第一篇:2004风力发电场项目可行性研究报告编制规程
电力工程部分第二篇 水力发电工程其 他
《风力发电场项目可行性研究报告编制规程》DL/T 5067—1996
10土建工程
10.2中央集中控制及生产生活建筑物
10.2.1应确定中央集中控制、生产、办公、生活福利建筑物的规模、位置和内外交通,说明各建筑物的结构型式和建筑标准(含装修)。
10.2.2应选择生活水源、排水地点、污水处理方式。
10.2.4应提出选定方案的土建工程量。
11施工组织设计
11.4主体工程施工
11.4.2应提出中央集中控制及生产生活建筑物施工方法。
12环境影响评价
12.1环境状况
应叙述项目影响地区的自然环境和社会环境状况。
12.2环境影响预测评价
应叙述本项目对自然环境和社会环境有关因子影响的预测和评价。
12.3综合评价与结论
12.3.1应说明工程对环境产生的有利与不利影响。
12.3.2应提出评价结论。
《风力发电场项目建设工程验收规程》DL/T 5191—2004
5工程验收组织机构及职责
5.5工程建设相关单位职责
5.5.2施工单位职责
3各自做好验收、启动试运行中安全隔离措施。
4协同建设单位做好单位工程、启动试运、移交生产验收前的现场安全、消防、治安保卫、消缺检修等工作。
5.5.3调试单位职责
3对调试安全、质量负责。
5.5.4生产单位职责做好运行设备与试运设备的安全隔离措施。
5移交生产后,全面负责机组的安全运行和维护管理工作。
5.5.5设计单位职责
2对工程设计方案、设计质量负责。为工程验收提供设计总结报告。
8工程移交生产验收
8.0.3验收应具备的条件
1设备状态良好,安全运行无重大考核事故。
2对工程整套启动试运验收中所发现的设备缺陷已全部消缺。
3运行维护人员已通过业务技能考试和安规考试,能胜任上岗。
电力工程部分第二篇 水力发电工程
4各种运行维护管理记录簿齐全。
5风力发电场和变电运行规程、设备使用手册和技术说明书及有关规章制度等齐全。6安全、消防实施齐全良好,且措施落实到位。
9工程竣工验收
9.0.4工程竣工验收应提供的资料
4水土保持、环境保护方案执行报告
9.0.5验收检查项目
5检查水土保持和环境保护方案执行情况。
第二篇:风力发电场安全规程
风力发电场安全规程
DL 1范围
本标准规定了风力发电场人员、环境、安全作业的基本要求,风力发电机组安装、调试、检修和维护的安全要求,以及风力发电机组应急处理的相关安全要求。本标准适用于陆上并网型风力发电场。2规范性引用文件
下列文件对于本文件的应用时必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡不是注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。GB 2894 安全标志及其使用导则
GB/T 2900.53 电工术语风力发电机组 GB/T6096 安全带测试方法
GB 7000.1 灯具第一部分:一般要求与试验 GB 18451.1 风力发电机组设计要求 GB19155 高处作业吊篮
GB/T20319 风力发电机组验收规范
GB 26164.1 电业安全工作规程第一部分:热力和机械 GB 26859 电力安全工作规程电力线路部分
GB 26860 电力安全工作规程发电厂和变电站电气部分 GB 50016 建筑设计防火规范
GB 50140 建筑灭火器配置设计规范
GB 50303 建筑电气工程施工质量验收规范 DL/T 572 电力变压器运行规程
DL/T 574 变压器分接开关运行维修导则 DL/T 587 微机继电保护装置运行管理规程 DL/T 741 架空输电线路运行规程 DL/T 969 变电站运行导则
DL/T 5284 履带起重机安全操作规程 DL/T 5250 汽车起重机安全操作规程 JGJ 46 施工现场临时用电安全技术规范 3 术语和定义
下列术语和定义适用于本标准 3.1风电场输变电设备
风电场升压站电气设备、集电线路、风力发电机组升压变等。3.2坠落悬挂安全带
高出作业或登高人员发生坠落时,将坠落人员安全悬挂的安全带。3.3飞车
风力发电机组制动系统失效,风轮转速超过允许或额定转速,且机组处于失控状态。3.4安全链
由风力发电机组中药保护元件串联形成,并独立于机组逻辑控制的硬件保护回路。4 4.1风电场安全工作必须坚持“安全第一、预防为主、综合治理”的方针,加强人员安全培训,完善安全生产条件,严格执行安全技术要求,确保人身和设备安全。
4.2风电场应根据现场实际情况编制自然灾害类、事故灾难类、公共卫生事件类和社会安全事件类等各类突发事件应急预案,并定期进行演练。5基本要求
5.1人员基本要求
5.1.1风电场工作人员应没有妨碍工作的病症,患有高血压、恐高症、癫痫、晕厥、心胀病、美尼尔病、四肢骨关节及运动功能障碍等病症的人员,不应从事风电场的高工作业。
5.1.2风电场工作人员应具备必要的机械、电气、安装知识,熟悉风电场输变电设备、风力发电机组的工作原理和基本结构,掌握判断一般故障的产生原理及处理方法,掌控监控系统的使用方法。
5.1.3风电场工作人员应掌握坠落悬挂安全带(以下简称“安全带”)、防坠器、安全帽、防护服和工作鞋等个人防护设备的正确使用方法,具备高处作业、高空逃生及高空救援相关知识和技能,特殊作业应取得相应特殊作业操作证。
5.1.4风电场工作人员应熟练掌握触电、窒息急救法,熟悉有关烧伤、烫伤、外伤、气体中毒等急救常识,学会正确使用消防器材、安全工器具和检修工器具。
5.1.5外单位工作人员应持有相应的职业资格证书,了解和掌握工作范围内的危险因素和防范措施,并经过考试合格证方可开展工作。
5.1.6临时用工人应进行现场安全教育和培训,应被告知其作业现场和工作岗位作岗位存在的危险因素、防范措施及事故应急处理措施后,方可参加指定的工作。5.2作业现场基本要求
5.2.1风电场配置的安全设施、安全工器具和检修工器具等应检验合格且符合国家或行业标准的规定;风电场安全标志标识应符合BG2884的规定。
5.2.2风力发电机组底部应设置“未经允许、禁止入内”标示牌;基础附近应增设“请勿靠近,当心落物”、“雷雨天气,禁止靠近”警示牌;塔架爬梯旁应设置“必须系安全带”、“必须戴安全帽”、“必须穿防护鞋”指令标识;36V及以上带电设备应在醒目位置设置“当心触电”标识。
5.2.3风力发电机组内无防护罩的旋转部位应粘贴“禁止踩踏”标识;机组内易发生机械卷入、轨压、碾压、剪切等机械伤害的作业地点应设置“当心机械伤人”标识;机组内安全绳固定点、高空应急逃生定位点、机舱和部件起吊点应清晰标明;塔架平台、机舱的顶部和机舱的底部壳体、导流罩等作业人员工作时站立的承台等应标明最大承受重量。
5.2.4风电场场区各主要路口及危险路段内应设立相应的交通安全标志和防护措施。
5.2.5塔架内照明设施应满足现场工作需要,照明灯具选用应符合GB 7000.1的规定,灯具的安装应符合BG 50016的要求。
5.2.6机舱和塔架底部平台应配置灭火器,灭火器配置应符合GB 50140的规定。
5.2.7风电场现场作业使用交通运输工具上应配备急救箱、应急灯、缓降器等应急用品,并定期检查、补充或更换。
5.2.8机组内所有可能被触碰的220V及以上低压配电回路电源,应装设满足要求的剩余电流动作保护器。
5.3安全作业基本要求
5.3.1风电场作业应进行安全风险分析,对雷电、冰冻、大风、气温、野生动物、昆虫、龙卷风、台风、流沙、雪崩、泥石流等可能造成的危险进行识别,做好防范措施;作业时,应遵守设备相;5.3.2风电场升压站和风力发电机组升压变安全工;5.3.4安全工器具和个人安全防护装置应按照GB 26859;5.3.5 风速超过25m/s及以上时,禁止人员户外作业;攀登风力发电机组时,风速不应高于该机型允许登塔风速,但风速不超过18m/s及以上时,禁止任何人员攀爬机组。
5.3.6雷雨天气不应安装、检修、维护和巡检机组,发生雷雨天气后一小时内禁止靠近风力发电机组;叶片有结冰现象且有掉落危险时,禁止人员靠近,并应在风电场各入口处设置安全警示牌;塔架爬梯有冰雪覆盖时,应确定无高出落物风险并将覆盖的冰雪清除后方可攀爬。5.3.7攀爬机组前,应立即随手关闭;随身携带工具人员应后上塔、先下塔;到达塔架顶部平台或工作位置,应先挂好安全绳,后解防坠器;在塔架爬梯上作业,应系好安全绳和定位绳,安全绳严禁低挂高用。
5.3.8出舱工作必须使用安全带,系两根安全绳;;顶部栏杆作为安全绳挂钩定位点时,每个栏杆最多悬挂;5.3.9高处作业是,使用的工器具和其他物品应放入专用工具袋中,不应随手携带工作中所需零部件、工器具必须传递,不应空中抛接;工器具使用完后应及时放回工具袋或箱中,工作结束后应清点。
5.3.10现场作业时,必须保持可靠通信,随时保持各作业点、监控中心之间的联络,禁止人员在机组内单独作业;车辆应停泊在机组上风向并于塔架保持20m及以上的安全距离;作业前应切断机组的远程控制或换到就地控制;有人员在机舱内、塔架平台或塔架爬梯上时,禁止将机组启动并网运行。
5.3.11机组内作业需接引工作电源时,应装设满设满足要求的剩余电流动作保护器,工作前应检查电缆绝缘良好,剩余电流动作保护器动作可靠。
5.3.12使用机组升降机从塔底运送物件到机舱时,应使吊链和起吊物件与周围带电设备保持足够的安全距离,应将机舱偏航至与带电设备大安全距离后可起吊作业;物品起吊后,严禁人员在吊物品下方逗留。
5.3.13严禁在机组内吸烟和燃烧废气物品,工作中产生的废弃物品应统一收集和处理。6安装
6.1一般规定
6.1.1风力发电机组装起重作业应严格遵循DL/T 5248、DL/T5250和GB26164.1规定的要求。6.1.2塔架、机舱、叶轮、叶片等部件吊装时,风速不应高于该机型安装技术规定。未明确相关吊装风速的,风速超过8m/s时,不宜进行叶片和叶轮吊装;风速超过10m/s时,不宜进行塔架、机舱、轮毂、发电机等设备吊装工作。
6.1.3遇有大雾,雷雨天,照明不足,指挥人员看不清各工作地点,或起重驾驶人员看不见起重指挥人员等情况时,不应进行起重工作。
6.1.4吊装场地应满足作业需要,并应有足够的零部件存放场地;风电场道路应平整、通畅,所有桥涵、道路能够保证各种施工车辆安全通行。
6.1.5机组吊装施工现场应设置警示标牌,在吊装场地周围设立警戒线,非作业人员不应入内。6.1.6吊装前应正确选着吊具,并确保起吊点无误;吊装物各部件保持完好,固定牢固。6.1.7在吊绳被拉紧时,不应用手接触起吊部位,禁止人员和车辆在起重作业半径内停留。6.1.8 吊装作业区有带电设备时,其中设施和吊物、缆风绳等与带电体的最小安全距离不得小于GB 26860的规定,并应设专人监护。吊装时采用的临时缆绳应由非导电材料制成,并确保足够强度。
6.1.9塔架、机舱就位后,应立即按照紧固技术要求进行紧固。使用的各类紧固器具,应经过检测合格并有检验合格标识。
