高中数学教学设计

2022-12-26下载本文作者:会员上传
简介:写写帮文库小编为你整理了这篇《高中数学教学设计》及扩展资料,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《高中数学教学设计》。

高中数学教学设计

高中数学教学设计1

教学目标

(1)理解四种命题的概念;

(2)理解四种命题之间的相互关系,能由原命题写出其他三种形式;

(3)理解一个命题的真假与其他三个命题真假间的关系;

(4)初步掌握反证法的概念及反证法证题的基本步骤;

(5)通过对四种命题之间关系的学习,培养学生逻辑推理能力;

(6)通过对四种命题的存在性和相对性的认识,进行辩证唯物主义观点教育;

(7)培养学生用反证法简单推理的技能,从而发展学生的思维能力.

教学重点和难点

重点:四种命题之间的关系;难点:反证法的运用.

教学过程设计

第一课时:四种命题

一、导入新课

【练习】1.把下列命题改写成“若p则q”的形式:

(l)同位角相等,两直线平行;

(2)正方形的四条边相等.

2.什么叫互逆命题?上述命题的逆命题是什么?

将命题写成“若p则q”的形式,关键是找到命题的条件p与q结论.

如果第一个命题的条件是第二个命题的结论,且第一个命题的结论是第二个命题的条件,那么这两个命题叫做互道命题.

上述命题的道命题是“若一个四边形的四条边相等,则它是正方形”和“若两条直线平行,则同位角相等”.

值得指出的是原命题和逆命题是相对的.我们也可以把逆命题当成原命题,去求它的逆命题.

3.原命题真,逆命题一定真吗?

“同位角相等,两直线平行”这个原命题真,逆命题也真.但“正方形的四条边相等”的原命题真,逆命题就不真,所以原命题真,逆命题不一定真.

学生活动:

口答:(l)若同位角相等,则两直线平行;(2)若一个四边形是正方形,则它的四条边相等.

设计意图:

通过复习旧知识,打下学习否命题、逆否命题的基础.

二、新课

【设问】命题“同位角相等,两条直线平行”除了能构成它的逆命题外,是否还可以构成其它形式的命题?

【讲述】可以将原命题的条件和结论分别否定,构成“同位角不相等,则两直线不平行”,这个命题叫原命题的否命题.

【提问】你能由原命题“正方形的四条边相等”构成它的否命题吗?

学生活动:

口答:若一个四边形不是正方形,则它的四条边不相等.

教师活动:

【讲述】一个命题的条件和结论分别是另一个命题的条件的否定和结论的否定,这样的两个命题叫做互否命题.把其中一个命题叫做原命题,另一个命题叫做原命题的否命题.

若用p和q分别表示原命题的条件和结论,用┐p和┐q分别表示p和q的否定.

【板书】原命题:若p则q;

否命题:若┐p则q┐.

【提问】原命题真,否命题一定真吗?举例说明?

学生活动:

讲论后回答:

原命题“同位角相等,两直线平行”真,它的否命题“同位角不相等,两直线不平行”不真.

原命题“正方形的四条边相等”真,它的否命题“若一个四边形不是正方形,则它的四条边不相等”不真.

由此可以得原命题真,它的否命题不一定真.

设计意图:

通过设问和讨论,让学生在自己举例中研究如何由原命题构成否命题及判断它们的真假,调动学生学习的积极性.

教师活动:

【提问】命题“同位角相等,两条直线平行”除了能构成它的逆命题和否命题外,还可以不可以构成别的命题?

学生活动:

讨论后回答

【总结】可以将这个命题的条件和结论互换后再分别将新的条件和结论分别否定构成命题“两条直线不平行,则同位角不相等”,这个命题叫原命题的逆否命题.

教师活动:

【提问】原命题“正方形的四条边相等”的逆否命题是什么?

学生活动:

口答:若一个四边形的四条边不相等,则不是正方形.

教师活动:

【讲述】一个命题的条件和结论分别是另一个命题的结论的否定和条件的否定,这样的两个命题叫做互为逆否命题.把其中一个命题叫做原命题,另一个命题就叫做原命题的逆否命题.

原命题是“若 p则 q ”,则逆否命题为“若┐q 则┐p .

【提问】“两条直线不平行,则同位角不相等”是否真?“若一个四边形的四条边不相等,则不是正方形”是否真?若原命题真,逆否命题是否也真?

学生活动:

讨论后回答

这两个逆否命题都真.

原命题真,逆否命题也真.

教师活动:

【提问】原命题的真假与其他三种命题的真

假有什么关系?举例加以说明?

【总结】1.原命题为真,它的逆命题不一定为真.

2.原命题为真,它的否命题不一定为真.

3.原命题为真,它的逆否命题一定为真.

设计意图:

通过设问和讨论,让学生在自己举例中研究如何由原命题构成逆否命题及判断它们的真假,调动学生学的积极性.

教师活动:

三、课堂练习

1.若原命题是“若p则q”,其它三种命题的形式怎样表示?请写在方框内?

学生活动:笔答

教师活动:

2.根据上图所给出的箭头,写出箭头两头命题之间的关系?举例加以说明?

学生活动:讨论后回答

设计意图:

通过学生自己填图,使学生掌握四种命题的形式和它们之间的关系.

教师活动:

高中数学教学设计2

一、课程说明

(一)教材分析:

此次一对一家教所使用教材为北师大版高中数学必修5。辅导内容为第一章第二节等差数列。前一节的内容为数列,学生已初步了解到数列的概念,知道什么是首项,什么是通项等等。以及了解到什么是递增数列,什么是递减数列。通过第一节的学习的铺垫,可以让学生更自主的探究,学习等差数列。而我也是在这些基础上为她讲解第二节等差数列。

(二) 学生分析:

此次所带学生是一名高二的学生。聪明但是不踏实,做题浮躁。基础知识掌握不够牢靠,知识的运用能力较差,分析能力较弱,解题思路不清。每次她遇到会的题,就快快的草率做完,总会有因马虎而犯的错误。遇到稍不会的,总是很浮躁,不能冷静下来慢慢思考。就由略不会变成不会。但她也是个虚心听教的孩子,给她讲课,她也会很认真地听讲。

(三) 教学目标:

1、通过教与学的配合,让她能够懂得什么是等差数列,以及等差数列的通项公式。

2、通过对公式的推导,让她加深对内容的理解,以及学会自己对公式的推导。并且能够灵活运用。

3、在教学中让她通过对公式的推导来明白推理的艺术,并且培养她学习,做题条理清晰,思路缜密的好习惯。

4、让她在学习,做题中一步步抽丝剥茧,寻找解决问题的方法,培养她敢于面对数学学习中的困难,并培养她对克服困难和运用知识。耐心地解决问题。

5、让她在学习中发现数学的独特的美,能够爱上数学这门课。并且认真对待,自主学习。

(四)教学重点

1让学生正确掌握等差数列及其通项公式,以及其性质。并能独立的推导。

2、能够灵活运用公式并且能把相应公式与题相结合。

(五) 教学难点:

1、让学生掌握公式的推导及其意义。

2如何把所学知识运用到相应的题中。

二、课前准备

(一) 教学器材

对于一对一教教采用传统讲课。一张挂历。

(二) 教学方法

通过对生活中的有规律数据的观察来提出问题,让学生结合前一节所学,思考有什么规律。从生活中着手有利于激发学生的兴趣爱好,并能更积极地学习。让学生先独立的思考,不仅能让她对所学知识映像更为深刻,并且培养她的缜密思维。让她回答后,我再帮助她纠正,并且让她提出心中所虑。经过我给她讲完课后,让她回答自己先前的疑虑。并且让她自己总结,得出结论。最后让她勤加练习。以一种“提出问题—探究问题—学习知识—解答问题—得出结论—强加训练”的模式方法展开教学。

(三) 课时安排

课时大致分为五部分:

1、联系实际提出相关问题,进行思考。

2以我教她学的模式讲授相关章节知识。

3、让学生练习相关习题,从所学知识中找其相应解题方案。

4学生对知识总结概括,我再对其进行补充说明。 5布置作业,让她课后多做练习。

三、课程设计

(一)提出问题

【引入】

根据我们的挂历上,一个月的日期数。通过观察每一行日期和每一列日期它们有什么规律?

思考 1 2 3 13579......246810......66666......

这些每一行有什么规律?

(二) 分析问题并讲解

1、通过观察每一个数与前一个数相差为同一个常数。再结合前一节所学数列的定义总结出“每一项与前一项的差为同一个常数,我们称这样的数列为等差数列。”并且得出“这个常数为等差数列的公差。”

2、设首项为 a1 ,公差为d。由思考题 1 2 3可观察出什么?由学生通过她的发现来推导总结出

ana1n1dnda1d

3、通过分析通项公式的特点,做下题(学生自己分析,思考来做。) 例:已知在等差数列{an}中,a520a20xx,试求出数列的通项公式?

通过学生做题再分析总结,用详细的语言讲解总结等差数列的性质

4、由以上公式,性质,让学生总结。

讲解等差数列的定义。并且掌握数列的递增,递减与公差d的关系。

5总结,串讲当日所学

给出题目:12349899100 让她求其和Sn,并思考如何快速计算?

(三) 布置作业

1、总结当日所学。 2做练习册上章节习题。

3、根据当日所学以及课上所讲求 的思考题,找出快速运算方法,并引导预习等差数列前n项和。

四、设计理念

以一种最简便,易懂的方式让学生来学习,一切以让学生正确掌握知识,并能正确运用为理念。并能充分调动学生和家教老师的积极性为理念来设计。

五、教学设计反思

本节课教程内容较难,是下一节等差数列前n项和的铺垫。此节课学习通过联系实际,把数学融入到生活中,从生活中探究学习数学。并提出问题,分析问题。把主动权交给学生,由她先独立思考总结,再由我给她正确讲解总结,然后再让她做相应练习题,课后再认真总结。这样可以加强她学习的主动性,更有利于她对知识的消化,吸收。这种方法同时可以培养学生的思维能力,让她从自主学习中探索适合自己的学习方法,培养她独立思考的能力。让她更深刻的了解知识内涵,巩固所学。使她能灵活运用所学。

高中数学教学设计3

教学目标

1.掌握等比数列前项和公式,并能运用公式解决简单的问题.

