第一篇:直线与圆的位置关系评课稿
直线与圆的位置关系评课稿
数学课堂教法如何结合现代教育教法理论、结合学生的实际来实施素质教育,优化课堂教法,提高教法效益呢?这是每个老师在今天的课改面前都有的困惑.那么我们应如何从困惑面前走出来呢?我有幸听了高老师的一堂课《直线与圆的位置关系》.
整节课的学习我发现高老师准备得比较充分,清楚知道学生应该理解什么,掌握什么,学会什么.她是学生学习活动的组织者、指导者和合作者,而学生是一个发现者、探索者,有效地发挥他们的学习主体作用.高老师是让学生“体会知识”,而不是“教学生知识”,学生成了学习的主人,突出学生的主体地位.另外高老师教态自然大方,语言、表情亲切,面部表情丰富,声音抑扬顿挫,有助于调动课堂气氛,引起学生的兴趣和注意.情绪控制较好,能较好地组织教学,教师的基本功扎实,能较好地起到示范的作用.总的来说高老师的这节课上得非常成功.
我一直都有这种教法观念:让“学生学会求知”比让学生掌握知识本身更重要,在教法过程中我们要从人的固有特性出发发展学生的自主性、独立性和创造性,教师的教要为学生的学服务,数学教法要注重学生思维能力的提高,联系学生的生活实际,发展学生的数学思想和数学方法,提高学生应用数学的意识和解决问题的能力.高老师对知识的形成过程也比较重视,但对有些细节方面没有能够阐述清楚.在从几何特征过渡到数量特征时,也让学生去探索总结,但对于为什么要作垂直,没能告诉学生其中的道理,这样学生可能只知其然,而不知其所以然,不能理解数学的本质.
高老师开始的时候都是叫学生个人来回答完成,后面几个问题干脆让学生一起来回答,这样做的后果就是不能让学生感觉到这是“我的参考答案”,感觉不到同学、老师那肯定的眼光,长此以往课堂的气氛会低迷,学生的思维会变得懒惰.因为学生思考的参考答案可能会得不到肯定,学生思考也没用.渐渐的学生学习的积极性、主动性就会削弱,与我们老师的初衷、教改的意图相违背.
我觉得教师应通过自己的“创造”,为学生展现出“活生生”的思维过程.
由于数学学科抽象、严谨的特点和数学学习的“再创造”要求比其他学科高,数学教材不能完全适应学生的理解力、思维力和想像力.数学教师更多的责任恰恰就在于他应当通过自己的“创造”为学生展现出“活生生”的思维活动,从而帮助每一个学生最终相对独立地去完成建构活动.教师应通过自己的“创造”,充分发挥教学活动的感染力量.由于数学研究是一种创造性的劳动,我们的数学教师就应通过自己的示范使学生体会到这样工作和学习的内在乐趣.一个好的数学教师要通过自己的教学使学生受到强烈的感染,从而激发他们对数学的兴趣和热爱,激发对美的追求.如,教师阐述所授内容时,将抽象的概念具体化,深奥的哲理形象化,枯燥的知识趣味化,唤起学生强烈的探求新知识的欲望.教师应通过自己的“创造”,协调好师生的双边活动.教学的对象具有主体性,他们是活生生的人,在教学中不是被动地接受“塑造”,而是以主体的身份参与“塑造”自我的过程.一堂好课须由师生双方共同创造,教学艺术的出发点便是师生在教学中的交流与合作.教学的成功与否,主要看教学活动中,教师与学生的参与程度和积极性水平,以及师生关系是否融洽,能不能心领神会地默契配合与协作,能否做到思维共振与感情共鸣.