6.1.10机组电气设备的安全应符合GB 50303的规定要求。6.1.11施工现场临时用电应采取可靠地安全措施,并应符合JGJ46的要求。6.2塔架安装。
6.2.1塔架安装之前必须先完成机组基础验收,其接地电阻必须满足技术要求。
6.2.2起吊塔架时,应保证塔架直立后下端处于水平位置,并至少有一根导向绳导向。6.2.3塔架就位时,工作人员不应将身体部位伸出塔架之外。
6.2.4底部塔架安装完成后应立即与接地网进行连接,其他塔架安装就位后应立即连接引雷导线。
6.2.5在塔架的安装过程中,应安装临时防坠装置。如无临时防坠装置,攀爬塔架时应使用双钩安全绳进行交替固定。
6.2.6顶端塔架安装完成后,应立即进行机舱安装。如遇特殊情况,不能完成机舱安装,人员离开时必须将塔架门关闭,并采取将塔架顶部封闭等防止塔架摆动措施。6.3机舱吊装
6.3.1起吊机舱时,起吊点应确保无误。在吊装中必须保证有一名人员在塔架平台协助工作。6.3.2机舱和塔架对接时应缓慢而平稳,避免机舱与塔架之间发生碰撞。6.3.3起吊机舱时,禁止人员随机舱一起起吊。
6.3.4机舱与塔架连接螺栓到达技术要求的紧固力矩后,方可松开吊钩、移除钓具。6.3.5完成机舱安装,人员撤离现场时,应恢复定顶部盖板并关闭机舱所有窗口。6.4叶轮和叶片安装
6.4.1叶轮和叶片起吊时,应使用经检验合格的吊具。
6.4.2起吊叶轮和叶片时至少有两根导向绳,导向绳长度和强度应足够;应有足够人员拉近导向绳,保证起吊方向。
6.4.3起吊变桨距机组叶轮时,叶片浆距角必须处于顺浆位置,并可靠锁定。
6.4.4叶片吊装前,应检查叶片引雷线连接良好,叶片各接闪器至根部引雷线阻值不大于该机组规定值。
6.4.5叶轮在地面组装完成未起吊前,必须可靠牢固。6.5其他
6.5.1机组安装完成后,应将刹车系统松闸,使机组处于自由旋转状态。
6.5.2机组安装完成后,应测量和核实机组叶片根部至底部引雷通道阻值符合技术规定,并检查机组等电位连接无异常。7调试、检修和维护 7.1一般规定
7.1.1风力发电机组调试、检修和维护工作均应参照GB 26860的规定执行工作票制度、工作监护制度和工作许可制度、工作间断转移和终结制度,动火作业必须开动火作业票;风力发电机组工作票样式见附录A。
7.1.2风速超过12m/s时,不应打开机舱盖;风速超过14m/s时,应关闭机舱盖;风速超过12m/s,不应再机舱外和轮毂内工作;风速超贵18m/s时,不应再机舱内工作。
7.1.3测量机组网侧电压和相序时必须佩戴绝缘手套,并站在干燥的绝缘台或绝缘垫上;启动并网前,因确保电气柜柜门关;
7.1.4检修液压系统时,应先将液压系统泄压,拆卸液压站部件时,应带防护手套和护目眼镜;拆除制动装置应先切断液压、机械与电气连接,安装制动装置应最后连接液压、机械与电气装置。
7.1.5机组测试工作结束,应核对机组各项保护参数,恢复正常设置;超速试验时,实验人员应在塔架底部控制柜进行操作,人员不应滞留在机舱和塔架爬梯上,并应设专人监护。7.1.6机组高速轴和刹车系统防护罩未就位时,禁止启动机组。7.1.7进入轮毂或叶轮上工作,首先必须将叶轮可靠锁定,锁定叶轮时,风速不应高于机组规定的最高允许风速;进入变桨距机组轮毂内工作,必须将变桨机构可靠锁定。
7.1.8严禁至叶轮转动的情况下插入锁定销,禁止锁定销未完全退出插孔松开制动器。
7.1.9检修和维护时使用的吊篮,应符合GB 19155的技术工作温度低于零下20℃时禁止使用吊篮,共工作处阵风风速大于8.3m/s时,不应在吊篮上工作。
7.1.10需要停电的作业,在一经合闸即送电到作业点的开关操作把手上应挂“禁止合闸,有人工作”警示牌。7.2调试安全
7.2.1机组调试期间,应在控制盘、远程控制系统操作盘处悬挂禁止操作标示牌。7.2.2独立变桨的机组调试变桨系统时,严禁同时调试多只叶片。7.2.3机组其他调试项目未完成前,禁止进行超速试验。7.2.4新安装机组在启动前应具备以下条件: a)各电缆连接正确,接触良好。b)设备绝缘良好。
c)相序校核,测量电压值和电压平衡性。d)检测所有螺栓力矩达到标准力矩值。
e)正常停机试验及安全停机、事故停机试验无异常。f)完成安全链回路所有元件检测和试验,并正确动作。
g)完成液压系统、变桨系统、变频系统、偏航系统、刹车系统、测风装置性能测试,达到启动要求。
h)核对保护定值设置无误。i)填写调试报告。7.3检修和维护安全
7.3.1每半年至少对变桨系统、液压系统、刹车机构、安全链等重要安全保护装置进行检测试验一次。
7.3.2机组添加油品时必须与原油品型号相一致。更换替代油品时应通过试验,满足技术要求。7.3.3维护和检修发电机前必须停电并验明三相确无电压。7.3.4拆车能够造成叶轮失去制动的部件前,应首先锁定叶轮。
7.3.5禁止使用车辆作为缆绳支点和起吊动力器械;严禁用铲车、装载机等作为高处作业的攀爬设施。
7.3.6每半年对塔架内安全钢丝绳、爬梯、工作平台、门防风挂钩检查一次;每年对机组加热装置、冷却装置检测一次;每年在雷雨季节前对避雷系统监测一次,至少每三个月对变桨系统的后备电源、充电电池组进行充放电试验一次。
7.3.7清理润滑油脂必须佩戴防护手套,避免接触到皮肤或者衣服;打开齿轮箱盖及液压站油箱时,应防止吸入热蒸汽;进行清理滑环、更换碳刷、维修打磨叶片等粉尘环境的作业时,应佩戴防毒防尘面具。
7.3.8使用弹簧阻尼偏航系统卡钳固定螺栓扭矩和功率消耗应每半年检查一次。采用滑动轴承的偏航系统固定螺栓力矩值应每半年检查一次。8运行安全
8.1经调试、检修和维护后的风力发电机组,启动前应办理工作票终结手续。
8.2机组投入运行时,严禁将控制回路信号断接和屏蔽,禁止将回路的接地线拆除;未经授权,严禁修改机组设备参数及保护定值。8.3手动启动机组前叶轮上应无结冰、积雪现象;机组内发生冰冻情况时,禁止使用自动升降机等辅助的爬升设备;停运叶片结冰的机组,应采用远程停机方式。8.4 在寒冷、潮湿和盐雾腐蚀严重地区,停止运行一个星期以上的机组再投运前应恢复绝缘,合格后才允许启动。受台风影响停运的机组,投入运行前必须检查机组绝缘,合格后方可恢复运行。
8.5机组投入运行后,禁止在装置进气口和排气口附近存放物品。
8.6应每年对机组的接地电阻进行测试一次,电阻值不应高于4Ω;每年对轮毂至塔架底部的引雷通道进行检查和测试一次,电阻值不应高于0.5。
8.7每半年对塔架内安全钢丝绳、爬梯、工作平台、门防风挂钩检查一次;风电场安装的测风塔每半年对拉线进行紧固和检查,海边等盐雾腐蚀严重地区,拉线应至少每两年更换一次。9应急处理
9.1应急处理原则
9.1.1发生事故时,应立即启动相应的应急预案,并按照国家事故报告有关要求如实上报事故情况,事故的应急处理应坚持“以人为本”的原则。
9.1.2事故应急处理可不开工作票,但是事故后续处置工作应补办工作票,及时将事故发生经过和处理情况,如实记录在运行记录薄上。9.2应急处理注意事项
9.2.1风电场升压站、集电线路、风力发电机组升压变事故处理应遵循DL/T969、DL/T 572、DL/T 741、DL/T 574和DL/T 587等标准的规定。
9.2.2机组机舱发生火灾时,禁止通过升降装置撤离,应首先考虑从塔架内爬梯撤离,当爬梯无法使用时方可利用缓降装置从机舱外部进行撤离。使用缓降装置,要正确选着定位点,同时要防止绳索打结。
9.2.3机组机舱发生火灾,如尚未危及人身安全,应立即停机并切断电源,迅速采取灭火措施,防止火势蔓延。在机舱内灭火,没有使用氧气罩的情况下,不应使用二氧化碳灭火器。
9.2.4有人触电时,应立即切断电源,使触电人脱离电源,并立即启动触电急救现场处置方案。如在高空作业时,发生触电,施救时还应采取防止高空坠落措施。
9.2.5机组发生飞车或机组失控时,工作人员应立即从机组上风向方向撤离现场,并尽量远离机组。
9.2.6发生雷雨天气,应及时撤离机组;来不及撤离时,可双脚并拢站在塔架平台上,不得触碰任何金属物品。
9.2.7发现塔架螺栓断裂或塔架本体出现裂纹时,应立即将机组停运,并采取加固措施。
第三篇:风力发电场安全规程
风力发电场安全规程
1.范围
本标准规定了风力发电场人员、环境、安全作业的基本要求,风力发电机组安装、调试、检修和维护的安全要求,以及风力发电机组应急处理的相关安全要求。
本标准适用于陆上并网型风力发电场。2.规范性引用文件
下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文
件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。GB2894安全标志及其使用导则
GB/T2900.53电工术语风力发电机组 GB/T6096安全带测试方法
GB7000.1灯具第l部分:-般要求与试验 GB18451.1风力发电机组设计要求 GB19155高处作业吊篮
GB/T20319风力发电机组验收规范
GB26164.1电业安全工作规程第1部分:热力和机械 GB26859电力安全工作规程电力线路部分
GB26860电力安全工作规程发电厂和变电站电气部分 GB50016建筑设计防火规范
GB50140建筑灭火器配置设计规范
GB50303建筑电气工程施工质量验收规范 DLiT572电力变压器运行规程
DLiT574变压器分接开关运行维修导则 DLiT587微机继电保护装置运行管理规程 DLiT741架空输电线路运行规程 DLiT969变电站运行导则
DLiT5248履带起重机安全操作规程 DLiT5250汽车起重机安全操作规程 JGJ46施工现场临时用电安全技术规范 3.术语和定义 3.1 下列术语和定义适用于本标准。
风电场输变电设备electricaltransmissionandtransformationequipmentofwindfarm 风电场升压站电气设备、集电线路、风力发电机组升压变等。3.2 坠落悬挂安全带fallarrestsystems 高处作业或登高人员发生坠落时,将坠落人员安全悬挂的安全带。3.3 飞车runaway 风力发电机组制动系统失效,风轮转速超过允许或额定转速,且机组处于失控状态。3.4 安全链safetychain 由风力发电机组重要保护元件串联形成,并独立于机组逻辑控制的硬件保护回路。4.总则
4.1 风电场安全工作必须坚持“安全第一、预防为主、综合治理”的方针,加强人员安全培训,完善安全生产条件,严格执行安全技术要求,确保人身和设备安全。
