圆的周长教案

2022-10-29下载本文作者:会员上传
简介:写写帮文库小编为你整理了这篇《圆的周长教案》及扩展资料,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《圆的周长教案》。

圆的周长教案 篇1

教学目标

1.使学生认识圆的周长,初步理解圆周率的意义。

2.通过对圆周率值的探求,培养学生科学的和实事求是的探索精神,及概括能力和逻辑思维能力。

3.通过介绍我国古代数学家对圆周率研究的贡献,对学生进行爱国主义和辩证唯物主义观点的启蒙教育、增强民族自豪感。

教学重点和难点

推导圆周长的计算公式。理解圆周率的意义。

教学过程设计

(一)复习准备

上节课我们认识了圆,现在大家都说说,你们都知道关于圆的哪些知识?

(二)学习新课

我们这节课就来研究圆的周长。(板书:圆的周长)

我想问问同学,你们都带了哪些圆形实物?

两人互相指指圆的周长在哪儿?

谁愿意到前面来指一指老师手里这个圆的周长。

谁跟他指得不一佯?为什么这样指不行?

老师这有一面镜子,我要给这面镜子镶一条不锈钢边框,怎么才能知道这个边框长多少厘米呢?

老师这还有一个杯子,用它喝水有时烫手,我想编一个杯子套,怎么才能知道套口应该编多大?

哪个小组愿意帮助解决这个问题?我们每个组都带了一些圆形实物,我们要通过小组合作测出圆的周长,并填写实验报告。

请你在实验报告上填出你测量的实物名称,周长是多少,直径是多少。

(学生分小组测量手中圆形实物,并填写在实验报告上。能测量多少数据就测量多少数据。)

请小组代表汇报本组的实验过程和实验结果。

同学们想了那么多种方法,看来你们真了不起。我们归纳起来,同学们都是用缠绕、滚动的方法把曲线变直的。(板书:绕、滚)

(师出示黑板上画的圆)谁能用这两种方法来测量这个圆的周长。

看来光靠绕、滚这种实践的方法来测量圆的周长是不行的,我们必须研究一种求圆周长的方法。

想一想,以前我们学过哪些几何图形的周长?

长方形的周长和谁有关系?有什么关系?

正方形的周长和谁有关系?有什么关系?

圆的周长和谁有关系呢?举个例子说明,是不是这样呢?请看屏幕。

(用电脑演示三个滚动的圆,看出圆越大滚动的轨迹越长,圆越小滚动的轨迹越短。)

我们得出了圆的周长和直径有关系。

(板书:圆的周长 直径)

这是我们大家一起发现的。科学家往往发现问题就要去研究,我们同学长大想不想当科学家?今天我们就先学着科学家来研究一个问题:用我们测量的数据,通过计算分析,来研究圆的周长到底和直径有什么关系?你发现了什么规律?

(学生分小组讨论。)

通过同学们实验研究,我们得出圆的周长总是直径的3倍多一些。(板书:3倍多一些)

是不是这样呢?我们来验证一下。

(电脑演示:圆的周长是直径的3倍多一些。)

这是一个固定的倍数关系,我们叫它圆周率。(板书:圆周率)

谁能说说圆周率是怎么得来的?

请同学们看书上是怎么说的?

早在20xx年前,我国古代数学经典《周髀算经》就指出:圆经一而周三,(用投影打出这句话。)当时,是很了不起的成就,至今人们常用它来估算圆的周长。刚才,老师就是用这种方法来估算同学们算得是否准确的。谁知道世界上最早将圆周率准确到7位小数的是谁?(学生口答)他是我国伟大的数学家和天文学家祖冲之。

(出现祖冲之的画像,同时放配乐录音,介绍祖冲之。)

约15前,我国伟大的数学家和天文学家祖冲之就已精密地计算出圆周率的值在3.1415926和3.1415927之间,他是世界上第一个把圆周率的值精确到7位小数的人,比欧洲的数学家要早1000年左右。现在世界上最大的环形山,就是以祖冲之的名字命名的。

我们确实应该为前人的聪明、智慧感到自豪和骄傲。后来瑞士的数学家欧拉用希腊字母代表圆周率。(板书:)

圆周率是一个无限不循环小数。在计算时,如果用这个无限不循环小数参加计算是不方便的,故通常将取两位小数。(板书:3.14)

既然是个固定的值了,只要知道什么就能求圆的周长?(直径。)

现在我们能不能计算黑板上这个圆的周长?

什么条件不知道?(直径。)

谁来测直径,用分米作单位。(板书:分米)

如果直径是2分米,半径就是几分米?

用半径能不能求圆周长?

现在我们试着用直径或半径来求黑板上圆的周长。

谁用直径求出圆的周长?

(板书:3.142=6.28(分米))

为什么这样列式?

(板书:圆的周长=直径圆周率)

如果用C表示圆的周长,d表示直径,表示圆周率,字母公式怎么表示?

(板书:C=d)

谁能用半径求圆的周长?为什么这样做?

如果用字母r表示半径,字母公式怎么表示?

(板书:C=2r)

(三)巩固反馈

1.求出下面各圆的周长。(单位:厘米)

2.判断,你认为正确画,错误画。

(1)一个圆的周长总是它的直径的倍。( )

(2)圆的周长是6.28厘米,它的半径是2厘米。 ( )

(3)圆周长的一半与半个圆的周长相等。( )

3.选择:你认为哪个答案正确就举几号卡片。

(1)车轮滚动一周,所行路程是求车轮的[ ]

①半径

②直径

③周长

(2)圆形水池的直径是4米,绕池一周长 [ ]

①25.12米

②12.56米

③12.56平方米

(3)A圆的直径是6厘米,B圆的直径是2分米,圆周率 [ ]

①A圆大

②B圆大

③一样大

4.甲乙两人分别沿①、②两条路线从一端走到另一端,谁走的路线长?

(四)总结全课

这节课你学会了什么?(引导学生总结本课所学的知识。)

课堂教学设计说明

本节课通过引导学生对圆周率的探求,推导出圆周长的计算公式。第一步先通过测量实物中圆的周长,研究测量圆周长的方法是通过绕、滚的方法来测量。接着出现画在小黑板上的圆,当学生发现测这个圆的周长不能用绕、滚的方法来测量,必须研究一种求圆周长的方法。第二步,推导计算圆周长的公式。先带领学生回忆:我们以前学过哪些几何图形周长的计算?长方形和正方形的周长和谁有关系?引导学生发现圆周长和谁有关系。第三步,研究圆的周长和直径有什么关系,理解圆周率的意义,推导出圆周长的计算公式。通过对圆周率值的探求,培养学生科学的、实事求是的探索精神和概括能力及逻辑思维能力。

圆的周长教案 篇2

教学内容:

义教六年制小学数学第十一册第110-112页例1。

教学目标:

1、使学生理解圆周长和圆周率的意义,理解和掌握圆周长的计算公式,并能运用公式正确计算圆的周长和解决简单的实际问题。

2、通过引导学生参与知识的探求过程,培养学生的动手操作能力、创新意识和合作能力,激发学生学习的积极性和自信心。

3、通过教学,对学生进行爱国主义教育和辩证唯物主义观点的启蒙教育。

教学重难点:

圆周率意义的理解和圆周长公式的推导。

教学设想:

新课程从促进学生学习方式的转变着眼,提出了参与、探究、搜集、处理、获取、分析、解决、交流与合作等一系列关键词。这些在本节课都有不同程度的体现。其中,参与是一切的前提和基础,而只有当参与成了学生主动的行为时,参与才是有价值的、有意义的。因此要怎样调动学生参与的积极性,吸引他们参与进来就成了基础的基础。这里,老师能善于打破学生思维的平衡状态,使他们产生新的不平衡,从而不断吸引学生参与到新知的探究中来。圆的周长是一条曲线,该如何测量?的问题使学生思维产生最初的不平衡,当学生通过化曲为直的两种方法的局限性,从而打破学生刚刚建立的平衡,进一步吸引学生探究更加简便的求圆周长的方法。

接着,就是要让学生参与什么,怎样参与的问题了。在引导学生探究圆周长与直径的关系时,学生从猜测、分组测量计算到根据新获取的数据寻找共性的东西,体验到知识的形成过程,发现了知识新成的道。在小组活动前,老师鼓励小组成员间分工合作,活动中教师参与其间,关注学生合作的情况。实验后的广泛交流达到了资源共享的目的,使接下来得到的结合更具可信度,也使学生感受到合作交流的必要性。这种以学生为主体,以教师为主导,在学生兴趣点上激疑、质疑,无疑能鼓舞学生的探知、求知精神,使学生真正理解、消化、吸收本课重点内容,不仅学到知识,而且学会学习。]

圆的周长教案 篇3

教学内容

教科书第24-25页例1、例2,课堂活动第1、2题,练习五第1~5题。

教学目标

1.掌握圆周率的近似值,理解和掌握圆周长公式,并能正确计算圆的周长和解答简单的实际问题。

2.让学生在知识的主动建构过程中掌握一些数学的思想方法,发挥学生学习的主动性、独立性、合作性,对学生进行辨证唯物主义教育和爱国主义教育。

教学重、难点

掌握并理解圆的周长计算公式及其推导过程。

教具、学具准备

圆规、直尺、课件、圆纸片、线。

教学过程

一、导入新课

出示情境图:谁的铁环滚一圈的距离长一些?为什么?

教师:铁环滚动一周的距离我们就叫做铁环的周长。

教师:围成圆的曲线的长叫做圆的周长。今天我们就一起来研究圆的周长。

板书课题:圆的周长。

二、感知圆的周长与直径的关系

1.老师出示一个圆(实物)。谁来指一指这个圆的周长?课件出示一个圆。谁来指一指这个圆的周长?

学生指出并回答。(略)

2.观察。

课件演示右图:

问题:这两个圆周长有什么关系?你是怎么知道的?

小结:直径相等,圆的周长就相等。

3.课件演示右图:

问题:这两个圆的周长哪一个长一些?为什么?学生回答后,课件演示由曲变直,对学生的推断进行检验。

4.小结。

问题:通过刚才的观察,你有什么发现?

学生:圆的周长和直径有关系。

三、探究圆的周长与直径的倍数关系

圆的周长和直径有怎样的关系呢?我们一起来作一个实验,测量学具中圆形的周长和直径,然后再用周长除以直径得出它们的商。

1.小组讨论,制定探究步骤。

出示探究建议:

(1)测量圆的周长和直径;(2)记录数据;(3)进行计算;(4)得出结论。

2.说明活动要求。

每个组的同学先测量出学具中圆形的周长和直径,然后再用周长除以直径,并把这些数据和计算的结果填在表里。

圆的直径圆的周长周长除以直径的商(保留两位小数)

3.小组合作,进行探究。

4.汇报交流。

(1)交流测量的方法。

提问:谁来介绍一下,你们组是怎样测量圆的周长的?

学生汇报测量的方法。(绳绕法、滚动法……)

教师:在这些方法中,最欣赏哪个组的方法?

小结:不同的材料,可以用不同的方法进行测量。无论是哪一种方法,都是在想办法把圆这个曲线图形转化成直线来进行测量的。(课件出示绳绕法、滚动法……的动画测量过程)

(2)交流计算方法和结论。

提问:观察这些计算结果,你有什么发现?你还有哪些了解?

学生汇报:圆的周长是它的直径的3倍多一些。这个3倍多一些的数叫圆周率,用字母π表示。

5.介绍圆周率。

圆周长和直径的比值叫做圆周率,对于圆周率我国古代的数学家就对此有了研究了,他们把圆内接正六边形的周长近似的看作圆的周长,因为正六边形的周长是直径的3倍,所以近似的看成圆的周长是直径的3倍,(出示课件,展示圆内接正六边形周长是圆直径的3倍)可是大家可以发现圆内接正六边形的周长与圆的周长的误差太大了。因此把它的边数加倍,得到正十二边形,再加倍到正二十四边形。我国古代伟大的数学家刘徽用圆的内接正96边形,算出圆的周长是直径的3.14倍,而祖冲之用圆的内接正16384边形,算出圆的周长与直径的倍数精确到小数点后第七位:3.1415926与3.1415927之间,是世界上把圆周率精确到小数点后第七位的第一人,他在数学上的伟大贡献得到了世界的公认。同学们,你们发现了什么呢?(分得的边数越多,精确的数位越多)到了现代,人们用计算机对圆周率进行计算,日本的两位科学家把π值精确到20xx亿位。

6.总结圆周长的计算方法。

问题:你怎样理解周长/直径=π?你还能知道什么?

