实验 验证牛顿第二定律

时间:2019-05-12 22:19:04下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《实验 验证牛顿第二定律》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《实验 验证牛顿第二定律》。

第一篇:实验 验证牛顿第二定律

第三单元 实验:验证牛顿第二定律

1.在“验证牛顿第二定律”的实验中,以下做法正确的是()

A.平衡摩擦力时,应将小盘用细绳通过定滑轮系在小车上

B.每次改变小车的质量时,不需要重新平衡摩擦力

C.实验时,先放开小车,再接通打点计时器的电源

D.求小车运动的加速度时,可用天平测出小盘和砝码的质量(M′和m′)以及小车质量M,直接

M′+m′用公式a求出 M

2.在“验证牛顿第二定律”的实验中,按实验要求装置好器材后,应按一定步骤进行实验,下述操作步骤的安排顺序不尽合理,请将合理的顺序以字母代号填写在下面的横线上: ____________________.A.保持小盘和砝码的质量不变,在小车里加砝码,测出加速度,重复几次

B.保持小车质量不变,改变小盘和砝码的质量,测出加速度,重复几次

C.用天平测出小车和小盘的质量

D.平衡摩擦力,使小车近似做匀速直线运动

E.挂上小盘,放进砝码,接通打点计时器的电源,放开小车,在纸带上打下一系列的点

1F.根据测量的数据,分别画出a-F和a-的图线 M

3.(2010·泰安模拟)为了探究加速度与力的关系,使用如图3-3-9所示的气垫导轨装置进行实验.其中G1、G2为两个光电门,它们与数字计时器相连,当滑行器通过G1、G2光电门时,光束被遮挡的时间Δt1、Δt2都可以被测量并记录,滑行器连同上面固定的一条形挡光片的总质量为M,挡光片宽度为D,光电门间距离为x,牵引砝码的质量为m.回答下列问题:

(1)实验开始应先调节气垫导轨下面的螺钉,使气垫导轨水平,在不增加其他仪器的情况下,如何判定调节是否到位?

答:__________________________________________________________________

(2)若取M=0.4 kg,改变m的值,进行多次实验,以下m的取值不合适的一个是________________________________________________________________.

A.m1=5 gB.m2=15 g

C.m3=40 gD.m4=400 g

(3)在此实验中,需要测得每一个牵引力对应的加速度,其中求得的加速度的表达式为:________________________________________________________________________

(用Δt1、Δt2、D、x表示).

4.(2009·上海高考)如图所示为“用DIS(位移传感器、数据采集器、计算机)研究加速度和力的关系”的实验装置.

(1)在该实验中必须采用控制变量法,应保持________不变,用钩码所受的重力作为________,用DIS

测小车的加速度.

(2)改变所挂钩码的数量,多次重复测量.在某次实验中根据测得的多组数据可画出a-F关系图线(如

图所示).

①分析此图线的OA段可得出的实验结论是

________________________________________________________________________

________________________________________________________________________.②(单选题)此图线的AB段明显偏离直线,造成此误差的主要原因是()

A.小车与轨道之间存在摩擦B.导轨保持了水平状态

C.所挂钩码的总质量太大D.所用小车的质量太大

5.如图所示的实验装置可以验证牛顿运动定律,小车上固定一个盒子,盒子内盛有沙子.沙桶的总质量(包括桶以及桶内沙子质量)记为m,小车的总质量(包括车、盒子及盒内沙子质量)记为M

.(1)验证在质量不变的情况下,加速度与合外力成正比:从盒子中取出一些沙子,装入沙桶中,称量并记录沙桶的总重力mg,将该力视为合外力F,对应的加速度a则从打下的纸带中计算得出.多次改变合外力F的大小,每次都会得到一个相应的加速度.本次实验中,桶内的沙子取自小车中,故系统的总质量不变.以合外力F为横轴,以加速度a为纵轴,画出a-F图象,图象是一条过原点的直线. ①a-F图象斜率的物理意义是

_______________________________________________________________________.

②你认为把沙桶的总重力mg当作合外力F是否合理?

答:________.(填“合理”或“不合理”)

③本次实验中,是否应该满足M≫m这样的条件?

答:________(填“是”或“否”);

理由是_________________________________________________________.

(2)验证在合外力不变的情况下,加速度与质量成反比:保持桶内沙子质量m不变,在盒子内添加或去掉一些沙子,验证加速度与质量的关系.本次实验中,桶内的沙子总质量不变,故系统所受的合外力不变.用图象法处理数据时,以加速度a为纵横,应该以______倒数为横轴.