4.2 风电场应根据现场实际情况编制自然灾害类、事故灾难类、公共卫生事件类和社会安全事件类等各类突发事件应急预案,并定期进行演练。5.基本要求 5.1 人员基本要求 5.1.1 风电场工作人员应没有妨碍工作的病症,患有高血压、恐高症、癫痛、晕厥、心脏病、美尼尔病、四肢骨关节及运动功能障碍等病症的人员,不应从事风电场的高处作业。5.1.2 风电场工作人员应具备必要的机械、电气、安装知识,熟悉风电场输变电设备、风力发电机组的工作原理和基本结构,掌握判断一般故障的产生原因及处理方法,掌握监控系统的使用方法。5.1.3 风电场工作人员应掌握坠落悬挂安全带(以下简称“安全带”)、防坠器、安全帽、防护服和工作鞋等个人防护设备的正确使用方法,具备高处作业、高空逃生及高空救援相关知识和技能,特殊作业应取得相应特殊作业操作证。5.1.4 风电场工作人员应熟练掌握触电、窒息急救法,熟悉有关烧伤、烫伤、外伤、气体中毒等急救常识,学会正确使用消防器材、安全工器具和检修工器具。5.1.5 外单位工作人员应持有相应的职业资格证书,了解和掌握工作范围内的危险因素和防范措施,并经过考试合格方可开展工作。5.1.6 临时用工人员应进行现场安全教育和培训,应被告知其作业现场和工作岗位存在的危险因素、防范措施及事故紧急处理措施后,方可参加指定的工作。5.2 作业现场基本要求 5.2.1 风电场配置的安全设施、安全工器具和检修工器具等应检验合格且符合国家或行业标准的规定;风电场安全标志标识应符合GB2894的规定。5.2.2 风力发电机组底部应设置“未经允许、禁止入内”标示牌:基础附近应增设“请勿靠近,当心落物”、“雷雨天气,禁止靠近”警示牌:塔架爬梯旁应设置“必须系安全带”、“必须戴安全帽”、“必须穿防护鞋”指令标识;36V及以上带电设备应在醒目位置设置“当心触电”标识。5.2.3 风力发电机组内无防护罩的旋转部件应粘贴“禁止踩踏”标识:机组内易发生机械卷入、轧压、碾压、剪切等机械伤害的作业地点应设置“当心机械伤人”标识:机组内安全绳固定点、高空应急逃生定位点、机舱和部件起吊点应清晰标明:塔架平台、机舱的顶部和机舱的底部壳体、导流罩等作业人员工作时站立的承台等应标明最大承受重量。5.2.4 风电场场区各主要路口及危险路段内应设立相应的交通安全标志和防护设施。5.2.5 塔架内照明设施应满足现场工作需要,照明灯具选用应符合GB7000.1的规定,灯具的安装应符合GB50016的要求。5.2.6 机舱和塔架底部平台应配置灭火器,灭火器配置应符合GB50140的规定。5.2.7 风电场现场作业使用交通运输工具上应配备急救箱、应急灯、缓降器等应急用品,并定期检查、补充或更换。5.2.8 机组内所有可能被触碰的220VJJ<.以上低压配电回路电源,应装设满足要求的剩余电流动作保护器。
5.3 安全件业基本要求 5.3.1 风电场作业应进行安全风险分析,对雷电、冰冻、大风、气温、野生动物、昆虫、龙卷风、台风、流沙、雪崩、泥石流等可能造成的危险进行识别,做好防范措施;作业时,应遵守设备相关安全警示或提示。5.3.2 风电场升压站和风力发电机组升压变安全工作应遵循GB26860的规定。风电场集电线路安全工作应遵循GB26859的规定。5.3.3 进入工作现场必须戴安全帽,登塔作业必须系安全带、穿防护鞋、戴防滑手套、使用防坠落保护装置,登塔人员体重及负重之和不宜超过100kg。身体不适、情绪不稳定,不应登塔作业。5.3.4 安全工器具和个人安全防护装置应按照、GB26859规定的周期进行检查和测试;坠洛悬挂安全带测试应按照GB/T6096的规定执行:禁止使用破损及未经检验合格的安舍工器具和个人防护用品。5.3.5 风速超过25m1s及以上时,禁止人员户外作业:攀爬风力发电机组时,风速不应高于该机型允许登塔风速,但风速超过18m1s及以上时,禁止任何人员攀爬机组。5.3.6 雷雨天气不应安装、检修、维护和巡检机组,发生雷雨天气后一小时内禁止靠近风力发电机组;叶片有结冰现象且有掉落危险时,禁止人员靠近,并应在风电场各入口处设置安全警7}牌:培架爬梯有冰雪覆盖时,应确定无高处落物风险并将覆盖的冰雪清除后方可攀爬。5.3.7 攀爬机组前,应将机组置于停机状态,禁止两人在同一段塔架内同时攀爬:上下攀爬机组时,通过塔架平台盖板后,应立即随于关闭;随身携带工具人员应后上塔、先下塔;到达1苔架顶部平台或工作位置,应先挂好安全绳,后解防坠器;在塔架爬梯上作业,应系好安全绳和定位绳,安全绳严禁低挂高用。5.3.8 出舱工作必须使用安全带,系两根安全绳:在机舱顶部作业时,应站在防滑表面:安全绳应挂在安全绳定位点或牢固构件上,使用机舱顶部栏杆作为安全绳挂钩定位点时,每个栏杆最多悬挂两个。5.3.9 高处作业时,使用的工器具和其他物品应放入专用工具袋中,不应随手携带:工作中所需零部件、工器具必须传递,不应空中抛接;工器具使用完后应及时放回工具袋或箱中,工作结束后应清点。
5.3.10 现场作业时,必须保持可靠通信,随时保持各作业点、监控中心之间的联络,禁止人员在机组内单独作业;车辆应停泊在机组上风向并与塔架保持20m及以上的安全距离;作业前应切断机组的远程控制或切换到就地控制:有人员在机舱内、塔架平台或塔架爬梯上时,禁止将机组启动并网运行。
5.3.11 机组内作业需接引工作电源时,应装设满足要求的剩余电流动作保护器,工作前应检查电缆绝缘良好,剩余电流动作保护器动作可靠。
5.3.12 使用机组升降机从塔底运送物件到机舱时,应便吊链和起吊物件与周围带电设备保持足够的安全距离,应将机舱偏航至与带电设备最大安全距离后方可起吊作业:物品起吊后,禁止人员在起吊物品下方逗留。
5.3.13 严禁在机组内吸烟和燃烧废弃物品,工作中产生的废弃物品应统一收集和处理。6.安装 6.1 一般规定 6.1.1 风力发电机组吊装起重作业应严格遵循DLiT5248、DLiT5250和GB26164.1规定的要求。6.1.2 塔架、机舱、叶轮、叶片等部件吊装时,风速不应高于该机型安装技术规定。未明确相关吊装风速的,风速超过8m1s时,不宜进行叶片和叶轮吊装:风速超过10mls时,不宜进行塔架、机舱、轮毅、发电机等设备吊装工作。6.1.3 遇有大雾,雷雨天,照明不足,指挥人员看不清各工作地点,或起重驾驶员看不见起重指挥人员等情况时,不应进行起重工作。6.1.4 吊装场地应满足作业需要,并应有足够的零部件存放场地;风电场道路应平整、通畅,所有桥涵、道路能够保证各种施工车辆安全通行。6.1.5 机组吊装施工现场应设置警示标牌,在吊装场地周围设立警戒线,非作业人员不应入内。6.1.6 吊装前应正确选择吊具,并确保起吊点无误;吊装物各部件保持完好,固定牢固。6.1.7 在吊绳被拉紧时,不应用手接触起吊部位,禁止人员和车辆在起重作业半径内停留。6.1.8 吊装作业区有带电设备时,起重设施和吊物、缆风绳等与带电体的最小安全距离不得小于GB26860的规定,并应设专人监护。吊装时采用的临时缆绳应由非导电材料制成,并确保足够强度。6.1.9 塔架、机舱就位后,应立即按照紧固技术要求进行紧固。使用的各类紧固器具,应经过检测合格井有检验合格标识。
6.1.10 机组电气设备的安装应符合GB50303的规定要求。
6.1.11 施工现场临时用电应采取可靠的安全措施,井应符合JGJ46的要求。6.2 塔架安装 6.2.1 塔架安装之前必须先完成机组基础验收,其接地电阻必须满足技术要求。6.2.2 起吊塔架时,应保证塔架直立后下端处于水平位置,并至少有一根导向绳导向。6.2.3 塔架就位时,工作人员不应将身体部位伸出塔架之外。6.2.4 底部塔架安装完成后应立即与接地网进行连接,其他塔架安装就位后应立即连接引雷导线。6.2.5 在塔架的安装过程中,应安装临时防坠装置。如无临时防坠装置,攀爬塔架时应使用双钩安全绳进行交替固定。6.2.6 顶段塔架安装完成后,应立即进行机舱安装。如遇特殊情况,不能完成机舱安装,人员离开时必须将塔架门关闭,并采取将塔架顶部封闭等防止塔架摆动措施。6.3 机舱安装 6.3.1 起吊机舱时,起吊点应确保无误。在吊装中必须保证有一名作业人员在塔架平台协助工作。6.3.2 机舱和塔架对接时应缓慢而平稳,避免机舱与塔架之间发生碰撞。6.3.3 起吊机舱时,禁止人员随机舱一起起吊。6.3.4 机舱与塔架固定连接螺栓达到技术要求的紧固力矩后,方可松开吊钩、移除吊具。6.3.5 完成机舱安装,人员撤离现场时,应恢复顶部盖板井关闭机舱所有窗口。6.4 叶轮和叶片安装 6.4.1 叶轮和叶片起吊时,应使用经检验合格的吊具。6.4.2 起吊叶轮和叶片时至少有两根导向绳,导向绳长度和强度应足够;应有足够人员拉紧导向绳,保证起吊方向。6.4.3 起吊变桨距机组叶轮时,叶片桨距角必须处于顺桨位置,井可靠锁定。6.4.4 叶片吊装前,应检查叶片引雷线连接良好,叶片各接闪器至根部引雷线阻值不大于该机组规定值。6.4.5 叶轮在地面组装完成未起吊前,必须可靠固定。6.5 其他 6.5.1 机组安装完成后,应将刹车系统松闸,使机组处于自由旋转状态。6.5.2 机组安装完成后,应测量和核实机组叶片根部至底部引雷通道阻值符合技术规定,并检查机组等电位连接无异常。7.调试、检修和维护 7.1 一般规定 7.1.1 风力发电机组调试、检修和维护工作均应参照GB26860的规定执行工作票制度、工作监护制度和工作许可制度、工作间断转移和终结制度,动火作业必须开动火工作票;风力发电机组工作票样式见附录A。7.1.2 风速超过12m1s时,不应打开机舱盖(含天窗);风速超过14m1s时,应关闭机舱盖;风速超过12m1s,不应在机舱外和轮载内工作主风速超过18m1s时,不应在机舱内工作。7.1.3 测量机组网侧电压和相序时必须佩戴绝缘手套,并站在干燥的绝缘台或绝缘垫上:启动并网前,应确保电气柜柜门关闭,外壳可靠接地:检查和更换电容器前,应将电容器充分放电。7.1.4 检修液压系统时,应先将液压系统泄压,拆卸液压站部件时,应带防护手套和护目眼镜;拆除制动装置应先切断液压、机械与电气连接,安装制动装置应最后连接液压、机械与电气装置。7.1.4 检修液压系统时,应先将液压系统泄压,拆卸液压站部件时,应带防护手套和护目眼镜;拆除制动装置应先切断液压、机械与电气连接,安装制动装置应最后连接液压、机械与电气装置。7.1.5 机组测试工作结束,应核对机组各项保护参数,恢复正常设置:超速试验时,试验人员应在塔架底部控制柜进行操作,人员不应滞留在机舱塔架爬梯上,并应设专人监护。7.1.6 机组高速轴和刹车系统防护罩赖在时,禁止启『动阁 7.1.7 进入轮毅或在叶轮上工.首先必每单旦#虱是如定,锁定时轮时,风速不应高于机组规定的最高允许风速:进入变桨距极组轮载囱启准,必须将变桨舵手E靠锁定、7.1.8 月在叶轮转动造~~锁定销,禁止锁定销未完全堪出插子D可松开制动器。7.1.9 检修和维护时写部负痒,应符合GB19155的技术要求。呼温低于零下20°C时禁止使用吊篮,当工作处阵风戚速段1f8.3m1s时,不应在吊篮上工作』
7.1.10 需要停电且通tJ在一经合闸即送电到作业点的卉关操作把手上应挂战禁止合闸,有人工作“ 警示牌。
7.2 调试安全 7.2.1 机组调试事期间,应在控制盘、远程控制系统处挂禁止操作标示牌。7.2.2 独立变桨的机组调试变桨系统时,严禁同时调试多支时片。7.2.3 机组其他测试项目未完成前,禁止进行超速试验。7.2.4 新安装机组在启动前应具备以下条件 a).各电缆连接正确,接触良好。b).设备绝缘良好