结论:c=πd,d=c/π,c =2πr,r=c/2π。

说明:为了计算方便,我们把π近似的取为3.14。

7.教学例2。

让学生独立列式计算,提示用估算检查计算结果。

[评析:有前面数学活动的基础,总结出圆周长的计算公式已经是水到渠成,整个过程充分发挥学生的主体作用。让学生学习例2这既是验证刚发现的圆周长计算公式,又是初步运用,巩固刚发现的公式,更是让学生经历科学发现的完整过程。]

四、巩固练习

(一)判断。

1.π=3.14。

2.计算圆的周长必须知道圆的直径。()

3.只要知道圆的半径或直径,就可以求圆的周长。()

(二)选择。

1.较大的圆的圆周率()较小的圆的圆周率。

a.大于b.小于c.等于

2.半圆的周长()圆周长。

a.大于b.小于c.等于

(三)实践操作。

请同学们以小组为单位,画一个周长是12.56厘米的圆。先讨论如何画,再操作。

五、课堂小结

通过这堂课的学习,你有什么收获?你还有什么问题?

六、课堂作业

1.课堂活动第1、2题。

将课堂活动第1题的直径扩展到9cm为止,当学生算完后,除了观察直径、周长的变化外,还要能让学生将直径与周长对应的值记一记。第2题的图形周长在于引导学生去探索这个图形的周长指哪些线,怎么算,最后概括出半圆周长的计算公式。

2.练习五第1~5题。

在学生理解半径、直径、周长之间相互关系的基础上,运用公式进行计算。教学时,要求学生认真审题,分清每题的条件和问题,合理地运用公式,同时注意每题的单位名称。其中,练习五第3题,可以用教具进行演示,说明计算分针尖端走过的路程,就是求半径是15厘米的圆的周长。

七、课后作业

1.求下面各圆的周长。

(1)d=2米(2)d=1.5厘米(3)d=4分米

2.求下面各圆的周长。

(1)r=6分米(2)r=1.5厘米(3)r=3米

[评析:创设生活情境,密切与生活之间的关系。再通过观察发现圆周长与直径有关,究竟是什么关系呢。接着就引导学生做实验,探索出圆周长是直径的3倍多。让学生经历猜想、实验、验证、概括的数学学习过程,不仅对于掌握数学知识有用,而且有利于培养学生探索科学知识的意识和能力。]

圆的周长教案 篇4

教材分析

(可以从以下几个方面进行阐述,不必面面俱到)

l 课标中对本节内容的要求;本节内容的知识体系;本节内容在教材中的地位,前后教材内容的逻辑关系。

l 本节核心内容的功能和价值(为什么学本节内容),不仅要思考其他内容对本节内容学习的帮助,本节内容的学习对学科体系的建立、其他学科内容学习的帮助;还应该思考通过本节内容的学习,对学生学科能力甚至综合素质的帮助,以及思维方式的变化影响等。

教材从生活情境入手,通过让学生思考自行车绕圆形花坛骑一圈大约有多少米,引出圆的周长的概念。接着让学生思考:如何求一个圆的周长,引导学生用不同的方法进行测量。在此基础上,让学生通过测量几组圆的直径和周长,自主发现周长和直径的比值是一个固定值,从而引出圆周率的概念,并总结出圆的周长计算公式。

在本节内容中,教学的重点是让学生利用实验的手段,通过测量、计算、猜测圆的周长和直径的关系、验证猜测等过程理解并掌握圆的周长计算方法。

在本教学设计中,对教材内容呈现形式上做了略微的改动。本设计从周长引入本课教学,这样可以加深圆的周长和其他以学图形周长在计算的联系和区别。用直的线围成的图形的周长求周长是几条直的线段长之和,而圆这个曲线围成的图形的计算方法是化曲为直。

学情分析

(可以从以下几个方面进行阐述,但不需要格式化,不必面面俱到)

教师主观分析、师生访谈、学生作业或试题分析反馈、问卷调查等是比较有效的学习者分析的测量手段。

l 学生认知发展分析:主要分析学生现在的认知基础(包括知识基础和能力基础),要形成本节内容应该要走的认知发展线,即从学生现有的认知基础,经过哪几个环节,最终形成本节课要达到的'知识。

l 学生认知障碍点:学生形成本节课知识时最主要的障碍点,可能是知识基础不足、旧的概念或者能力方法不够、思维方式变化等。

在三年级上册学习了周长的一般概念以及长方形、正方形周长计算的基础上进一步学习圆的周长计算。

教学目标

(教学目标的确定应注意按照新课程的三维目标体系进行分析)

1、让学生知道圆的周长和圆周率的含义,掌握圆周率的近似值。理解掌握圆周长的计算公式,并能应用公式解决简单的实际问题。

2、通过对圆周长的测量和计算公式的探讨,培养学生观察、分析、比较、综合和主动研究、探索解决问题的方法的能力。

3、通过探索对学生进行辩证唯物主义的教育,结合我国古代数学家祖冲之的故事,对学生进行爱国主义教育。

教学重点和难点

教学重点:正确计算圆的周长

教学难点:理解圆周率的意义,推倒圆周长的计算公式。

教学流程示意

(按课时设计教学流程,教学流程应能清晰准确的表述本节课的教学环节,以及教学环节的核心活动内容。因此既要避免只有简单的环节,而没有环节实施的具体内容;还要避免把环节细化,一般来说,一节课的主要环节最好控制在4~6个之间,这样比较有利于教学环节的实施。)

一、创设情境,认识周长

二、小组合作,探究求圆周长的方法

三、运用知识,解决问题

四、课堂总结

五、布置作业

六、教学反思

教学过程(教学过程的表述不必详细到将教师、学生的所有对话、活动逐字记录,但是应该把主要环节的实施过程很清楚地再现。)

圆的周长教案 篇5

教学目标:

⒈使学生知道圆的周长和圆周率的含义。让学生体验圆周率的形成过程,探索圆的周长的计算公式,能正确计算圆的面积。

⒉使学生认识到运用圆的周长的知识可以解决现实生活中的问题,体验数学的价值。

⒊介绍古代数学家祖冲之对圆周率的研究事迹,向学生进行爱国主义教育。

教学重点、难点

教学重点:理解和掌握求圆周长的计算公式。教学难点:对圆周率π的认识。

教学过程设计

一、创设情境,引发探究

⒈“几何画板”《米老鼠和唐老鸭赛跑》演示:休息日,米老鼠和唐老鸭在草地上跑步,米老鼠沿正方形路线跑,唐老鸭沿着圆形路线跑。

⒉揭示课题

⑴要求米老鼠所跑的路线,实际上就是求这个正方形的什么?要知道这个正方形的周长,只要量出它的什么就可以了?

⑵要求唐老鸭所跑的路线,实际上就是求圆的什么呢?

板书课题:圆的周长

二、人人参与,探究新知

(一)教具演示,直观感知,认识圆周长。

教师出示教具:铁丝圆环、圆片,让学生观察围成圆的线是一条什么线,提问:这条曲线就是圆的什么?

(二)理解圆周率的意义

活动一:测量圆的周长

⒈教师提问:你能不能想出一个好办法来测量它的周长呢?

①生1:把圆放在直尺边上滚动一周,用滚动的方法测量出圆的周长。则师生合作演示量教具圆铁环的周长。

然后各组分工同桌合作,量出圆片的周长。

②用绳子在圆上绕一周,再测量出绳子的长短,得到这个圆的周长。同样,先请学生配合老师演示,然后分工合作。测出圆片的周长。

⒉用“几何画板”《小球的轨迹》演示形成一个圆。

提问:小球的运动形成一个圆。你能用刚才的方法测量出圆的周长吗?

⒊小结:看来,用滚动、绕线的方法可以测量出圆的周长,但却有一定的局限性。我们能不能探讨出求圆周长的一般方法呢?

活动二:探究圆周长与直径的关系,认识圆周率。

⒈圆的周长与什么有关。

⑴启发思考

正方形的周长与它的边长有关。那么,你猜猜看,圆的周长与它的什么有关系呢?

⑵利用不同长度的小球形成的三个圆,让学生观察思考考:.哪一个圆的周长长?圆的周长与它的什么有关呢?

得出结论:圆的周长与它的直径有关。

⒉圆的周长与直径有什么关系。

⑴学生动手测量,验证猜想。

学生分组实验,并记下它们的周长、直径,填入书中的表格里。

⑵观察数据,对比发现。

提问:观察一下,你发现了什么呢?

(圆的直径变,周长也变,而且直径越短,周长越短;直径越长,周长越长。圆的周长与它的直径有关系。)

⑶出示“几何画板”《周长与直径的关系》演示。

⑷比较数据,揭示关系。

正方形的周长是边长的4倍。那么,圆的周长与直径之间是不是也存在着固定的倍数关系吗?猜猜看,圆的周长可能是直径的几倍?

学生动手计算:把每个圆的周长除以它的直径的商填入书中表格的第三列。

提问:这些周长与直径存在几倍的关系,(3倍多一些),是不是所有的圆周长与直径都是3倍多一些呢?教师演示“几何画板”最后师生共同总结概括出:圆的周长总是直径的3倍多一些,板书:3倍多一些。

⒊认识圆周率

⑴揭示圆周率的概念。

这个3倍多一些的数,其实是个固定不变的数,我们称它为圆周率。圆周率一般用字母π表示。板书:圆周率

现在,谁能说说圆的周长与它的直径有什么关系?谁是固定的倍数?完成板书:圆周长÷直径=π

⑵介绍π的读写法

⑶指导阅读,了解中国人引以为自豪的历史。

提问:你知道了什么?

(三)推导圆的周长计算公式。

⑴提问:已知一个圆的直径,该怎样求它的周长?板书:C=πd

请同学们从表格中挑一个直径计算周长,然后跟测量结果比比看,是不是差不多?

⑵提问:告诉你一个圆的半径,合计算它的周长吗?怎样计算?板书C=2πr。

提问:“几何画板”上的小球轨迹形成的圆你会求周长吗?

学生和自己的伙伴一起解答例1和做一做并说出这两题用哪个公式比较好?

三、应用新知,解决问题

1、和自己的伙伴一起解答例1和做一做

2、说出这两题用哪个公式比较好?

四、实践应用,拓展创新。

⒈基础性练习:

(1)求下列各圆的周长(几何画板)

r=3厘米 d=4厘米

(2)、我们现在有办法求唐老鸭跑的路程吗?

⒉、判断

①圆的周长是直径的π倍。( )

②大圆的圆周率小于小圆圆周率。( )

3、提高练习

在我们校园内有一棵很大的树,你们有什么办法可以测量到这棵大树截面的直径?

五、总结评价,体验成功

1、你学到了什么? 2、你是怎么学到的?

圆的周长教案 篇6

教学目标:

1.经历圆周率的探索过程,理解并掌握圆周率的意义和近似值,初步理解并掌握圆的周长计算公式,能正确计算圆的周长。

2.培养学生的观察、比较、分析和动手操作的能力,发展学生的空间观念,培养学生抽象概括的能力和解决简单的实际问题的能力。

3.通过了解祖冲之在圆周率方面所作的贡献,渗透爱国主义思想。

教学重点:

理解并掌握圆的周长的计算公式。

教学难点:

理解圆的周长与直径之间的关系。

教学准备:

圆规、剪刀、绳子、尺子。

教学过程:

一、复习旧知,引入新知

1.教师在黑板上画圆。

(1)提问:你对圆有哪些了解?