第二篇:直线与圆的位置关系教案
《直线与圆的位置关系》教案
教学目标:
根据学过的直线与圆的位置关系的知识,组织学生对编出的有关题目进行讨论.讨论中引导学生体会
(1)如何从解决过的问题中生发出新问题.(2)新问题的解决方案与原有旧方法之间的联系与区别.通过编解题的过程,使学生基本了解、把握有关直线与圆的位置关系的知识可解决的基本问题,并初步体验数学问题变化、发展的过程,探索其解法.重点及难点:
从学生所编出的具体问题出发,适时适度地引导学生关注问题发展及解决的一般策略.教学过程
一、引入:
1、判断直线与圆的位置关系的基本方法:
(1)圆心到直线的距离
(2)判别式法
2、回顾予留问题:
要求学生由学过知识编出有关直线与圆位置关系的新题目,并考虑下面问题:
(1)为何这样编题.(2)能否解决自编题目.(3)分析解题方法及步骤与已学过的基本方法、步骤的联系与区别.二、探讨过程:
教师引导学生要注重的几个基本问题:
1、位置关系判定方法与求曲线方程问题的结合.2、位置关系判定方法与函数或不等式的结合.3、将圆变为相关曲线.备选题
1、求过点P(-3,-2)且与圆x2+y2+2x-4y+1=0相切的直线方程.备选题
2、已知P(x, y)为圆(x+2)2+y2=1上任意一点,求(1)(2)2x+3y=b的取值范围.备选题
3、实数k取何值时,直线L:y=kx+2k-1与曲线: y=两个公共点;没有公共点.三、小结:
1、问题变化、发展的一些常见方法,如:
(1)变常数为常数,改系数.(2)变曲线整体为部分.有一个公共点;=m的最大、最小值.(3)变定曲线为动曲线.2、理解与体会解决问题的一般策略,重视“新”与“旧”的联系与区别,并注意哪些可化归为“旧”的方法去解决.自编题目:
下面是四中学生在课堂上自己编的题目,这些题目由学生自己亲自编的或是自学中从课外书上找来的题目,这些题目都与本节课内容有关.①已知圆方程为(x-a)2+(y-b)2=r2,P(x0, y0)是圆外一点,求过P点的圆的两切线的夹角如何计算?
②P(x0, y0)是圆x2+(y-1)2=1上一点,求x0+y0+c≥0中c的范围.③圆过A点(4,1),且与y=x相切,求切线方程.④直线x+2y-3=0与x2+y2+x-2ay+a=0相交于A、B两点,且OA⊥OB,求圆方程?
⑤P是x2+y2=25上一点,A(5,5),B(2,4),求|AP|2+|BP|2最小值.⑥圆方程x2+y2=4,直线过点(-3,-1),且与圆相交分得弦长为3∶1,求直线方程.⑦圆方程x2+y2=9,x-y+m=0,弦长为
2,求m.⑧圆O(x-a)2+(y-b)2=r2,P(x0, y0)圆一点,求过P点弦长最短的直线方程?
⑨求y=的最值.圆锥曲线的定义及其应用
[教学内容]
圆锥曲线的定义及其应用。
[教学目标]
通过本课的教学,让学生较深刻地了解三种圆锥的定义是对圆锥曲线本质的刻画,它决定了曲线的形状和几何性质,因此在圆锥曲线的应用中,定义本身就是最重要的性质。
1.利用圆锥曲线的定义,确定点与圆锥曲线位置关系的表达式,体现用二元不等式表示平面区域的研究方法。
2.根据圆锥曲线定义建立焦半径的表达式求解有关问题,培养寻求联系定义的能力。
3.探讨使用圆锥曲线定义,用几何法作出过圆锥曲线上一点的切线,激发学生探索的兴趣。
4.掌握用定义判断圆锥曲线类型及求解与圆锥曲线相关的动点轨迹,提高学生分析、识别曲线,解决问题的综合能力。
[教学重点]
寻找所解问题与圆锥曲线定义的联系。
[教学过程]
一、回顾圆锥曲线定义,确定点、直线(切线)与曲线的位置关系。
1.由定义确定的圆锥曲线标准方程。
2.点与圆锥曲线的位置关系。
3.过圆锥曲线上一点作切线的几何画法。