(1)理解公式的推导过程,体会转化的思想;

(2)用方程的思想认识等比数列前项和公式,利用公式知三求一;与通项公式结合知三求二;

2.通过公式的灵活运用,进一步渗透方程的思想、分类讨论的思想、等价转化的思想.

3.通过公式推导的教学,对学生进行思维的严谨性的训练,培养他们实事求是的科学态度.

教学建议

教材分析

(1)知识结构

先用错位相减法推出等比数列前项和公式,而后运用公式解决一些问题,并将通项公式与前项和公式结合解决问题,还要用错位相减法求一些数列的前项和.

(2)重点、难点分析

教学重点、难点是等比数列前项和公式的推导与应用.公式的推导中蕴含了丰富的数学思想、方法(如分类讨论思想,错位相减法等),这些思想方法在其他数列求和问题中多有涉及,所以对等比数列前项和公式的要求,不单是要记住公式,更重要的是掌握推导公式的方法.等比数列前项和公式是分情况讨论的,在运用中要特别注意和两种情况.

教学建议

(1)本节内容分为两课时,一节为等比数列前项和公式的推导与应用,一节为通项公式与前项和公式的综合运用,另外应补充一节数列求和问题.

(2)等比数列前项和公式的推导是重点内容,引导学生观察实例,发现规律,归纳总结,证明结论.

(3)等比数列前项和公式的推导的其他方法可以给出,提高学生学习的兴趣.

(4)编拟例题时要全面,不要忽略的情况.

(5)通项公式与前项和公式的综合运用涉及五个量,已知其中三个量可求另两个量,但解指数方程难度大.

(6)补充可以化为等差数列、等比数列的数列求和问题.

教学设计示例

课题:等比数列前项和的公式

教学目标

(1)通过教学使学生掌握等比数列前项和公式的推导过程,并能初步运用这一方法求一些数列的前项和.

(2)通过公式的推导过程,培养学生猜想、分析、综合能力,提高学生的数学素质.

(3)通过教学进一步渗透从特殊到一般,再从一般到特殊的辩证观点,培养学生严谨的学习态度.

教学重点,难点

教学重点是公式的推导及运用,难点是公式推导的思路.

教学用具

幻灯片,课件,电脑.

教学方法

引导发现法.

教学过程

一、新课引入:

(问题见教材第129页)提出问题:(幻灯片)

二、新课讲解:

记,式中有64项,后项与前项的比为公比2,当每一项都乘以2后,中间有62项是对应相等的,作差可以相互抵消.

(板书)即,①

,②

②-①得即.

由此对于一般的等比数列,其前项和,如何化简?

(板书)等比数列前项和公式

仿照公比为2的等比数列求和方法,等式两边应同乘以等比数列的公比,即

(板书)③两端同乘以,得

④,

③-④得⑤,(提问学生如何处理,适时提醒学生注意的取值)

当时,由③可得(不必导出④,但当时设想不到)

当时,由⑤得.

于是

反思推导求和公式的方法——错位相减法,可以求形如的数列的和,其中为等差数列,为等比数列.

(板书)例题:求和:.

设,其中为等差数列,为等比数列,公比为,利用错位相减法求和.

解:,

两端同乘以,得,

两式相减得

于是.

说明:错位相减法实际上是把一个数列求和问题转化为等比数列求和的问题.

公式其它应用问题注意对公比的分类讨论即可.

三、小结:

1.等比数列前项和公式推导中蕴含的思想方法以及公式的应用;

2.用错位相减法求一些数列的前项和.

四、作业:略

高中数学教学设计4

一、单元教学内容

(1)算法的基本概念

(2)算法的基本结构:顺序、条件、循环结构

(3)算法的基本语句:输入、输出、赋值、条件、循环语句

二、单元教学内容分析

算法是数学及其应用的重要组成部分,是计算科学的重要基础。随着现代信息技术飞速发展,算法在科学技术、社会发展中发挥着越来越大的作用,并日益融入社会生活的许多方面,算法思想已经成为现代人应具备的一种数学素养。需要特别指出的是,中国古代数学中蕴涵了丰富的算法思想。在本模块中,学生将在中学教育阶段初步感受算法思想的基础上,结合对具体数学实例的分析,体验程序框图在解决问题中的作用;通过模仿、操作、探索,学习设计程序框图表达解决问题的过程;体会算法的基本思想以及算法的重要性和有效性,发展有条理的思考与表达的能力,提高逻辑思维能力

三、单元教学课时安排:

1、算法的基本概念 3课时

2、程序框图与算法的基本结构 5课时

3、算法的基本语句 2课时

四、单元教学目标分析

1、通过对解决具体问题过程与步骤的分析体会算法的思想,了解算法的含义

2、通过模仿、操作、探索,经历通过设计程序框图表达解决问题的过程。在具体问题的解决过程中理解程序框图的三种基本逻辑结构:顺序、条件、循环结构。

3、经历将具体问题的程序框图转化为程序语句的过程,理解几种基本算法语句:输入、输出、斌值、条件、循环语句,进一步体会算法的基本思想。

4、通过阅读中国古代数学中的算法案例,体会中国古代数学对世界数学发展的贡献。

五、单元教学重点与难点分析

1、重点

(1)理解算法的含义 (2)掌握算法的基本结构 (3)会用算法语句解决简单的实际问题

2、难点

(1)程序框图 (2)变量与赋值 (3)循环结构 (4)算法设计

六、单元总体教学方法

本章教学采用启发式教学,辅以观察法、发现法、练习法、讲解法。采用这些方法的原因是学生的逻辑能力不是很强,只能通过对实例的认真领会及一定的练习才能掌握本节知识。

七、单元展开方式与特点

1、展开方式

自然语言→程序框图→算法语句

2、特点

(1)螺旋上升 分层递进 (2)整合渗透 前呼后应 (3)三线合

一 横向贯通 (4)弹性处理 多样选择

八、单元教学过程分析

1. 算法基本概念教学过程分析

对生活中的实际问题通过对解决具体问题过程与步骤的分析(喝茶,如二元一次方程组求解问题),体会算法的思想,了解算法的含义,能用自然语言描述算法。

2.算法的流程图教学过程分析

对生活中的实际问题通过模仿、操作、探索,经历通过设计流程图表达解决问题的过程,了解算法和程序语言的区别;在具体问题的解决过程中,理解流程图的三种基本逻辑结构:顺序、条件分支、循环,会用流程图表示算法。

3. 基本算法语句教学过程分析

经历将具体生活中问题的流程图转化为程序语言的过程,理解表示的几种基本算法语句:赋值语句、输入语句、输出语句、条件语句、循环语句,进一步体会算法的基本思想。能用自然语言、流程图和基本算法语句表达算法,

4. 通过阅读中国古代数学中的算法案例,体会中国古代数学对世界数学发展的贡献。

九、单元评价设想

1.重视对学生数学学习过程的评价

关注学生在数学语言的学习过程中,是否对用集合语言描述数学和现实生活中的问题充满兴趣;在学习过程中,能否体会集合语言准确、简洁的特征;是否能积极、主动地发展自己运用数学语言进行交流的能力。

2.正确评价学生的数学基础知识和基本技能

关注学生在本章(节)及今后学习中,让学生集中学习算法的初步知识,主要包括算法的基本结构、基本语句、基本思想等。算法思想将贯穿高中数学课程的相关部分,在其他相关部分还将进一步学习算法

高中数学教学设计5

函数的奇偶性是函数的重要性质,是对函数概念的深化。它把自变量取相反数时函数值间的关系定量地联系在一起,反映在图像上为:偶函数的图像关于y轴对称,奇函数的图像关于坐标原点成中心对称。这样,就从数、形两个角度对函数的奇偶性进行了定量和定性的分析。

教材首先通过对具体函数的图像及函数值对应表归纳和抽象,概括出了函数奇偶性的准确定义。然后,为深化对概念的理解,举出了奇函数、偶函数、既是奇函数又是偶函数的函数和非奇非偶函数的实例。最后,为加强前后联系,从各个角度研究函数的性质,讲清了奇偶性和单调性的联系。这节课的重点是函数奇偶性的定义,难点是根据定义判断函数的奇偶性。

教学目标

1、通过具体函数,让学生经历奇函数、偶函数定义的讨论,体验数学概念的建立过程,培养其抽象的概括能力。

2、理解、掌握函数奇偶性的定义,奇函数和偶函数图像的特征,并能初步应用定义判断一些简单函数的奇偶性。

3、在经历概念形成的过程中,培养学生归纳、抽象概括能力,体验数学既是抽象的又是具体的。

任务分析

这节内容学生在初中虽没学过,但已经学习过具有奇偶性的具体的函数:正比例函数y=kx,反比例函数 ,k≠0,二次函数y=ax,a≠0,故可在此基础上,引入奇、偶函数的概念,以便于学生理解。在引入概念时始终结合具体函数的图像,以增加直观性,这样更符合学生的认知规律,同时为阐述奇、偶函数的几何特征埋下了伏笔。

对于概念可从代数特征与几何特征两个角度去分析,让学生理解:奇函数、偶函数的定义域是关于原点对称的非空数集;对于在有定义的奇函数y=fx,一定有f0=0既是奇函数,又是偶函数的函数有fx=0,x∈R在此基础上,让学生了解:奇函数、偶函数的矛盾概念———非奇非偶函数。关于单调性与奇偶性关系,引导学生拓展延伸,可以取得理想效果。

教学设计

一、问题情景

1、观察如下两图,思考并讨论以下问题:

(1)这两个函数图像有什么共同特征?

(2)相应的两个函数值对应表是如何体现这些特征的?