(2)指名回答,同学之间相互补充。

(3)你还想了解什么?

2.通过学生的回答,引出:这节课我们就起来研究圆的周长。(板书:圆的周长)

二、合作交流,探究新知

1.认识周长的含义。

(1)师:你能指出黑板上这个圆的周长吗?

(2)从实物中指出圆的周长。

(3)用语言表述圆的周长。

学生回答,教师总结:圆的周长就是指围成圆的曲线的长度。

2.教学例4。

(1)出示例4,了解轮胎规格。明确:这里的22英寸、24英寸、26英寸是指

轮胎的直径。

(2)启发思考:如果把它们各滚动一圈,哪种车轮行驶的路程比较长?

(3)比较这三个车轮的直径和周长,你又有什么发现?

(4)小结:直径越大,圆就越大,圆的周长也就越长。圆的周长和直径到底有什么关系呢?接下来我们继续研究。

3.教学例5。

(1)讨论实验方案。要研究直径和周长间有什么关系,我们可以怎样做?

(2)学生回答后,小结:我们可以画几个圆,量一量它们的直径和周长,算一算周长除以直径的商。

(3)明确要求

①画三个大小不同的圆。

②用尺子量出直径。

③用线围出圆的周长并用尺子挞出长度。

④边操作边填好表格。

周长/cm 直径/cm 周长除以直径的商

(保留两位小数)

(4)学生分组按要求操作,要求分工明确。

(5)整理学生的测量结果,汇总。

(6)观察表格,说说有什么发现。

学生回答后,小结:一个圆的周长总是直径的3倍多一些。

4.认识圆周率。

(1)介绍圆周率,并板书: 3.14

(2)阅读教材第102页的你知道吗内容。

5.推导得出圆的周长计算公式及其字母公式。

板书: 或

三、巩固练习,加深理解

1.完成试一试。

(l)根据刚刚学过的圆的周长的计算方法,学生独立计算车轮的周长。

(2)指名说说计算方法。

2.完成练一练。

(l)学生独立完成计算。

(2)汇报交流。

3.完成练习十四第1题。

(1)学生看图,说说题目中的已知条件。

(2)学生独立完成计算。

(3)交流计算方法。

4.作业:练习十四第2、3、4题。

四、课堂小结

师:这节课我们研究了圆的周长,谁能说说是用什么方法进行研究的?你有

哪些收获?

板书设计:

圆的周长

周长/cm 直径/cm 周长除以直径的商

(保留两位小数)

圆的周长教案 篇7

教学设想:

利用正方形的周长与边长的知识,引导学生进行猜想和讨论,使学生对后续的实际探究过程有明确的目的性。课件中两只小兔子进行赛跑比赛是生活问题,却是比较圆的周长和正方形周长的数学问题,创设教学情境,激发学生参与的兴趣,为后继学习和深入探究埋下了伏笔。利用动画的演示过程,很好的展示了圆周长的概念,并通过结合实际动手操作和利用正方形周长概念进行迁移,使学生较为牢固地掌握了圆周长的概念,也充分体现了学生在课堂学习过程中的主体地位。

教学内容:

小学数学义务教育教材十一册第137~138页“圆的周长”

教学目标:

1. 使学生理解圆周率的意义,推导出圆周长的计算公式,并能正确地进行简单计算;

2. 培养学生的观察、比较、分析、综合及动手操作能力;

3.通过学习圆周率的历史发展,对学生进行爱国主义教育。

教学重点:

推导总结出圆周长的计算公式。

教学难点:

深入理解圆周率的意义。

教学准备:

电脑课件,圆形实物以及直尺、绸带,测量结果记录表。

教学过程:

一、创设情境,引起猜想

(一)教师播放课件 激发学生兴趣

黑兔和白兔比赛跑步,黑兔沿着正方形路线跑,白兔沿着圆形路线跑,结果白兔获胜。黑兔看到白兔得了第一名,心里很不服气,它说这样的比赛不公平。同学们,你认为这样的比赛公平吗?

(二)认识圆的周

1.回忆正方形周长:黑兔跑的路程实际上就是正方形的什么?什么是正方形的周长?

2.认识圆的周长:那白兔所跑的路程呢?圆的周长又指的是什么意思?

师:围成圆的一周的曲线长度叫做圆的周长。(出示课题 圆的周长)

3.小组合作,测出自己准备的三个圆形纸片的周长,并记录。

4.反馈:你是用什么方法测出来的?

生1:“滚动”——把实物圆沿直尺滚动一周;

生2:“缠绕”——用绸带缠绕实物圆一周并打开;

5.小结各种测量方法:(板书)化曲为直

6.创设冲突,体会测量的局限性

教师甩小球:你能用刚才的方法测出这个圆吗?刚才大屏幕上白兔跑的路线也是一个圆,这个圆的周长还能进行实际测量吗?(生:不行)看来,刚才的方法有局限性,今天我们来探讨一种能很快知道所有圆的周长方

(三)合理猜想,强化主体

1.请一生用绳子拴粉笔在黑板上画出两个大小不同的圆,四人小组讨论,猜猜圆的周长跟什么有关?

生:我猜圆的周长跟直径有关。

2.师课件演示:直径越大,周长越长;直径越小,周长越小。

3.请同学们想一想,正方形的周长和它的边长有关系,而且总是边长的4倍,所以正方形的周长=边长×4。正方形的周长总是边长的4倍,再看这幅图,猜猜看,圆的周长应该是直径的几倍?

(生1:我猜3倍。 生2:我猜3.5倍 生3 :…… )

4.我们能不能像求正方形周长那样找到求圆周长的一般方法呢?

二、实际动手,发现规律

(一)分组合作

1.明确要求:将前面测量的结果填入表格,并计算圆周长除以直径的结果,填入表格里。

2.反馈数据

生1:我们小组算出圆的周长大约是直径的3.4倍。

生2:我们小组算出圆的周长大约是直径的3.2倍。

生3:我们小组算出圆的周长大约是直径的4倍。

师:课件演示:圆的周长总是直径的三倍多一些。

(二)介绍祖冲之

这个倍数通常被人们叫做圆周率,用希腊字母π表示。

板书 :圆周率=圆的周长÷直径

早在1500多年前,我国古代就有一位伟大的数学家,曾对这个倍数进行过精密的测算,他最早发现这个倍数确实是固定不变的,知道他是谁吗?

这个倍数究竟是多少呢?我们来看一段资料。

(投影出示:祖冲之是我国南北朝时期,河北省涞源县人.祖冲之在前人成就的基础上,用圆内接正多边形的方法,把圆的周长分成若干份。分的份数越多,正方形的周长就越接近圆的周长。最终通过计算正多边形的周长来计算圆周率。经过刻苦钻研,反复演算,求出π在3.1415926与3.1415927之间,精确到小数点后第七位.不但在当时是最精密的圆周率,而且保持世界记录九百多年……)

4.理解误差

看完这段资料,同学们都在为我们国家有这样一位伟大的数学家而感到骄傲,可不知同学们想过没有,为什么我们的测算结果都不够精确呢?

(三)总结圆周长的计算公式

1. 如果知道圆的直径,你能计算圆的周长吗

板书:圆的周长 = 直径× 圆周率

C = πd

2. 如果知道圆的半径,又该怎样计算圆的周长呢?

板书: C = 2πr

3.应用

(1)甩动小圆球,告知绳长3分米请学生选用公式计算此圆的周长。

生:我选 C = 2πr,2×3.14×3=18.84分米,此圆的周长是18.84分米。

(2)课题外的圆的直径是20厘米,用哪个公式计算?

生:我用 C = πd计算,3.14×20=62.8厘米,此圆的周长是62.8厘米

(3)解答开始的问题:现在你能准确的判断出黑兔和白兔谁跑的路程长了吗?

三、巩固练习,形成能力

1.判断

(1)圆的周长是直径的π倍。 ( )

(2)大圆的圆周率大于小圆的圆周率。( )

(3)π=3.14 ( )

2.出示例1,学生自己计算。

3.如果黑兔沿着大圆跑,白兔沿着两个小圆绕8字跑,谁跑的路程近?

四、课内小结,扎实掌握

通过今天的学习,你有什么收获?

五、课外引申,拓展思维

一个茶杯口的直径你有什么方法知道?

圆的周长教案 篇8

【本课内容在教材中的地位和作用】

学生以前已经学过直线图形,上节课又学习了“圆的认识”,这些知识为本课教学打下了扎实的基础。教材通过一系列问题情境、实践操作,让学生在观察、分析、归纳中理解圆的周长的含义以及圆周长与直径的关系。通过圆周率的形成过程,圆周长公式的推导、应用,让学生掌握圆周长的计算。从而为下节课学习利用圆的周长公式,反求圆的直径或半径,作好了理论上的准备。应该说,这堂课起承前启后作用。

【教学目标】

1.学生通过动手绕一绕、滚一滚,找出圆的周长与直径的倍数关系。知道什么是圆的周长、什么是圆周率。掌握圆的周长公式,并会运用公式进行简单的计算。

2. 通过对圆周率π值的探求,培养学生科学的和实事求是的探索精神及数学的概括能力和逻辑思维能力,增强学生的动手操作能力。

3.通过介绍我国古代数学家对圆周率研究的贡献,对学生进行爱国主义和辩证唯物主义观点的启蒙教育、增强民族自豪感。

【教学重点】

理解和掌握圆的周长的计算公式。

【教学难点】

对圆周率的认识。

【教学准备】

1、学生准备直径为5厘米、10厘米、15厘米的圆片各一个,有圆面的物体各一个,线,直尺,每组准备一只计算器。

2、教师准备课件、带绳小球,圆规,尺子,保温杯。

【教学过程】

(一)复习旧知、创设情境、引出新知

1、复习:圆心、半径、直径、直径与半径的关系(略去)

2、课件出示问题情境:龟兔赛跑

师评价:你们对圆的认识很到位,下面我要问同学们一个问题,你听说过龟兔赛跑的故事吗?哪个同学愿意说说故事的大概意思?(学生说)

师:兔子因骄傲自大输了比赛,过后很不服气,于是想出一个办法,进行第二次比赛(课件出示),你们猜,这次谁会输?

提问引导:

(1).沿着正方形路线跑实际就是求正方形的什么?(正方形的周长)

(2).正方形的周长怎么求?用字母怎样表示?

(3).正方形的周长与谁有关?有什么关系?

生:正方形的周长与边长有关。周长是边长的4倍。

(4).兔子沿着圆形的路线跑实际上就是求圆的什么?(圆的周长)

3引出课题:

那到底什么是圆的周长,怎样求圆的周长?圆的周长和正方形的周长到底哪个长?这节课我们就一起来研究圆的周长。上完这节课后,我相信同学们都会解答这个问题了。(板书:圆的周长)

[设计意图:设置问题情景,引发求知欲望,引出新课,同时为后面圆的周长与直径的关系教学做好铺垫。]

(二)教学新课

1.认识圆的周长。

(1)请同学们拿出学具中最大的圆用手摸一摸哪个是圆的周长?指一名到前面摸一摸。注意起点、终点。

(2)同桌互相说一说:什么是圆的周长?

生:围成圆的曲线的长叫做圆的周长。

(3)电脑出示圆的周长概念 ,读一遍。

[设计意图:让学生动手摸,动画看,动嘴说,引出圆周长概念。]

2.化曲为直,引发求知欲。

(1)我们想知道你课桌的周长怎么办?

生:用直尺量出课桌的长和宽。

(2) 实物演示:老师这有一个杯子,用它喝水有时烫手,我想编一个隔热套, 用直尺测量它的周长方便吗?

生:不方便,因为直尺是直的,而圆的周长是曲线围成的。

(3)用什么办法化曲为直测量出圆的周长呢?(学生讨论)。谁来说一说?

①用围的方法。指名演示。(板书:围)

问:要注意什么?

生:先拉直后,只能量围的一周的长度。

②用滚的方法。指名演示。(板书:滚)

问:要注意什么?

