1)<f(x2);
∴f(x)在定义域[0,+∞)上是增函数.
4.应用函数单调性定义证明:函数f(x)=x+在区间(0,2)上是减函数. 【解答】证明:任取x1,x2∈(0,2),且x1<x2,则f(x1)﹣f(x2)=
﹣(=
;
;
因为0<x1<x2<2,所以x1﹣x2<0,x1x2<4,所以f(x1)﹣f(x2)>0,即f(x1)>f(x2),所以f(x)=x+在(0,2)上为减函数.
5.证明函数f(x)=2x﹣在(﹣∞,0)上是增函数. 【解答】解:设x1<x2<0,∴f(x1)﹣f(x2)=2x1﹣﹣2x2+
=(x1﹣x2)(2+∵x1<x2<0,),第11页(共23页)
∴x1﹣x2<0,2+
>0,∴f(x1)﹣f(x2)<0,即:f(x1)<f(x2),∴函数f(x)=2x﹣在(﹣∞,0)上是增函数.
6.证明:函数f(x)=x2+3在[0,+∞)上的单调性. 【解答】解:任取0≤x1<x2,则f(x1)﹣f(x2)==(x1+x2)(x1﹣x2)
因为0≤x1<x2,所以x1+x2>0,x1﹣x2<0,故原式f(x1)﹣f(x2)<0,即f(x1)<f(x2),所以原函数在[0,+∞)是单调递增函数.
7.证明:函数y=
在(﹣1,+∞)上是单调增函数.
=1﹣
在在区间(﹣1,+∞),【解答】解:∵函数f(x)=可以设﹣1<x1<x2,可得f(x1)﹣f(x2)=1﹣∵﹣1<x1<x2<0,﹣1+=
∴x1+1>0,1+x2>0,x1﹣x2<0,∴<0
∴f(x1)<f(x2),∴f(x)在区间(﹣∞,0)上为增函数;
8.求证:f(x)=在(﹣∞,0)上递增,在(0,+∞)上递增.
第12页(共23页)
【解答】证明:设x1<x2,则f(x1)﹣f(x2)=﹣∵x1<x2,∴x1﹣x2<0,﹣(﹣)=﹣=,∴若x1<x2<0,则x1x2>0,此时f(x1)﹣f(x2)<0,即f(x1)<f(x2),此时函数单调递增.
若0<x1<x2,则x1x2>0,此时f(x1)﹣f(x2)<0,即f(x1)<f(x2),此时函数单调递增. 即f(x)=
9.用函数单调性的定义证明函数y=【解答】解:∵函数y=可以设0<x1<x2,可得f(x1)﹣f(x2)=∴f(x1)>f(x2),∴f(x)在区间(﹣∞,0)上为减函数;
10.已知函数f(x)=x+.
(Ⅰ)用定义证明:f(x)在[2,+∞)上为增函数;(Ⅱ)若>0对任意x∈[4,5]恒成立,求实数a的取值范围.
﹣
=
>0,在区间(0,+∞)上为减函数. 在(﹣∞,0)上递增,在(0,+∞)上递增.
在区间(0,+∞),【解答】(Ⅰ)证明:任取x1,x2∈[2,+∞),且x1<x2,则f(x1)﹣f(x2)=(x1+)﹣(x2+)=,∵2≤x1<x2,所以x1﹣x2<0,x1x2>4,∴f(x1)﹣f(x2)<0,即f(x1)<f(x2),∴f(x)=x+在[2,+∞)上为增函数;(Ⅱ)解:∵>0对任意x∈[4,5]恒成立,第13页(共23页)
∴x﹣a>0对任意x∈[4,5]恒成立,∴a<x对任意x∈[4,5]恒成立,∴a<4.
11.证明:函数f(x)=
在x∈(1,+∞)单调递减.
【解答】证明:设x1>x2>1,则:
;
∵x1>x2>1;
∴x2﹣x1<0,x1﹣1>0,x2﹣1>0; ∴即f(x1)<f(x2);
∴f(x)在x∈(1,+∞)单调递减.