二、圆锥曲线定义在焦半径、焦点弦等问题中的应用。
例1.设椭圆+=1(a>b>0),F1、F2是其左、右焦点,P(x0, y0)是椭圆上任意一点。
(1)写出|PF1|、|PF2|的表达式,求|PF1|、|PF1|·|PF2|的最大最小值及对应的P点位置。
(2)过F1作不与x轴重合的直线L,判断椭圆上是否存在两个不同的点关于L对称。
(3)P1(x1,y1)、P2(x2,y2)、P3(x3, y3)是椭圆上三点,且x1, x2, x3成等差,求证|PF1|、|PF2|、|PF3|成等差。
(4)若∠F1PF2=2,求证:ΔPF1F2的面积S=btg
(5)当a=2, b=最小值。
时,定点A(1,1),求|PF1|+|PA|的最大最小值及|PA|+2|PF2|的2例2.已知双曲线-=1,F1、F2是其左、右焦点。
(1)设P(x0, y0)是双曲线上一点,求|PF1|、|PF2|的表达式。
(2)设P(x0, y0)在双曲线右支上,求证以|PF1|为直径的圆必与实轴为直径的圆内切。
(3)当b=1时,椭圆求ΔQF1F2的面积。
+y=1 恰与双曲线有共同的焦点,Q是两曲线的一个公共点,2例3.已知AB是过抛物线y=2px(p>0)焦点的弦,A(x1, y1), B(x2, y2)、F为焦点,求证:
(1)以|AB|为直径的圆必与抛物线的准线相切。
(2)|AB|=x1+x2+p
(3)若弦CD长4p, 则CD弦中点到y轴的最小距离为
2(4)+为定值。
(5)当p=2时,|AF|+|BF|=|AF|·|BF|
三、利用定义判断曲线类型,确定动点轨迹。
例4.判断方程=1表示的曲线类型。
例5.以点F(1,0)和直线x=-1为对应的焦点和准线的椭圆,它的一个短轴端点为B,点P是BF的中点,求动点P的轨迹方程。
备用题:双曲线实轴平行x轴,离心率e=,它的左分支经过圆x+y+4x-10y+20=0的2
2圆心M,双曲线左焦点在此圆上,求双曲线右顶点的轨迹方程。
第三篇:直线与圆的位置关系教案
教学目标:
1.使学生理解直线和圆的相交、相切、相离的概念。
2.掌握直线与圆的位置关系的性质与判定并能够灵活运用来解决实际问题。
3.培养学生把实际问题转化为数学问题的能力及分类和化归的能力。
重点难点:
1.重点:直线与圆的三种位置关系的概念。
2.难点:运用直线与圆的位置关系的性质及判定解决相关的问题。
教学过程:
一.复习引入
1.提问:复习点和圆的三种位置关系。
(目的:让学生将点和圆的位置关系与直线和圆的位置关系进行类比,以便更好的掌握直线和圆的位置关系)
2.由日出升起过程中的三个特殊位置引入直线与圆的位置关系问题。
(目的:让学生感知直线和圆的位置关系,并培养学生把实际问题抽象成数学模型的能力)
二.定义、性质和判定
1.结合关于日出的三幅图形,通过学生讨论,给出直线与圆的三种位置关系的定义。
(1)线和圆有两个公共点时,叫做直线和圆相交。这时直线叫做圆的割线。
(2)直线和圆有唯一的公点时,叫做直线和圆相切。这时直线叫做圆的切线。唯一的公共点叫做切点。
(3)直线和圆没有公共点时,叫做直线和圆相离。
2.直线和圆三种位置关系的性质和判定:
如果⊙O半径为r,圆心O到直线l的距离为d,那么:
(1)线l与⊙O相交 d<r
(2)直线l与⊙O相切d=r
(3)直线l与⊙O相离d>r
三.例题分析:
例(1)在Rt△ABC中,AC=3cm,BC=4cm,以C为圆心,r为半径。
①当r= 时,圆与AB相切。
②当r=2cm时,圆与AB有怎样的位置关系,为什么?
③当r=3cm时,圆与AB又是怎样的位置关系,为什么?
④思考:当r满足什么条件时圆与斜边AB有一个交点?