c).相序校核,测量电压值和电压平衡性。d).检测所面螺栓力矩达到标准力矩值
e).正常停机实验及安全停机、事故停机试验无异常。f).完成安全链回路所有元件检测和试验,并正确动作。
g).完成液压系统、变桨系统、变频系统、偏航系统、刹车系统、测风装置性能测试,达到启动要求。
h).核对保护定值设置无误.i).填写调试报告。7.3 检修和维护安全 7.3.1 每半年至少对机组的变桨系统、液压系统、刹车机构、安全链等重要安全保护装置进行检测试验一次。7.3.2 机组添加油品时必须与原油品型号相一致。更换替代油品时应通过试验,满足技术要求。7.3.3 维护和检修发电机前必须停电并验明三相确无电压。7.3.4 拆除能够造成叶轮失去制动的部件前,应首先锁定叶轮。7.3.5 禁止使用车辆作为缆绳支点和起吊动力器械:严禁用铲车、装载机等作为高处作业的攀爬设施。7.3.6 每半年对塔架内安全钢丝绳、爬梯、工作平台、门防风挂钩检查一次:每年对机组加热装置、冷却装置检测一次:每年在雷雨季节前对避雷系统检测一次,至少每三个月对变桨系统的后备电源、充电电池组进行充放电试验一次。7.3.7 清理润滑油脂必须戴防护手套,避免接触到皮肤或者衣服;打开齿轮箱盖及液压站油箱时,应防止吸入热蒸气:进行清理滑环、更换碳刷、维修打磨叶片等粉尘环境的作业时,应佩戴防毒防尘面具。7.3.8 使用弹簧阻尼偏航系统卡钳固是螺栓扭矩和功率消耗应每半年检查一次。采用滑动轴承的偏航系统固定螺栓力矩值应每半年检查一次。8.运行安全
8.1 经调试、检修和维护后的风力发电机组,启动前应办理工作票终结手续。8.2 机组投入运行时,严禁将控制回路信号短接和屏蔽,禁止将回路的接地线拆除:未经授权,严禁修改机组设备参数及保护定值。
8.3 手动启动机组前叶轮上应无结冰、积雪现象:机组内发生冰冻情况时,禁止使用自动升降机等辅助的爬升设备;停运叶片结冰的机组,应采用远程停机方式。8.4 在寒冷、潮湿和盐雾腐蚀严重地区,停止运行一个星期以上的机组在投运前应检查绝缘,合格后才允许启动。受台风影响停运的机组,投入运行前必须检查机组绝缘,合格后方可恢复运行。
8.5 机组投入运行后,禁止在装置进气口和排气口附近存放物品。
8.6 应每年对机组的接地电阻进行测试一次,电阻值不直高于4Ω;每年对轮毅至塔架底部的引雷通道进行检查和测试一次,电阻值不应高于0.5Ω。
8.7 每半年对塔架内安全钢丝绳、爬梯、工作平台、门防风挂钩检查一次;风电场安装的测风塔每半年对拉线进行紧固和检查,海边等盐雾腐蚀严重地区,拉线应至少每两年更换一次。9.应急处理 9.1 应急处理原则 9.1.1 发生事故时,应立即启动相应的应急预案,并按照国家事故报告有关要求如实上报事故情况,事故的应急处理应坚持”以人为本"的原则。9.1.2 事故应急处理可不开工作票,但是事故后续处置工作应补办工作票,及时将事故发生经过和处理情况,如实记录在运行记录簿上。9.2 应急处理注意事项 9.2.1 风电场升压站、集电线路、风力发电机组升压变事故处理应遵循DLiT969、DLlT572、DLiT741、DLiT574和DLiT587等标准的规定。9.2.2 机组机舱发生火灾时,禁止通过升降装置撤离,应首先考虑从塔架内爬梯撤离,当爬梯无法使用时方可利用缓降装置从机舱外部进行撤离。使用缓降装置,要正确选择定位点,同时要防止绳索打结。9.2.3 机组机舱发生火灾,如尚未危及人身安全,应立即停机并切断电源,迅速采取灭火措施,防止火势蔓延。在机舱内灭火,没有使用氧气罩的情况下,不应使用二氧化碳灭火器。9.2.4 有人触电时,应立即切断电源,使触电人脱离电源,并立即启动触电急救现场处置方案。如在高空工作时,发生触电,施救时还应采取防止高空坠落措施。9.2.5 机组发生飞车或机组失控时,工作人员应立即从机组上风向方向撤离现场,并尽量远离机组。9.2.6 发生雷雨天气,应及时撤离机组:来不及撤离时,可双脚井拢站在塔架平台上,不得触碰任何金属物体。9.2.7 发现塔架螺栓断裂或塔架本体出现裂纹时,应立即将机组停运,并采取加固措施。
第四篇:风力发电项目可行性研究报告
风力发电项目可行性研究报告
委 托 方:受 托 方:千讯(北京)信息咨询有限公司 签约地点:
签约时间:年月日
执行周期:周起止时间:年月日~年月日
第一章 风力发电项目总论
一、项目背景
1.项目名称
2.承办单位概况
3.风力发电项目可行性研究报告编制依据
4.项目提出的理由与过程
5.项目所在区域商业发展情况
6.所在区域政策、经济及产业环境
7.项目发展概况
二、项目概况
1.风力发电项目拟建地点
2.项目建设规模与目的3.项目主要建设条件
4.项目投入总资金及效益情况
5.风力发电项目主要技术经济指标
三、风力发电项目可行性与必要性
四、问题与建议
第二章 风力发电项目市场预测
一、目标市场分析
1.目标市场选定
2.替代产品分析
3.国外市场分析
4.产品出口或进口分析
二、市场供应分析
1.产品现有生产能力
2.市场供应现状
3.市场供应预测
三、产品市场需求预测
1.市场需求现状
2.市场需求预测
四、价格现状与预测
1.国内市场销售价格及预测
2.国际市场销售价格及预测
五、市场竞争力分析
1.风力发电项目主要竞争对手情况
2.产品市场竞争力优势、劣势
3.营销策略
六、市场风险
第三章 风力发电项目资源条件评价
一、项目资源可利用量
二、项目资源品质情况
三、项目资源赋存条件
四、项目资源开发价值
第四章 风力发电项目建设规模与产品方案
一、建设规模
1.建设总规模
2.生产能力
3.经济规模
4.建设规模方案比选
5.推荐方案及其理由
二、产品方案
1.产品方案构成2.产品方案比选
3.推荐方案及其理由
第五章 风力发电项目场址选择
一、风力发电项目场址所在位置现状
1.项目地点与地理位置
2.项目场址土地权所属类别及占地面积
3.土地利用现状
二、风力发电项目场址建设条件
1.地形、地貌、地震情况
2.工程地质与水文地质
3.气候条件
4.城镇规划及社会环境条件
5.交通运输条件
6.公用设施社会依托条件(水、电、气、生活福利)
7.防洪、防潮、排涝设施条件
8.环境保护条件
9.法律支持条件
10.征地、拆迁、移民安置条件
11.施工条件
三、项目场址条件比选
1.建设条件比选
2.占地土地比选
3.拆迁情况比选
4.各种费用比选
5.推荐场址方案
6.场址地理位置图
第六章 风力发电项目技术方案、设备方案和工程方案
一、项目组成二、技术方案
1.生产方法(包括原料路线)
2.产品标准
3.技术参数和工艺流程
4.工艺技术来源
5.推荐方案的主要工艺(生产装置)流程图、物料平衡图、物料消耗定额表
三、主要设备方案
1.主要设备选型
2.主要设备来源(进口设备应提出供应方式)
3.项目推荐方案的主要设备清单
四、工程方案
1.主要建、构筑物的建筑特征、结构及面积方案
2.项目扩建工程方案
3.项目特殊基础工程方案
4.建筑安装工程量及“三材”用量估算
5.主要建、构筑物工程一览表
第七章 风力发电项目主要原材料、燃料供应
一、主要原材料供应
1.主要原材料品种、质量与年需要量
2.主要辅助材料品种、质量与年需要量
3.原材料、辅助材料来源与运输方式
二、燃料供应
1.项目燃料品种、质量与年需要量
2.项目燃料供应来源与运输方式
三、主要原材料、燃料价格
1.主要原材料、燃料价格现状
2.主要原材料、燃料价格趋势预测
四、主要原材料、燃料年需要量表
第八章 总图、运输与公用辅助工程
一、风力发电项目总图布置
1.平面布置
2.竖向布置
(1)场区地形条件
(2)竖向布置方案
(3)场地标高及土石方工程量
3.总平面布置图
4.总平面布置主要指标表
二、风力发电项目场内外运输方案
1.场外运输量及运输方式
2.场内运输量及运输方式
3.场内、外运输设施及设备
三、风力发电项目公用辅助工程
1.给排水工程
(1)给水工程。用水负荷、水质要求、给水方案
(2)排水工程。排水总量、排水水质、排放方式和泵站管网设施
2.供电工程
(1)供电负荷(年用电量、最大用电负荷)
(2)供电回路及电压等级的确定
(3)电源选择
(4)场内供电输变电方式及设备设施
3.通信设施
(1)通信方式
(2)通信线路及设施
4.供热设施
5.空分、空压及制冷设施
6.维修设施
7.仓储设施
第九章 风力发电项目节能、节水措施及环境影响评价
一、节能措施及能耗指标分析
二、节水措施及水耗指标分析
三、环境影响评价
1.场址环境条件
2.项目主要污染源和污染物
(1)风力发电项目主要污染源、主要污染源
(2)生产过程产生的污染物对环境的影响
3.风力发电项目拟采用的环境保护标准
4.环境保护措施方案
5.环境保护投资
6.环境影响评价
第十章 风力发电项目劳动安全与消防
一、危害因素和危害程度
1.有毒有害物品的危害
2.危险性作业的危害
二、安全措施方案
1.采用安全生产和无危害的工艺和设备
2.对危害部位和危险作业的保护措施
3.危险场所的防护措施
4.职业病防护和卫生保健措施
5.劳动安全与职业卫生机构
三、消防设施
1.火灾隐患分析
2.防火等级
3.消防设施
第十一章 风力发电项目组织结构与人力资源配置
一、风力发电项目组织结构
1.法人组建方案
2.管理机构组织方案和体系图
3.风力发电项目机构适应性分析
二、风力发电项目人力资源配置
1.生产作业班次
2.劳动定员数量及技能素质要求
3.职工工资福利
4.劳动生产率水平分析
5.员工来源及招聘方案
6.员工培训计划
第十二章 风力发电项目实施进度
一、项目建设工期
二、项目实施进度安排
1.建立项目实施管理机构
2.资金筹集安排
3.技术获得与转让
4.勘察设计和设备订货
5.施工准备
6.施工和生产准备
7.竣工验收
三、项目实施进度表(横线图)
第十三章 风力发电项目投资估算与融资方案
一、风力发电项目投资估算依据
二、项目建设投资估算
1.建筑工程费
2.设备及工器具购置费
3.安装工程费
4.工程建设其他费用
5.基本预备费
6.涨价预备费
7.项目建设期利息
三、流动资金估算
1.流动资金的组成2.流动资金估算
四、投资估算表
1.投入总资金估算汇总表
2.单项工程投资估算表
3.分年投资计划表
4.流动资金估算表
五、融资方案
1.资本金筹措
2.债务资金筹措
3.融资方案分析
第十四章 风力发电项目财务评价
一、项目财务评价基础数据与参数选取
1.财务价格
2.计算期与生产负荷
3.财务基准收益率设定
4.其他计算参数
二、销售收入估算(编制销售收入估算表)
三、成本费用估算(编制总成本费用估算表和分项成本估算表)
四、财务评价报表
1.财务现金流量表
2.损益和利润分配表
3.资金来源与运用表
4.借款偿还计划表
五、财务评价指标
1.风力发电项目盈利能力分析
(1)项目财务内部收益率
(2)资本金收益率
(3)投资各方收益率
(4)财务净现值
(5)投资回收期