12.求证f(x)=x+的(0,1)上是减函数,在[1,+∞]上是增函数. 【解答】证明:①在(0,1)内任取x1,x2,令x1<x2,则f(x1)﹣f(x2)=(=(x1﹣x2)+=(x1﹣x2)(1﹣
;)﹣()),∵x1,x2∈(0,1),x1<x2,∴x1﹣x2<0,1﹣
<0,∴f(x1)﹣f(x2)>0,∴f(x)=x+在(0,1)上是减函数. ②在[1,+∞)内任取x1,x2,令x1<x2,则f(x1)﹣f(x2)=()﹣()
第14页(共23页)
=(x1﹣x2)+=(x1﹣x2)(1﹣),∵x1,x2∈[1,+∞),x1<x2,∴x1﹣x2<0,1﹣
>0,∴f(x1)﹣f(x2)<0,∴f(x)=x+在[1,+∞]上是增函数.
13.判断并证明f(x)=【解答】解:f(x)=证明如下:
在(﹣1,+∞)上任取x1,x2,令x1<x2,f(x1)﹣f(x2)=
﹣
=,在(﹣1,+∞)上的单调性. 在(﹣1,+∞)上的单调递减.
∵x1,x2∈(﹣1+∞),x1<x2,∴x2﹣x1>0,x1+1>0,x2+1>0,∴f(x1)﹣f(x2)>0,∴f(x)=
14.判断并证明函数f(x)=x+在区间(0,2)上的单调性. 【解答】解:任意取x1,x2∈(0,2)且0<x1<x2<2 f(x1)﹣f(x2)=x1+∵0<x1<x2<2
∴x1﹣x2<0,0<x1x2<4,即x1x2﹣4<0,∴f(x1)﹣f(x2)>0,即f(x1)>f(x2).
第15页(共23页)
在(﹣1,+∞)上的单调递减.
﹣x2﹣=(x1﹣x2)+
﹣
=(x1﹣x2),所以f(x)在(0,2)上是单调减函数.
15.求函数f(x)=的单调增区间.
=1﹣的单调递增区间为【解答】解:根据反比例函数的性质可知,f(x)=(﹣∞,0),(0,+∞)
故答案为:(﹣∞,0),(0,+∞)
16.求证:函数f(x)=﹣
﹣1在区间(﹣∞,0)上是单调增函数.
【解答】证明:设x1<x2<0,则:
;
∵x1<x2<0;
∴x1﹣x2<0,x1x2>0; ∴;
∴f(x1)<f(x2);
∴f(x)在区间(﹣∞,0)上是单调增函数.
17.求函数的定义域.
【解答】解:根据题意,得,解可得,故函数的定义域为2≤x<3和3<x<5.
18.求函数的定义域.
第16页(共23页)
【解答】解:由故函数定义域为{x|x<}
.
19.根据下列条件分别求出函数f(x)的解析式(1)f(x+)=x2+
(2)f(x)+2f()=3x. 【解答】解:(1)f(x+)=x2+
=(x+)2﹣2,即f(x)=x2﹣2,(x>2或x<﹣2)(2)∵f(x)+2f()=3x,∴f()+2f(x)=,消去f()得f(x)=﹣x.
20.若3f(x)+2f(﹣x)=2x+2,求f(x). 【解答】解:∵3f(x)+2f(﹣x)=2x+2…①,用﹣x代替x,得:
3f(﹣x)+2f(x)=﹣2x+2…②; ①×3﹣②×2得:
5f(x)=(6x+6)﹣(﹣4x+4)=10x+2,∴f(x)=2x+.
21.求下列函数的解析式(1)已知f(x+1)=x2求f(x)(2)已知f()=x,求f(x)
(3)已知函数f(x)为一次函数,使f[f(x)]=9x+1,求f(x)(4)已知3f(x)﹣f()=x2,求f(x)
【解答】解:(1)∵已知f(x+1)=x2,令x+1=t,可得x=t﹣1,∴f(t)=(t﹣
第17页(共23页)
1)2,∴f(x)=(x﹣1)2.(2)∵已知f()=x,令
=t,求得 x=,∴f(t)=,∴f(x)=
.
(3)已知函数f(x)为一次函数,设f(x)=kx+b,k≠0,∵f[f(x)]=kf(x)+b=k(kx+b)+b=9x+1,∴k=3,b=,或k=﹣3,b=﹣,求 ∴f(x)=3x+,或f(x)=﹣3x﹣.