生:在圆上先作了记号,沿直尺滚动一周。

师:你们棒极了。用围和滚的办法可以把圆的周长转化为直线来测量。是不是所有圆的周长都可以用这两种方法测量呢?

(4)谁能用围的方法量一量黑板上圆的周长?

两名学生量。说一说自己的感觉。

(5)老师拿一条绳子,在绳的一端拴上一个小球,甩动绳子使小球转动起来。

问:小球转动时走过的路线成什么图形?这个圆的周长能用围、滚的办法测量吗?这说明不是什么样的圆都可以用围、滚的办法测量。因此我们需要探讨出一种计算圆的周长的方法。(比如像正方形)

[设计意图:通过一系列操作,如:量桌面周长,测量保温杯隔热带,如何测量黑板圆的周长,如何测量带绳小球绕成的圆等,将问题一步步引向深入,在教给学生围、滚的方法同时,引起学生思维冲突吗,激发求知欲。]

3寻找关系,创设情景,测量圆的周长

(1)出示探究:a:正方形的周长和谁有关?有什么关系?

(板书:c=4a)

b、那圆的周长与谁有关呢?有怎样的关系?(课件出示验证)

c、根据学生回答,教师板书:圆的周长 直径

(2) 问题情景:是不是圆的周长与直径之间也像正方形的周长与边长之间那样存在着固定不变的倍数关系呢?同学们今天也当一次数学家,看看我们能不能发现什么规律,下面我们进行一组实验,看看圆的周长与直径之间到底又怎样的关系。

(3)小组合作,测量数据。

①拿出你们的学具圆,汇报一下,直径分别是几厘米?(5cm、10cm、15cm)

②下面以小组为单位用围或滚的方法量一量圆的周长,并算一算,周长与直径有怎样的关系?请小组长负责分工,看哪一组量得准,算得快。结果填在表格中。

(4)比较验证,揭示规律:

①汇报交流:通过测量和计算,你发现什么规律?

生:直径不同,周长也不同,但周长总是直径的三倍多一些。

②问:是不是所有圆的周长都是直径的3倍多一些呢?

电脑演示围、滚的过程和结果,让学生看看圆的周长是直径的几倍。

[设计意图:通过学生探究圆的周长与直径的关系、小组实验操作与计算、电脑演示验证等,让学生发现圆周长与直径的关系。]

4.介绍圆周率,推导公式,探求新知(重点和难点)。

(1)引导得出圆周率概念:

师:看来圆不论大小,圆的周长总是它直径的3倍多一些。这是个固定不变的倍数关系。(师质疑:为什么我们测量和计算的结果会不一样?解释:测量误差)。数学上我们把圆的周长和直径这个固定不变的比值叫做圆周率,用字母π表示。用式子表示是:

补充板书:圆的周长÷直径=圆周率π(固定)

教师讲解:π=3.141592653 ‥‥(无限不循环小数)

π≈3.14

(2)引导自学圆周率小资料:其实,很早以前,人们就开始研究圆周率这个问题了,关于这方面知识,我们可以在课后自学书上p63表后相关介绍。

师:现在,我们根据这个规律能否探究出圆的周长公式呢?

(3)公式推导:

师指圆周率公式:刚才我们通过自学知道圆周率是圆的周长与直径的比值,用字母表示是:

板书:C÷d=π

师:已知圆的直径怎样求圆的周长呢?同桌互相说一说。

板书:C=πd

师:已知半径怎么求圆的周长呢?

板书:C=2πr

问:知道什么条件就可以计算圆的周长?(强调:d、r)

师:这样,今后我们要知道圆的周长不但可以用围或滚的测量,现在我们还可以用公式计算了,下面我们就应用这两个公式解决一些实际问题。

5、应用公式解决实际问题。

(1)解决龟兔赛跑问题:

问:学了周长公式,现在你们会解决龟兔赛跑问题了吗?

? 学生尝试解答

? 指名板演,

? 集体订正,问:这位同学是利用什么公式做的?需要什么条件?

? 教师课件演示规范步骤。

(2)实际应用:汽车车轴距离地面0.4米,车轮滚动一周是多少米?如果车轮滚动了1000周,那么汽车行了多少路程?

[学习知识的目的是为了应用,在应用环节设计了两个例题,一是解决课前的问题,是已知d求c。二是小车轮胎问题,是已知r求c。这是两个学生经常接触的数学问题,具有代表性。]

(三)课堂小结

这堂课你有什么收获?(出示填空)

1、基础练习:(略)

2、知识延伸:(略)

3、课后思考:(略)

[巩固练习设计三个层次:基础题是解决当堂重要知识和易错点;提高题是让学生能综合利用;课后思考是为下节课承前启后.]

(五)作业:

1、花瓶最大处的半径是15厘米,求这一周的长度是多少厘米?花瓶瓶口的直径是16厘米,求花瓶瓶口的周长是多少厘米?花瓶瓶底的直径是20厘米,求花瓶瓶底的周长是多少厘米?

2、钟面分针长10厘米,求针尖一天走过多少厘米?

3、喷水池的直径是10米,要在喷水池周围围上不锈钢栏杆2圈,求两圈不锈钢总长多少米?

(六)板书设计(略)

圆的周长教案 篇1

篇一:六年级圆的周长数学教案

【教学目标】

1、 让学生知道什么是圆的周长。

2、 理解并掌握圆周率的意义和近似值。

3、 初步理解和掌握圆的周长计算公式,能正确计算圆的周长。

4、 培养和发展学生的空间观念,培养学生抽象概括能力和解决简单的实际问题能力。

5、 通过了解祖冲之在圆周率方面所作的贡献,渗透爱国主义思想。

6、 培养学生的观察、比较、分析、综合及动手操作能力。

【教学重点】

理解和掌握圆的周长的计算公式。

【教学难点】

对圆周率的认识。

【教学准备】

1、 学生准备直径为5厘米、6厘米、7厘米的圆片各一个,有圆面的物体各一个,线,直尺,每组准备一只计算器。

2、 教师准备图片。

【教学过程】

一、激情导入

1、 动物王国正在举行动物运动会可热闹了,想不想去看一看?

2、 一只小山羊和一只梅花鹿分别在圆形和正方形跑道上赛跑,大家猜一猜最后谁跑的路程远?

二、探究新知

(一) 复习正方形的周长,猜想圆的周长可能和什么有关系。

1、 由比较两种跑道的长短,引出它们的周长你会算吗?(如果学生谈到角或线的形状,就顺势导:正方形是由4条这样的线段围成的,圆是由一条圆滑的曲线围成的。)

2、 (生答正方形的周长)追问:你是怎么算的?(生答正方形的周长=边长×4师板书c=4a)那你们说说正方形的周长和它的边长有什么关系?(4倍,1/4)(师,正方形的周长总是它边长的4倍,这是一个固定不变的数。)

3、 圆的周长能算吗?如果知道了计算的公式能不能算?看来很有必要研究研究圆的周长的计算方法,下面我们就一起研究圆的周长。(板书课题:圆的周长)

4、 猜想:你觉得圆的周长可能和什么有关系?

(二) 测量验证

1、 教师提问:你能不能想出一个好办法来测量它的周长呢?

① 生1:把圆放在直尺边上滚动一周,用滚动的方法测量出圆的周长。师生合作演示量教具的周长。

② 用绳子在圆上绕一周,再测量出绳子的长短,得到这个圆的周长。

2、①学生动手测量,验证猜想。 学生分组实验,并记下它们的周长、直径,填入书中的表格里。

②观察数据,对比发现。

提问:观察一下,你发现了什么呢?(圆的直径变,周长也变,而且直径越短,周长越短;直径越长,周长越长。圆的周长与它的直径有关系。)

3、 比较数据,揭示关系

正方形的周长是边长的4倍,那么,圆的周长秘直径之间是不是也存在着固定的倍数关系呢?猜猜看,圆的周长可能是直径的几倍?

学生动手计算:把每个圆的周长除以它的直径的商填入书中表格的第三列。

提问:这些周长与直径存在几倍的关系,(3倍多一些),最后师生共同总结概括出,圆的周长总是直径的3倍多一些,板书:3倍多一些。到底是三倍多多少呢?引导学生看书。

(三) 介绍圆周率

1、 师:任意一个圆的周长都是它直径的三倍多一些,这是一个固定不变的数,我们把它叫做圆周率,用字母∏来表示,用手指写一写。

2、 圆周率是怎样发现的,请同学们看课本小资料,讲述并对学生进行德育教育。

3、 小结:早在15前,祖冲之把圆周率算到了3.1415926和3.1415927之间,比外国人早了整整一千年,这是中华民族对世界数学史的巨大贡献,今天,同学们自己动手也发现了这一规律,老师相信同学们当中将来也会有成为像祖冲之一样伟大的科学家,根据需要,我们一般保留两位小数。

圆的周长总是它直径的3倍多一点。刚才我们是怎样计算的?两个数相除又可说成是两数的比,所以这个结果就是圆周长与它直径的比值。我们把圆的周长和直径的比值叫做圆周率,用字母 “∏”表示。这个比值是固定的,而我们现在得到的结果有差异主要是测量工具及测量方法有误差造成的。那圆周率的数值到底是多少呢?说说你知道了什么?(强调∏≈3.14,在说的时候要注意是近似值,写和算的时候要按准确值计算,用等号。)

(四) 推导公式

1、 到现在,你会计算圆的周长吗?怎样算?

2、 如果用c表示圆的周长,表示d直径,字母公式怎样写?(板书:c=∏d)就告诉你直径,你能求圆的周长吗?圆的周长是它直径的∏倍,是一个固定不变的数。

3、 知道半径,能求圆的周长吗?周长是它半径的多少倍?

三、运用公式解决问题

1、 一张圆桌面的直径是0.95米,求它的周长是多少米?(得数保留两位小数)

2、 花瓶最大处的半径是15厘米,求这一周的长度是多少厘米?花瓶瓶口的直径是16厘米,求花瓶瓶口的周长是多少厘米?花瓶瓶底的直径是20厘米,求花瓶瓶底的周长是多少厘米?

3、 钟面直径40厘米,钟面的周长是多少厘米?

4、 钟面分针长10厘米,它旋转一周针尖走过多少厘米?

5、 喷水池的直径是10米,要在喷水池周围围上不锈钢栏杆2圈,求两圈不锈钢总长多少米?

四、课堂小结

通过这节课的学习你想和大家说点什么?

这节课,同学们大胆猜想圆的周长可能和什么关系、有怎样的关系,然后进行科学的验证,发现了圆的周长的计算方法,你们正在走一条科学的研究之路,希望你们能坚持不懈的走下去。(作者:山东省临清市唐园镇中心小学 张延平)

篇二:苏教版数学六年级上册教案 《圆的周长》教案(一)

教学目标

1.学生通过动手绕一绕、滚一滚,找出圆的周长与直径的倍数关系。知道什么是圆周率。推导出圆的周长公式,并会运用公式进行简单的计算。

2.初步渗透转化思想,教给学生一些学习方法。培养学生的动手动脑能力。

3.对学生进行爱国主义教育,培养学生民族自豪感。

教学重点和难点

学生通过自己动手找出圆的周长与直径的倍数关系。

教学过程设计

(一)复习导入

出示图(投影)

两名运动员分别沿着边长为100米的正方形和直径为100米的圆的路线骑车比赛。问:

1.沿着正方形路线跑实际就是沿着正方形的什么跑?正方形的周长指的是什么?

2.正方形的周长怎么求?用字母怎样表示?

板书:C=4a

3.正方形的周长与谁有关?有什么关系?

生:正方形的周长与边长有关。周长是边长的4倍。

4.沿着圆形的路线跑实际上是沿着圆的什么跑?

质疑:如果正方形的边长是100米,圆的直径是100米,两名运动员同时、同速从一点出发,谁先回到原出发的一点呢?