(6)投资利润率
2.风力发电项目偿债能力分析(借款偿还期或利息备付率和偿债备付率)
六、不确定性分析
1.敏感性分析(编制敏感性分析表,绘制敏感性分析图)
2.盈亏平衡分析(绘制盈亏平衡分析图)
七、风力发电项目财务评价结论
第十五章 风力发电项目国民经济评价
一、项目影子价格及通用参数选取
二、项目效益费用范围调整
1.项目转移支付处理
2.项目间接效益和间接费用计算
三、项目效益费用数值调整
1.项目投资调整
2.项目流动资金调整
3.项目销售收入调整
4.项目经营费用调整
四、项目国民经济效益费用流量表
1.国民经济效益费用流量表
2.国内投资国民经济效益费用流量表
五、国民经济评价指标
1.项目经济内部收益率
2.项目经济净现值
六、项目国民经济评价结论
第十六章 风力发电项目社会评价
一、风力发电项目对社会的影响
二、风力发电项目与所在地互适性
1.项目利益群体对项目的态度及参与程度
2.项目各级组织对项目的态度及支持程度
3.项目与当地科技、文化发展水平的相互适应性
4.项目与当地基础设施发展水平的相互适应性
5.项目对合理利用自然资源的影响
6.项目地区文化状况对项目的适应程度
三、项目社会风险分析
四、项目社会评价结论
第十七章 风力发电项目风险分析
一、主要风险因素识别
二、风险程度分析
三、风险防范和降低风险对策
第十八章 风力发电项目可行性研究结论与建议
一、项目推荐方案的总体描述
二、项目推荐方案的优缺点描述
1.优点
2.存在问题
3.主要争论与分歧意见
4.对应修改的主要问题进行说明,提出修改意见
三、项目主要对比方案
1.方案描述
2.未被采纳的理由
四、结论与建议
附件
一、附图
1.风力发电项目场址位置图
2.风力发电项目工艺流程图
3.风力发电项目总平面布置图
二、附表
1.风力发电项目投资估算表
(1)风力发电项目投入总资金估算汇总表
(2)风力发电项目主要单项工程投资估算表
(3)风力发电项目流动资金估算表
2.风力发电项目财务评价报表
(1)风力发电项目销售收入、销售税金及附加估算表
(2)风力发电项目总成本费用估算表
(3)风力发电项目财务现金流量表
(4)风力发电项目损益和利润分配表
(5)风力发电项目资金来源与运用表
(6)风力发电项目借款偿还计划表
3.风力发电项目国民经济评价报表
(1)风力发电项目国民经济效益费用流量表
(2)风力发电项目国内投资国民经济效益费用流量表
第五篇:风力发电项目可行性研究报告
风力发电项目可行性
研究报告
目 录
1.总论.................................................5 1.1 项目提出的背景,投资的必要性和经济意义................6 1.1.1 项目提出的背景....................................6 1.1.2 投资的必要性......................................7 1.1.2.1 世界风能开发现状与展望..........................7 1.1.2.2 风力发电原理...................................10 1.1.2.3 风力发电技术已相当成熟.........................10 1.1.2.4 风能经济.......................................12 1.1.2.5 风能资源十分丰富...............................14 1.1.2.6 风电成本已具有市场竞争力.......................16 1.1.2.7 我国风电行业的发展历程.........................17 1.1.2.8 我国风电行业发展现状...........................19 1.1.2.9 潜在市场及发展趋势.............................21 1.1.2.9.1 潜在市场.....................................21 1.1.2.9.2 发展趋势.....................................22 1.1.2.10 我国几大风电场介绍............................29 1.1.2.11 国家对风电投资的政策..........................30 1.1.2.11.1 世界鼓励风电的政策措施......................30 1.1.2.11.2 长期保护性电价..............................30 1.1.2.11.3 可再生能源配额政策..........................31 1.1.2.11.4 公共效益基金................................31
1.1.2.11.5 招投标政策..................................32 1.1.2.11.6 我国对风电发展的政策........................32 1.1.3 投资的经济意义...................................39 1.2 研究工作的依据和范围...............................41 1.2.1 国家有关的发展规划、计划文件。包括对该行业的鼓励、特许、限制、禁止等有关规定。...........................41 1.2.2 拟建地区的环境现状资料...........................42 1.2.3 主要工艺和装置的技术资料及自然、社会、经济方面的有关资料等等。...........................................42 1.2.3.1 方案一.........................................42 1.2.3.2 方案二.........................................43 2.需求预测和拟建规模..................................43 2.1 国内外需求情况的预测...............................44 2.2 国内现有工厂生产能力的调查.........................45 2.3 销售预测、价格分析、产品竞争能力,进入国际市场的前景.......................................................49 2.4.投资估算与资金筹措................................49 2.4.1 方案一...........................................49 2.4.1.1 盈亏平衡分析、利润、净现金流量分析..............50 3.投资决策评价.........................................50 3.1.投资期法...........................................50 3.2.净现值法..........................................50
3.3 方案二.............................................51 3.4 方案二.............................................53 3.4.1 盈亏平衡分析、利润、净现金流量分析................54 3.4.2 投资决策评价.....................................55 4.风电企业............................................56 4.1 战略计划...........................................56 5 风险的估计...........................................60 5.1 政策风险...........................................60 5.2 行业风险...........................................60 5.3 技术风险...........................................62 6 实施计划.............................................62
1.总论
风能是太阳能的转化形式,是一种不产生任何污染物排放的可再生的自然能源。
受化石能源日趋枯竭、能源供应安全和保护环境等的驱动,自20 世纪70 年代中期以来,世界主要发达国家和一些发展中国家都重视风能的开发利用。特别是自20 世纪90 年代初以来,现代风能的最主要利用形式——风力发电的发展十分迅速,世界风电机装机容量的年平均增长率超过了30%,从1990 年的216 万千瓦上升到2003 年的4020 万千瓦。
与此同时,限制风能大规模商业开发利用的主要因素——风力发电成本在过去 20 年中有了大幅的下降。
随风力资源的不同、风电场规模不同和采用技术不同,风力发电成本也有所不同。目前低风力发电成本已降至3~5 美分/千瓦时,高风力发电成本也降至10~12 美分/千瓦时。到2010 年,它们将分别降至2~4 美分/千瓦时和6~9 美分/千瓦时,达到和化石能源相竞争的水平。随着风能这一态势的发展,世界风力发电机的装机容量到 2020 年预计会达到12.45亿千瓦,发电量占世界电力消费量的12%。因此,风能将是21 世纪最有发展前途的绿色能源,是当前人类社会经济可持续发展的最主要的新动力源之一。
1.1 项目提出的背景,投资的必要性和经济意义 1.1.1 项目提出的背景
十六大提出 2020 年我国国内生产总值(GDP)要实现比2000 年翻两番的总目标,以多大的能源代价实现这个总目标引起广泛关注。如果能源消费也随之翻两番的话,到2020年我国能源消费总量将达到每年近60 亿吨标准煤!而我国常规能源的剩余可采总储量仅为1500 亿吨标准煤,仅够我国使用25 年!国家电监委预计今年的电力缺口在2000 万千瓦,供需矛盾比去年更加突出。
需要特别注意的是,现阶段我国人均能源消费量只有世界人均能源消费水平的一半,而人均电力消费量则仅仅是美国的1/
13、日本的1/8。
解决能源和电力短缺的战略途径有两个:其一是节能,但节能只能缓解紧缺问题;其二是大力增加能源的供给。从能源技术的角度来看,一个需要回答的问题是:哪些能源才是解决我国能源和电力短缺的最现实的战略选择呢?