(4)∵已知3f(x)﹣f()=x2①,∴用代替x,可得3f()﹣f(x)=由①②求得f(x)=x2+
22.已知函数y=f(x),满足2f(x)+f()=2x,x∈R且x≠0,求f(x). 【解答】解:∵2f(x)+f()=2x① 令x=,则2f()+f(x)=②,①×2﹣②得: 3f(x)=4x﹣,∴f(x)=x﹣
23.已知3f(x)+2f()=x(x≠0),求f(x). 【解答】解:∵3f(x)+2f()=x,① 等号两边同时以代x,得:3f()+2f(x)=,② 由①×3﹣2×②,解得 5f(x)=3x﹣,∴函数f(x)的解析式:f(x)=x﹣
24.已知函数f(x+)=x2+()2(x>0),求函数f(x).
第18页(共23页)
②,.
.
(x≠0).
【解答】解:∵x>0时,x+≥2且函数f(x+)=x2+()2=设t=x+,(t≥2); ∴f(t)=t2﹣2;
即函数f(x)=x2﹣2(其中x≥2).
=2,﹣2;
25.已知2f(﹣x)+f(x)=3x﹣1,求f(x). 【解答】解:∵2f(﹣x)+f(x)=3x﹣1,∴2f(x)+f(﹣x)=﹣3x﹣1,联立消去f(﹣x),可得f(x)=﹣3x﹣.
26.若2f(x)+f(﹣x)=3x+1,则求f(x)的解析式. 【解答】解:∵2f(x)+f(﹣x)=3x+1…①,用﹣x代替x,得:
2f(﹣x)+f(x)=﹣3x+1…②; ①×2﹣②得:
3f(x)=(6x+2)﹣(﹣3x+1)=9x+1,∴f(x)=3x+.
27.已知4f(x)﹣5f()=2x,求f(x). 【解答】解:∵4f(x)﹣5f()=2x…①,∴4f()﹣5f(x)=…②,①×4+②×5,得:﹣9f(x)=8x+∴f(x)=﹣x﹣
第19页(共23页),.
28.已知函数f(【解答】解:令t=则由f(+2)=x2+1,求f(x)的解析式. +2,(t≥2),x=(t﹣2)2.
+2)=x2+1,得f(t)=(t﹣2)4+1.
∴f(x)=(x﹣2)4+1(x≥2).
29.若f(x)满足3f(x)+2f(﹣x)=4x,求f(x)的解析式. 【解答】解:f(x)满足3f(x)+2f(﹣x)=4x,…①,可得3f(﹣x)+2f(x)=﹣4x…②,①×3﹣②×2可得:5f(x)=20x. ∴f(x)=4x.
f(x)的解析式:f(x)=4x.
30.已知f(x)=ax+b且af(x)+b=9x+8,求f(x)【解答】解:∵f(x)=ax+b且af(x)+b=9x+8,∴a(ax+b)+b=9x+8,即a2x+ab+b=9x+8,即,解得a=3或a=﹣3,若a=3,则4b=8,解得b=2,此时f(x)=3x+2,若a=﹣3,则﹣2b=8,解得b=﹣4,此时f(x)=3x﹣4.
31.求下列函数的解析式:
(1)已知f(2x+1)=x2+1,求f(x);(2)已知f()=,求f(x).
【解答】解:(1)令2x+1=t,则x=(t﹣1),∴f(t)=(t﹣1)2+1,第20页(共23页)
∴f(x)=(x﹣1)2+1;(2)令m=(m≠0),则x=,∴f(m)==,∴f(x)=(x≠0).
32.已知二次函数满足f(2x+1)=4x2﹣6x+5,求f(x)的解析式. 【解答】解:(1)令2x+1=t,则x=则f(t)=4()2﹣6•
;
+5=t2﹣5t+9,故f(x)=x2﹣5x+9.
33.已知f(2x)=x2﹣x﹣1,求f(x). 【解答】解:令t=2x,则x=t,∴f(t)=t2﹣t﹣1,∴f(x)=x2﹣x﹣1.