可以看到两个函数的图像都关于y轴对称。

从函数值对应表可以看到,当自变量x取一对相反数时,相应的两个函数值相同。

对于函数fx=x,有f3=9=f3,f2=4=f2,f1=1=f1。事实上,对于R内任意的一个x,都有fx=x2=x2=fx。此时,称函数y=x2为偶函数。

2、观察函数fx=x和fx= 的图像,并完成下面的两个函数值对应表,然后说出这两个函数有什么共同特征。

可以看到两个函数的图像都关于原点对称。函数图像的这个特征,反映在解析式上就是:当自变量x取一对相反数时,相应的函数值fx也是一对相反数,即对任一x∈R都有fx=fx。此时,称函数y=fx为奇函数。

二、建立模型

由上面的分析讨论引导学生建立奇函数、偶函数的定义

1奇、偶函数的定义

如果对于函数fx的定义域内任意一个x,都有fx=fx,那么函数fx就叫作奇函数。如果对于函数fx的定义域内任意一个x,都有fx=fx,那么函数fx就叫作偶函数。

2、提出问题,组织学生讨论

(1)如果定义在R上的函数fx满足f2=f2,那么fx是偶函数吗? fx不一定是偶函数

(2)奇、偶函数的图像有什么特征?

(奇、偶函数的图像分别关于原点、y轴对称)

3奇、偶函数的定义域有什么特征? (奇、偶函数的定义域关于原点对称)

三、解释应用

[例 题]

1、判断下列函数的奇偶性。

注:①规范解题格式;

②对于5要注意定义域x∈1,1]。

2、已知:定义在R上的函数fx是奇函数,当x>0时,fx=x1+x,求fx的表达式。

解:1任取x<0,则x>0,∴fx=x1x,

而fx是奇函数,∴fx=fx。∴fx=x1x。

(2)当x=0时,f0=f0,∴f0=f0,故f0=0

3、已知:函数f(x是偶函数,且在∞,0上是减函数,判断fx在0,+∞)上是增函数,还是减函数,并证明你的结论。

解:先结合图像特征:偶函数的图像关于y轴对称,猜想f(x在0,+∞)上是增函数,

证明如下:

任取x1>x2>0,则x1

∵fx在∞,0上是减函数,∴fx1>fx2。 又fx是偶函数,∴fx1>fx2。

∴f(x在0,+∞)上是增函数。

思考:奇函数或偶函数在关于原点对称的两个区间上的单调性有何关系?

[练习]

1、已知:函数fx是奇函数,在[a,b]上是增函数b>a>0,问fx在[b,a]上的单调性如何。

2fx=x3|x|的大致图像可能是

3、函数fx=ax2+bx+c,a,b,c∈R,当a,b,c满足什么条件时,1函数fx是偶函数。2函数fx是奇函数。 4设fx,gx分别是R上的奇函数和偶函数,并且fx+gx=xx+1,求fx,gx的解析式。

四、拓展延伸

1、有既是奇函数,又是偶函数的函数吗?若有,有多少个? 2设fx,gx分别是R上的奇函数,偶函数,试研究: 1Fx=fx·gx的奇偶性。 2Gx=|fx|+gx的奇偶性。

3、已知a∈R,fx=a ,试确定a的值,使fx是奇函数。

4、一个定义在R上的函数,是否都可以表示为一个奇函数与一个偶函数的和的形式?

高中数学教学设计6

我以前一向是在教文科班的数学,这学期对于我来说,面临着挑战,因为本学期我接手了两个理科班。以前我带的始终是文科班,对于文科班的学生的状况比较理解,但对于理科班来说,我不明白他们对学习会有怎样的想法与做法。针对这种状况,我制定了如下的高中数学教学计划:

一、指导思想

在学校、数学组的领导下,严格执行学校的各项教育教学制度和要求,认真完成各项任务,严格执行“三规”、“五严”。利用有限的时间,使学生在获得所务必的基本数学知识和技能的同时,在数学潜力方面能有所提高,为学生今后的发展打下坚实的数学基础。

二、教学措施

1、以潜力为中心,以基础为依托,调整学生的学习习惯,调动学生学习的用心性,让学生多动手、多动脑,培养学生的运算潜力、逻辑思维潜力、运用数学思想方法分析问题解决问题的潜力。精讲多练,一般地,每一节课让学生练习20分钟左右,充分发挥学生的主体作用。

2、坚持每一个教学资料群众研究,充分发挥备课组群众的力量,精心备好每一节课,努力提高上课效率。调整教学方法,采用新的教学模式。

3、脚踏实地做好落实工作。当日资料,当日消化,加强每一天、每月过关练习的检查与落实。坚持每周一周练,每章一章考。透过周练重点突破一些重点、难点,章考试一章的查漏补缺,章考后对一章的不足之处进行重点讲评。

4、周练与章考,切实把握试题的选取,切实把握高考的脉搏,注重基础知识的考查,注重潜力的考查,注意思维的层次性(即解法的多样性),适时推出一些新题,加强应用题考察的力度。每一次考试试题坚持群众研究,努力提高考试的效率。

5.注重对所选例题和练习题的把握:

6.周密计划合理安排,现数学学科特点,注重知识潜力的提高,提升综合解题潜力,加强解题教学,使学生在解题探究中提高潜力.

7.多从“贴近教材、贴近学生、贴近实际”角度,选取典型的数_系生活、生产、环境和科技方面的问题,对学生进行有计划、针对性强的训练,多给学生锻炼各种潜力的机会,从而到达提升学生数学综合潜力之目的不脱离基础知识来讲学生的潜力,基础扎实的学生不必须潜力强.教学中不断地将基础知识运用于数学问题的解决中,努力提高学生的学科综合潜力.

三、对自己的要求――落实教学的各个环节

1.精心上好每一节课

备课时从实际出发,精心设计每一节课,备课组分工合作,利用群众智慧制作课件,充分应用现代化教育手段为教学服务,提高四十五分钟课堂效率。

2.严格控制测验,精心制作每一份复习资料和练习

教学中配备资料应要求学生按教学进度完成相应的习题,老师要给予检查和必要的讲评,老师要提前向学生指出不做的题,以免影响学生的学习。三类练习(大练习、训练、月考)试题的制作分工落实到每个人(备课组长出月考卷,其他教师出大练习、训练卷),并经组长严格把关方可使用.注重考试质量和试卷分析,定期组织备课组教师进行学情分析,发现问题,寻找对策,及时解决,确保学生的学习用心性不断提高。

3.做好作业批改和加强辅导工作

我们的工作对象是活生生的对象──学生,那里需要关心、帮忙及鼓励。我们要对学生的学习状况做超多的细致工作,批改作业、辅导疑难、及时鼓励等,个性是对已经出现数学学习困难的学生,教我们的辅导更为重要。在教学中,要尽快掌握班上学生的数学学习状况,有针对性地进行辅导工作,不仅仅要给他们解疑难,还要给他们鼓信心、调动自身的学习用心性,帮忙他们树立良好的学习态度,用心主动地去投入学习,变“要我学”为“我要学”。

高中数学教学设计7

教学准备

教学目标

1、掌握平面向量的数量积及其几何意义;

2、掌握平面向量数量积的重要性质及运算律;

3、了解用平面向量的数量积可以处理垂直的问题;

4、掌握向量垂直的条件。

教学重难点

教学重点:平面向量的数量积定义

教学难点:平面向量数量积的定义及运算律的理解和平面向量数量积的应用

教学过程

1、平面向量数量积(内积)的定义:已知两个非零向量a与b,它们的夹角是θ,

则数量|a||b|cosq叫a与b的数量积,记作a×b,即有a×b = |a||b|cosq,(0≤θ≤π)。

并规定0向量与任何向量的数量积为0。

×探究:1、向量数量积是一个向量还是一个数量?它的符号什么时候为正?什么时候为负?

2、两个向量的数量积与实数乘向量的积有什么区别?

(1)两个向量的数量积是一个实数,不是向量,符号由cosq的符号所决定。

(2)两个向量的数量积称为内积,写成a×b;今后要学到两个向量的外积a×b,而a×b是两个向量的数量的积,书写时要严格区分。符号“· ”在向量运算中不是乘号,既不能省略,也不能用“×”代替。

(3)在实数中,若a?0,且a×b=0,则b=0;但是在数量积中,若a?0,且a×b=0,不能推出b=0。因为其中cosq有可能为0。

高中数学教学设计8

教学目标:

1、了解反函数的概念,弄清原函数与反函数的定义域和值域的关系。

2、会求一些简单函数的反函数。

3、在尝试、探索求反函数的过程中,深化对概念的认识,总结出求反函数的一般步骤,加深对函数与方程、数形结合以及由特殊到一般等数学思想方法的认识。

4、进一步完善学生思维的深刻性,培养学生的逆向思维能力,用辩证的观点分析问题,培养抽象、概括的能力。

教学重点:

求反函数的方法。

教学难点:

反函数的概念。

教学过程:

一、创设情境,引入新课

1、复习提问

①函数的概念

②y=f(x)中各变量的意义

2、同学们在物理课学过匀速直线运动的位移和时间的函数关系,即S=vt和t=(其中速度v是常量),在S=vt中位移S是时间t的函数;在t=中,时间t是位移S的函数。在这种情况下,我们说t=是函数S=vt的反函数。什么是反函数,如何求反函数,就是本节课学习的内容。

3、板书课题

由实际问题引入新课,激发了学生学习兴趣,展示了教学目标。这样既可以拨去“反函数”这一概念的神秘面纱,也可使学生知道学习这一概念的必要性。

二、实例分析,组织探究

1、问题组一:

(用投影给出函数与;与的图象)

(1)这两组函数的图像有什么关系?这两组函数有什么关系?(生答:与的图像关于直线y=x对称;与()的图象也关于直线y=x对称。是求一个数立方的运算,而是求一个数立方根的运算,它们互为逆运算。同样,与()也互为逆运算。)

(2)由,已知y能否求x?

(3)是否是一个函数?它与有何关系?

(4)与有何联系?

2、问题组二:

(1)函数y=2x1(x是自变量)与函数x=2y1(y是自变量)是否是同一函数?

(2)函数(x是自变量)与函数x=2y1(y是自变量)是否是同一函数?