生:同时到。或跑圆形的先回来……

这只是一种猜测,到底什么是圆的周长,怎样求圆的周长?这节课我们就一起来研究这一新的知识。上完这节课后,我相信同学们都会解答这个问题了。(板书:圆的周长)

(二)教学新课

1.认识圆的周长。

(1)学生拿出学具中最大的圆用手摸一摸圆的周长。指一名到前面摸一摸。注意起点、终点。

(2)同桌互相说一说:什么是圆的周长?

生:围成圆的曲线的长叫做圆的周长。

2.化曲为直,创设情景,引发求知欲。

(1)我们想知道你课桌的周长怎么办?

生:用直尺量出课桌的长和宽。

(2)圆的周长用直尺测量方便吗?为什么?

生:不方便,因为直尺是直的,而圆的周长是曲线围成的。

(3)用什么办法化曲为直测量出圆的周长呢?学生讨论。谁来说一说?

①用围的方法。指名演示。(板书:围)

问:要注意什么?

②用滚的方法。指名演示。(板书:滚)

问:要注意什么?

生:在圆上先作了记号,沿直尺滚动一周。

师:你们棒极了。用围和滚的办法可以把圆的周长转化为直线来测量。是所有圆的周长都可以用这两种方法解决吗?

(4)谁能用围的方法量一量黑板上圆的周长?

两名学生量。说一说自己的感觉。

(5)老师拿一条绳子,在绳的一端拴上一个小球,甩动绳子使小球转动起来。

问:小球转动时走过的路线成什么图形?这个圆的周长能用围、滚的办法测量吗?这说明围、滚的办法不是什么样的圆都试用。因此我们需要探讨出一种计算圆的周长的方法。

3.找关系,推导公式,探求新知(重点和难点)。

(1)正方形的周长与边长有关。周长是边长的4倍。圆的周长与谁有关呢?

出示两个大小不同的圆。问:①哪个圆的直径长,哪个圆的直径短?拉开周长,你发现了什么?②圆的周长与什么有关?(与直径有关。)

板书:圆的周长 直径

(2)是不是圆的周长与直径之间也像正方形的周长与边长之间那样存在着固定不变的倍数关系呢?同学们今天也当一次数学家,看看我们能不能发现规律,能发现什么规律。

①拿出你们的学具圆,汇报一下,直径分别是几厘米?(1厘米、3厘米、5厘米、10厘米。)

②同学们动手利用手中学具用围或滚的方法量一量圆的周长,并算一算,找出周长与直径的关系。同桌合作测量,看哪一组量得准,算得快。结果填在表格中。

生:直径不同,周长也不同,但周长总是直径的三倍多一些。

③电脑或实物验证。

问:是所有的圆的周长都是直径的3倍多一些吗?

电脑出示2个大小不等的圆,让学生边看边数一数。

师:刚才是老师给你的圆,现在谁愿意自己在电脑上任选一个圆,大小由你决定。

指名填到黑板上。

互相说一说:你发现了什么规律?

学生自己选出一个圆,看一看这个圆的周长是否是直径的3倍多一些。

师:圆不论大小,圆的周长总是它直径的3倍多一些。这是个固定不变的倍数关系。为什么我们算的不一样呢?因为我们的测量有误差。我们把圆的周长和直径这个固定不变的比值叫做圆周率,用字母π表示。

补充板书:÷圆周率π固定

师:很早以前,人们就开始研究圆周率这个问题了。你知道最早发现圆周率的是谁吗?

放录音:大约20xx年前,我国的古代数学着作《周髀算经》中就有“周三径一”的说法。意思是说圆的周长是直径的3倍。

大约1500年前,我国伟大的数学家和天文学家祖冲之,就精确地计算出圆周率应在3.1415926~3.1415927之间,成为世界上第一个把圆周率值的计算精确到6位小数的人。他的这项伟大成果比国外数学家至少要早一千多年。生为中国人,应为之自豪。

板书:3.1415926~3.1415927之间

后来人们发现π是一个无限不循环小数。

板书:无限不循环

在计算时,只取它的近似值,一般保留两位小数,即π≈3.14。

圆的周长总是直径的π倍,已知圆的直径怎样求圆的周长呢?同桌互相说一说。

用字母怎样表示?

板书:C=πd

已知半径怎么求圆的周长呢?

板书:C=2πr

问:知道什么条件就可以计算圆的周长?

4.解决实际问题。

例1 一张圆桌面的直径是0.95米。这张圆桌面的周长是多少米?(得数保留两位小数)

(1)读题。已知什么条件?要求什么问题?

(2)指名列式。

3.14×0.95

板书:=2.983 (先写准确值)

≈2.98(米)

答:这张圆桌面的周长是2.98米。

练一练 第112页的“做一做”。学生做在本上,投影订正。

(三)巩固练习

1.计算复习准备中的骑车比赛一题。回答谁先返回原点。

C圆 3.14×100=314(米)

C正 100×4=400(米)

因此沿圆周骑车的运动员先返回原点。

不用计算也可知。因为圆的周长是直径(100)的π倍,而正方形的周长是边长(100)的4倍。因此,绕圆周骑车的人先回到原点。

2.老师用绳甩小球。算一算小球转动的圆的周长。知道什么条件就可以了?(绳长5分米)学生算一算。

(四)课堂总结

这节课我们学习了哪些知识?还有什么问题。

(五)布置作业

课本第113页第 1,2(1),3(1),4,5,6题。

课堂教学设计说明

1.主要发挥学生的主体作用。从始至终让学生动手量、算;动脑发现规律;动口说出自己的发现。充分发挥学生的主动性、积极性,培养学生独立思考问题的能力及独立获取知识的能力。

2.精心设计每个环节间的导语,用质疑的方法引入每部分内容,使老师的语言自然,流畅。通过质疑也可抓住学生的心,使学生们一步步地发现问题,解决问题。

3.注意电教手段的合理应用,这样既可画龙点睛,又可激发学生的兴趣,提高课堂效率。

小学数学六年级教案——“圆的周长”教学设计与评析

教学内容:人教版九年义务教育六年制小学数学第十一册第110一113页“圆的周长”。

教学目标:1.使学生理解圆周率的意义,能推导出圆周长的计算公式,并能正确地计算圆的周长。

2.培养学生的观察、比较、分析、综合、和动手操作能力。

3.初步学会透过现象到看本质的辩证思维方法。

4.结合圆周率的学习,对学生进行爱国主义教育。

[评析:教学目标的拟订,从知识到能力、到思想方法、到爱国教育,立体丰满,折射出设计者教育观念的现代、育人意识的高度自觉]

教学过程:

一、创设情境,导入新课

1.播放课件。

星期天,米老鼠和唐老鸭在草地上跑步,米老鼠沿着正方形路线跑,唐老鸭沿着圆形路线跑。

2.揭示课题。

(1)要求米老鼠所跑的路线,实际上就是求这个正方形的什么?

要知道这个正方形的周长,只要量出它的什么就可以了?能说出

你的依据吗?(突出:正方形的周长与它的边长有关)

(2)要求唐老鸭所跑的路程,实际上就是求圆的什么呢?板书课题:圆的周长。

[评析:学生熟悉的可爱的米老鼠、唐老鸭的课件播放,既创设了融融的教学情境场,演示了周长的概念,较好地激发了认知冲突,又为后继教学埋下了伏笔。一举多得,既有承继,又有创新,难能可贵。]

3.引出圆周长的概念。

围成圆的曲线的长叫做圆的周长。

二、引导探索,展开新课

(一)测量圆的周长

如果我们用直尺直接测量这个圆的周长(教师演示),你觉得怎么样?你能不能想出一个好办法来测量它的周长呢?

1.如果学生说:把圆放在直尺边上滚动一周,用滚动的方法测量出圆的周长,则师生合作演示量教具圆的周长。

然后各组分工同桌合作。请第一、二组的同学测量直径为2厘米圆片的周长,第三、四组的同学测量直径3厘米圆片的周长。并把结果记录在110页的表格中。

追问:如果要知道那个圆形草坪的周长(指唐老鸭跑的路线),也可以让它在直尺上滚着来量吗?

2.如果学生说:用绳子在圆上绕一周,再测出绳子的长短,得到这个圆的周长。同样,先请学生配合老师演示,然后分工合作,第一、二组的同学测量直径为4厘米圆片的周长,第三、四组的同学测量直径为5厘米圆片的周长,并将结果记录在第110页的表格中。

3.教师甩动绳系小球,形成一个圆。

提问:小球的运动形成一个一一圆。你能用刚才的方法测量出圆的周长吗?

4.小结:看来,用滚动、绳绕的方法可以测量出圆的周长,但却有一定的局限性。我们能不能探讨出求圆周长的一般方法呢?

[评析:用直尺量→滚动法量→绳绕法量→没法量,既留给学生发挥的时空,又不断制造矛盾,“逼”着学生探求新知。]

(二)探讨圆的周长与直径的关系

1.圆的周长与什么有关。

(1)启发思考

正方形的周长与它的边长有关。那么,你猜猜看,圆的周长与它的什么有关呢?

(2)出示三个大小不同的圆:

组织学生观察比较,得出结论:圆的周长与它的直径有关。

2.圆的周长与直径有什么关系。

(1)正方形的周长是边长的4倍。那么,圆的周长与直径之间是不是也存在着固定的倍数关系呢?猜猜看,圆的周长可能是直径的几倍?

(2)演示周长与直径的关系:用一根红线绕圆面一周剪下,拉直和直径比较,发现这段长度是直径的3倍多一些。

(3)学生自己验证:用刚才测得的第110页表中的数据计算它们的比值,依次一组计算一个。

(4)观察数据。

第一个圆片: ××算出它的周长与直径的比值是3.15,也有同学算出的是3.14、3.13。在实验操作中允许存在这样的误差。不管是3.14、3.15,都可以说,它的周长是直径的3倍多一些。

第二个圆片:它的周长是直径的3倍多一些。

第三、四个圆片:它的周长还是直径的3倍多一此。

(5)得出结论

圆的周长总是它直径的3倍多一些。板书:3倍多一些。

[评析:这一环节融猜想、讨论、实验、计算、观察、归纳和概括于一体,让学生动脑、动手、动眼、动口,多种感官参与学习过程,自主发现圆周长与直径的倍数关系,体现了设计者较为先进的教学观和师生观,以及较强的选择、组合、优化教法的能力。由“是……”→

“也是……”→“还是……”,最后概括出“总是……”,反映出教者较强的数学思想方法渗透能力和较为精湛的语言功底。]

3.认识圆周率。

(1)揭示圆周率的概念。

这个3倍多一些的数,其实是个固定不变的数,我们称它为圆周率。圆周率一般用字母π表示。板书:圆周率

指导学生读写π,每人在本子上写3个π,同桌比比,看谁写得好。

现在,谁能说说圆的周长与它的直径有什么关系?谁是固定的倍数?完成板书:圆周长:直径=π

(2)指导阅读第111页方框中的文字,了解让中国人引以为自豪的历史。在学生汇报“看书后知道了些什么”时,相机板书: π=3,1415926……≈3.14

4.推导圆的周长计算公式。

(l)提问:已知一个圆的直径,该怎样计算它的周长?板书:c =πd

建议学生从第110页表格中任意挑一个圆片的直径,计算出它的周长,然后跟测量的结果比比看,是不是差不多?

[评析:让学生从表格中挑一个直径计算周长,再对照验证,这既是验证刚发现的圆周长计算公式,又是初步运用、巩固刚发现的公式,更是让学生经历科学发现的完整过程。]

(2)提问:告诉你一个圆的半径,会计算它的周长吗?怎样计算?板书:c=2πr

提问:甩小球形成的圆的周长你会求吗?

[评析:此环节与上一环节有异曲同工之妙!既是巩固运用,又是前有设问,后有解答,让学生体验自我成就感。]

(3)小结:要求圆的周长,一般需要知道它的直径或半径。知道圆的直径,怎样来计算周长?知道圆的半径,怎样来计算周长?

三、初步运用,巩固新知

1.完成第113页第1题的(1)(3)两小题。

2.下面的说法对吗?!