四.小结(学生完成)
五、随堂练习:
(1)直线和圆有种位置关系,是用直线和圆的个数来定义的;这也是判断直线和圆的位置关系的重要方法。
(2)已知⊙O的直径为13cm,直线L与圆心O的距离为d。
①当d=5cm时,直线L与圆的位置关系是;
②当d=13cm时,直线L与圆的位置关系是;
③当d=6。5cm时,直线L与圆的位置关系是;
(目的:直线和圆的位置关系的判定的应用)
(3)⊙O的半径r=3cm,点O到直线L的距离为d,若直线L 与⊙O至少有一个公共点,则d应满足的条件是()
(A)d=3(B)d≤3(C)d<3 d="">
3(目的:直线和圆的位置关系的性质的应用)
(4)⊙O半径=3cm。点P在直线L上,若OP=5 cm,则直线L与⊙O的位置关系是()
(A)相离(B)相切(C)相交(D)相切或相交
(目的:点和圆,直线和圆的位置关系的结合,提高学生的综合、开放性思维)
想一想:
在平面直角坐标系中有一点A(—3,—4),以点A为圆心,r长为半径时,思考:随着r的变化,⊙A与坐标轴交点的变化情况。(有五种情况)
六、作业:P100—
2、3
第四篇:《圆与圆的位置关系》评课记录
《圆与圆的位置关系》评课记录
吴义国校长:
王华均老师的这节课体现了学生的主体地位,让学生在探究中亲历知识形成的过程,远比让学生直接但却被动地获取现成知识结论要更加具有深远的意义和影响,学生的观察、猜想、探索等其他各方面能力都能得到有效地开发和锻炼。
教学思路的层次、脉络清晰,实际运作效果也不错,达到了本节课的教学目的。
课堂上王老师精心选择了与日常生活密切相关的事物(如自行车、众志成城标志图、日全食图片等),使学生感受到数学知识就在身边,为培养学生用数学的观点和方法来分析问题解决问题的意识奠定了基础,确实费了一番心思。
本课努力为学生创设民主、和谐、宽松的学习氛围,使教学过程成为一个不断创设问题情境,和探索解决问题的过程,努力为学生提供充分的活动条件和活动空间。
本节课让学生通过移动硬币来探究圆与圆之间的位置关系,突破了以往直接给出概念或规律让学生被动接受知识的讲课方式,而是通过让学生自己动手主动探索的方法。因为学生已经有了点与圆、直线与圆的位置关系等基础。只要教师引导得当学生们是能够顺利进行探究的,只是王老师没敢放手让学生进行小组交流探究,否则效果会更好。当然真正让学生养成自主探索习惯并非一朝一夕练就的,需要循序渐进。
这节课还有两个小问题是以后要注意的:
一、教师语言要准确,如圆心距说成是“„„的线段(连线)”;
二、教师的语气、语调再有些变化会更好; 以上是我个人的一些看法,不当之处请各位同仁批评指正,谢谢!许勤主任:
王华均老师这节课是圆与圆的位置关系,总体设计很好,主次分明,层次清楚。整个教学过程分三大板块:探求圆与圆的位置关系、寻找圆与圆的数量关系、利用有层次、有坡度、要求明确、题型多变的练习题巩固这种关系。整堂课有主有次,有高潮也有低谷„
课堂的闪光点:第一板块的知识的生成很精彩也很完善,分五步:第一步:学生动手操作、反复演示发现圆与圆之间不同的位置关系。说明教师具有先进的教学理念,充分发挥了学生的主体作用,调动了学生探求知识的积极性。
第二步:让学生板演展示自己的发现,共用了三个学生补充完毕。有比较才有发现,有失误才有成功。学生在探索中发现,在差异中寻求完善。
第三步:利用多媒体展示自然景观——日环食现象,充分体现刚才发现的圆与圆的不同位置关系。让学生感到数学就在身边,数学知识就来源与实际生活。并进一步用flash动画展示圆与圆的不同位置关系巩固学生的认知。多媒体运用的适时恰当,较好的扩充教学的信息量,发挥了多媒体对教学的辅助作用。