6.如下图所示,是某次利用气垫导轨探究加速度与力、质量关系的实验装置安装完毕后的示意图,图中A为砂桶和砂,B为定滑轮,C为滑块及上面添加的砝码,D为纸带,E为电火花计时器,F为蓄电池、电压为6 V,G是电键,请指出图中的三处错误:

(1)________________________________________________________________________;

(2)________________________________________________________________________;

(3)________________________________________________________________________.

7.(2009年江苏卷)“探究加速度与物体质量、物体受力的关系”的实验装置如图甲所示.

(1)在平衡小车与桌面之间摩擦力的过程中,打出了一条纸带如图乙所示.计时器打点的时间间隔为0.02 s.从比较清晰的点起,每5个点取一个计数点,量出相邻计数点之间的距离.该小车的加速度a =________m/s2.(结果保留两位有效数字)

(2)平衡摩擦力后,将5个相同的砝码都放在小车上.挂上砝码盘,然后每次从小车上取一个砝码添加到砝码盘中,测量小车的加速度.小车的加速度a与砝码盘中砝码总重力F的实验数据如下表:

8.在“验证牛顿运动定律”的实验中,在研究加速度a与小车的质量M的关系时,由于没有注意始终满足M≫m的条件,结果得到的图象应是下图中的()

第二篇:2013届一轮课时练习15实验:验证牛顿第二定律

课时作业(十五)[第15讲 实验:验证牛顿第二定律]

基础热身

1.在“验证牛顿第二定律”的实验中,以下做法正确的是()

A.平衡摩擦力时,应将小盘用细绳通过定滑轮系在小车上

B.每次改变小车的质量时,不需要重新平衡摩擦力

C.实验时,先放开小车,再接通打点计时器的电源

D.求小车运动的加速度时,可用天平测出小盘和砝码的质量(M′和m′)以及小车质

M′+m′量M,直接用公式a=求出 M

2.关于验证牛顿第二定律的实验,下列说法中不符合实际的是()

A.通过同时改变小车的质量及受到的拉力的研究,能归纳出加速度、力、质量三者之间的关系

B.通过保持小车质量不变,只改变小车的拉力的研究,就可以归纳出加速度、力、质量三者之间的关系

C.通过保持小车受力不变,只改变小车质量的研究,就可以得出加速度、力、质量三者之间的关系

D.先不改变小车质量,研究加速度与力的关系;再不改变力,研究加速度与质量的关系,最后归纳出加速度、力、质量三者之间的关系

3.如图K15-1所示,在研究牛顿第二定律的演示实验中,若两个相同的小车1、2所受拉力分别为F1、F2,车中所放砝码的质量分别为m1、m2,打开夹子后经过相同的时间两车的位移分别为x1、x2,则在实验误差允许的范围内,有()

图K15-

1A.当m1=m2、F1=2F2时,x1=2x

2B.当m1=m2、F1=2F2时,x2=2x

1C.当m1=2m2、F1=F2时,x1=2x

2D.当m1=2m2、F1=F2时,x2=2x

14.2011·福州模拟某实验小组设计了如图K15-2甲所示的实验装置,通过改变重物的质量来探究滑块运动的加速度a和所受拉力F的关系.他们在轨道水平和倾斜的两种情况下分别做了实验,得到了两条a-F图线,如图乙所示.

甲乙

图K15-

2(1)图线①是轨道处于________(选填“水平”或“倾斜”)情况下得到的实验结果;

(2)图线①②的倾斜程度(斜率)一样,说明的问题是________(填选项前的字母).

A.滑块和位移传感器发射部分的总质量在两种情况下是一样的B.滑块和位移传感器发射部分的总质量在两种情况下是不一样的C.滑块和位移传感器发射部分的总质量在两种情况下是否一样不能确定

技能强化

5.2011·唐山二模某实验小组设计了如图K15-3甲所示的实验装置,通过改变重物的质量,利用计算机可得滑块运动的加速度a和所受拉力F的关系图象.他们在轨道水平和倾斜的两种情况下分别做了实验,得到了两条a-F图线,如图乙所示.滑块和位移传感器发射部分的总质量m=________kg;滑块和轨道间的动摩擦因数μ=________.(重力加速度g

取10 m/s2)

甲乙

图K15-

36.做“验证牛顿第二定律”实验时,按实验要求安装好器材后,应按一定的步骤进行实验,下列给出供选择的操作步骤:

A.保持小盘和其中砝码的质量不变,在小车里加砝码,测出加速度,重复几次 B.保持小车质量不变,改变小盘里砝码的质量,测出加速度,重复几次 C.用天平测出小车和小盘的质量

D.在长木板没有定滑轮的一端垫上厚度合适的垫木,平衡摩擦力

E.根据测出的数据,分别画出a-F和a-图象

M

F.用秒表测出小车运动的时间

G.将装有砝码的小盘用细线通过定滑轮系到小车上,接通电源,释放小车,在纸带上打出一系列的点

以上步骤中,不必要的步骤是________,正确步骤的合理顺序是________.(填写代表字母)

7.某实验小组利用如图K15-4甲所示的气垫导轨实验装置来探究合力一定时,物体的加速度与质量之间的关系.

(1)做实验时,将滑块从图甲所示位置由静止释放,由数字计时器(图中未画出)可读出遮光条通过光电门1、2的时间分别为Δt1、Δt2;用刻度尺测得两个光电门中心之间的距离x,用游标卡尺测得遮光条宽度d.则滑块经过光电门1时的速度表达式v1=____;滑块加速度的表达式a=______.(以上表达式均用已知字母表示)如图乙所示,若用20分度的游标卡尺测量遮光条的宽度,其读数为 ________mm.图K15-

4(2)为了保持滑块所受的合力不变,可改变滑块质量M和气垫导轨右端高度h(如图甲所示).关于“改变滑块质量M和气垫导轨右端的高度h”的正确操作方法是________.

A.M增大时,h增大,以保持二者乘积增大 B.M增大时,h减小,以保持二者乘积不变 C.M减小时,h增大,以保持二者乘积不变 D.M减小时,h减小,以保持二者乘积减小

8.“探究加速度与物体质量、物体受力的关系”的实验装置如图甲K15-5所示.

图K15-

5(1)在平衡小车与桌面之间摩擦力的过程中,打出了一条纸带如图乙所示.计时器打点的时间间隔为0.02 s.从比较清晰的点起,每5个点取一个计数点,量出相邻计数点之间的距离.该小车的加速度a=________m/s.(结果保留两位有效数字)

(2)平衡摩擦力后,将5个相同的砝码都放在小车上.挂上砝码盘,然后每次从小车上取一个砝码添加到砝码盘中,测量小车的加速度.小车的加速度a与砝码盘中砝码总重力F的实验数据如下表:

图K15-6

(3)根据提供的实验数据作出的a-F图线不通过原点,请说明主要原因.

挑战自我 9.2011·绍兴模拟某实验小组利用如图K15-7所示的实验装置来探究当合外力一定时,物体运动的加速度与其质量之间的关系.

图K15-7

(1)由图中刻度尺读出两个光电门中心之间的距离x=24 cm,由图K15-8中游标卡尺测得遮光条的宽度d=________cm.该实验小组在做实验时,将滑块从图示位置由静止释放,由数字计时器可以读出遮光条通过光电门1的时间Δt1和遮光条通过光电门2的时间Δt2,则滑块经过光电门1时的瞬时速度的表达式v1=________,滑块经过光电门2时的瞬时速度的表达式v2=________,则滑块的加速度的表达式a=________.(以上表达式均用字母表示)

图K15-8图K15-9

(2)在本次实验中,实验小组通过改变滑块质量总共做了6组实验,得到下表所示的实验数据.通过分析表中数据后,你得出的结论是________________________________________________________________________

________________________________________________________________________.所示坐标系

课时作业

(十五)【基础热身】 1.B [解析]平衡摩擦力时,不能给小车任何牵引力,选项A错误.由mgsinθ=μmgcosθ,小车质量能约去,选项B正确.实验时,要先接通电源,再放开小车,选项C错误.此实验是验证牛顿第二定律,而不是应用牛顿第二定律,选项D错误.

2.ABC [解析] 实验验证牛顿第二定律是控制变量思想的应用,因此首先要分清变量、不变量,故选项ABC不符合实际.

3.A [解析] 题中m1和m2是车中砝码的质量,绝不能认为是小车的质量.本题中只说明了两小车是相同的,并没有告诉小车的质量是多少.当m1=m2时,两车加砝码质量仍

相等,若F1=2F2,则a1=2a2,由xat2得x1=2x2,选项A正确.若m1=2m2时,无法定

量确定两车加砝码后的质量关系,两小车的加速度的定量关系也就不明确,所以无法判定两车的位移的定量关系.