(1)圆的周长是它直径的π倍。 ( )

(2)大圆的圆周率小于小圆的圆周率。( )l

3.出示例1

(1)在学生读题后,提问:求这张圆桌面的周长是多少米?实际上就是求什么?

(2)学生尝试练习,反馈评价。

(3)提问:如果告诉你的不是这张圆桌的直径而是半径,该怎样解答?不计算,谁知道结果是多少吗?

4.完成第112页中间的练一练。l

5.看书质疑。l

[评析:练习设计目的明确,层次清晰,可以有效巩固新知。例1的直径改半径,独具匠心,既练习了求周长的另一种情况,又培养了学生思维的深刻性,而费时不多。]

四、照应启思,总结新课

1.组织学生说说收获。!

同学们从四个圆片的周长、直径的变化中(板书:变),看出了圆周率始终不变(板书:不变)。如果我们长期坚持这样从变化中看出不变,你就会变得越来越聪。

[评析:“变”与“不变”的板书,看似简单明了,其实是设计者苦心经营的。这一环节的组织,使辩证思维方法的培育从高空落到实地,促成了第3条教学目标的落实到位。]

2.照应开头。

我们再来看看米老鼠、唐老鸭跑步的路线,如果他的都跑了一圈,你能判断出谁跑的路程多吗?为什么?

3.课后思考。

小学六年级数学教案——[圆的周长]教学设计

教学内容:九年义务教育六年制小学数学第十一册第110~113页“圆的周长”。

教学目标:

1.使学生理解圆周率的意义,能推导出圆周长的计算公式,并能正确的计算圆的周长。

2.通过动手操作,培养学生的观察、比较、分析、综合和主动研究、探索解决问题方法的能力。

3.初步学会透过现象看本质的辨证思想方法。

4.结合圆周率的学习,对学生进行爱国主义教育。

教学重点:正确计算圆的周长。

教学难点:理解圆周率的意义,推导圆周长的计算公式。

教具准备:多媒体课件三套、系绳的小球。

学具准备:塑料圆片、正方形纸板、圆规、剪子、直尺、细绳。

教学过程:

一、以旧引新,导入新课

1.复习长方形、正方形的周长。

我们学过长方形、正方形的周长。回想一下,它们的周长各指的是什么?

2.揭示圆的周长。

(1)同学们都有一张正方形纸板,请你们用圆规在这张正方形纸板上画一个最大的圆。然后用钢笔或圆珠笔描出圆的周长,并且沿着圆的周长将圆剪下来。

(2)谁能指出这个圆的周长?谁能概括一下什么是圆的周长?

二、动手操作,引导探索

1.测量圆周长的方法。

(1)提问:你知道了什么是圆的周长,还想知道什么?

我们先研究怎样测量圆的周长,请同学们分组讨论一下。

把你们讨论的结果向大家汇报一下?学生边回答边演示。

(2)教师甩动绳子系的小球,形成一个圆。

提问:小球的运动形成一个圆。你能用刚才的方法测量出这个圆的周长吗?

2.认识圆周率。

(1)探讨圆的周长与直径的关系。

①用绳测和滚动的方法测量圆的周长,太麻烦,有时也做不到,这就需要我们找到一种既简便又准确计算圆周长的方法。研究圆的周长计算方法首先考虑圆周长跟什么有关系。

请同学们看屏幕,认真观察比较一下,想一想圆的周长跟什么有关系?

课件演示圆的周长跟直径有关系。(出示三个大小不同的圆,向前滚动一周,留下的线段长就是圆的周长。)

提问:你们是怎么看出来的圆周长跟直径有关系?

②学生测量圆周长,并计算周长和直径的比值。

圆的周长跟直径有关系,有什么关系呢?圆的周长跟直径是不是存在着固定的倍数关系呢?下面我们来做一个实验。用你喜欢的方法测量圆的周长,并计算周长和直径的比值,得数保留两位小数,将结果记录在表中。

生测量、计算、填表。在黑板上出示一组结果。

请同学们看黑板,从这些测量的计算的数据中你发现了什么?周长与直径的比值有什么特点?

③课件演示,证明圆的周长是直径的3倍多一些。(继续演示上面三个圆,直径与周长进行比较,圆的周长是直径的3倍多一些。)

这些圆的周长都是直径的3倍多一些,那么屏幕上这三个圆的周长是直径的多少倍呢?请同学们看大屏幕,仔细观察。(这三个圆的周长也是直径的3倍多一些。)

(2)揭示圆周率的概念。

通过以上的观察你发现了什么?

任何圆的周长总是直径的3倍多一些。

那也就是任何圆的周长和直径的比值是一个固定不变的数,我们称他为圆周率。谁能说一说什么叫圆周率?圆周率一般用π表示。(指导读写π。)

(3)了解让中国人引以为自豪的圆周率的历史。

关于圆周率还有一段历史呢。请同学们打开书看111页方框中的方字,想:通过看书你知道了什么?

很早以前,人们就开始研究圆周率到底等于多少。后来数学家们逐渐发现圆周率是一个无限不循环的小数。现在人们已经能用计算机算出它的小数点后面上亿位。π=3.141592653……

3.推导圆周长的计算公式。

根据刚才的探索,你能总结出圆周长的计算公式吗?

篇三:小学六年级数学教案——[圆的周长]教学设想

教学内容:义教六年制小学数学第十一册第110-112页例1。

教学目标:

1、使学生理解圆周长和圆周率的意义,理解和掌握圆周长的计算公式,并能运用公式正确计算圆的周长和解决简单的实际问题。

2、通过引导学生参与知识的探求过程,培养学生的动手操作能力、创新意识和合作能力,激发学生学习的积极性和自信心。

3、通过教学,对学生进行爱国主义教育和辩证唯物主义观点的启蒙教育。

教学重难点:圆周率意义的理解和圆周长公式的推导。

教学设想:新课程从促进学生学习方式的转变着眼,提出了“参与”、“探究”、“搜集、处理、获取、分析、解决”、“交流与合作”等一系列关键词。这些在本节课都有不同程度的体现。其中,“参与”是一切的前提和基础,而只有当“参与”成了学生主动的行为时,“参与”才是有价值的、有意义的。因此要怎样调动学生参与的积极性,“吸引”他们参与进来就成了基础的基础。这里,老师能善于打破学生思维的平衡状态,使他们产生新的不平衡,从而不断吸引学生参与到新知的探究中来。“圆的周长是一条曲线,该如何测量?”的问题使学生思维产生最初的不平衡,当学生通过化曲为直的两种方法的局限性,从而打破学生刚刚建立的平衡,进一步吸引学生探究更加简便的求圆周长的方法。

接着,就是要让学生参与什么,怎样参与的问题了。在引导学生探究圆周长与直径的关系时,学生从猜测、分组测量计算到根据新获取的数据寻找共性的东西,体验到知识的形成过程,发现了知识新成的道。在小组活动前,老师鼓励小组成员间分工合作,活动中教师参与其间,关注学生合作的情况。实验后的广泛交流达到了资源共享的目的,使接下来得到的结合更具可信度,也使学生感受到合作交流的必要性。这种以学生为主体,以教师为主导,在学生“兴趣点”上激疑、质疑,无疑能鼓舞学生的探知、求知精神,使学生真正理解、消化、吸收本课重点内容,不仅学到知识,而且学会学习。]

教学具准备:多媒体课件、1元硬币、直尺、卷尺、系线的小球、计算器、实验报告单。

教学过程:

一、创设情境,提出问题

1、创设情境。

这节课,老师要和同学一起探讨一个有趣的数学问题。

媒体显示:唐老鸭与米老鼠在草地上跑步,唐老鸭沿着正方形路线跑,米老鼠沿着圆形路线跑。

2、迁移类推。

引导学生认真观察唐老鸭、米老鼠所跑的跑线,讨论、回答问题。

(1)要求唐老鸭所跑的路程实际就是求什么?

(2)什么叫正方形的周长?怎样计算正方形的周长?(突出正方形的周长与它的边长有关系)

(3)要求米老鼠所跑的路程实际就是求什么?(板书:圆的周长)

3、提出问题。

看到这个课题,你想提些什么问题。学生纷纷发言提出自己想探究的问题。

梳理筛选形成学习目标:①什么叫做圆的周长?②怎样测量圆的周长?③圆的周长与什么有关系,有什么关系?④圆的周长怎样计算?⑤圆的周长计算有什么用处?

[设想:通过创设情境,引发学生参与形成学习目标,既培养了学生的问题意识,又为学生创造了自主学习的氛围,指明了探究方向,避免盲目性。]

二、自主参与,探究新知。

1、实际感知圆的周长。

让学生拿出各自圆片学具,边摸边说圆的周长;同桌之间相互边指边说。

2、明确圆周长的意义。

引导学生解决第一个问题,概括什么叫做圆的周长。(媒体显示一个圆,并闪动圆的周长)

(1)圆的周长是一条什么线?

(2)这条曲线的长就是什么的长?

(3)什么叫做圆的周长?

学生讨论互补,概括出“围成圆的曲线的长叫做圆的周长”(显示字幕)

篇四:小学六年级数学教案——“圆的周长”教学设想

教学内容:义教六年制小学数学第十一册第110-112页例1。

教学目标:

1、使学生理解圆周长和圆周率的意义,理解和掌握圆周长的计算公式,并能运用公式正确计算圆的周长和解决简单的实际问题。

2、通过引导学生参与知识的探求过程,培养学生的动手操作能力、创新意识和合作能力,激发学生学习的积极性和自信心。

3、通过教学,对学生进行爱国主义教育和辩证唯物主义观点的启蒙教育。

教学重难点:圆周率意义的理解和圆周长公式的推导。

教学设想:

新课程从促进学生学习方式的转变着眼,提出了“参与”、“探究”、“搜集、处理、获取、分析、解决”、“交流与合作”等一系列关键词。这些在本节课都有不同程度的体现。其中,“参与”是一切的前提和基础,而只有当“参与”成了学生主动的行为时,“参与”才是有价值的、有意义的。因此要怎样调动学生参与的积极性,“吸引”他们参与进来就成了基础的基础。这里,老师能善于打破学生思维的平衡状态,使他们产生新的不平衡,从而不断吸引学生参与到新知的探究中来。“圆的周长是一条曲线,该如何测量?”的问题使学生思维产生最初的不平衡,当学生通过化曲为直的两种方法的局限性,从而打破学生刚刚建立的平衡,进一步吸引学生探究更加简便的求圆周长的方法。

接着,就是要让学生参与什么,怎样参与的问题了。在引导学生探究圆周长与直径的关系时,学生从猜测、分组测量计算到根据新获取的数据寻找共性的东西,体验到知识的形成过程,发现了知识新成的道。在小组活动前,老师鼓励小组成员间分工合作,活动中教师参与其间,关注学生合作的情况。实验后的广泛交流达到了资源共享的目的,使接下来得到的结合更具可信度,也使学生感受到合作交流的必要性。这种以学生为主体,以教师为主导,在学生“兴趣点”上激疑、质疑,无疑能鼓舞学生的探知、求知精神,使学生真正理解、消化、吸收本课重点内容,不仅学到知识,而且学会学习。

圆的周长教案 篇2

教学内容:九年义务教育人教版第11册

教学目标:

1、使学生认识圆的周长,知道圆周率的意义,理解和掌握圆的. 周长计算公式;

2、发展学生空间观念,培养学生抽象思维和解决简单实际问题的能力;

3、培养学生情感,使学生受到爱国主义教育。

教学重点:推导圆周长的计算公式。

教学难点:理解圆周率的意义。

教具准备:多媒体课件、直尺、剪刀、绳子、圆形纸片等。

教学过程:

一、启发

1、创设情境:(课件出示动画故事:小白兔和兰精灵进行跑步锻炼,争论谁最先到达原来的起点。(正方形和圆形跑道,正方形边长20米,圆形直径20米、跑步的速度相同。)

2、讨论:小白兔和兰精灵到底谁最先跑回原来的出发点?