第四步:根据公共点的个数分类命名,并举出生活中的图片,让学生用眼睛观察并说出它们的位置关系的称呼。抽象的数学知识溶入生活画面让学生通俗易懂。
这一板块的教学充分体现了新课程的教学理念:“让学生在生动具体的情境中学习”“学生是数学学习的的主体,教师是组织者,引导者、合作者”课堂是学生的舞台,是主角。教师是敲边鼓的,是配角。
第三板块:题型组合设计较好,即可锻炼学生的逆向思维,又能发展空间想象力。不足之处:第二板块在教学方法上与第一板块不同,教师分析引导为主,学生旁听。这一块继续放手让学生探究效果会更好。
数学概念不严密:相切“圆与圆有唯一的公共点”说成“圆与圆有一个的公共点”, “公共点”说成“交点”
总之,本节课的教学体现了以学生为主体,以教师为主导,以思维训练为主线的教学模式,达到培养学生能力全面发展的教学目标。
刘寿林老师:
王华均老师讲的是《圆和圆的位置关系》一课,可以说非常成功。教学设计充分体现新的教学理念,重点突出、层次清楚、构思新颖,注重学生的主动参与、动手操作,让学生从中去体验学习知识的过程,同时,也培养学生的自主学习能力和创新意识。
我们数学组认为有以下几个亮点: 亮点一:导课新颖
导入数学课寓趣味于其中,既体现了与地理学科的整合,又能激发学生的兴趣,唤起他们的好奇心与求知欲。用多媒体演示“日食”现象的动画,再抽象成几何图形,让学生比较生动直观的感受两圆运动过程中的几种位置关系,丰富学生对现实空间及图形的认识,建立空间观念,发展形象思维,同时也是对学生想象力的一种发散训练。
亮点二:运用类比法
用微机将两圆的五种位置关系进行分类,并类比直线与圆的位置关系,让学生思考分类标准,从而引导学生确定两圆位置关系的一种方法(交点个数)。让学生在猜想与探究的过程中,体验成功的快乐,培养他们主动参与、合作意识,勇于创新和实践的科学精神。亮点三:数形结和思想
在经历“观察──猜测 探索──验证──应用”的过程,渗透了从“形”到“数”和从“数”到“形”的转化,培养了学生的转化、思维能力。实现了感性到理性的升华。
罗建老师:
课堂闪光:让学生经历操作、探究、归纳、总结圆和圆的位置关系的过程,培养学生观察、比较、概括的逻辑思维能力让学生在探索圆和圆的位置关系的过程中,学会运用数形结合的思想解决问题。让学生通过运用圆和圆关系的性质与判定解题,提高运用知识和技能解决问题的能力,发展应用意识。
真情商榷:
1、两圆的公共点的个数称为交点个数是否合适。
2、在两圆外切时探究两半径与圆心距的关系时直接说连心线过切点,所以圆心距等于半径和是否不妥,因为连心线过切点需要证明,没证明可以直接用吗?
何超老师:
本节课是学生在已掌握了点与圆的位置关系、直线和圆的位置关系等知识的基础上,进一步研究平面上两圆的不同位置关系。
值得欣赏的地方:
1.通过复习点与圆的位置关系和直线与圆的位置关系,采用类比的思想,让学生猜测圆与圆有哪些位置关系。引出悬念,调动学生的学习积极性。
2. 探讨圆与圆的位置关系时,借助学生手中的硬币,让学生动手、动脑,这样既形象直观,学生易于接受,又锻炼了学生的探索能力。
3.题目设计全面,训练适当,使学生在充分学习新知的基础上,达到了复习巩固。
4.教师运用数形结合的思想,使学生学会运用圆和圆的位置关系的性质解题,提高了学生解决问题的能力。
5.学生从探索两圆位置关系的过程中,体会运动变化的观点,量变与质变的观点,领悟数学之美,培养良好品质。
6.用数学的观点和思想方法解释生活中的问题这一理念得到了较好的落实,让学生感受到了生活中无所不在的数学知识。
值得商榷的问题:
1. 对学生画图要求不严格,画圆时最好借助圆规。
2.观察圆和圆的位置关系时,时间把握不是很好,题目重复太多。
公开课评课现场
公开课