资料表明,我国的煤炭资源仅能维持 20 年使用;2003 年我国共进口石油1.1 亿吨;我国水能资源经济可开发量为3.9 亿千瓦,年发电量1.7 万亿千瓦时;显然,利用常规能源不能解决我国的能源和电力短缺。
在当前能源紧缺的背景下,发展风电意义重大,发展风电刻不容缓。
1.1.2 投资的必要性
1.1.2.1 世界风能开发现状与展望
以煤炭、天然气、石油、水利和核物质为原料或资源的传统电力开发造成了大量的环境负担,如环境污染、酸雨、气候异常、放射性废物处理、石油泄露等等。而以风能为资源的电力开发对环境的影响则十分微小,具有显著的环境友好特性,是典型的清洁能源。在四级风区(每小时20~21.4公里),一座750千瓦的风电机,平均每年可以替代热电厂1179吨的CO2、6.9吨的SO2和4.3吨的NO排放。
风能资源无穷无尽,产能丰富。根据美国风能协会(AWEA)的估计,如果要产生美国可开采风能的能源总量,每年需要燃烧200亿桶原油(几乎是目前世界全部原油产量)。但与石油相比,风能却是可再生的资源,失而复得,同时风能具有自主性的特点,不会受到国际争端造成的价格震荡和禁运等冲击。AWEA测算,在美国使用现有技术,利用不到1%的土地开发风能,可以提供20%的国家电力需求。而1%的土地中,只有5%是设备安装等必须使用的,其他95%还可以继续用于农业或畜牧业。
风能资源比较丰富的地区大多边远,风能开发为边远地区就业增长、经济发展、农业用地增加收入等带来机会。从世界范围看,风能和太阳能产业可能成为新世纪制造业中就业机会最多的产业之一。
全球风能资源极为丰富,而且分布在几乎所有地区和国家。技术上可以利用的资源总量估计约53×106 亿度/年。1973 年发生石油
危机以后,欧美发达国家为寻找替代化石燃料的能源,投入大量经费,动员高科技产业,利用计算机、空气动力学、结构力学和材料科学等领域的新技术研制现代风力发动机组,开创了风能利用的新时期。
由于风能开发有着巨大的经济、社会、环保价值和发展前景,经过 30 年的努力,世界风电发展取得了引人注目的成绩。近20年来风电技术有了巨大的进步,风电开发在各种能源开发中增速最快:全球风电装机总量1997至2002年的5年间增长4倍,由1997年的7600兆瓦增至2002年的31 128兆瓦,增加了2.3万兆瓦,平均年增幅达32%。而风能售价也已能为电力用户所承受:一些美国的电力公司提供给客户的风电优惠售价已达到2~2.5美分/千瓦小时,此售价使得美国家庭有25%的电力可以通过购买风电获得,而每个月只需支付4~5美元。
风电一直是世界上增长最快并且不断超越其预期发展速度的能源,1997~2002 年全球风电累计装机容量的平均增长率一直保持在33%,而每年新增风电装机容量的增长率则更高,平均为35.7%。2004 年欧洲风能协会和绿色和平组织签署了《风力12——关于2020年风电达到世界电力总量的12%的蓝图》的报告,“风力12%”的蓝图展示出风力发电不再是一种可有可无的补充能源,已经成为解决世界能源问题的不可或缺的重要力量。
根据“风力12”发表的2005~2020 年世界风电和电力需求增长的预测报告,按照风电目前的发展趋势,将2005~2007 年期间的平均当年装机容量增长率设为25%是可行的,2008~2012 年期间降为
20%,以后到2015 年期间再降为15%,2017~2020 年期间再降为10%。推算的结果2010 年风电装机1.98 亿千瓦,风电电量0.43×104亿度,2020 年风电装机12.45 亿千瓦,风电电量3.05×104 亿度,占当时世界总电消费量25.58×104 亿度的11.9%。按2007 年预计的装机容量0.4 亿千瓦计算,假设每台单机1500 千瓦,则需要齿轮箱26667 台,按每台120 万人民币计算,则市场规模达到320 亿元人民币,而且其市场规模每年还按20%的速度递增,在2020 年将达到1272 亿元人民币的市场规模。
经过三十多年的努力,世界风电发展取得了令人注目的成绩,世界风力发电成本迅速下降,从1983 年的15.3 美分/度,下降到1999 年的4.9 美分/度,表2 为2003 年世界风能开发利用前10 个国家风电装机及市场份额。目前欧洲占全世界风电装机容量的74%。德国为世界风电发展之首。我国风电发展进展极其缓慢。截止到2003 年底,全国风电场总装机容量仅为56.7 万千瓦,仅占全国总装机容量的0.14%。尽管已建有40 个风电场,但平均每个风电场的装机容量不足1.5 万千瓦,远未形成规模效益。从中可以看出中国市场份额最低,但具有相当大的发展潜力。
据《人民日报》2005 年11 月份最新报道:“我国风电发展了20 多年,但至今装机容量还只有76 万千瓦,仅占全国总装机容量的0.2%,伴随着技术的突破,从200Kw~750Kw风力发电设备的国产化已基本完成,其中600Kw、750Kw 风电设备的国产化率超过90%,国内第一台单机1200Kw 的风力风电机在新疆达坂城投入使用。风力发
电场的建设异军突起,风力发电的成本降至每千瓦时0.38 元左右,与火力发电的成本已相当接近。”
据国际能源署(IEA)预测,2020年,全球风电装机总量将达12.6亿千瓦。单机平均1.5兆瓦,年总电量达3.1万亿千瓦小时,占2020年全球总发电量的12%。要达到12.6亿千瓦的风电容量,总投资估算约需6300亿美元,这将是全球机电制造业和风电建设的一个巨大市场。
1.1.2.2 风力发电原理
太阳的辐射造成了地球表面受热不均,引起大气层中压力分布不均,空气沿水平方向运动形成风。各地风能资源的多少,主要取决于该地每年刮风的时间长短和风的强度如何。
把风能转变为电能是风能利用中最基本的一种方式。风力发电机一般由风轮、发电机(包括传动装置)、调向器(尾翼)、塔架、限速安全机构和储能装置等构建组成。风轮是集风装置,它的作用是把流动空气的动能转变为风轮旋转的机械能。一般它由2~3 个叶片构成。风轮转动的机械能通过传动装置增速齿轮箱传递到发电机转化成电能。
1.1.2.3 风力发电技术已相当成熟
为什么在发达国家中风电的年装机容量以 35.7%的发展速度高速度增長?一个重要原因是风电技术已经相当成熟。目前单机容量500、600、750 千瓦的风电机组已达到批量商业化生产的水准,成为
当前世界风力发电的主力机型。
更大型、性能更好的机组也已经开发出来,并投入生产试运行。如丹麦新建的几个风电场,单机容量都在2 兆瓦以上;摩洛哥在北方托萊斯建造的风电场,采用的风电机组功率达到2.1 兆瓦;德国在北海建设近海风电场,总功率在100 万千瓦,单机功率5 兆瓦,可为6000 户家庭提供用电,计划2004 年投产。据国外媒体报道,该公司5 兆瓦的机组是世界上最大的风力发电机,其旋翼区直径为126 米,面积相当于2 个足球场。发电机塔身和发电机总重1100 吨,发电机由3 片旋翼推动,每片长61.5 米,旋翼最高点离地面183米。该风电场生产出来的电量之大,相当于常规电厂,而且可以在几个月的时间内建成。
同时风电机组叶片设计和制造过程中广泛采用了新技术和新材料。由于现代大部分水准的风电机组都有三个叶片,质量大,制造费用高。为了减轻塔架的自重,有些国家如瑞典把大型的水准轴风机设计成两个叶片。瑞典Nordic WindpowerAB 公司已完成重量轻的双叶片500 千瓦和1 兆瓦机组的设计。
此外,风电控制系统和保护系统方面广泛应用电子技术和计算机技术。这不仅可以有效地改善并提高发电总体设计能力和水准,而且对于增强风电设备的保护功能和控制功能也有重大作用。
1.1.2.4 风能经济
风能产业在过去20年里发生了巨大变化,风电成本下降的速度比任何其它传统能源都快。过去10年间,建立一个新的天然气电厂的成本只降低了1/3。相比较而言,世界上的风电装机容量每翻一番,风电场的成本就下降15%,而20世纪90年代风电装机容量翻了三番,现在建立一座风电场的成本只及80年代中期的1/5左右,预计到2006年,成本还会再降35%~40%。展望未来20年,影响风能成本的一些因素还会迅速变化,风电成本还会继续下降。
①风能成本极大依赖风场的风速。风能正比于风速的立方,因此风速增强会引起很大 的电力增长。
②大型风力发电机技术进步带来成本下降。风机塔越高、龙骨扫描面积(风机叶片扫描面积正比于龙骨长度的平方)越大,风机发出的电力越强。龙骨直径从80年代的10米增加到50米后,功率则由25千瓦增加到现在常用的750千瓦,电力输出增加近55倍,这其中的部分原因是由于现在的扫描面积是原来的25倍以上,同时由于风机离地面更高,风速也加强了。
③大风场比小风场更具经济效益。
④风力发电的电子测控系统、龙骨设计和其它技术的进步,使得成本大大降低。一个现代常用的1650千瓦风电机与以往25千瓦风电机相比,以20倍的投资获得了120倍的电力增长,单位千瓦
电力成本已大大降低。研究表明,优化风电机的配置也能改进项目的产能。
⑤风电企业的财务成本。风电是资本密集型产业,因此财务成本构成风能项目的重要成本变量。分析表明,如果美国的风电场获得同天然气电厂相同的利率贷款,其成本将会下降40%。
⑥输电、税收、环境和其他政策也影响风场的经济成本。输电和电网准入限制对风能成本有较大影响。在产业政策方面,风电开发比较发达的国家都提供了风电的税收优惠政策。美国联邦税则对风能开发提供了产品税返还(PTC)和风电机5年加速折旧政策,每千瓦小时1.5美分的PTC返还政策可根据年通货膨胀率进行折算(现在是1.7美分/千瓦小时)。PTC在1992年首次发布,1999年截止后又延长至2001年,之后又再次延期至2003年底。