34.已知一次函数f(x)满足f(f(f(x)))=2x﹣3,求函数f(x)的解析式. 【解答】解:设f(x)=ax+b,∴f(f(x)=a(ax+b)+b,∴f(f(f(x))))=a[a(ax+b)+b]+b=2x﹣3,∴,解得:,∴f(x)= x﹣.
第21页(共23页)
35.已知f(x+2)=x2﹣3x+5,求f(x)的解析式. 【解答】解:f(x+2)=x2﹣3x+5,设x+2=t,则x=t﹣2,∴f(t)=(t﹣2)2﹣3(t﹣2)+5=t2﹣7t+15,∴f(x)=x2﹣7x+15.
36.已知函数f(x﹣2)=2x2﹣3x+4,求函数f(x)的解析式. 【解答】解:令x﹣2=t,则x=t+2,代入原函数得 f(t)=2(t+2)2﹣3(t+2)+4=2t2+5t+6 则函数f(x)的解析式为f(x)=2x2+5x+6
37.若3f(x)+2f(﹣x)=2x,求f(x)【解答】解:∵3f(x)+2f(﹣x)=2x…①,用﹣x代替x,得:
3f(﹣x)+2f(x)=﹣2x…②; ①×3﹣②×2得:
5f(x)=6x﹣(﹣4x)=10x,∴f(x)=2x.
38.f(+1)=x2+2,求f(x)的解析式.
【解答】解:设∴x=(t﹣1)2; ∵f(+1)=x2+2+1=t,则t≥1,∴f(t)=(t﹣1)4+2(t﹣1),∴f(x)=(x﹣1)4+2(x﹣1),x∈[1,+∞).
39.若函数f(【解答】解:令)=
+1,求函数f(x)的解析式.
=t(t≠1),则=t﹣1,第22页(共23页)
∴f(t)=2+(t﹣1)2=t2﹣2t+3,∴f(x)=x2﹣2x+3(x≠1).
40.已知f(x﹣1)=x2﹣4x.(1)求f(x)的解析式;(2)解方程f(x+1)=0.
【解答】解:(1)变形可得f(x﹣1)=(x﹣1)2﹣2(x﹣1)﹣∴f(x)的解析式为f(x)=x2﹣2x﹣3;
(2)方程f(x+1)=0可化为(x+1)2﹣2(x+1)﹣3=0,化简可得x2﹣4=0,解得x=2或x=﹣2
第23页(共23页)
3,
第四篇:函数单调性
函数单调性概念教学的三个关键点 ──兼谈《函数单调性》的教学设计
北京教育学院宣武分院 彭 林
函数单调性是学生进入高中后较早接触到的一个完全形式化的抽象定义,对于仍然处于经验型逻辑思维发展阶段的高一学生来讲,有较大的学习难度。一直以来,这节课也都是老师教学的难点。最近,在我区“青年教师评优课”上,听了多名教师对这节课不同风格的课堂教学,通过对他们教学案例的研究和思考,笔者认为,在函数单调性概念的教学中,关键是把握住如下三个关键点。
关键点1。学生 学习函数单调性的认知基础是什么?
在这个内容之前,已经教学过一次函数、二次函数、反比例函数等简单函数,函数的变量定义和映射定义,以及函数的表示。对函数是一个刻画某些运动变化数量关系的数学概念,也已经形成初步认识。接踵而来的任务是对函数应该继续研究什么。在数学研究中,建立一个数学概念的意义就是揭示它的本质特征,即共同属性或不变属性。对各种函数模型而言,就是研究它们所描述的运动关系的变化规律,也就是这些运动关系在变化之中的共同属性或不变属性,即“变中不变”的性质。按照这种科学研究的思维方式,使得当前来讨论函数的一些性质,就成为顺理成章的、必要的和有意义的数学活动。至于在多种函数性质中,选择这个时机来讨论函数的单调性而不是其他性质,是因为函数的单调性是学生从已经学习的函数中比较容易发现的一个性质。
就中小学生与单调性相关的经历而言,学生认识函数单调性可以分为四个阶段: 第一阶段,经验感知阶段(小学阶段),知道一个量随另一个量的变化而变化的具体情境,如“随着年龄的增长,我的个子越来越高”,“我认识的字越多,我的知识就越多”等。
第二阶段,形象描述阶段(初中阶段),能用抽象的语言描述一个量随另一个量变化的趋势,如“y随着x的增大而减少”。
第三阶段,抽象概括阶段(高中必修1),能进行脱离具体和直观对象的抽象化、符号化的概括,并通过具体函数,初步体会单调性在研究函数变化中的作用。
第四阶段,认识提升阶段(高中选修系列1、2),要求学生能初步认识导数与单调性的联系。
基于上述认识,函数单调性教学的引入应该从学生的已有认知出发,建立在学生初中已学的一次函数、二次函数以及反比例函数的基础上,即从学生熟悉的常见函数的图象出发,直观感知函数的单调性,完成对函数单调性定义的第一次认识.。
让学生分别作出函数数值有什么变化规律? 的图象,并且观察自变量变化时,函在学生画图的基础上,引导学生观察图象,获得信息:第一个图象从左向右逐渐上升,y随x的增大而增大;第二个图象从左向右逐渐下降,y随x的增大而减小.然后让学生明确,对于自变量变化时,函数值具有这两种变化规律的函数,我们分别称为增函数和减函数.第三个函数图象的上升与下降要分段说明,通过讨论使学生明确函数的单调性是对定义域内某个区间而言的.