(3)函数()的定义域与函数()的值域有什么关系?

3、渗透反函数的概念。

(教师点明这样的函数即互为反函数,然后师生共同探究其特点)

从学生熟知的函数出发,抽象出反函数的概念,符合学生的认知特点,有利于培养学生抽象、概括的能力。

通过这两组问题,为反函数概念的引出做了铺垫,利用旧知,引出新识,在“最近发展区”设计问题,使学生对反函数有一个直观的粗略印象,为进一步抽象反函数的概念奠定基础。

三、师生互动,归纳定义

1、(根据上述实例,教师与学生共同归纳出反函数的定义)

函数y=f(x)(x∈A)中,设它的值域为C。我们根据这个函数中x,y的关系,用y把x表示出来,得到x=j(y)。如果对于y在C中的任何一个值,通过x=j(y),x在A中都有的值和它对应,那么,x=j(y)就表示y是自变量,x是自变量y的函数。这样的函数x=j(y)(y∈C)叫做函数y=f(x)(x∈A)的反函数。记作:。考虑到“用x表示自变量,y表示函数”的习惯,将中的x与y对调写成。

2、引导分析:

1)反函数也是函数;

2)对应法则为互逆运算;

3)定义中的“如果”意味着对于一个任意的函数y=f(x)来说不一定有反函数;

4)函数y=f(x)的定义域、值域分别是函数x=f(y)的值域、定义域;

5)函数y=f(x)与x=f(y)互为反函数;

6)要理解好符号f;

7)交换变量x、y的原因。

3、两次转换x、y的对应关系

(原函数中的自变量x与反函数中的函数值y是等价的,原函数中的函数值y与反函数中的自变量x是等价的)

4、函数与其反函数的关系

函数y=f(x)

函数

定义域

A

C

值域

C

A

四、应用解题,总结步骤

1、(投影例题)

【例1】求下列函数的反函数

(1)y=3x—1(2)y=x1

【例2】求函数的反函数。

(教师板书例题过程后,由学生总结求反函数步骤。)

2、总结求函数反函数的步骤:

1°由y=f(x)反解出x=f(y)。

2°把x=f(y)中x与y互换得。

3°写出反函数的定义域。

(简记为:反解、互换、写出反函数的定义域)【例3】

(1)有没有反函数?

(2)的反函数是________。

(3)(x<0)的反函数是__________。

在上述探究的基础上,揭示反函数的定义,学生有针对性地体会定义的特点,进而对定义有更深刻的认识,与自己的预设产生矛盾冲突,体会反函数。在剖析定义的过程中,让学生体会函数与方程、一般到特殊的数学思想,并对数学的符号语言有更好的把握。

通过动画演示,表格对照,使学生对反函数定义从感性认识上升到理性认识,从而消化理解。

通过对具体例题的讲解分析,在解题的步骤上和方法上为学生起示范作用,并及时归纳总结,培养学生分析、思考的习惯,以及归纳总结的能力。

题目的设计遵循了从了解到理解,从掌握到应用的不同层次要求,由浅入深,循序渐进。并体现了对定义的反思理解。学生思考练习,师生共同分析纠正。

五、巩固强化,评价反馈

1、已知函数y=f(x)存在反函数,求它的反函数y=f(x)

(1)y=—2x3(xR)(2)y=—(xR,且x)

(3)y=(xR,且x)

2、已知函数f(x)=(xR,且x)存在反函数,求f(7)的值。

五、反思小结,再度设疑

本节课主要研究了反函数的定义,以及反函数的求解步骤。互为反函数的两个函数的图象到底有什么特点呢?为什么具有这样的特点呢?我们将在下节研究。

(让学生谈一下本节课的学习体会,教师适时点拨)

进一步强化反函数的概念,并能正确求出反函数。反馈学生对知识的掌握情况,评价学生对学习目标的落实程度。具体实践中可采取同学板演、分组竞赛等多种形式调动学生的积极性。“问题是数学的心脏”学生带着问题走进课堂又带着新的问题走出课堂。

六、作业

习题2.4第1题,第2题

进一步巩固所学的知识。

高中数学教学设计9

新学期已经开始,在学校工作总体思路的指导下,现将本学期数学组工作进行规划、设想,力争使本学期的工作扎实有效,为学校的发展做出新的贡献。

指导思想

以学校工作总体思路为指导,深入学习和贯彻新课程理念,以教育教学工作为重点,优化教学过程,提高课堂教学质量。结合数学组工作实际,用心开展教育教学研究活动,促进教师的专业发展,学生各项素质的提高,提高数学组教研工作水平。

工作目标

1、加强常规教学工作,优化教学过程,切实提高课堂教学质量。

2、加强校本教研,用心开展教学研究活动,鼓励教师根据教学实际开展教学研究,透过撰写教学反思类文章等促进教师的专业化发展。

3、掌握现代教育技术,用心开展网络教研,拓展教研的深度与广度。

4、组织好学生的数学实践活动,以调动学生学习用心性,丰富学生课余生活,促进其全面发展。

主要工作

1、备课做好教学准备是上好课的前提,本学期要求每位教师做好教案、教学用具、作业本等准备,以良好的精神状态进入课堂。

备课是上好课的基础,本学期数学组仍采用年级组群众备课形式,要求教案尽量做到环节齐全,反思具体,有价值。群众备课时,所有教师务必做好准备,每个单元负责教师要提前安排好资料及备课方式,对于教案中修改或补充的资料要及时地在旁边批注,电子教案的可在旁边用红色批注(发布校园网数学组板块内),使群众备课不流于形式,每节课前都要做到课前的“复备”。每一位教师在个人研究和群众备课的基础上构成适合自己、实用有效的教案,更好的为课堂教学服务。各年级组每月带给单元备课活动记录,在规定的群众备课时间,教师无特殊原因不得缺席。

提高课后反思的质量,提倡教学以后将课堂上精彩的地方进行实录,以案例形式进行剖析。对于原教案中不合理的及时记录,结合课堂重新修改和设计,同年级教师能够共同反思、共同提高,为以后的教学带给借鉴价值。数学教师每周反思不少于2次,每学期要有1-2篇较高水平的反思或教学案例,及时发布在向校园网上,学校将及时进行评审。

教案检查分平时抽查和定期检查两种形式,“推门课”后教师要及时带给本节课的教案,每月26号为组内统一检查教案时间,每月检查结果将公布在校园网数学组板块中的留言板中。

2、课堂教学课堂是教学的主阵地。教师不但要上好公开课,更要上好每一天的“常规课”。遵守学校教学常规中对课堂教学的要求。课堂上要用心的创设有效的教学情境,要重视学习方法、思考方法的渗透与指导,重视数学知识的应用性。学校将继续透过听“推门课”促进课堂教学水平的提高,发现教学新秀。公开课力求有特点,能侧重一个教学问题,促进组内教师的研讨。一学期做到每人一节,年轻教师上两节。课堂对于比较成熟的公开课或研讨课鼓励大家录像,保存资料,及时地向校园网推荐。

高中数学教学设计10

数学是利用符号语言研究数量、结构、变化以及空间模型等概念的一门学科。小编准备了高二数学教学工作计划,具体请看以下内容。

一、指导思想:

为进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。具体目标如下:

1.获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。

2.提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。

3.提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。

4.发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。

5.提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。

6.具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。

二、教材特点:

我们所使用的教材是人教版《普通高中课程标准实验教科书数学(A版)》,它在坚持我国数学教育优良传统的前提下,认真处理继承,借签,发展,创新之间的关系,体现基础性,时代性,典型性和可接受性等到,具有如下特点:

1.亲和力:以生动活泼的呈现方式,激发兴趣和美感,引发学习激情。

2.问题性:以恰时恰点的问题引导数学活动,培养问题意识,孕育创新精神。

3.科学性与思想性:通过不同数学内容的联系与启发,强调类比,推广,特殊化,化归等思想方法的运用,学习数学地思考问题的方式,提高数学思维能力,培育理性精神。

4.时代性与应用性:以具有时代性和现实感的素材创设情境,加强数学活动,发展应用意识。

三、教法分析:

1.选取与内容密切相关的,典型的,丰富的和学生熟悉的素材,用生动活泼的语言,创设能够体现数学的概念和结论,数学的思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,引发学生看个究竟的冲动,以达到培养其兴趣的目的。

2.通过观察,思考,探究等栏目,引发学生的思考和探索活动,切实改进学生的学习方式。

3.在教学中强调类比,推广,特殊化,化归等数学思想方法,尽可能养成其逻辑思维的习惯。

四、学情分析:

1、基本情况:高二(1)班共50人,男生36人,女生14人;本班相对而言,数学尖子约13人,中上等生约23人,中等生约6人,中下生约6人,后进生约2人。

高二(2)班共49人,男生37人,女生12人;本班相对而言,数学尖子约0人,中上等生约7人,中等生约8人,中下生约22人,后进生约12人。

2、(1)班学生学习情况良好,但学生自觉性差,自我控制能力弱,因此在教学中需时时提醒学生,培养其自觉性。班级存在的最大问题是计算能力太差,学生不喜欢去算题,嫌麻烦,只注重思路,因此在以后的教学中,重点在于培养学生的计算能力,同时要进一步提高其思维能力。同时,由于初中课改的原因,高中教材与初中教材衔接力度不够,需在新授时适机补充一些内容。因此时间上可能仍然吃紧。同时,其底子薄弱,因此在教学时只能注重基础再基础,争取每一堂课落实一个知识点,掌握一个知识点。

五、教学要求:

1、了解合情推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学发现中的作用;了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理;了解合情推理和演绎推理之间的联系和差异。

2、了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点;了解间接证明的一种基本方法反证法;了解反证法的思考过程、特点。

3、了解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题。

4、理解复数相等的充要条件;了解复数的代数表示法及其几何意义;会进行复数代数形式的四则运算;了解复数代数形式的加、减运算的几何意义。

5、理解分类加法计数原理和分类乘法计数原理;会用分类加法计数原理或分步乘法计数原理分析和解决一些简单的实际问题;理解排列、组合的概念;能利用计数原理推导排列数公式、组合数公式,能解决简单的实际问题;能用计数原理证明二项式定理,会用二项式定理解决与二项展开式有关的简单问题。