揭示课题。(板书:圆的周长)

二、探究

1、观察:看屏幕上的圆,说一说什么叫圆的周长?

2、摸一摸:拿出一个圆形纸片,指出:拿的这个周长是指哪一部分长?

3、比一比:拿出两个大小不同的圆形纸片。

哪个圆的周长长一些?

4、量一量:(分小组合作)

学生用剪刀、直尺和绳子测量出手中圆形纸片的周长。

5、信息反馈: ① 小组汇报所测量的圆的周长是多少?

板书: 周长

○ 12cm多一些

○ 31cm多一 些 ○ 47cm多一些

② 生说一说是怎样测出圆的周长的?(绳测法、滚动法)

③(课件演示)绳测法和滚动法的操作过程;

④讨论:能用这方法测量出这个圆的周长吗?

(教师演示)拿一根栓了重物的绳子在空中抡了一圈。。

如何才知道它的周长呢 ?

6、①猜一猜: 圆的周长和圆的什么有关系?

②(课件演示)三个直径不同的圆,分别滚动一周,得到三条线段的长分别是三个圆的周长。 发现了什么?说明了什么 ?(圆的周长和它的直径有关系)

7、①再猜 一猜,圆的周长和它的直径有什么样的关系?

②学生分成四人小组,测量、计算、讨论圆和直径的关系。

③小组汇报测量结果。

板书: 周长 直径

○ 12cm多一些 4cm

○ 31cm多一 些 10cm ○ 47cm多一些 15cm

结论:圆的周长是直径的3倍多一些。

④课件出示:验证学生发现的规律是否具有普遍性。

⑤小结:无论圆的大小、圆的周长总是它直径的3倍多一些。

6、介绍圆周率,结合进行爱国主义教育。

①教师引出“圆周率”,介绍用字母“∏”来表示,并介绍读法。

②出示祖冲之画像,配音介绍祖冲之及圆周率知识(∏≈3。14)

③对学生进行爱国主义思想教育。

7、讨论:如果知道了一个圆的直径或半径,怎样求圆的周长?

(圆的周长=直径×圆周率)(C=∏D或C=2∏r)

三、知

1、让学生把测量的三个圆用公式计算出三个圆的周长来。

2、让学生把老师在空中用绳子甩一圈的圆的周长计算出来。

(绳子的长度就是圆的半径)

3、抢答:①D=1分米,C= ?

②r=1厘米,C=?

③C=12。56米,D=?

4、出示例1,让学生独立计算。

5、裁定原来兰精灵和小白兔的争论。谁先到达起点?知道是为什么了吗?(课件演示跑的过程)

四、评议

1、本节课你学到了什么?有什么体会?有何感受?

2、本节课学习主要采用了什么方法?

3、本节课学习后对你生活有什么帮助?

4、在学习中你认为自己表现如何?谁表现最好?为什么?你准备在以后学习中怎样做?

圆的周长教案 篇3

教学内容:

圆的周长(小学数学九年制义务教材第十册).

教学目的:

1.让学生知道什么是圆的周长.

2.理解圆周率的意义.

3.理解和掌握圆的周长计算公式,并能初步运用公式解决一些简单的实际问题.

教学重点:

推导圆的周长计算公式.

教学难点:

理解圆周率的意义.

教具学具:

1.学生准备直径为4厘米、2厘米、3厘米圆片各一个,线,直尺.

2.电脑软件及演示教具.

教学过程:

一、复习:

上节课我们认识了圆,谁能说说什么是圆心?圆的半径?圆的直径?在同圆或等圆中圆的半径和直径有什么关系?用字母怎样表示?

二、导入:

这节课我们继续研究圆的周长(板书课题).

1.指实物图片(长方形)问:这是什么图形?谁能指出它的周长?

2.指实物图片(圆)问:这是什么图形?谁能指出它的周长?

问:什么是圆的周长?

板书:围成圆的曲线的长是圆的周长.

3.你能测量出这个圆的周长吗?(能)

4.指实物(用铁丝围成的圆)问:你能测量出这个圆的周长吗?

5.用拴线的小球在空中旋转画圆.问:你能测量它的周长吗?

回答:不能.

想一想圆的周长都可以用测量的方法得到吗?(不能)这样做也会不方便、不准确.有没有更好的方法计算圆的周长呢?今天我们就来研究这个问题.

三、互动

请同学们用圆规在练习本上画几个大小不同的圆,想一想圆的周长可能和什么条件有关?(半径或直径)再看电脑演示(半径不同周长不同)圆的周长和它的直径或半径究竟有什么样的关系?请同学们测量手中圆片的周长(用线或滚动测量),再和直径比一比,看谁能发现其中的秘密?

四、学生动手测量、教师巡视指导.

五、统计测量结果.

观察表中数据,想一想发现什么?圆的周长总是直径的三倍多一些!任何圆的周长都是直径的3倍多吗?

六、电脑演示

(几个大小不同的圆,它们的周长都是直径的3倍多一些)这是一个了不起的发现!谁知道我国历史上最早发现这个规律的人是谁?圆的周长到底是直径的3倍多多少?请同学们带着这个问题认真读书93页,默读通过实验到3.14.

七、看书后回答问题:

1.是谁把圆周率的值精确计算到6位小数?

2.什么叫圆周率?

3.知道了圆周率,还需知道什么条件就可以计算圆的周长?

4.如果用字母c表示圆的周长,d表示直径,r表示半径,表示圆周率,圆的周长的计算公式应该怎样表示?

现在你们已经掌握了圆的周长的计算方法,谁能很快说出你手中圆片的周长约是多少?(取3.14)

八、出示例1:

一种矿山用的大卡车车轮直径是1.95米,车轮滚动一周约前进多少米?

(得数保留两位小数)

请同学们想一想:车轮滚动一周的距离实际指的是什么?

解:d=1.95 单位:米

c=d

=3.141.95

=6.123

6.12(米)

答:车轮滚动一周约前进6.12米.

九、课堂练习:

1.投影:计算下面图形的周长.

2.判断下面各题(正确的出示,错误的出示)

(1)圆周率就是圆的周长除以它的直径所得的商. ( )

(2)圆的直径越大,圆周率越大. ( )

(3)圆的半径是3厘米,周长是9.42厘米. ( )

3.小明和爷爷分别沿小圆(ABCDEA)和大圆两条路线散步

圆的周长教案 篇4

教学目标:

1、通过教学使学生学会根据圆的周长求圆的直径、半径。

2、培养学生逻辑推理能力。

3、初步掌握变换和转化的方法。

教学重点:

求圆的直径和半径。

教学难点:

灵活运用公式求圆的直径和半径。

教学过程:

一、复习。

1、口答。

4 5 8

2、求出下面各圆的周长。

C=d c=2r

3.142 23.144

=6.28(厘米) =83.14

=25.12(厘米)

二、新课。

1、提出研究的问题。

(1)你知道表示什么吗?

(2)下面公式的每个字母各表示什么?这两个公式又表示什么?

C=d C=2r

(3)根据上两个公式,你能知道

直径=周长圆周率 半径=周长(圆周率2)

2、学习练习十四第2题。

(1)小红量得一个古代建筑中的大红圆柱的周长是3.768米,这个圆柱的直径是多少米?(得数保留一位小数)

已知:c=3.77m 求:d=?

解:设直径是x米。

3.773.14 3.14x=3.77

1.2(米) x=3.773.14

x1.2

(2)做一做。用一根1.2米长的铁条弯成一个圆形铁环,它的半径是多少?(得数保留两位小数)

已知:c=1.2米 R=c(2) 求:r=?

解:设半径为x米。

3.142x=1.2 1.223.14

6.28x=1.2 = 0.191

x=0.191 0.19(米)

x0.19

三、巩固练习。

1、饭店的大厅挂着一只大钟,这座钟的分针的尖端转动一周所走的路程是125.6厘米,它的分针长多少厘米?

2、求下面半圆的周长,选择正确的算式。

(1)3.148

(2)3.1482

(3) 3.1482+8

3、一只挂钟分针长20cm,经过30分后,这根分针的尖端所走的路程是多少厘米?经过45分钟呢?

(1)想:钟面一圈是60分钟,走了30分,就是走了整个钟面的 ,也就是走了整个圆的 。而钟面一圈的周长是多少?20xx.14=125.6(厘米)

(2)想:钟面一圈是60分钟,走了45分,就是走了整个钟面的 ,也就是走了整个圆的 。则:钟面一圈的周长是多少? 20xx.14=125.6(厘米)

45分钟走了多少厘米? 125.6 =94.2(厘米)

4、P66第10题思考题。下图的周长是多少厘米?你是怎样计算的?

四、 作业。

P65-66 第3、6、7、9题

教学追记:

圆的周长计算公式并不复杂,但这个公式如何得来,公式中的固定值是如何来的,都是值得学生研究的问题。因次,教学中,我着力于培养学生的探究意识和探究能力,让学生利用实验的手段,通过测量、计算、猜测圆的周长和直径的关系、验证猜测等过程来理解并掌握圆的周长计算方法。因为是自己操作的所得,再加上我在课中介绍了一些相关资料及讲述了一个有趣的小故事,所以学生对 的含义就理解得特别透彻,也学得有兴趣。

圆的周长教案 篇5

教学目标:

⒈使学生知道圆的周长和圆周率的含义。让学生体验圆周率的形成过程,探索圆的周长的计算公式,能正确计算圆的面积。

⒉使学生认识到运用圆的周长的知识可以解决现实生活中的问题,体验数学的价值。

⒊介绍古代数学家祖冲之对圆周率的研究事迹,向学生进行爱国主义教育。

教学重点、难点

教学重点:理解和掌握求圆周长的计算公式。教学难点:对圆周率π的认识。

教学过程设计

一、创设情境,引发探究

⒈“几何画板”《米老鼠和唐老鸭赛跑》演示:休息日,米老鼠和唐老鸭在草地上跑步,米老鼠沿正方形路线跑,唐老鸭沿着圆形路线跑。

⒉揭示课题

⑴要求米老鼠所跑的路线,实际上就是求这个正方形的什么?要知道这个正方形的周长,只要量出它的什么就可以了?

⑵要求唐老鸭所跑的路线,实际上就是求圆的什么呢?

板书课题:圆的周长

二、人人参与,探究新知

(一)教具演示,直观感知,认识圆周长。

教师出示教具:铁丝圆环、圆片,让学生观察围成圆的线是一条什么线,提问:这条曲线就是圆的什么?

(二)理解圆周率的意义

活动一:测量圆的周长

⒈教师提问:你能不能想出一个好办法来测量它的周长呢?

①生1:把圆放在直尺边上滚动一周,用滚动的方法测量出圆的周长。则师生合作演示量教具圆铁环的周长。

然后各组分工同桌合作,量出圆片的周长。

②用绳子在圆上绕一周,再测量出绳子的长短,得到这个圆的周长。同样,先请学生配合老师演示,然后分工合作。测出圆片的周长。

⒉用“几何画板”《小球的轨迹》演示形成一个圆。

提问:小球的运动形成一个圆。你能用刚才的方法测量出圆的周长吗?

⒊小结:看来,用滚动、绕线的方法可以测量出圆的周长,但却有一定的局限性。我们能不能探讨出求圆周长的一般方法呢?

活动二:探究圆周长与直径的关系,认识圆周率。

⒈圆的周长与什么有关。

⑴启发思考

正方形的周长与它的边长有关。那么,你猜猜看,圆的周长与它的什么有关系呢?

⑵利用不同长度的小球形成的三个圆,让学生观察思考考:.哪一个圆的周长长?圆的周长与它的什么有关呢?

得出结论:圆的周长与它的直径有关。

⒉圆的周长与直径有什么关系。

⑴学生动手测量,验证猜想。

学生分组实验,并记下它们的周长、直径,填入书中的表格里。

⑵观察数据,对比发现。

提问:观察一下,你发现了什么呢?