4.(1)倾斜(2)A

[解析](1)由图乙可知,对于图线①,当拉力F=0时,加速度并不为零,故轨道应处于倾斜状态;

(2)设滑块和位移传感器的总质量为M,在倾斜轨道上,由牛顿第二定律F+Mgsinθ-f

1f

1=Ma,得a=F+(gsinθ-;在水平轨道上,由牛顿第二定律F-f′=Ma,得a=-

MMM

f′1

;图线①②的斜率均为A正确. MM

【技能强化】 5.0.5 kg 0.211

[解析] 由牛顿第二定律可知F-μmg=ma,整理得a=F-μg.由图线可知斜率2,mm

纵轴截距-μg=-2,故m=0.5 kg,μ=0.2.6.F CDGBAE

[解析] 此实验中不需要用秒表测量小车的运动时间.

d2-d2

dΔt2Δt17.8.15(2)BC

Δt12x

d

[解析](1)因遮光条宽度较小,滑块经过光电门1时的速度接近其平均速度,v1=Δt1

d2-d2

v2-v1Δt2Δt1d

v2=加速度a=,遮光条宽度d=8 mm+3×0.05 mm=8.15 mm.(2)

Δt22x2x

Mgh

设气垫导轨长度为L,导轨倾角为α,则滑块受到的合力F=Mgsinα=,当Mh不变时,L

滑块所受的合力不变,所以B、C操作方法正确.

8.(1)0.16(0.15也算对)(2)如图所示(3)未计入砝码盘的重力

Δx3.68-3.52×10Δx3.83-3.68×102

2[解析](1)a= m/s=0.16 m/s或a=

T0.1T0.1m/s2=0.15 m/s2

.-2-2

(2)a-F图线如图所示.

(3)小车、砝码盘和砝码组成的系统所受合外力为砝码盘和砝码的总重力,而表中数据漏计了砝码盘的重力,导致合力F的测量值小于真实值,a-F的图线不过原点.

【挑战自我】

d2-d2

ddΔtΔt

9.(1)0.52 Δt1Δt22x

(2)当合外力一定时,物体运动的加速度跟物体的质量成反比(3)如图所示

[解析](1)由图可知:d=5 mm+0.1 mm×2=5.2 mm=0.52 cm.遮光条的宽度很小,遮光条通过光电门的时间很短,这段时间内的平均速度即为滑块通过光电门的瞬时速度,故

dd2

v1=v2=滑块由光电门1到光电门2做匀加速直线运动,由v22-v1=2ax可得:a=

Δt1Δt2d2-d2Δt2Δt1

在合外力不变的情况下,物体运动的加速度跟物体的质量成反比,即当合2x

外力一定时,在误差允许的范围内,物体质量和加速度的乘积近似相等.(3)如图所示.

第三篇:大学物理实验报告范例(验证牛顿第二定律)

怀 化 学 院

怀 化 学 院 实 验 数 据 记 录 纸

实验名称:验证牛顿第二定律实验时间: 2011 年 * 月 * 日 ___数学系__ _系10 级信计专业 * 班 姓名张 三学号100940****

数据记录:表1 速度测量练习数据记录表

第四篇:大学物理实验报告范例(验证牛顿第二定律)(最终版)

大学物理实验报告范例(验证牛顿第二定律)

大 学 物 理 实 验

实验报告

系别 数学系 年级 2010 专业 信息与计算 班级 10信计3班 姓名 张

三 学号 10094030** 组别 实验日期 2011-4-10

实验项目: 验证牛顿第二定律

1/11页

【实验题目】验证牛顿第二定律

【实验目的】

1.了解气垫技术的原理,掌握气垫导轨和计时计测速仪的使用方法。

2.掌握测速仪测速度、加速度方法。

3.验证牛顿第二定律。

【实验仪器】(应记录具体型号规格等,进实验室后按实填写)

汽垫导轨(含气源等附件)、MUJ-5B型计时计数测速仪、电子天平

【实验原理】(在理解基础上,简明扼要表述原理,主要公式、重要原理图)

1、速度测量

挡光片宽度Δs已知,用计时测速仪测出挡光片通过光电门时的挡光时间Δt,即可测出平均速度,因Δs很小,该平均速度近似为挡光片通过光电门时的瞬时速度,即: ,sds,sv,,瞬时速度: lim,tdt,t,t,0