6、理解取有限个值的离散型随机变量及其分布列的概念,了解分布列对于刻画随机现象的重要性;理解超几何分布及其导出过程,并能进行简单的应用;了解条件概率和两个事件相互独立的概念,理解n次独立重复试验的模型及二项分布,并能解决一些简单的实际问题;理解取有限个值的离散型随机变量均值、方差的概念,能计算简单离散型随机变量的均值、方差,并能解决一些实际问题;利用实际问题的直方图,了解正态分布曲线的特点及曲线所表示的意义。

7、了解下列一些常见的统计方法,并能应用这些方法解决一些实际问题:了解独立性检验(只要求22列联表)的基本思想、方法及其简单应用;了解假设检验的基本思想、方法及其简单应用;了解聚类分析的基本思想、方法及其简单应用;了解回归的基本思想、方法及其简单应用。

9、了解程序框图;了解工序流程图(即统筹图);能绘制简单实际问题的流程图,了解流程图在解决实际问题中的作用;了解结构图;会运用结构图梳理已学过的知识、整理收集到的资料信息。

8、所有考生都学习选修4-4坐标系与参数方程,理科考生还需学习选修4-5不等式选讲这部分专题内容。

六、教学措施:

1、激发学生的学习兴趣。由数学活动、故事、吸引人的课、合理的要求、师生谈话等途径树立学生的学习信心,提高学习兴趣,在主观作用下上升和进步。

2、注意从实例出发,从感性提高到理性;注意运用对比的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的知识出发,启发学生思考。

3、加强培养学生的逻辑思维能力就解决实际问题的能力,以及培养提高学生的自学能力,养成善于分析问题的习惯,进行辨证唯物主义教育。

4、抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的能力。

5、自始至终贯彻教学四环节,针对不同的教材内容选择不同教法。

6、重视数学应用意识及应用能力的培养。

七、教学进度安排(略)

高中数学教学设计11

一、教学内容分析

圆锥曲线的定义反映了圆锥曲线的本质属性,它是无数次实践后的高度抽象.恰当地利用定义解题,许多时候能以简驭繁.因此,在学习了椭圆、双曲线、抛物线的定义及标准方程、几何性质后,再一次强调定义,学会利用圆锥曲线定义来熟练的解题”。

二、学生学习情况分析

我所任教班级的学生参与课堂教学活动的积极性强,思维活跃,但计算能力较差,推理能力较弱,使用数学语言的表达能力也略显不足。

三、设计思想

由于这部分知识较为抽象,如果离开感性认识,容易使学生陷入困境,降低学习热情.在教学时,借助多媒体动画,引导学生主动发现问题、解决问题,主动参与教学,在轻松愉快的环境中发现、获取新知,提高教学效率.

四、教学目标

1.深刻理解并熟练掌握圆锥曲线的定义,能灵活应用定义解决问题;熟练掌握焦点坐标、顶点坐标、焦距、离心率、准线方程、渐近线、焦半径等概念和求法;能结合平面几何的基本知识求解圆锥曲线的方程。

2.通过对练习,强化对圆锥曲线定义的理解,提高分析、解决问题的能力;通过对问题的不断引申,精心设问,引导学生学习解题的一般方法。

3.借助多媒体辅助教学,激发学习数学的兴趣.

五、教学重点与难点:

教学重点

1.对圆锥曲线定义的理解

2.利用圆锥曲线的定义求“最值”

3.“定义法”求轨迹方程

教学难点:

巧用圆锥曲线定义解题

六、教学过程设计

【设计思路】

(一)开门见山,提出问题

一上课,我就直截了当地给出——

例题1:(1) 已知A(-2,0), B(2,0)动点M满足|MA|+|MB|=2,则点M的轨迹是( )。

(A)椭圆 (B)双曲线 (C)线段 (D)不存在

(2)已知动点 M(x,y)满足(x1)2(y2)2|3x4y|,则点M的轨迹是( )。

(A)椭圆 (B)双曲线 (C)抛物线 (D)两条相交直线

【设计意图】

定义是揭示概念内涵的逻辑方法,熟悉不同概念的不同定义方式,是学习和研究数学的一个必备条件,而通过一个阶段的学习之后,学生们对圆锥曲线的定义已有了一定的认识,他们是否能真正掌握它们的本质,是我本节课首先要弄清楚的问题。

为了加深学生对圆锥曲线定义理解,我以圆锥曲线的定义的运用为主线,精心准备了两道练习题。

【学情预设】

估计多数学生能够很快回答出正确答案,但是部分学生对于圆锥曲线的定义可能并未真正理解,因此,在学生们回答后,我将要求学生接着说出:若想答案是其他选项的话,条件要怎么改?这对于已学完圆锥曲线这部分知识的学生来说,并不是什么难事。但问题(2)就可能让学生们费一番周折—— 如果有学生提出:可以利用变形来解决问题,那么我就可以循着他的思路,先对原等式做变形:(x1)2(y2)2

5这样,很快就能得出正确结果。如若不然,我将启发他们从等式两端的式子|3x4y|5

入手,考虑通过适当的变形,转化为学生们熟知的两个距离公式。

在对学生们的解答做出判断后,我将把问题引申为:该双曲线的中心坐标是 ,实轴长为 ,焦距为 。以深化对概念的理解。

(二)理解定义、解决问题

例2 (1)已知动圆A过定圆B:x2y26x70的圆心,且与定圆C:xy6x910 相内切,求△ABC面积的最大值。

(2)在(1)的条件下,给定点P(-2,2), 求|PA|

【设计意图】

运用圆锥曲线定义中的数量关系进行转化,使问题化归为几何中求最大(小)值的模式,是解析几何问题中的一种常见题型,也是学生们比较容易混淆的一类问题。例2的设置就是为了方便学生的辨析。

【学情预设】

根据以往的经验,多数学生看上去都能顺利解答本题,但真正能完整解答的可能并不多。事实上,解决本题的关键在于能准确写出点A的轨迹,有了练习题1的铺垫,这个问题对学生们来讲就显得颇为简单,因此面对例2(1),多数学生应该能准确给出解答,但是对于例2(2)这样相对比较陌生的问题,学生就无从下手。我提醒学生把3/5和离心率联系起来,这样就容易和第二定义联系起来,从而找到解决本题的突破口。

(三)自主探究、深化认识

如果时间允许,练习题将为学生们提供一次数学猜想、试验的机会——

练习:设点Q是圆C:(x1)2225|AB|的最小值。 3y225上动点,点A(1,0)是圆内一点,AQ的垂直平分线与CQ交于点M,求点M的轨迹方程。

引申:若将点A移到圆C外,点M的轨迹会是什么?

【设计意图】 练习题设置的目的是为学生课外自主探究学习提供平台,当然,如果课堂上时间允许的话,

可借助“多媒体课件”,引导学生对自己的结论进行验证。

【知识链接】

(一)圆锥曲线的定义

1. 圆锥曲线的第一定义

2. 圆锥曲线的统一定义

(二)圆锥曲线定义的应用举例

1.双曲线1的两焦点为F1、F2,P为曲线上一点,若P到左焦点F1的距离为12,求P到右准线的距离。

2.|PF1||PF2|2.P为等轴双曲线x2y2a2上一点, F1、F2为两焦点,O为双曲线的中心,求的|PO|取值范围。

3.在抛物线y22px上有一点A(4,m),A点到抛物线的焦点F的距离为5,求抛物线的方程和点A的坐标。

4.(1)已知点F是椭圆1的右焦点,M是这椭圆上的动点,A(2,2)是一个定点,求|MA|+|MF|的最小值。

x2y211(2)已知A(,3)为一定点,F为双曲线1的右焦点,M在双曲线右支上移动,当|AM||MF|最小时,求M点的.坐标。

(3)已知点P(-2,3)及焦点为F的抛物线y,在抛物线上求一点M,使|PM|+|FM|最小。

5.已知A(4,0),B(2,2)是椭圆1内的点,M是椭圆上的动点,求|MA|+|MB|的最小值与最大值。

七、教学反思

1.本课将借助于,将使全体学生参与活动成为可能,使原来令人难以理解的抽象的数学理论变得形象,生动且通俗易懂,同时,运用“多媒体课件”辅助教学,节省了板演的时间,从而给学生留出更多的时间自悟、自练、自查,充分发挥学生的主体作用,这充分显示出“多媒体课件”与探究合作式教学理念的有机结合的教学优势。

2.利用两个例题及其引申,通过一题多变,层层深入的探索,以及对猜测结果的检测研究,培养学生思维能力,使学生从学会一个问题的求解到掌握一类问题的解决方法. 循序渐进的让学生把握这类问题的解法;将学生容易混淆的两类求“最值问题”并为一道题,方便学生进行比较、分析。虽然从表面上看,我这一堂课的教学容量不大,但事实上,学生们的思维运动量并不会小。

总之,如何更好地选择符合学生具体情况,满足教学目标的例题与练习、灵活把握课堂教学节奏仍是我今后工作中的一个重要研究课题.而要能真正进行素质教育,培养学生的创新意识,自己首先必须更新观念——在教学中适度使用多媒体技术,让学生有参与教学实践的机会,能够使学生在学习新知识的同时,激发起求知的欲望,在寻求解决问题的办法的过程中获得自信和成功的体验,于不知不觉中改善了他们的思维品质,提高了数学思维能力。

高中数学教学设计12

前言

为了更好地贯彻落实和科课程标准有关要求,促进广大教师学习现代教学理论,进一步激发广大教师课堂教学的创新意识,切实转变教学观念,积极探索新课程理念下的教与学,有效解决教学实践中存在的问题,促进课堂教学质量的全面提高,在20xx年由福建省普通教育教学研究室组织,举办了一次教学设计大赛活动。这次活动数学学科高中组共收到有49篇教学设计文章。获奖文章推荐评审专家组本着公平、公正的原则,经过认真的评审,全部作品均评出了相应的奖项;专家组还为获得一、二等奖的作品撰写了点评。本稿收录的作品全部是参加此次福建省教学设计竞赛获奖作者的文章。按照征文的规则,我们对入选作品的格式作了一些修饰,并经过适当的整合,以飨读者。

在此还需要说明的是,为了方便阅读,获奖文章的排序原则,并非按照获奖名次的前后顺序,而是按照高中数学新课程必修1—5的内容顺序,进行编排的。部分体现大纲教材内容的文章则排在后面。

不管你获得的是哪个级别的奖项,你们都可以有成就感,因为那是你们用心、用汗浇灌出的果实,它记录了你们奉献于数学教育事业的心路历程.书中每一篇的教学设计都耐人寻味,都能带给我们许多遐想和启迪.你们是优秀的,在你们未来悠远的职业里程中,只要努力,将有更多的辉煌在等待着大家。谢谢你们!