评 课 记 录
学
校:鸡姑小学 记录人:王华均 时
间:2014.4
第五篇:4.2.1直线与圆的位置关系说课稿(定稿)
4.2.1直线与圆的位置关系说课稿
各位评委、老师,大家晚上好!我说课的题目是《直线与圆的位置关系》,我将通过以下五方面对本节课进行解说。分别是教材分析、学情分析、教法分析、学法分析、过程分析。
一、教材分析
通过解读教学大纲和新课标的基本要求,我对教材进行三大块的分析: 1.教材的地位与作用
本节课位于高中数学人教A版必修二第四章第二节(第一课时),它是在学生初中已经学习了直线与圆的位置关系的基础上,通过直线方程和圆的方程,利用坐标法对直线与圆的位置关系的进一步研究与探讨。是从初等数学过渡到高等数学的开始和阶梯。同时,这节课的方法和思想也为今后解决圆与圆的位置关系,以及圆锥曲线等几何问题奠定了基础。它起到了承前启后的作用。
2.教学目标
知识与技能:理解直线与圆的位置关系;学会利用几何法和代数法解决直线和圆的有关问题。
过程与方法:通过直线与圆位置关系的探究活动,经历知识的建构过程,培养学生独立思考、自主探究、动手实践、合作交流的学习方式。强化学生用坐标法解决几何问题的意识,培养学生分析问题和灵活解决问题的能力。
情感、态度与价值观:通过学生的自主探究、小组讨论合作,培养学生的团队精神和主动学习的良好习惯。
3.教学重、难点
重点:掌握用代数法和几何法判断直线和圆的位置关系;
难点:把实际问题转化为数学问题,建立相应的数学模型;灵活地运用“数形结合”、解析法来解决直线与圆的相关问题。
二、学情分析
学生在初中已经学习了直线与圆的位置关系,在高中又学习了直线方程与圆的方程,并会用坐标法解决简单几何问题。这些都有助于学生进一步学习直线与圆的位置关系。而我们的学生已经具备了独立思考和探究学习的能力,但又欠缺空间想象和实际应用能力。
三、教法分析
根据以上分析,本节依据布鲁纳发现教学法,要学生通过建立模型、方法探究、合作交流、归纳总结的学习方式,以活动为主线,体现学生的主体地位。教师在本环节中作为问题的设计者、组织者、引导者、合作者,体现其主导地位。
四、学法分析
问题是数学的核心,教师在学生思维发展的最近区,通过不断地设问,为学生创设情景,搭建平台,提供一个自主探究,合作交流的环境,让学生通过不断地发现问题、分析问题、解决问题,以培养学生的思维能力。
五、教学过程
教学就像一条河流,如何让学生到达知识的彼岸,教师在这一过程中的设计与引导起到了至关重要的作用。而本节课我将从六个方面根据学生的实际情况进行一个设计。
(一)情境设计,铺垫导入(三分钟)
教育的艺术在于创设恰当的情景。本节课创设的情景是以钓鱼岛问题导入(本环节大约三分钟)。一艘日本渔船企图非法登陆我国钓鱼岛,我国舰艇此刻正在附近海域巡逻。它们三者之间的位置关系如下:我国舰艇的雷达扫描半径为30km,如果日本渔船不改变航线,我国舰艇能否通过雷达扫描发现它呢?情景一设计的目的在于让学生构建恰当的数学模型,本质在于探究“直线与圆的位置关系”引出了课题,让学生从数学角度看待日常生活中的问题,增强学习的趣味性,使爱国热情转化为探索和学习的动力。
问题作为引导的核心,在这个问题上,我设计了如下问题:问题1:你能利用已有的平面几何知识建立适当的数学模型,来解决这一问题吗? 目的在于引导学生主动回忆初中所学的“直线与圆的三种位置关系”。并能说明这三种位置关系中公共点的个数以及圆心到直线的距离与半径的大小关系。通过旧知识的回顾使学生发现新的问题,也使新的知识在原有的知识结构中找到伸展点,而这个伸展点就是问题2.(二)切入主题、提出课题(2分钟)
问题2:如何用直线方程和圆的方程来判断它们之间的关系呢?