(圆的直径变,周长也变,而且直径越短,周长越短;直径越长,周长越长。圆的周长与它的直径有关系。)

⑶出示“几何画板”《周长与直径的关系》演示。

⑷比较数据,揭示关系。

正方形的周长是边长的4倍。那么,圆的周长与直径之间是不是也存在着固定的倍数关系吗?猜猜看,圆的周长可能是直径的几倍?

学生动手计算:把每个圆的周长除以它的直径的商填入书中表格的第三列。

提问:这些周长与直径存在几倍的关系,(3倍多一些),是不是所有的圆周长与直径都是3倍多一些呢?教师演示“几何画板”最后师生共同总结概括出:圆的周长总是直径的3倍多一些,板书:3倍多一些。

⒊认识圆周率

⑴揭示圆周率的概念。

这个3倍多一些的数,其实是个固定不变的数,我们称它为圆周率。圆周率一般用字母π表示。板书:圆周率

现在,谁能说说圆的周长与它的直径有什么关系?谁是固定的倍数?完成板书:圆周长÷直径=π

⑵介绍π的读写法

⑶指导阅读,了解中国人引以为自豪的历史。

提问:你知道了什么?

(三)推导圆的周长计算公式。

⑴提问:已知一个圆的直径,该怎样求它的周长?板书:C=πd

请同学们从表格中挑一个直径计算周长,然后跟测量结果比比看,是不是差不多?

⑵提问:告诉你一个圆的半径,合计算它的周长吗?怎样计算?板书C=2πr。

提问:“几何画板”上的小球轨迹形成的圆你会求周长吗?

学生和自己的伙伴一起解答例1和做一做并说出这两题用哪个公式比较好?

三、应用新知,解决问题

1、和自己的伙伴一起解答例1和做一做

2、说出这两题用哪个公式比较好?

四、实践应用,拓展创新。

⒈基础性练习:

(1)求下列各圆的周长(几何画板)

r=3厘米 d=4厘米

(2)、我们现在有办法求唐老鸭跑的路程吗?

⒉、判断

①圆的周长是直径的π倍。( )

②大圆的圆周率小于小圆圆周率。( )

3、提高练习

在我们校园内有一棵很大的树,你们有什么办法可以测量到这棵大树截面的直径?

五、总结评价,体验成功

1、你学到了什么? 2、你是怎么学到的?

圆的周长教案 篇6

第一课时 圆周长计算

教学内容:

圆周长计算公式的推导、周长计算(课本第62——64页的内容、练习十五第1题)。

教学目标:

1、认识圆的周长,理解圆周率的意义。

2、掌握圆周长的计算公式,会用公式正确计算圆的周长。

3、介绍祖冲之在圆周率方面的成就,进行爱国主义教育。

教学重难点:

1、圆的周长公式推导及运用公式计算圆周长是重点。

2、通过实验找出圆的周长与直径的关系—圆周率是难点。

3、关键是让学生动手操作测周长与直径。

教学准备:

学生准备:大小不同的圆柱物体,光盘。直尺或三角板、绳子。

老师准备:小黑板

教学过程:

一、复习铺垫(5分钟)

1、小黑板出示

(1)

(2)

10厘米 6分米

2、提出问题:

同学们,老师要用铁丝分别做成上面两个图形的框架,

(1)请同学们帮助老师算一算每个图形需要用多长的铁丝?

(2)、每个图形需要用多长的铁丝,是求什么的?

(3)什么是周长?周长的单位有哪些?

(4)、要求图(1)、图(2)的周长应该知道什么条件?

二、探索新知(25分钟)

(一)认识圆的周长(3

1、出示:圆的图形 和其他实物圆。

2、提问:

(1)这是一个什么形实物?

(2)老师要用铁丝给它箍紧,需要用多长的铁丝,是求什么的?圆周长指哪儿?

3、感知圆的周长: 让学生拿出光盘或其它实物圆摸一摸,进行感知。

4、怎样才能知道一个圆的周长呢?让学生猜一猜,说一说,。

(二)提示课题

在现实生活中,有很多的圆形物体的周长测着很不方便。我们能不能也像计算长方形、正方形周长一样找到计算圆周长的计算公式呢,今天我们一起来探讨如何找到圆周长的计算公式,来计算圆的周长。

板书课题------圆周长计算

(三)圆的公式推导

1、猜一猜,想一想,动手操作(8分钟)

(1) 提问:通过前面复习,我们知道长方形的周长与它的长和宽有关,正方形的周长与它的边长有关。那么请同学们想一想:

圆的周长与它的什么条件有关?

、独立思考后,前后桌四人交换意见。

、学生汇报:圆的周长和直径(或半径)有关。

继续提问:它们之间到底有什么的关系呢?

故事激趣

我国古代有一位伟大的数学家和文学家祖冲之就发现了圆的周长与它的直径之间的关系,这个发现是在1500年前。今天我们各位同学也当一回科学家,进行一次研究,来发现圆周长与直径之间到底有什么关系。

(2)、动手实验:(四人一组,合作完成) (一组测一个)

a、取出圆形纸板,量出圆形纸板的直径。

b、用绳子绕圆形纸板一周,绕圆一周的绳子长度,就是这个圆形的周长,然后测出绳子长度。 c、填到书中表内。

d、算出周长和直径的比值。

e、 汇报,老师把表画在小黑板上,并填表。

2、观查数据,发现规律:(5分钟)

观察表中数据,说一说你有什么发现?(四人一组,共同讨论,)

小组汇报:

同一个圆,它的周长是它的直径的3倍多一些。

3、认识圆周率(2分钟)

(1)、在学生发现圆周长与它的直径关系的基础上,老师明确:

刚才每一组同学测的圆大小都不同,但发现:任意一个圆的周长与它的直径的比是一个固定的数。即一个圆的周长是它的直径的3倍多一点。我们把这个比值,即这个固定的数(不变的数)给它起个名字叫圆周率。用字母π表示。 板书:圆周长=π 或 圆周长:它的直径=π 它的直径

(2)、让学生读一读( Pài )写一写。

(3)了解π的值。

A、π是一个无限不循环小数,π=3.1415926535..........

B、在实际应用中一般只取它的近似值,即π≈3.14.

4、圆周长公式推导:(5分钟)

老师:如果已知圆的直径,如何计算圆的周长。

圆周长= π×直径

如果周长用C表示:字母公式C=πd

知道半径,怎样求周长C=2πr

( 四)应用公式(2分钟)

教学例1:

(1)出示例题:圆形花坛的直径是20米,它的周长是多少米?

(2)学生读题并尝试列式计算。

(3)学生板演:3.14×20=62.8(米)

说明:、解题时可以不写计算公式

、π取两位小数3.14,计算中不必使用 ≈ ,直接用 = 号。

三、巩固练习(8分钟)

1、 完成课本64页做一做。

2、完成练习十五第1题。

3、补充作业。判断题:

(1)圆的周长刚好是直径的3.14倍。

(2)大圆的圆周率大,小圆的圆周率就小。

(3)、π是两位小数。

(4)、圆的周长等于它的半径的2π倍。

(5)、求周长,直径是唯一条件。

四、课堂小结(2分钟)

本节课我们认识了圆的周长,并且通过实验知道,圆有大小,但每一个圆周长与它的直径的比的比

值都相等,并且是一个固定的数,这个数叫圆周率,用π表示。从而找到了计算圆周长的公式,周长=直径 × π或半径×2×π。

五、布置作业:课堂作业

六、板书设计圆周长计算

圆周长=π(圆周率) 周长是直径的3倍多一点 (即 周长是直径的π倍 ) 它的直径, 圆周长= π×直径

因为d=2r 圆周长=π×半径 ×2

π是一个无限不循环小数,π=3.1415926535 C=πd C=2πr

注:(1)在实际计算中,π取近似值保留两位小数约等于3.14 。

(2)π在计算的应用中,结果不用“≈”号,而用“=”号。

3.14×20=62.8(米)

答:圆形花坛的周长是68.2米

七、课后记

《圆的周长》是在学生学习了正方形周长的基础上进行教学的。由复习老知识引入课题,目的是激发学生的探究积极性,然后我让学生自己推导出圆的周长公式,让学生以小组为单位进行操作:用“化曲为直”的绕线法测量圆的周长,并做好相应记录,填好表,为下一步探究奠定基础,接下来让学生猜一猜、想一想圆的周长与直径有什么关系,进而找到圆的周长与直径的关系,推出圆周率,得出圆的周长公式。最后让学生把得出的圆的周长公式应用到练习中。

本节课中,我觉得比较成功的是:

首先,在创设情境时,我用旧知引新知导入新课,以学生的兴趣为出发点,激发学生的探索欲望,为后面的学习做好铺垫。其次,学生经过自主探究、合作、展示等教学活动,使学生深切地体会到“化曲为直”的数学思想方法,与此同时,我想学生提出质疑测量、学生通过小组合作的形式验证猜想,在理解了圆的周长与直径的关系及圆周率的基础上,推导出圆的周长的计算公式,再回到课前情境中,使学生在掌握新知识的基础上,解决实际问题,培养学生的应用意识。 在本节的教学中,我发现情境导入吸引了学生的注意,并对新知识产生了浓厚的兴趣,由于前面“正方形周长及圆的认识”知识的成功铺垫,因此本节课学生通过动手操作、自主探究、合作交流‘展示等活动,理解了“化曲为直”的数学思想方法。在推导公式过程中,因为亲自经历了小组内探讨圆的周长与直径的关系的过程,所以学生能较为容易地推导出圆的周长计算公式。

本节课中也存在一些不足之处:比如:在对学生的表达进行评价是艺术性略显不足,应多鼓励,使学生获得成功的体验;另外,我对课堂的掌控和把握能力还需提高,虽然对教材进行了较为深入的分析,但还没有做到不彻底,小组合作要求不到位。

在今后的教学工作中,我将弥补以上不足之处,提高个人的理论修养,使自己的教学趋于完美。

下载圆的周长教案word格式文档
下载圆的周长教案.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    圆的周长教案

    圆的周长教案 篇1 篇一:六年级圆的周长数学教案【教学目标】1、让学生知道什么是圆的周长。2、理解并掌握圆周率的意义和近似值。3、初步理解和掌握圆的周长计算公式,能正......

    圆的周长教案

    关于圆的周长教案模板汇编五篇圆的周长教案 篇1 【教学目标】:1、知道什么是圆的周长。通过绕一绕、滚一滚等活动找出圆的周长与直径的关系,理解圆周率的意义,合作推导出圆的......

    圆的周长教案

    庞村镇西庞村小学朱春梅圆的周长圆的周长 教材简析 圆的周长公式,对于学生来说是比较抽象的,因此,教材设计了两个实践活动,让学生通过小组合作、探究、交流,形象的感知到圆的周......

    圆的周长教案

    《圆的周长》教学设计 重庆荣昌区昌元许溪中心小学:黄晓英 教学目标: 1、经历圆周率的形成过程,探索圆周长的计算公式,能正确计算圆的周长。 2、运用圆的周长的知识解决现实生......

    圆的周长教案

    圆的周长 邝朝旺 教学目标: 1、通过猜测、测量、观察、分析及动手操作等数学活动,使学生经历圆周长公式的推导过程,理解圆周率的意义。2、使学生理解和掌握圆周长公式,并能运用......

    圆的周长教案

    圆的周长教学设计 一、激情导入 1、 动物王国正在举行动物运动会可热闹了,想不想去看一看? 2、 一只小山羊和一只梅花鹿分别在圆形和正方形跑道上赛跑,大家猜一猜最后谁跑的路......

    圆的周长 解决问题(教案)

    圆的周长 解决问题 教学内容:圆的周长——解决问题 教学目标:利用圆的周长与直径、半径之间的关系,进一步巩固圆周长的计算方法,并能解决简单的实际问题 教学重点:能正确计算圆的......

    圆的周长教案5篇

    教学内容: 人教版义务教育六年制小学数学第89──91页《圆的周长》 教材分析: “圆的周长”是小学阶段周长认识和计算的最后一部分内容,前面学生已经学过圆和扇形的认识以及长......