在此基础上,教师引导学生用自己的语言描述增函数的定义: 如果函数在某个区间上的图象从左向右逐渐上升,或者如果函数
在某个区间上随自变量x的增大,y也越来越大,我们说函数在该区间上为增函数.
关键点2。为什么要用数学的符号语言定义函数的单调性概念?
对于函数单调性概念的教学而言,有一个很重要的问题,即为什么要进一步形式化。学生在初中已经接触过一次函数、反比例函数、二次函数,对函数的增减性已有初步的认识:随x增大y增大是增函数,随x增大y 减小是减函数。这个观念对他们而言是易于接受的,很形象,他们会觉得这样的定义很好,为什么还要费神去进行符号化呢?如果教师能通过教学设计,让学生感受到进一步符号化、形式化的必要性,造成认知冲突,则学生研究的兴趣就会大大提高,主动性也会更强。其实,数学概念就是一系列常识不断精微化的结果,之所以要进一步形式化,完全是数学精确性、严密性的要求,因为只有达到这种符号化、形式化的程度,才可以进行准确的计算,进行推理论证。
所以,在教学中提出类似如下的问题是非常必要的:
右图是函数函数吗? 的图象,能说出这个函数分别在哪个区间为增函数和减
对于这个问题,学生的困难是难以确定分界点的确切位置.通过讨论,使学生感受到用函数图象判断函数单调性虽然比较直观,但有时不够精确,需要结合解析式进行严密化、精确化的研究,使学生体会到用数量大小关系严格表述函数单调性的必要性,从而将函数的单调性研究从研究函数图象过渡到研究函数的解析式.关键点3:如何用形式化的语言定义函数的单调性?
从数学学科这个整体来看,数学的高度抽象性造成了数学的难懂、难教、难学,解决这一问题的基本途径是顺应学习者的认知规律:在需要和可能的情况下,尽量做到从直观入手,从具体开始,逐步抽象,即数学的思考方式。恰当运用图形语言、自然语言和符号化的形式语言,并进行三者之间必要的转化,可以说,这是学习数学的基本思考方式。而函数单调性这一内容正是体现数学基本思考方式的一个良好载体,教学中应该充分关注到这一点。长此以往,便可使学生在学习知识的同时,学到比知识更重要的东西—学会如何思考?如何进行数学的思考?
一般说,对函数单调性的建构有两个重要过程,一是建构函数单调性的意义,二是通过思维构造把这个意义用数学的形式化语言加以描述。对函数单调性的意义,学生通过对若干函数图象的观察并不难认识,因此,前一过程的建构学习相对比较容易进行。后一过程的进行则有相当的难度,其难就难在用数学的符合语言来描述函数单调性的定义时,如何才能最大限度地通过学生自己的思维活动来完成。这其中有两个难点:
(1)“x增大”如何用符号表示;同样,“f(x)增大”如何用符号表示。(2)“‘随着’x增大,函数f(x)‘也’增大”,如何用符号表示。
用数学符号描述这两种数学意义的最大要害之处,在于要用数学的符号来描述动态的数学对象。
在初中数学中,除了学习函数的初级概念,用y=f(x)表示函数y随着自变量x的变化而变化时,接触到一点动态数学对象的数学符号表示以外,绝大多数都是用数学符号表示静态的数学对象。因此,从用静态的数学符号描述静态的数学对象,到用静态的符号语言刻画动态数学对象,在思维能力层次上存在重大差异,对刚刚由初中进入高中学习的学生而言,无疑是一个很大的挑战!