1、集合与函数概念实习作业

一、教学内容分析

《普通高中课程标准实验教科书·数学(1)》(人教A版)第44页。-----《实习作业》。本节课程体现数学文化的特色,学生通过了解函数的发展历史进一步感受数学的魅力。学生在自己动手收集、整理资料信息的过程中,对函数的概念有更深刻的理解;感受新的学习方式带给他们的学习数学的乐趣。

二、学生学习情况分析

该内容在《普通高中课程标准实验教科书·数学(1)》(人教A版)第44页。学生第一次完成《实习作业》,积极性高,有热情和新鲜感,但缺乏经验,所以需要教师精心设计,做好准备工作,充分体现教师的“导演”角色。特别在分组时注意学生的合理搭配(成绩的好坏、家庭有无电脑、男女生比例、口头表达能力等),选题时,各组之间尽量不要重复,尽量多地选不同的题目,可以让所有的学生在学习共享的过程中受到更多的数学文化的熏陶。

三、设计思想

《标准》强调数学文化的重要作用,体现数学的文化的价值。数学教育不仅应该帮助学生学习和掌握数学知识和技能,还应该有助于学生了解数学的价值。让学生逐步了解数学的思想方法、理性精神,体会数学家的创新精神,以及数学文明的深刻内涵。

四、教学目标

1.了解函数概念的形成、发展的历史以及在这个过程中起重大作用的历史事件和人物;

2.体验合作学习的方式,通过合作学习品尝分享获得知识的快乐;

3.在合作形式的小组学习活动中培养学生的领导意识、社会实践技能和民主价值观。

五、教学重点和难点

重点:了解函数在数学中的核心地位,以及在生活里的广泛应用;

难点:培养学生合作交流的能力以及收集和处理信息的能力。

六、教学过程设计

【课堂准备】

1.分组:4~6人为一个实习小组,确定一人为组长。教师需要做好协调工作,确保每位学生都参加。

2.选题:根据个人兴趣初步确定实习作业的题目。教师应该到各组中去了解选题情况,尽量多地选择不同的题目。

高中数学教学设计13

一、学习目标与任务

1、学习目标描述

知识目标

(A)理解和掌握圆锥曲线的第一定义和第二定义,并能应用第一定义和第二定义来解题。

(B)了解圆锥曲线与现实生活中的联系,并能初步利用圆锥曲线的知识进行知识延伸和知识创新。

能力目标

(A)通过学生的操作和协作探讨,培养学生的实践能力和分析问题、解决问题的能力。

(B)通过知识的再现培养学生的创新能力和创新意识。

(C)专题网站中提供各层次的例题和习题,解决各层次学生的学习过程中的各种的需要,从而培养学生应用知识的能力。

德育目标

让学生体会知识产生的全过程,培养学生运动变化的辩证唯物主义思想。

2、学习内容与学习任务说明

本节课的内容是圆锥曲线的第一定义和圆锥曲线的统一定义,以及利用圆锥曲线的定义来解决轨迹问题和最值问题。

学习重点:圆锥曲线的第一定义和统一定义。

学习难点:圆锥曲线第一定义和统一定义的应用。

明确本课的重点和难点,以学习任务驱动为方式,以圆锥曲线定义和定义应用为中心,主动操作实验、大胆分析问题和解决问题。

抓住本节课的重点和难点,采取的基于学科专题网站下的三者结合的教学模式,突出重点、突破难点。

充分利用《圆锥曲线》专题网站内的内容,在着重学习内容的基础上,内延外拓,培养学生的创新精神和克服困难的信心。

二、学习者特征分析

(说明学生的学习特点、学习习惯、学习交往特点等)

l本课的学习对象为高二下学期学生,他们经过近两年的高中学习,已经有一定的学习基础和分析问题、解决问题的能力,基本的计算机操作较为熟练。

高二年下学期学生由于高考的压力,他们保持着传统教学的学习习惯,在

l课堂上的主体作用的体现不是太充分,但是如果他们还是乐于尝试、勇于探索的。

高二年的学生在学习交往上“个别化学习”和“协作讨论学习”并存,也就是说学生是具有一定的群体性小组交流能力与协同讨论学习能力的,还是能完成上课时教师布置的协作学习任务的。

三、学习环境选择与学习资源设计

1.学习环境选择(打√)

(1)Web教室(√)(2)局域网(3)城域网(4)校园网(√)(5)Internet(√)

(6)其它

2、学习资源类型(打√)

(1)课件(网络课件)(√)(2)工具(3)专题学习网站(√)(4)多媒体资源库

(5)案例库(6)题库(7)网络课程(8)其它

3、学习资源内容简要说明

(说明名称、网址、主要内容等)

《圆锥曲线专题网站》:从自然与科技、定义与应用、性质与实践和创新与未来四个方面围绕圆锥曲线进行探讨与研究。(IP:192.168.3.134)

用Flash5、几何画板和Authorware6制作可操作且具有交互性的网络课件放在专题网站里。

四、学习情境创设

1、学习情境类型(打√)

(1)真实性情境(√)(2)问题性情境(√)

(3)虚拟性情境(√)(4)其它

2、学习情境设计

真实性情境:用Flash5制作的一系列教学软件。用几何画板制作的《圆锥曲线的统一定义》的教学软件。

问题性情境:圆锥曲线的截取方法、圆锥曲线的各种定义、典型例题。

虚拟性情境:Authorware6制作的《圆锥曲线的截取》,模拟曲线截取。

五、学习活动的组织

1、自主学习设计(打√并填写相关内容)

(1)抛锚式

(2)支架式(√)相应内容:圆锥曲线的第一定义和统一定义。

使用资源:数学教材、专题网站及专题网站下的多媒体教学软件。

学生活动:分析、操作、协作讨论、总结、提交结论。

教师活动:问题的提出。学习资源获取路径的指导。问题解答和咨询。

(3)随机进入式(√)相应内容:圆锥曲线定义的典型应用。

使用资源:轨迹问题、最值问题、其它问题三种典型例题以及各个题目的动画演示和答案。

学生活动:根据自身情况选题、分析题目、协作讨论、解答题目。

教师活动:讲解例题,总结点评学生做题过程中的问题。

(4)其它

2、协作学习设计(打√并填写相关内容)

(1)竞争

(2)伙伴(√)

相应内容:圆锥曲线的第一定义和统一定义

使用资源:数学教材、专题网站及专题网站下的多媒体教学软件。

分组情况:每组三人

学生活动:学生之间对圆锥曲线的定义展开讨论,从而达到对定义的理解和掌握。

教师活动:问题的提出。学习资源获取路径的指导。问题解答和咨询。

(3)协同(√)

相应内容:圆锥曲线定义的典型应用。

使用资源:轨迹问题、最值问题、其它问题三种典型例题以及各个题目的动画演示和答案。

分组情况:每组三人。

学生活动:通过协作讨论区,同学之间互相配合、互相帮助、各种观点互相补充。

教师活动:总结点评学生做题过程中的问题。

(4)辩论

(5)角色扮演

(6)其它

4、教学结构流程的设计

六、学习评价设计

1、测试形式与工具(打√)

(1)堂上提问(√)(2)书面练习(3)达标测试(4)学生自主网上测试(√)(5)合作完成作品(6)其它

2、测试内容

教师堂上提问:圆锥曲线的定义、学生提交的结论的完整性、学生协作讨论时的疑问、例题讲解过程中问题,课堂总结。

学生自主网上测试:解决轨迹问题、最值问题、其它问题三种典型题目。

(附)圆锥曲线专题网站设计分析

(1)设计思路

(A)给学生操作与实践的机会:在每一环节中建设一个可供学生操作的实验平台。

(B)突出教学中“主导和主体”的作用:在每一环节中建设一个可供师生交流的平台。

(C)突出知识的再创新过程和知识的延伸:如圆锥曲线的作法和知识的创新与应用。

(D)强调教学软件的交互性:如在题目中给出提示的动画过程和解答过程。

(E)突出和各学科的联系:如斜抛运动和行星运动等等。

(F)强调分层次的教学:

如在知识应用中的配置不同层次的例题和练习:

(2)网站导航图

高中数学教学设计14

一、教材分析

本小节选自《普通高中课程标准数学教科书-数学必修(一)》(人教版)第二章基本初等函数(1)2.2.2对数函数及其性质(第一课时),主要内容是学习对数函数的定义、图象、性质及初步应用。对数函数是继指数函数之后的又一个重要初等函数,无论从知识或思想方法的角度对数函数与指数函数都有许多类似之处。与指数函数相比,对数函数所涉及的知识更丰富、方法更灵活,能力要求也更高。学习对数函数是对指数函数知识和方法的巩固、深化和提高,也为解决函数综合问题及其在实际上的应用奠定良好的基础。虽然这个内容十分熟悉,但新教材做了一定的改动,如何设计能够符合新课标理念,是人们十分关注的,正因如此,本人选择这课题立求某些方面有所突破。

二、学生学习情况分析

刚从初中升入高一的学生,仍保留着初中生许多学习特点,能力发展正处于形象思维向抽象思维转折阶段,但更注重形象思维。由于函数概念十分抽象,又以对数运算为基础,同时,初中函数教学要求降低,初中生运算能力有所下降,这双重问题增加了对数函数教学的难度。教师必须认识到这一点,教学中要控制要求的拔高,关注学习过程。

三、设计理念

本节课以建构主义基本理论为指导,以新课标基本理念为依据进行设计的,针对学生的学习背景,对数函数的教学首先要挖掘其知识背景贴近学生实际,其次,激发学生的学习热情,把学习的主动权交给学生,为他们提供自主探究、合作交流的机会,确实改变学生的学习方式。

四、教学目标

1.通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;

2.能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点;

3.通过比较、对照的方法,引导学生结合图象类比指数函数,探索研究对数函数的性质,培养学生运用函数的观点解决实际问题。

五、教学重点与难点

重点是掌握对数函数的图象和性质,难点是底数对对数函数值变化的影响.