MUJ-5B计时仪能直接计算并显示速度。

,s2、加速度测量

设置两个光电门,测出挡光片通过两个光电门的速、度和挡光片在两光电vv12门间的运动时间t,即可测出加速度a。

vv,21a, t

MUJ-5B计时仪能直接计算并显示加速度。

3、牛顿第二定律验证

在右图由、构成的系统中,在阻力忽略不计mm12

时,有:

mg,(m,m)a212

F,Ma令,则有 F,mgM,m,m212

令M,m,m不变,改变F,mg(将砝码依次从滑块上移到砝码盘上,即可122

保证F增大,而M不变),即可验证质量不变时,加速度与合外力的关系;令F,mg2

M,m,m不变,改变(在滑块上增加配重),即可验证合外力不变时,加速度与质12

量的关系。

【实验内容与步骤】(实验内容及主要操作步骤)

1.气垫导轨的水平调节

可用静态调平法或动态调平法,使汽垫导轨保持水平。静态调平法:将滑块在2/11页

汽垫上静止释放,调节导轨调平螺钉,使滑块保持不动或稍微左右摆动,而无定向运动,即可认为导轨已调平。

2.练习测量速度。

计时测速仪功能设在“计时2”,让滑块在汽垫上以一定的速度通过两个光电门,练习测量速度。

3.练习测量加速度

计时测速仪功能设在“加速度”,在砝码盘上依次加砝码,拖动滑块在汽垫上作匀加速运动,练习测量加速度。

4.验证牛顿第二定律

(1)验证质量不变时,加速度与合外力成正比。

用电子天平称出滑块质量,测速仪功能选“加速度”,按上图所示放置滑m滑块

块,并在滑块上加4个砝码(每个砝码及砝码盘质量均为5g),将滑块移至远离滑轮一端,使其从静止开始作匀加速运动,记录通过两个光电门之间的加速度。再将滑块上的4个砝码分四次从滑块上移至砝码盘上,重复上述步骤。

(2)验证合外力不变时,加速度与质量成反比。

计时计数测速仪功能设定在“加速度”档。在砝码盘上放一个砝码(即),测量滑块由静止作匀加速运动时的加速度。再将四个配重块(每个配重m,10g2

块的质量均为m′=50g)逐次加在滑块上,分别测量出对应的加速度。

【数据处理】(数据不必在报告里再抄写一遍,要有主要的处理过程和计算公式,要求用作图法处理的应附坐标纸作图或计算机打印的作图)

1、由数据记录表3,可得到a与F的关系如下:

由上图可以看出,a与F成线性关系,且直线近似过原点。

上图中直线斜率的倒数表示质量,M=1/0.0058=172克,与实际值M=165克的相对

172,165,4.2%误差: 165

可以认为,质量不变时,在误差范围内加速度与合外力成正比。

2、由数据记录表4,可得a与M的关系如下: 3/11页

由上图可以看出,a与1/M成线性关系,且直线近似过原点。

2直线的斜率表示合外力,由上图可得:F=9342gcm/s,实际合外力F=10克力

9800,934222=10g*980cm/s=9800gcm/s,相对误差:,4.7% 9800

可以认为,合外力不变时,在误差范围内加速度与质量成反比。

【实验结论与分析】(每个实验报告应有明确的实验结论或结果,本实验为验证性实验,应清楚表述实验的结论)

实验结论:根据数据处理结果,可以认为:在误差的范围内,实验与牛顿第二定律相符,即加速度与合外力成正比,与质量成反比。

实验分析:实验误差主要来源于以下方面:

1.导轨未完全调水平;

2.空气阻力的影响,细线、滑轮运动阻力的影响;

3.气流波动的影响;24.本地重力加速度近似取980cm/s。

5.砝码的质量误差。

空气等各种阻力对实验的影响可能是主要的。因为空气阻力一般与速度的二次方成正比,所以实验中拉力不能太大,否则加速度大,速度增加快,空气阻力增加也快;但拉力也不能过小,否则很小的阻力也会产生较大的影响。