因此,在教学中可以提出如下问题2: 如何从解析式的角度说明
在上为增函数?
这个问题是形成函数单调性概念的关键。在教学中,教师可以组织学生先分组探究,然后全班交流,相互补充,并及时对学生的发言进行反馈、评价,对普遍出现的问题组织学生讨论,在辨析中达成共识.对于问题2,学生错误的回答主要有两种:
①在给定区间内取两个数,例如1和2,因为函数. ,所以
在上为增②可以用0,1,2,3,4,5验证: 在所以函数上是增函数。
对于这两种错误,教师要引导学生进一步展开思考。例如,指出回答②试图用自然数列来验证结论,而且引入了不等式表示不等关系,但是,只是对有限几个自然数验证不行,只有当所有的比较结果都是一样的:自变量大时,函数值也大,才可以证明它是增函数,那么怎么办?如果有的学生提出:引入非负实数a,只要证明
就可以了,这就把验证的范围由有限扩大到了无限。教师应适时指出这种验证也有局限性,然后再让学生思考怎样做才能实现“任意性”就有坚实的基础了。也就是,从给定的区间内任意取两个自变量,然后求差比较函数值的大小,从而得到正确的回答: 任意取在,有为增函数. ,即,所以这种回答既揭示了单调性的本质,也让学生领悟到两点:(1)两自变量的取值具有任意性;(2)求差比较它们函数值的大小。至此,学生对函数单调性有了理性的认识.在前面研究的基础上,引导学生归纳、抽象出函数单调性的定义,使学生经历从特殊到一般,从具体到抽象的认知过程。
教学中,教师引导学生用严格的数学符号语言归纳、抽象增函数的定义,并让学生类比得到减函数的定义.然后指导学生认真阅读教材中有关单调性的概念,对定义中关键的地方进行强调.同时设计了一组判断题:
判断题:
①②若函数③若函数满足f(2) 和(2,3)上均为增函数,则函数在(1,3)上为增函数.④因为函数减函数.在上都是减函数,所以在上是通过对判断题的讨论,强调三点: ①单调性是对定义域内某个区间而言的,离开了定义域和相应区间就谈不上单调性. ②有的函数在整个定义域内单调(如一次函数),有的函数只在定义域内的某些区间单调(如二次函数),有的函数根本没有单调区间(如常函数). ③函数在定义域内的两个区间A,B上都是增(或减)函数,一般不能认为函数在上是增(或减)函数. 从而加深学生对定义的理解 北京4中常规备课 【教学目标】 1.使学生从形与数两方面理解函数单调性的概念,初步掌握利用函数图象和单调性定义判断、证明函数单调性的方法. 2.通过对函数单调性定义的探究,渗透数形结合数学思想方法,培养学生观察、归纳、抽象的能力和语言表达能力;通过对函数单调性的证明,提高学生的推理论证能力. 3.通过知识的探究过程培养学生细心观察、认真分析、严谨论证的良好思维习惯,让学生经历从具体到抽象,从特殊到一般,从感性到理性的认知过程. 【教学重点】 函数单调性的概念、判断及证明. 【教学难点】 归纳抽象函数单调性的定义以及根据定义证明函数的单调性. 【教学方法】 教师启发讲授,学生探究学习. 【教学手段】 计算机、投影仪. 【教学过程】 一、创设情境,引入课题 课前布置任务: (1)由于某种原因,2008年北京奥运会开幕式时间由原定的7月25日推迟到8月8日,请查阅资料说明做出这个决定的主要原因.(2)通过查阅历史资料研究北京奥运会开幕式当天气温变化情况.课上通过交流,可以了解到开幕式推迟主要是天气的原因,北京的天气到8月中旬,平均气温、平均降雨量和平均降雨天数等均开始下降,比较适宜大型国际体育赛事.下图是北京市今年8月8日一天24小时内气温随时间变化的曲线图.引导学生识图,捕捉信息,启发学生思考. 问题:观察图形,能得到什么信息? 预案:(1)当天的最高温度、最低温度以及何时达到;(2)在某时刻的温度; (3)某些时段温度升高,某些时段温度降低.