六、教学过程设计

教学流程:背景材料→引出课题→函数图象→函数性质→问题解决→归纳小结

(一)熟悉背景、引入课题

1.让学生看材料:

材料1(幻灯):马王堆女尸千年不腐之谜:一九七二年,马王堆考古发现震惊世界,专家发掘西汉辛追遗尸时,形体完整,全身润泽,皮肤仍有弹性,关节还可以活动,骨质比现在六十岁的正常人还好,是世界上发现的首例历史悠久的湿尸。大家知道,世界发现的不腐之尸都是在干燥的环境风干而成,譬如沙漠环境,这类干尸虽然肌肤未腐,是因为干燥不利细菌繁殖,但关节和一般人死后一样,是僵硬的,而马王堆辛追夫人却是在湿润的环境中保存二千多年,而且关节可以活动。人们最关注有两个问题,第一:怎么鉴定尸体的年份?第二:是什么环境使尸体未腐?其中第一个问题与数学有关。

图4—1 (如图4—1在长沙马王堆“沉睡”近22的古长沙国丞相夫人辛追,日前奇迹般地“复活”了)那么,考古学家是怎么计算出古长沙国丞相夫人辛追“沉睡”近2200年?上面已经知道考古学家是通过提取尸体的残留物碳14的残留量p,利用t?logp 57302估算尸体出土的年代,不难发现:对每一个碳14的含量的取值,通过这个对应关系,生物死亡年数t都有唯一的值与之对应,从而t是p的函数;

如图4—2材料2(幻灯):某种细胞分裂时,由1个分裂成2个,2个分裂成4个??,如果要求这种细胞经过多少次分裂,大约可以得到细胞1万个,10万个??,不难发现:分裂次数y就是要得到的细胞个数x的函数,即y?log2x;

图4—2 1.引导学生观察这些函数的特征:含有对数符号,底数是常数,真数是变量,从而得出对数函数的定义:函数y?logax(a?0,且a?1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞).

1对数函数的定义与指数函数类似,都是形式定义,注意辨别.如:注意:○ x2对数函数对底数的限制:(a?0,都不是对数函数.○5y?2log2x,y?log5且a?1).

3.根据对数函数定义填空;

例1 (1)函数y=logax的定义域是___________ (其中a>0,a≠1) (2)函数y=loga(4-x)的定义域是___________ (其中a>0,a≠1)说明:本例主要考察对数函数定义中底数和定义域的限制,加深对概念的理

解,所以把教材中的解答题改为填空题,节省时间,点到为止,以避免挖深、拓展、引入复合函数的概念。

[设计意图:新课标强调“考虑到多数高中生的认知特点,为了有助于他们对函数概念本质的理解,不妨从学生自己的生活经历和实际问题入手”。因此,新课引入不是按旧教材从反函数出发,而是选择从两个材料引出对数函数的概念,让学生熟悉它的知识背景,初步感受对数函数是刻画现实世界的又一重要数学模型。这样处理,对数函数显得不抽象,学生容易接受,降低了新课教学的起点] 2

(二)尝试画图、形成感知1.确定探究问题

教师:当我们知道对数函数的定义之后,紧接着需要探讨什么问题?学生1:对数函数的图象和性质

教师:你能类比前面研究指数函数的思路,提出研究对数函数图象和性质的方

法吗?

学生2:先画图象,再根据图象得出性质

教师:画对数函数的图象是否象指数函数那样也需要分类?学生3:按a?1和0?a?1分类讨论

教师:观察图象主要看哪几个特征?

学生4:从图象的形状、位置、升降、定点等角度去识图

教师:在明确了探究方向后,下面,按以下步骤共同探究对数函数的图象:步骤一:(1)用描点法在同一坐标系中画出下列对数函数的图象y?log2xy?log1x 2 (2)用描点法在同一坐标系中画出下列对数函数的图象y?log3xy?log1x 3步骤二:观察对数函数y?log2x、y?log3x与y?log1x、y?log1x的图象特23征,看看它们有那些异同点。

步骤三:利用计算器或计算机,选取底数a(a?0,且a?1)的若干个不同的值,

在同一平面直角坐标系中作出相应对数函数的图象。观察图象,它们有哪些共同特征?

步骤四:规纳出能体现对数函数的代表性图象

步骤五:作指数函数与对数函数图象的比较2.学生探究成果

(1)如图4—3、4—4较为熟练地用描点法画出下列对数函数y?log2x、y?log1x、y?log3x、y?log1x的图象23图4—3图4—4 (2)如图4—5学生选取底数a=1/4、1/5、1/6、1/10、4、5、6、10,并推荐几位代表上台演示‘几何画板’,得到相应对数函数的图象。由于学生自己动手,加上‘几何画板’的强大作图功能,学生非常清楚地看到了底数a是如何影响函数y?logax(a?0,且a?1)图象的变化。

图4—5 (3)有了这种画图感知的过程以及学习指数函数的经验,学生很明确y = loga x (a>1)、y = loga x (0(中部)

高中数学教学设计15

一.学情分析

我校选用的数学教材是由人民教育出版社、课程教材研究所、中学数学课程教材研究开发中心编著的a版教材。与旧教材作一比较,发现本套教材是在继承我国高中数学教科书编写优良传统和基础上积极创新,充分体现了数学的美学价值和人文精神。我校是一所普通的高中,在重点高中和私立学校扩招的影响下,我校新生的素质可想而知了。学生基础差,学习兴趣不大,怎样调动学生的学习兴趣是本期在教学中要解决的重要问题。

二.教材分析

本教材有下列几个特点:

1、更加注重强调数学知识的实际背景和应用,使教材具有很强的亲和力,即以生动活泼的呈现方式,激发学生的兴趣和美感,使学生产生对数学的亲切感,引发学生看个究竟的冲动,使学生兴趣盎然地投入学习。

2.以恰时恰点的问题引导数学活动,培养问题意识,孕育创新精神,体现了问题性,本套教材的一个很大特点是每一章都可以看到观察思考探索以及用问号性图标呈现的边空等栏目,利用这些栏目,在知识形过过程的关键点上,在运用数学思想方法产生解决问题策略的关节点上,在数学知识之间联系的联结点上,在数学问题变式的发散点上,在学生思维 的最近发展区内,提出恰当的、对学生数学思维有适度启发的问题,以引导学生的数学探究活动,切实转变学生的学习方式。

3.信息技术是一种强有力的认识工具,在教材的编写过程体现了积极探索数学课程与信息技术的整合,帮助学生利用信息技术的力量,对数学的本质作进一步的理解。

4.关注学生数学发展的不同需求,为不同学生提供不同的发展空间,促进学生个性和潜能的发展提供了很好的平台。例如教材通过设置观察与猜想、阅读与思考、探究与发现等栏目,一方面为学生提供了一些关于探究性、拓展性、思想性、时代性和应用性的选学材料,拓展学生的数学活动空间和扩大学生的数学知识面,另一方面也体现了数学的科学价值,反映了数学在推动其他科学和整个文化进步中的作用。

5.新教材注重数学史渗透,特别是注重介绍我国对数学的贡献,充分体现数学的人文价值,科学价值和文化价值,激发了学生的爱国主义情感和民族自豪感。

三.教学任务与目的

1.了解集合的含义与表示,理解集合间的关系和运算,感受集合语言的意义和作用。进一步体会函数是描述变量之间的依赖关系的重要数学模型,会用集合与对应的语言描述函数,体会对应关系在刻画函数概念中的作用。了解函数的构成要素,会求简单函数定义域和值域,会根据实际情境的不同需要选择恰当的方法表示函数。通过已学过的具体函数,理解函数的单调性、最大

(小)值及其几何意义,了解奇偶性的含义,会用函数图象理解和研究函数的性质。根据某个主题,收集17世纪前后发生的一些对数学发展起重大作用的历史事件和人物(开普勒、伽利略、笛卡儿、牛顿、莱布尼兹、欧拉等)的有关资料,了解函数概念的发展历程。

2.了解指数函数模型的实际背景。理解有理指数幂的含义,通过具体实例了解实数指数幂的意义,掌握幂的运算。理解指数函数的概念和意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的单调性与特殊点。在解决简单实际问题的过程中,体会指数函数是一类重要的函数模型。理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;通过阅读材料,了解对数的发现历史以及对简化运算的作用。通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点。知道指数函数y=ax与对数函数y=loga x互为反函数(a 0,a≠1)。通过实例,了解幂函数的概念;结合函数y=x,y=x2,y=x3,y=1/x,y=x1/2的图象,了解它们的变化情况。

3.结合二次函数的图象,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系.根据具体函数的图象,能够借助计算器用二分法求相应方程的近似解,了解这种

方法是求方程近似解的常用方法.利用计算工具,比较指数函数、对数函数以及幂函数间的增长差异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义.收集一些社会生活中普遍使用的函数模型,了解函数模型的广泛应用。

4.利用实物模型、计算机软件观察大量空间图形,认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构。能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的立体模型,会使用材料(如纸板)制作模型,会用斜二侧法画出它们的直观图。通过观察用两种方法(平行投影与中心投影)画出的视图与直观图,了解空间图形的不同表示形式。完成实习作业,如画出某些建筑的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求)。了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式)。