4/11页

对多人一组的,应注明合作者 合作者: 无

怀 化 学 院 实 验 数 据 记 录 纸

实验名称: 验证牛顿第二定律

实验时间: 2011 年 * 月 * 日

___数学系__ _系 10 级 信计 专业 * 班 教师签名:

姓名 张 三 学号

100940****

数据记录: 表1 速度测量练习数据记录表2 3 4 5

v(cm/s)1

v(cm/s)2

表2 加速度测量练习数据记录表 m=_________g 滑块

2次数(cm/s)a砝码及盘质量(g)(cm/s)(cm/s)vv121 5

10

15

表3 验证加速度与合外力关系数据记录表 m= 139.8 g,M=m+5m= 165 g 滑块滑块0

22(g)(cm/s)maa(cm/s)2

m 28.42 29.02 28.64 28.85 28.31 28.65 0

2m 56.75 56.94 56.74 56.66 56.80 56.78 0

3m 85.23 85.47 85.00 85.48 85.47 85.33 0

4m 114.24 114.12 113.96 113.30 114.19 113.96 0

5m 142.87 143.59 142.97 142.88 143.36 143.13 0

表4 验证加速度与质量关系数据记录表 m= 10 g , m= 139.8 g,m’= 50 g 2滑块

22M(g)(cm/s)aa(cm/s)

m,m150 62.37 62.72 63.00 62.52 62.88 62.70 2滑块,m,m,m 200 47.57 47.01 47.32 47.39 47.30 47.32 2滑块,m,m,2m 250 38.64 38.02 38.24 38.20 37.95 38.21 2滑块,m,m,3m 300 31.53 31.45 31.44 31.45 31.52 31.48 2滑块,m,m,4m 350 27.29 27.11 27.26 27.04 27.00 27.14 2滑块5/11页

第五篇:实验验证动量守恒定律

碰撞中的动量守恒

1.实验目的、原理

(1)实验目的运用平抛运动的知识分析、研究碰撞过程中相互作用的物体系动量守恒

(2)实验原理

(a)因小球从斜槽上滚下后做平抛运动,由平抛运动知识可知,只要小球下落的高度相同,在落地前运动的时间就相同,若用飞行时间作时间单位,小球的水平速度在数值上就等于小球飞出的水平距离.

(b)设入射球、被碰球的质量分别为m1、m2,则入射球碰撞前动量为(被碰球静止)p1=m1v1①

设碰撞后m1,m2的速度分别为v’

1、v’2,则碰撞后系统总动量为

p2=mlV’1+m2v’2②

只要测出小球的质量及两球碰撞前后飞出的水平距离,代入①、②两式就可研究动量守恒.

2.买验器材

斜槽,两个大小相同而质量不等的小钢球,天平,刻度尺,重锤线,白纸,复写纸,三角板,圆规.

3.实验步骤及安装调试

(1)用天平测出两个小球的质量ml、m2.

(2)按图5—29所示安装、调节好实验装置,使斜槽末端切

线水平,将被碰小球放在斜槽末端前小支柱上,入射球放在斜

槽末端,调节支柱,使两小球相碰时处于同一水平高度,且在碰撞瞬间入射球与被碰球的球心连线与斜槽末端的切线平

行,以确保正碰后两小球均作平抛运动.

(3)在水平地面上依次铺放白纸和复写纸.

(4)在白纸上记下重锤线所指的位置O,它表示入射球m1碰

撞前的位置,如图5—30所示.

(5)移去被碰球m2,让入射球从斜槽上同一高度滚下,重复10次左右,用圆规画尽可能小的圆将所有的小球落点圈在里面,其圆心即为人射球不发生碰撞情况下的落点的平均位置P,如图5—31所示.

(6)将被碰小球放在小支柱上,让入射球从同一高度滚下,使它们发生正碰,重复10次左右,同理求出入射小球落点的平均位置M和被碰小球落点的平均位置N.

(7)过O、N作一直线,取O0’=2r(r为小球的半径,可用刻度尺和三角板测量小球直径计算厂),则O’即为被碰小球碰撞前的球心的位置(即投影位置).(8)用刻度尺测量线段OM、OP、ON的长度.则系统碰撞前的动量可表示为p1=m1·OP,系统碰撞后的总动量可表示为p2=m1·OM+m2·O'N

若在误差允许范围内p1与p2相等,则说明碰撞中动量守恒.(9)整理实验器材,放回原处.

4.注意事项

(1)斜槽末端切线必须水平.

说明:调整斜槽时可借助水准仪判定斜槽末端是否水平.

(2)仔细调节小立柱的高度,使两小球碰撞时球心在同一高度,且要求两球球心连线与斜槽末端的切线平行。

(3)使小支柱与槽口的距离等于2r(r为小球的半径)

(4)入射小球每次都必须从斜槽上同一位置由静止开始滚下.

说明:在具体操作时,斜槽上应安装挡球板.

(5)入射球的质量(m1)应大于被碰小球的质量(m2).

(6)地面须水平,白纸铺放好后,在实验过程中不能移动白纸.