在生活中,我们关心很多数据的变化规律,了解这些数据的变化规律,对我们的生活是很有帮助的. 问题:还能举出生活中其他的数据变化情况吗? 预案:水位高低、燃油价格、股票价格等. 归纳:用函数观点看,其实就是随着自变量的变化,函数值是变大还是变小. 〖设计意图〗由生活情境引入新课,激发兴趣. 二、归纳探索,形成概念 对于自变量变化时,函数值是变大还是变小,初中同学们就有了一定的认识,但是没有严格的定义,今天我们的任务首先就是建立函数单调性的严格定义.1.借助图象,直观感知 问题1: 分别作出函数数值有什么变化规律? 的图象,并且观察自变量变化时,函 预案:(1)函数 在整个定义域内 y随x的增大而增大;函数 在整个定义域内 y随x的增大而减小. (2)函数在上 y随x的增大而增大,在上y随x的增大而减小. (3)函数 在上 y随x的增大而减小,在上y随x的增大而减小. 引导学生进行分类描述(增函数、减函数).同时明确函数的单调性是对定义域内某个区间而言的,是函数的局部性质. 问题2:能不能根据自己的理解说说什么是增函数、减函数? 预案:如果函数 在某个区间上随自变量x的增大,y也越来越大,我们说函数 在某个区间上随自变量x的增大,y越来越小,我们在该区间上为增函数;如果函数说函数在该区间上为减函数. 教师指出:这种认识是从图象的角度得到的,是对函数单调性的直观,描述性的认识. 【设计意图】从图象直观感知函数单调性,完成对函数单调性的第一次认识. 2.探究规律,理性认识 问题1:下图是函数和减函数吗? 的图象,能说出这个函数分别在哪个区间为增函数 学生的困难是难以确定分界点的确切位置. 通过讨论,使学生感受到用函数图象判断函数单调性虽然比较直观,但有时不够精确,需要结合解析式进行严密化、精确化的研究. 〖设计意图〗使学生体会到用数量大小关系严格表述函数单调性的必要性. 问题2:如何从解析式的角度说明 在为增函数? 22预案:(1)在给定区间内取两个数,例如1和2,因为1<2,所以为增函数. (2)仿(1),取很多组验证均满足,所以(3)任取,所以 在,因为 为增函数. 在为增函数. 在,即对于学生错误的回答,引导学生分别用图形语言和文字语言进行辨析,使学生认识到问题的根源在于自变量不可能被穷举,从而引导学生在给定的区间内任意取两个自变量. 【设计意图】把对单调性的认识由感性上升到理性认识的高度,完成对概念的第二次认识.事实上也给出了证明单调性的方法,为证明单调性做好铺垫.3.抽象思维,形成概念 问题:你能用准确的数学符号语言表述出增函数的定义吗? 师生共同探究,得出增函数严格的定义,然后学生类比得出减函数的定义.(1)板书定义(2)巩固概念 判断题: ①. ②若函数 ③若函数 在区间 和(2,3)上均为增函数,则函数 在区间(1,3)上为增函 . ④因为函数在区间上是减函数.上都是减函数,所以在 通过判断题,强调三点: ①单调性是对定义域内某个区间而言的,离开了定义域和相应区间就谈不上单调性. ②对于某个具体函数的单调区间,可以是整个定义域(如一次函数),可以是定义域内某个区间(如二次函数),也可以根本不单调(如常函数). ③函数在定义域内的两个区间A,B上都是增(或减)函数,一般不能认为函数在上是增(或减)函数. 思考:如何说明一个函数在某个区间上不是单调函数? 【设计意图】让学生由特殊到一般,从具体到抽象归纳出单调性的定义,通过对判断题的辨析,加深学生对定义的理解,完成对概念的第三次认识.三、掌握证法,适当延展 例 证明函数 在上是增函数. 1.分析解决问题 针对学生可能出现的问题,组织学生讨论、交流. 证明:任取 ,设元 求差 变形,断号 ∴ ∴ 即 ∴函数 2.归纳解题步骤 在上是增函数. 