5.以长方体为载体,使学生在直观感知的基础上,认识空间中点、直线、平面之间的位置关系。通过对大量图形的观察、实验、操作和说理,使学生进一步了解平行、垂直判定方法以及基本性质。学会准确地使用数学语言表述几何对象的位置关系,体验公理化思想,培养逻辑思维能力,并用来解决一些简单的推理论证及应用问题。

6.在平面直角坐标系中,结合具体图形,探索确定直线位置的几何要素。理解直线的倾斜角和斜率的概念,经历用代数方法

刻画直线斜率的过程,掌握过两点的直线斜率的计算公式。能根据斜率判定两条直线平行或垂直。根据确定直线位置的几何要素,探索并掌握直线方程的几种形式(点斜式、两点式及一般式),体会斜截式与一次函数的关系。能用解方程组的方法求两直线的交点坐标。探索并掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离。

四.教学措施和活动

1.加强集体备课与个人学习,个人要加强自我学习和养成解数学题的习惯,提高个人专业素养和教学基本功;

2.注重培养学生自主学习的能力,转变学生学习数学的方式。学生是学习和发展的主人,教学中要体现学生的主体地位,增强学生的自我学习,自我教育与发展的意识和能力。改善学生的学习方式是高中数学新课程追求的基本理念;

3.了解新课程教学基本程序,掌握新课程教学常规策略,立足于提高课堂教学效率;

4.与学生多沟通、多交流,真正成为学生的良师益友;

5.要深刻理解领悟新教材的立意进行教学,而不要盲目地加深难度。

我深深地懂得:一名新世纪的人民教师、人类灵魂的工程师,肩负着重大的历史使命和对未来的历史责任感。为了不辱使命,

为了无愧自己的良心,我只能在教学这片热土上,做到更加勤恳。用自己的心血去拼、去搏展望未来,我将化晋升高一级职称为工作之动力,以“蜡炬成灰泪始干,春蚕到死丝方尽”为奉献准则,为培养新世纪英才再作贡献!

高中数学教学设计——函数的奇偶性

函数的奇偶性是函数的重要性质,是对函数概念的深化.它把自变量取相反数时函数值间的关系定量地联系在一起,反映在图像上为:偶函数的图像关于y轴对称,奇函数的图像关于坐标原点成中心对称.这样,就从数、形两个角度对函数的奇偶性进行了定量和定性的分析.教材首先通过对具体函数的图像及函数值对应表归纳和抽象,概括出了函数奇偶性的准确定义.然后,为深化对概念的理解,举出了奇函数、偶函数、既是奇函数又是偶函数的函数和非奇非偶函数的实例.最后,为加强前后联系,从各个角度研究函数的性质,讲清了奇偶性和单调性的联系.这节课的重点是函数奇偶性的定义,难点是根据定义判断函数的奇偶性. 教学目标

1.通过具体函数,让学生经历奇函数、偶函数定义的讨论,体验数学概念的建立过程,培养其抽象的概括能力.

2.理解、掌握函数奇偶性的定义,奇函数和偶函数图像的特征,并能初步应用定义判断一些简单函数的奇偶性.

3.在经历概念形成的过程中,培养学生归纳、抽象概括能力,体验数学既是抽象的又是具体的. 任务分析

这节内容学生在初中虽没学过,但已经学习过具有奇偶性的具体的函数:正比例函数y=kx,反比例函数,(k≠0),二次函数y=ax,(a≠0),故可在此基础上,引入奇、偶函数的概念,以便于学生理解.在引入概念时始终结合具体函数的图像,以增加直观性,这样更符合学生的认知规律,同时为阐述奇、偶函数的几何特征埋下了伏笔.对于概念可从代数特征与几何特征两个角度去分析,让学生理解:奇函数、偶函数的定义域是关于原点对称的非空数集;对于在有定义的奇函数y=f(x),一定有f(0)=0;既是奇函数,又是偶函数的函数有f(x)=0,x∈R.在此基础上,让学生了解:奇函数、偶函数的矛盾概念———非奇非偶函数.关于单调性与奇偶性关系,引导学生拓展延伸,可以取得理想效果. 教学设计

一、问题情景

1.观察如下两图,思考并讨论以下问题:

(1)这两个函数图像有什么共同特征?

(2)相应的两个函数值对应表是如何体现这些特征的? 可以看到两个函数的图像都关于y轴对称.从函数值对应表可以看到,当自变量x取一对相反数时,相应的两个函数值相同.

对于函数f(x)=x,有f(-3)=9=f(3),f(-2)=4=f(2),f(-1)=1=f(1).事实上,对于R内任意的一个x,都有f(-x)=(-x)2=x2=f(x).此时,称函数y=x2为偶函数.

2.观察函数f(x)=x和f(x)= 的图像,并完成下面的两个函数值对应表,然后说出这两个函数有什么共同特征.

22可以看到两个函数的图像都关于原点对称.函数图像的这个特征,反映在解析式上就是:当自变量x取一对相反数时,相应的函数值f(x)也是一对相反数,即对任一x∈R都有f(-x)=-f(x).此时,称函数y=f(x)为奇函数.

二、建立模型

由上面的分析讨论引导学生建立奇函数、偶函数的定义 1.奇、偶函数的定义

如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫作奇函数.如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)就叫作偶函数.

2.提出问题,组织学生讨论

(1)如果定义在R上的函数f(x)满足f(-2)=f(2),那么f(x)是偶函数吗?(f(x)不一定是偶函数)

(2)奇、偶函数的图像有什么特征?

(奇、偶函数的图像分别关于原点、y轴对称)(3)奇、偶函数的定义域有什么特征?(奇、偶函数的定义域关于原点对称)

三、解释应用 [例 题]

1.判断下列函数的奇偶性.

注:①规范解题格式;②对于(5)要注意定义域x∈(-1,1].

2.已知:定义在R上的函数f(x)是奇函数,当x>0时,f(x)=x(1+x),求f(x)的表达式.

解:(1)任取x<0,则-x>0,∴f(-x)=-x(1-x),而f(x)是奇函数,∴f(-x)=-f(x).∴f(x)=x(1-x).

(2)当x=0时,f(-0)=-f(0),∴f(0)=-f(0),故f(0)=0.

3.已知:函数f(x)是偶函数,且在(-∞,0)上是减函数,判断f(x)在(0,+∞)上是增函数,还是减函数,并证明你的结论.

解:先结合图像特征:偶函数的图像关于y轴对称,猜想f(x)在(0,+∞)上是增函数,证明如下:

任取x1>x2>0,则-x1<-x2<0.

∵f(x)在(-∞,0)上是减函数,∴f(-x1)>f(-x2). 又f(x)是偶函数,∴f(x1)>f(x2).

∴f(x)在(0,+∞)上是增函数.

思考:奇函数或偶函数在关于原点对称的两个区间上的单调性有何关系?

[练习]

1.已知:函数f(x)是奇函数,在[a,b]上是增函数(b>a>0),问f(x)在[-b,-a]上的单调性如何.

2.f(x)=-x3|x|的大致图像可能是()

3.函数f(x)=ax2+bx+c,(a,b,c∈R),当a,b,c满足什么条件时,(1)函数f(x)是偶函数.(2)函数f(x)是奇函数. 4.设f(x),g(x)分别是R上的奇函数和偶函数,并且f(x)+g(x)=x(x+1),求f(x),g(x)的解析式.

四、拓展延伸

1.有既是奇函数,又是偶函数的函数吗?若有,有多少个? 2.设f(x),g(x)分别是R上的奇函数,偶函数,试研究:(1)F(x)=f(x)·g(x)的奇偶性.(2)G(x)=|f(x)|+g(x)的奇偶性.

3.已知a∈R,f(x)=a-,试确定a的值,使f(x)是奇函数.

4.一个定义在R上的函数,是否都可以表示为一个奇函数与一个偶函数的和的形式?

下载高中数学教学设计word格式文档
下载高中数学教学设计.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    高中数学教学设计

    高中数学教学设计 高中数学教学设计1 一、指导思想与理论依据数学是一门培养人的思维,发展人的思维的重要学科。因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以......

    高中数学教学设计大赛

    高中数学教学设计大赛 获奖作品汇编 (上 部) 第 1 页 共 75 页 目 录 1、集合与函数概念实习作业„„„„„„„„„„„„„„ 2、指数函数的图象及其性质„„„„„„„„......

    高中数学排列组合教学设计

    高中数学《排列组合》教学设计 【教学目标】 1.知识目标 (1)能够熟练判断所研究问题是否是排列或组合问题; (2)进一步熟悉排列数、组合数公式的计算技能; (3)熟练应用排列组合问题常......

    高中数学教学设计获奖

    篇一:高中数学教学设计大赛获奖作品汇编 对数函数及其性质(1)一、 教材分析 本小节选自《普通高中课程标准数学教科书-数学必修(一)》(人教版)第二章基本初等函数(1)2.2.2对数函数......

    高中数学优秀教学设计

    高中数学优秀教学设计 高中数学优秀教学设计1 一、课题:人教版全日制普通高级中学教科书数学第一册(上)《2.7对数》二、指导思想与理论依据:《数学课程标准》指出:高中数学课程应......

    高中数学教学设计(范文)

    新课改下高中数学教学设计 张星,薛永红 教学设计的优劣对于提高教学质量,培养学生思维,调动学生的积极性有着十分重要的意义。在实施高中数学新课改的今天,怎样完成一个优秀的教......

    高中数学教学设计 (2000字)

    高中数学教学设计 《等比数列的前n项和(第一课时)》 淮口中学 沈友胜 等比数列的前n项和 ( 第一课时) 一. 教材分析。 (1)教材的地位与作用:《等比数列的前n项和》选自《普通高中......

    高中数学教学设计示例

    教学设计示例 加法原理和乘法原理 教学目标 正确理解和掌握加法原理和乘法原理,并能准确地应用它们分析和解决一些简单的问题,从而发展学生的思维能力,培养学生分析问题和解决......