5.数据处理及误差分析

(1)应多次进行碰撞,两球的落地点均要通过取平均位置来确定,以减小偶然误差.(2)在实验过程中,使斜槽末端切线水平和两球发生正碰,否则两小球在碰后难以作平抛运动.

(3)适当选择挡球板的位置,使入射小球的释放点稍高.

说明:入射球的释放点越高,两球相碰时作用力越大,动量守恒的误差越小,且被直接测量的数值OM、0IP、0N越大,因而测量的误差越小.

一.目的要求

1.用对心碰撞特例检验动量守恒定律;

2.了解动量守恒和动能守恒的条件;

3.熟练地使用气垫导轨及数字毫秒计。

二.原理

1.验证动量守恒定律

动量守恒定律指出:若一个物体系所受合外力为零,则物体的总动量保持不变;若物体系所受合外力在某个方向的分量为零,则此物体系的总动量在该方向的分量守恒。

设在平直导轨上,两个滑块作对心碰撞,若忽略空气阻力,则在水平方向上就满足动量守恒定律成立的条件,即碰撞前后的总动量保持不变。

m1u1m2u2m1v1m2v2(6.1)其中,u1、u2和v1、v2分别为滑块m1、m2在碰撞前后的速度。若分别测出式(6.1)中各量,且等式左右两边相等,则动量守恒定律得以验证。

2.碰撞后的动能损失

只要满足动量守恒定律成立的条件,不论弹性碰撞还是非弹性碰撞,总动量都将守恒。但对动能在碰撞过程中是否守恒,还将与碰撞的性质有关。碰撞的性质通常用恢复系数e表达:

ev2v1(6.2)u1u

2式(6.2)中,v2v1为两物体碰撞后相互分离的相对速度,u1u2则为碰撞前彼此接近的相对速度。

(1)若相互碰撞的物体为弹性材料,碰撞后物体的形变得以完全恢复,则物体系的总动能不变,碰撞后两物体的相对速度等于碰撞前两物体的相对速度,即v2v1u1u2,于是e1,这类碰撞称为完全弹性碰撞。

(2)若碰撞物体具有一定的塑性,碰撞后尚有部分形变残留,则物体系的总动能有所损耗,转变为其他形式的能量,碰撞后两物体的相对速度小于碰撞前的相对速度,即0v2v1u1u2于是,0e1,这类碰撞称为非弹性碰撞。

(3)碰撞后两物体的相对速度为零,即v2v10或v2v1v,两物体粘在一起以后以相同速度继续运动,此时e0,物体系的总动能损失最大,这类碰撞称为完全非弹性碰撞,它是非弹性碰撞的一种特殊情况。

三类碰撞过程中总动量均守恒,但总动能却有不同情况。由式(6.1)和(6.2)可求碰撞后的动能损失 Ek(1/2)m1m21e2u1u2/m1m2。①对于完全弹性碰撞,因2

e1,故Ek0,即无动能损失,或曰动能守恒。②对于完全非弹性碰撞,因e0,故:EkEkM,即,动能损失最大。③对于非完全弹性碰撞,因0e1,故动能损失介于二者之间,即:0EkEkM。

3.m1m2m,且u20的特定条件下,两滑块的对心碰撞。

(1)对完全弹性碰撞,e1,式(6.1)和(6.2)的解为

v10(6.3)v2u1

由式(6.3)可知,当两滑块质量相等,且第二滑块处于静止时,发生完全弹性碰撞的结果,使第一滑块静止下来,而第二滑块完全具有第一滑块碰撞前的速度,“接力式”地向前运动。即动能亦守恒。

以上讨论是理想化的模型。若两滑块质量不严格相等、两挡光物的有效遮光宽度s1及若式(6.3)得到验证,则说明完全弹性碰撞过程中动量守恒,且e1,Ek0,s2也不严格相等,则碰撞前后的动量百分差E1为:E1

动能百分差E2为:E2P2P1P1m2s2t1(6.4)m1s1t22m2s2t121(6.5)22m1s1t2Ek2Ek1Ek

1若E1及E2在其实验误差范围之内,则说明上述结论成立。

(2)对于完全非弹性碰撞,式(6.1)和(6.2)的解为:

v1v2vu1(6.6)