定论 引导学生归纳证明函数单调性的步骤:设元、作差、变形、断号、定论. 练习:证明函数 问题:要证明函数 在区间 上是增函数,除了用定义来证,如果可以证得对 在上是增函数. 任意的,且有可以吗? 引导学生分析这种叙述与定义的等价性.让学生尝试用这种等价形式证明函数在 〖设计意图〗初步掌握根据定义证明函数单调性的方法和步骤.等价形式进一步发展可以得到导数法,为用导数方法研究函数单调性埋下伏笔. 四、归纳小结,提高认识 学生交流在本节课学习中的体会、收获,交流学习过程中的体验和感受,师生合作共同完成小结. 1.小结 (1)概念探究过程:直观到抽象、特殊到一般、感性到理性.(2)证明方法和步骤:设元、作差、变形、断号、定论.(3)数学思想方法和思维方法:数形结合,等价转化,类比等. 2.作业 书面作业:课本第60页习题2.3 第4,5,6题. 课后探究:(1)证明:函数 在区间 上是增函数的充要条件是对任意的上是增函数.,且 有. (2)研究函数的单调性,并结合描点法画出函数的草图. 《函数的单调性》教学设计说明 一、教学内容的分析 函数的单调性是学生在了解函数概念后学习的函数的第一个性质,是函数学习中第一个用数学符号语言刻画的概念,为进一步学习函数其它性质提供了方法依据. 对于函数单调性,学生的认知困难主要在两个方面:(1)要求用准确的数学符号语言去刻画图象的上升与下降,这种由形到数的翻译,从直观到抽象的转变对高一的学生是比较困难的;(2)单调性的证明是学生在函数内容中首次接触到的代数论证内容,而学生在代数方面的推理论证能力是比较薄弱的.根据以上的分析和教学大纲的要求,确定了本节课的重点和难点. 二、教学目标的确定 根据本课教材的特点、教学大纲对本节课的教学要求以及学生的认知水平,从三个不同的方面确定了教学目标,重视单调性概念的形成过程和对概念本质的认识;强调判断、证明函数单调性的方法的落实以及数形结合思想的渗透;突出语言表达能力、推理论证能力的培养和良好思维习惯的养成. 三、教学过程的设计 为达到本节课的教学目标,突出重点,突破难点,教学上采取了以下的措施:(1)在探索概念阶段, 让学生经历从直观到抽象、从特殊到一般、从感性到理性的认知过程,完成对单调性定义的三次认识,使得学生对概念的认识不断深入. (2)在应用概念阶段,通过对证明过程的分析,帮助学生掌握用定义证明函数单调性的方法和步骤. (3)考虑到我校学生数学基础较好、思维较为活跃的特点,对判断方法进行适当的延展,加深对定义的理解,同时也为用导数研究单调性埋下伏笔. 复合函数的单调性的证明 例 1、已知函数yf(x)与yg(x)的定义域都是R,值域分别是0,与,0,在R上f(x)是增函数而g(x)是减函数,求证:F(x)f(x)g(x)在R上为减函数.分析:证明的依据应是减函数的定义.证明:设x1,x2是R上的任意两个实数,且x1x2,则F(x1)F(x2)f(x1)g(x1)f(x2)g(x2) f(x1)g(x1)f(x1)g(x2)f(x1)g(x2)f(x2)g(x2)f(x1)g(x1)g(x2)g(x2)f(x1)f(x2) f(x)是R上的增函数,g(x)是R上的减函数,且x1x2.f(x1)f(x2),g(x1)g(x2)即f(x1)f(x2)0,g(x1)g(x2)0.又f(x)的值域为0,,g(x)的值域为,0,f(x1)0,g(x2)0.F(x1)F(x2)0即F(x1)F(x2) F(x)在R上为减函数.小结:此题涉及抽象函数的有关证明,要求较高,此外在F(x1)F(x2)的变形中涉及到增减项的技巧,它也应是源于单调性只能比较同一个函数的某两个函数值,必须构造出f(x1)与f(x2)的差和g(x1)与g(x2)的差.第五篇:复合函数的单调性的证明