问题2切入了本节的中心议题,让学生用自主探究的学习方式,引导学生用方程思想解决几何的问题。
在此教师不用急于让学生回答这个问题,而是通过一个具体的问题来进行解答。这一具体问题我选择了课本的例1,之所以选择例1是因为例1直间给出了直线与圆的方程。学生只需要思考能用几种方法来解决和判断直线与圆的位置关系。引出了本节的重点。而第二问还要求学生求出交点坐标,目的在于让学生进一步认识方程组解得意义。
(三)探索研究、解决问题(10分钟)
通过例1这一具体问题之后,可以让学生尝试归纳判断直线与圆的位置关系的方法,在此我设置了两个活动。活动二:要学生通过合作交流的方式将全班分成小组进行合作交流探究。活动三:要学生通过归纳小结的学习方法,将各小组的成果进行分享,最后进行归纳总结。教师在这一过程中只需要做好引导者和组织者的作用。目的是让学生主动的参与课堂,通过分析问题、解决问题培养学生的能力。而这种由特殊例子到一般方法的归纳,也符合学生的认知结构。让学生在交流、探讨和归纳的过程中理解和掌握本节课的重点。即直线与圆的位置关系的判断方法。这里的方法可由学生归纳得出。第一种,几何法,第二种,代数发。这两种方法都体现了数学的思想,并且代数法对于今后解析几何的方法应用较多,也为后面解决圆锥曲线问题提供了方法依据。
(四)新知应用、深化理解(20分钟)
掌握了方法接下来就是应用,请学生利用“几何法”和“代数法”解决情景一中的问题,达到学以致用,巩固方法的目的。在此教师可以让两名学生通过不同的方法在黑板上演练,再让其他学生进行点评,教师在进行小结即可。
例2是本节的难点,如何突破难点呢?我将从例1的一个变式引出。求直线l被圆C截得的弦长AB.在此教师可以作适当的点拨,求弦长的方法很多,如两点间距离公式,弦长公式以及圆心到直线的距离与半径构建直角三角形利用勾股定理进行求解。通过一题多变,一题多解,不仅体现了新课标的要求,还让学生在练习中拓展思维、活用方法,为接下来解决例2这一难点突破奠定基础。
例2通过刚才的变式,由浅入深,引入例2,环环相扣,让学生体会利用“几何法”和“代数法”解决直线和圆相交时有关弦长的问题,突破本节难点。
掌握本节重点,突破难点之后,可以让学生根据情景做适当的延伸。情景二:若我国舰艇雷达扫描半径为rkm,此时日本非法渔船航线刚好和我国舰艇雷达扫描的圆形区域的边缘相切,计算雷达扫描的半径r的值。
情景二研究的是直线与圆相切的情况,同时是含有参数的问题,引导学生从运动变化的角度来看待问题,提高了思维的梯度。
情景三:对于同样的情景,你还能根据“直线与圆的位置关系”设置出哪些问题呢?
这一问题,目的在于培养学生的创新意识,可以作为课后的拓展题,让学生通过小组探究来完成。实际上学生创设问题的过程就是检验我们教学成果的过程。
(五)总结提升、形成方法(5分钟)
在课后总结中,让学生通过三个方面进行总结。第一,方法总结,在直线与圆的位置关系中,你掌握了哪些方法呢?学会了哪些应用呢?你自己的思想上又得到了哪些提升呢?目的在于以自我小结的形式,对本节课进行简单的回顾与梳理,也是对所学内容的再次巩固与提升。
(六)课后作业,巩固提高 在课后训练中,针对学生不同层次,我设计了这三种题型:1.巩固题,2.提高题,探究题。目的在于尊重学生的个体差异性,调动学生的积极性,使每一个学生在教学中都能够有所发展。
(七)板书设计
这是我的板书设计,本节课以多媒体演示为主,板书设计以简洁明了为主,左边主要罗列了主要的方法和应用。右边作为例题演示和学生演练。
教学反思
作为教育工作者,目的在于授之以渔。而教学过程意在于把科学知识作为培养学生思维能力的一个阶梯。
本节课,以活动为主线,问题为载体,通过钓鱼岛问题导入,由浅入深,环环相扣,一个情景,两种方法,三种问题,一气呵成,这节课的重难点也得以突破。另外本节课还有许多不足,如合作学习没达到预想的效果,组长没能起到应有的作用。教师对有些知识强调、点评不到位等。
我的说课到此结束,不妥之处,敬请各位老师批评指正,谢谢!