2若式(6.6)得证,则说明完全非弹性碰撞动量守恒,且e0,其动能损失最大,约为50%。

s1。同样可求得其动考虑到完全非弹性碰撞时可采用同一挡光物遮光,即有:s2

及E2分别为: 量和动能百分差E1

m2t1P2P11E1mt1(6.7)P112

2Ek1m2t1'Ek(6.8)E21'1Ekm1t2

显然,其动能损失的百分误差则为:

m2t1E21mt1(6.9)

12

及E在其实验误差范围内,则说明上述结论成立。若E1

三.仪器用品

气垫导轨及附件(包括滑块及挡光框各一对),数字毫秒计、物理天平及游标卡尺等。

四.实验内容

1.用动态法调平导轨,使滑块在选定的运动方向上做匀速运动,以保证碰撞时合外力为零的条件(参阅附录2);

2.用物理天平校验两滑块(连同挡光物)的质量m1及m2;

2;3.用游标卡尺测出两挡光物的有效遮光宽度s1、s2及s

14.在m1m2m的条件下,测完全弹性和完全非弹性碰撞前后两滑块各自通过光电

、t2。门一及二的时间t1、t2及t1

五.注意事项

1.严格按照气垫导轨操作规则(见附录2),维护气垫导轨;

2.实验中应保证u20的条件,为此,在第一滑块未到达之前,先用手轻扶滑块(2),待滑块(1)即将与(2)碰撞之前再放手,且放手时不应给滑块以初始速度;

3.给滑块(1)速度时要平稳,不应使滑块产生摆动;挡光框平面应与滑块运动方向一致,且其遮光边缘应与滑块运动方向垂直;

4.严格遵守物理天平的操作规则;

5.挡光框与滑块之间应固定牢固,防止碰撞时相对位置改变,影响测量精度。

六.考查题

1.动量守恒定律成立的条件是什么?实验操作中应如何保证之?

2.完全非弹性碰撞中,要求碰撞前后选用同一挡光框遮光有什么好处?实验操作中如何实现?

3.既然导轨已调平,为什么实验操作中还要用手扶住滑块(2)?手扶滑块时应注意什么?

4.滑块(2)距光电门(2)近些好还是远些好?两光电门间近些好还是远些好?为什么?

下载实验 验证牛顿第二定律word格式文档
下载实验 验证牛顿第二定律.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    实验验证机械能守恒定律[大全5篇]

    实验验证机械能守恒定律1.(9分)在“验证机械能守恒定律”的实验中,下列物理量中需要用工具测量的有;通过计算得到的有A.重锤的质量 B.重力加速度C.重锤下落的高度D.与重锤下落......

    牛顿第二定律

    《牛顿第二定律》教学设计 福建省石狮市石光中学 刘一农一、学习任务分析 1.教材的地位和作用 牛顿第二定律是在实验基础上建立起来的重要规律,它是动力学的核心规律,也是学习......

    利用气垫导轨验证牛顿第二定律实验报告中国石油大学华东[五篇模版]

    利用气垫导轨验证牛顿第二定律】【摘要】:气垫导轨是为研究无摩擦现象而设计的力学实验设备,在导轨表面分布着许多小孔,压缩空气从这些小孔中喷出,在导轨和滑块之间形成了月 0.1......

    实验测定方法的验证

    检测限是指试样中的被分析物能够被检测到的最低量,但不一定要准确定量。 该验证指标的意义在于考察方法是否具备灵敏的检测能力。判断方法有非仪器分析目视法(直观法 )与信噪比......

    实验验证机械能守恒定律(共5篇)

    实验:验证机械能守恒定律 一、选择题 1.用自由落体法验证机械能守恒定律的实验中,下面哪些测量工具是必需的 A.天平B.弹簧测力计C.刻度尺D.秒表 2.在做验证机械能守恒定律实......

    验证性小实验(五篇模版)

    专题四验证性小实验 力学 惯性现象。 (1)小车上立放个木块,然后迅速拉动小车,发现木块向后倾倒,这就证明静止物体有惯性。 (2)小车上立放个木块,先让小车匀速运动,然后突然刹车,发现木......

    高中物理验证性实验分析

    高中物理验证性实验分析黔西二中 朱东海仔细分析和研究近几年的高考试卷,可以看出高考中对学生实验能力的考查已明显加强,而考查学生实验能力的一种主要手段就是对学生探究性......

    实验一 基尔霍夫定律的验证范文合集

    实验1.1 验证基尔霍夫定律 一、实验原理 1、电荷守恒定律:电荷既不能创造也不能消失。 2、能量守恒定律:能量既不会凭空产生,也不会凭空消失。 3、基本霍夫定律是电路的基本定......