⑦更加严格的环境保护条理将增加风能的竞争力。单位千瓦风电对环境的影响要远远低于其他传统主流发电。风电既不通过消耗资源释放污染物、废料,也不产生温室气体和破坏环境,也不会有其他能源的开采、钻探、加工和运输等过程成本和环境成本。更高的空气质量和环保标准将意味着风能将变得更加具有竞争力。相反,环境标准的降低或未将发电过程的环境治理成本计算在内,使不洁净能源的售价很低。但这是具有欺骗性的,这表明,政府和市场忽视了健康和环境成本,从而给了不洁净能源隐形补贴,而此补贴却远高于显性的对风能的补贴。
⑧风能提供了辅助性的经济效益。风能开发不依赖化石能源,因
而其经济表现比较稳定;风能为土地拥有者带来稳定的收入;风能为边远地区带来税收。
⑨风电和其它类型能源成本比较。早在20世纪90年代初,PG&E公司和美国电力研究所EPRI就曾预言,风能将会是最便宜的能源。这并非痴人说梦,如今风能可以与其它主流能源技术相竞争已成事实。基于现在市场条件,美国风能协会估计,大一点的风场风电的平均成本已经小于5美分/千瓦小时,这还不包括PTC补贴的1.5美分/千瓦小时,此项10年期的补贴,对30年运营期的风场可以降低风能成本0.7美分/千瓦小时。
1.1.2.5 风能资源十分丰富
为什么发达国家会竞相大力发展风电呢?另一个重要原因就是风力资源非常丰富。按目前技术水平,只要离地10 米高的年平均风速达到5~5.5 m/s(四级风速为5.5—7.9m/s)以上,风力风电就是经济的。科技进步可能把可利用风能的风速要求进一步降至5m/s 以下。
据估计,世界风能资源高达每年53 万亿千瓦时,预计到2020 年世界电力需求会上升至每年25.578 亿千瓦时。也就是说,全球可再生的风能资源是整个世界预期电力需求的2倍。
对我国来说,我国拥有可供大规模开发利用的风能资源。据初步探明结果,陆地上可开发的风能资源即达2.53 亿千瓦;加上近海(15 米深的浅海地带)的风能资源,全国可开发风能资源估计在10 亿千
瓦以上。与之对照,我国水能资源可开发量仅为3.9亿千瓦!我国2003 年的装机容量已为3.85 亿千瓦,所以国外专家评论,中国单靠风力发电就能轻而易举地将现有的电力生产翻上一翻。
我国风能资源丰富的地区主要分布在西北、华北和东北的草原和戈壁,以及东部和东南沿海及岛屿,这些地区一般都缺少煤碳等常规资源。在时间上冬春季风大、降雨量少,夏季风小、降雨量大,与水电的枯水期和丰水期有较好的互补性。
中国的风能资源主要集中在两个带状地区,一条是“三北(东北、华北、西北)地区丰富带”,其风能功率密度在200 瓦/平方米~300 瓦/平方米以上,有的可达500 瓦/平方米以上,如阿拉山口、达坂城、辉腾锡勒、锡林浩特的灰腾梁等,这些地区每年可利用风能的小时数在5000 小时以上,有的可达7000 小时以上。“从新疆到东北,面积大、交通方便、地势平,风速随高度增加很快,三北地区风能在上百万千瓦的场地有四五个,这是欧洲没法比的。其中青海、甘肃、新疆和内蒙可开发的风能储量分别为1143 万千瓦、2421 万千瓦、3433 万千瓦和6178 万千瓦,是中国大陆风能储备最丰富的地区。另一条是“沿海及其岛屿地丰富带”,其风能功率密度线平行于海岸线。沿海岛屿风能功率密度在500 瓦/平方米以上,如台山、平潭、东山、南鹿、大陈、嵊泗、南澳、马祖、马公、东沙等岛屿,这些地区每年可利用风能的小时数约在7000-8000 小时,年有效风能功率密度在200 瓦/平方米以上。
1.1.2.6 风电成本已具有市场竞争力
长期以来,人们以风电电价高于火电电价为由,一直忽视风电作为清洁能源对于能源短缺和环境保护的意义,忽视了风电作为一项高新技术产业而将带来的巨大的产业前景,更忽视了风电对于促进边远地区经济发展所能带来的巨大作用。但近10 年来,风电的电价呈快速下降的趋势,并且在日趋接近燃煤发电的成本。
以美国为例,风电机组的造价已由 1990 年的1333 美元降至2000 年的790 美元,相应地发电成本由8 美分/千瓦时减少到4 美分/千瓦时,下降了一半,预计2005 年可降至2.5—3.5 美分/千瓦时,达到与常规发电设备相竞争的水准。
美国 1980 年代初期第一个风电场的发电成本高达30 美分/千瓦时。目前,美国政府为所有新建风电场的前十年运行提供1.5 美分/千瓦时的发电税收减免,使的一些新建风电场的合同电价已降至3 美分/千瓦时以下。
据《人民日报》2005 年11 月07 日第十一版最新报道,“我国的风力发电的成本已降至每千瓦时0.38 元左右,与火力发电的成本已相当接近,具有相当的竞争力”。
风电机组的设计寿命通常为 20~25 年,其运行和维护的费用通常相当于风电机组成 本的3~5%。
风电成本已经可以和新建燃煤电厂竞争,在一些地方甚至可以和燃气电厂匹敌。
上述比较只计算了风电和化石燃料发电的内部成本(即本身发电的成本),尚未将社会承担的污染环境这些外部成本计算在内。更为科学、更为平等地比较风电和其他燃料发电成本的话,还应该计算不同发电方式的外部成本。
关于化石燃料或核能发电的外部成本,由于存在大量的不确定因素,一般难以被具体确认和量化。但是欧洲最近公布了一个历时10 年的研究项目的成果(在欧盟15 个成员国进行评估包括计算一系列燃料成本的“Extern E”计划),给出了不同燃料的外部成本,整个研究的结论是,如果把环境和健康有关的外部成本计算在内,来自煤或石油的电力成本会增加一倍,而来自天然气的成本会增加30%,核电则要面对更大的外部成本,如公众的责任、核废料和电厂退役等。而风电的外部成本最小,与现行价格比较几乎可以忽略不计。
1.1.2.7 我国风电行业的发展历程
我国的风电场建设大体分为三个阶段。
第一阶段是 1986~1990 年我国并网风电项目的探索和示范阶段。其特点是项目规模小,单机容量小,最大单机200Kw,总装机容量4.2 千千瓦。
第二阶段是 1991~1995 年示范项目取得成效并逐步推广阶段。共建5 个风电场,安装风机131 台,装机容量3.3 万千瓦,最大单机500Kw。
第三阶段是 1996 年后扩大建设规模阶段。其特点是项目规模和
装机容量较大,发展速度较快,平均年新增装机容量6.18 万千瓦,最大单机容量达到1300Kw。
截止 2002 年底,全国共建32 个风电场,总装机容量达到46.62 万千瓦。在所有风电场中,装机容量居前三位依次为新疆达坂城二场、广东南澳风电场和内蒙古惠腾锡勒风电场。
随着我国《可再生能源法》的颁布实施和一系列优惠政策出台,风电的发展依法得到鼓励,风电的发展在未来几年内必将进入爆炸性的增长的阶段。根据最新资料,2005 年1~9 月,国家发改委审批同意开工的风电场达到8 个,总装机容量达到80 万千瓦,预计全年将会达到120 万千瓦。2003 年底,我国新增风电装机容量10 万千瓦,累计装机容量57 万千瓦;2004 年底,新增风电装机容量20 万千瓦,累计装机容量76 万千瓦,年新增风电装机容量增长近2 倍。根据政府提出的最新风电发展目标,到2020 年全国风电装机容量要达到3000 万千瓦,而到2003 年底我国风电装机容量仅有56 万千瓦,占全国电力总装机
容量的0.14%。这表明在今后的17 年中,年均要新增风电装机容量170 多万千瓦。按每台风机800kw 计算,其每年的市场容量在2125 台以上。
1.1.2.8 我国风电行业发展现状
我国自 1983 年山东引进3 台丹麦Vestas 55kW 风力风电机组,开始了并网风力发电技术的试验和示范。“七五”、“八五”期间国家计委、国家科委都开列了研制并网风力发电机组的重点攻关项目。1994 年全国风电新增装机容量为1.29 万千瓦,年装机容量首次突破万千瓦大关,2003 年年装机容量首次达到10 万千瓦。特别是进入“九五”期间,在国家有关优惠政策和国家经贸委“双加工程”的推动下,全国风电装机容量得到了快速的发展。在1994~1999 年期间,全国21 个风电场共装机容量为24.9 万千瓦,年装机4.15万千瓦。表明我国风电场建设在这6 年间已步入产业化阶段。在后来的发展中,又能及时跟上国际大中型风电机组的发展步伐。如德国从1993 年开始安装500kW 风电机组,而我国新疆达坂城2 号场于1993 年也在国内率先安装了4 台500kW 的风电机组。特别是在“九五”期间,450~750kW 的大中型风电机组倍受青睐。在“九五”期间的4 年间,共装机22.5 万千瓦,占全国风电总装机容量的85.7%。虽然风电建设取得了一定成绩,但最近几年的发展较缓慢,与发达国家比差距还非常大,德国2003 年的装机容量为267 万千瓦,累计达到1461 万千瓦,而我国2003 年的装机容量仅有10 万千瓦,累计达到57 万千瓦。
从 1984 年研制200kW 风电机组以来,已经历时整整15 个年头。目前,国产风电机组在我国的风电场中还未占一席之地。国家已经出台了相关政策,加快风电机组的国产化率,争取尽快将国内风电
市场,从外商手里夺取回来。这些外商企业,主要来自丹麦(占70.7%)、德国(占12.8%)、美国(占6.9%)、西班牙(占5%)和荷兰(占0.7%)等国家。国家发改委有关人士,最近在非公开场合明确表示,风电市场宁可发展速度慢一点,也要扶持民族工业,不能再蹈汽车工业覆辙。
风电机组是风电场的核心设备,在风电场的建设投资中风机设备费是风力发电项目投资的主要部分,约占总投资的60~80%,因此风电机组的状况成为一个国家风电发展的重 要指标。
由于我国风电发展与世界先进水平有一定差距,风电机组的制造水平相差更大,我国各年装机的主导机型与世界主流机型存在几年的滞后。如2000 年后,兆瓦级风电机组已成为世界风电市场的主流机型,但我国装机的主导机型仍然是600kW。
风电机组的生产和制造是反映一个国家风电发展水平的重要因素。中国从 20 世纪70年代开始研制大型并网风电机组,但直到1997 年在国家“乘风计划”支持下,才真正从科研走向市场。
目前,我国已基本掌握了200~800kW 大型风电机组的制造技术,主要零部件都能自己制造,并开始研制兆瓦级机组。国内的市场份额有了很大提高目前,600 和800kW 机组的技术已经通过支付技术转让费购进全套制造技术或与国外合资生产等方式引进,现在新疆金风公司、西安维德风电公司以及洛阳拖-美德风电公司投入批量生产。
1.1.2.9 潜在市场及发展趋势 1.1.2.9.1 潜在市场
风电,“取之不尽,用之不竭”。与太阳能发电、生物能发电、地热发电和海洋能发电等“可再生能源”电力相比,风电居于首位。它几乎是没有污染的绿色能源,除了靠近时有增速箱“磨牙”和风机叶片冲击空气“霍霍”的噪音(300 米外小于55dB)、若与燃煤火电相比,同样发1kW·h 电,风电可减排二氧化碳0.75kg,二氧化氮0.0045kg,二氧化硫0.006kg,烟尘0.0052kg。风力发电时,几乎不消耗矿物资源和水资源(润滑油脂除外),若再与燃煤火电比,同发1kW·h 电,可节约标煤0.39kg 和水3kg,这对缺煤、缺水、缺油或交通运输不便的区,尤其可贵。
风能是当前技术和经济上最具商业化规模开发条件的新能源,同时随着风力发电机国产化程度的提高,风力成本还可大幅度下降,有专家预测本世纪内可下降40%,而火电与核电成本下降的空间十分有限或几乎没有。
在当前我国电力供需矛盾突出的态势下,开发风力风电可以优化调整电力结构,是极富生命力的。因为一般从秋末至暮春是盛风期,风电可满发,而这期间恰逢水电枯水期,可补充电网中水电之不足,这对水电比重较大或径流水电站较多的电网来说,更具风水互补、均衡出力的作用。
风电场与常规火电厂或水电厂比较,由于单机容量小,可以分散建设,也可以集中建设,几百千瓦到几十万千瓦都行,非常灵活。融
资相对容易,基础建设周期短,一般从签订设备采购合同到建成投产只需一年时间,投产快,有利于资金周转,及早还贷。
风电的突出优点是环境效益好,不排放任何有害气体和废弃物。风电场虽然占了大片面积,但风电机组基础使用的面积很小,不影响农田和牧场的正常使用。多风的地方往往是孤岛、荒滩或山地,对解决远距电网的老少边区用电、脱贫致富将发挥重大作用。建设风电场的同时也能开发旅游资源,风电场设在海边,背衬蔚蓝大海,一排排白色巨轮竞相旋转,呈一道亮丽的风景线。
由于风速是随时变化的,风电的不稳定性会给电网带来一定的波动,但只要风电容量小于电网容量的10%,不会有明显的影响。目前,许多电网内都建设有调峰用的抽水蓄能电站,使风电的这个缺点可以得到克服,更充分地利用风力资源。
1.1.2.9.2 发展趋势
风电一直是世界上增长最快并且不断超越其预期发展速度的能源,1997~2002 年全球风电累计装机容量的平均增长率一直保持在33%,而每年新增风电装机容量的增长率则更高,平均为35.7%。2004 年欧洲风能协会和绿色和平组织签署了《风力12——关于2020年风电达到世界电力总量的12%的蓝图》的报告,“风力12%”的蓝图展示出风力发电不再是一种可有可无的补充能源,已经成为解决世界能源问题的不可或缺的重要力量。
根据“风力 12”发表的2005~2020 年世界风电和电力需求增
长的预测报告,按照风电目前的发展趋势,将2005~2007 年期间的平均当年装机容量增长率设为25%是可行的,2008~2012 年期间降为20%,以后到2015 年期间再降为15%,2017~2020 年期间再降为10%。推算的结果2010 年风电装机1.98 亿千瓦,风电电量0.43×104 亿度,2020 年风电装机12.45 亿千瓦,风电电量3.05×104 亿度,占当时世界总电消费量25.58×104亿度的11.9%。按2007 年预计的装机容量0.4 亿千瓦计算,假设每台单机1500 千瓦,则需要齿轮箱26667 台,按每台120 万人民币计算,则市场规模达到320 亿圆人民币,而且其市场规模每年还按20%的速度递增,在2020 年将达到1272 亿圆人民币的市场规模。
2005 年3 月,随着《可再生能源法》的颁布,有关的大型风力发电建设的消息就不绝于耳。甘肃、内蒙古、黑龙江、江苏都纷纷开始上马动辄10 亿元的风力发电项目。国内风力发电产业“风”起云涌。月9 日,江苏盐城市发改委投资处表示,总投资16 亿元的盐城东台风力发电场项目
得到国家发改委正式批复,获准项目招标,预计2007 年底全部建成运行。月18 日,黑龙江最大的风能开发项目“十文字风力发电”在穆棱市兴建,投资超过10 亿元。工程总体规划设计装机11.3 万千瓦。月18 日,内蒙古自治区达茂旗宣布将利用当地丰富的风力资
源,大力发展风电项目。据当地媒体报道,达茂旗为此专门成立了风电项目开发领导小组,目前已经引进了中国华能集团公司、中国电力投资有限公司、内蒙古北方新能源电力公司、美国金州公司、加拿大风能开发公司、德国英华威公司6 家大型风能开发企业,签订协议总装机容量590 万千瓦,协议总金额472 亿元人民币。月24 日,甘肃省投资10 亿元开发的安西风电场项目,日前被发展改革委批复进入特许权招标程序。该项目总投资约10 亿元、一期规模10 万千瓦、远期规划100 万千瓦。预计2006 年初可开工建设。月15 日,我国目前最大的风力发电项目——国华尚义风电项目一期工程竣工并网发电,成为张家口市大力开发风电能源的一个标志。有关统计数据显示,到2006 年底,该市风电总装机容量最低将达到24.8 万千瓦。张北、尚义、沽源、康保等10 县与市外开发商签订开发协议,签订合作开发协议28 项,累计签约的风电项目总装机容量达到1258万千瓦,占全国2020 年远景规划的60%多,其中4 家已经开工建设 月14 日一个总投资40 亿元的风力发电项目近日在包头市固阳县开始正式启动,这个项目是建设一个50 万千瓦的风力发电场。
在广州, 中国——绿色和平最新报告《风力广东》指出,广东省有能力在2020 年,实现2,000 万千瓦的风电装机容量。这样的装机规模每年将发电350 亿千瓦时,相当于目前全省用电量的17%,或广州市全年的用电量,并能减少2,900 万吨二氧化碳的排放量。
绿色和平气候变化和可再生能源项目主任杨爱伦说:“洁净、可靠的风电可为广东高速的经济发展提供能源;同时,发展可再生能源将减少导致气候变化的温室气体排放。因此,对于广东来说,发展风电无疑是一个双赢的选择。”
《风力广东》是绿色和平委托世界著名的风能顾问加勒德哈森伙伴有限公司(GarradHassan & Partners)撰写的,报告基于一系列先进的广东风资源分析数据,以及对在全世界范围内相关技术的丰富知识,勾画了广东省风力发电的蓝图。
加勒德哈森伙伴有限公司首席代表高辉说:“广东的风速状况大致和世界第一风电大国德国差不多。只要有好的政策支持,到2020 年实现风电装机2,000 万千瓦,是一个合理并可行的目标。”
至 2004 年底,广东省风电装机容量为86,000 千瓦,在全国名列第四。在谈到广东省的优势时,中国可再生能源专业委员会秘书长李俊峰指出,广东省经济基础好、风电发展经验丰富、融资能力强、电力需求增长快,这些都为大规模地开发其风力资源创造了良好的环境。
广东省不仅是我国经济最发达,人口最多的省份,其二氧化碳排放量亦居前列。中国科学家指出,广东的二氧化碳浓度为全国最高的地区之一,并高于全球平均水平。近年来,广东省以及珠江三角洲地区气候的温室效应增强,各种极端气候事件显著增加,旱涝频率增大。
发展风能,刻不容缓。报告认为,中国将形成强大的风机制造产业,足以支持宏伟的风电发展计划。新产业在带来经济效益的同时,也将创造更多的就业机会。发展风电将大大减少因使用化石燃料发电而产生的二氧化碳排放。
报告还建议,广东应该和比邻的香港就风电开发一起努力。目前,两地不但在能源方面有合作,还共同承担着由传统发电方式造成的污染。香港在尽力开发其自身资源的同时,也可以到广东省投资风电项目。
绿色和平项目主任杨爱伦说:“国际金融机构,如亚洲发展银行、世界银行,都应该更积极地投资于广东乃至整个中国的风电发展。”
《风力广东》是绿色和平旗舰“彩虹勇士号-亚洲洁净能源之旅”的其中一个主要活动,旨在通过宣传广东风电的潜力,推动可再生能源的发展,拯救全球气候变化带来的危机。
在江苏,投资 8 亿元、装机容量10 万千瓦的江苏如东县风力发电场二期工程目前已开工,将在2007 年上半年建成,年可发电2.24 亿度。洋口港经济开发区副主任、新能源局局长徐晓明说,如东正计划增加投资5 亿元、5 万千瓦装机容量,使二期的装机容量达到15 万千瓦;正进行预可行性研究的三期工程——80 万千瓦浅海滩涂风电场项目的投资也计划从60 亿元增加到80 亿元。如付诸实施,如东风力发电场将成为全球最大的风电场。
江苏是全国最缺电的省份之一,同时又是风能大省,潜在风力发电量 2200 万干瓦,占中国风能资源近1/10。如东县境内海岸线长达106 公里,全年风力有效发电时间达7941小时。投资近8 亿元、装机容量10 万千瓦的风电场一期已于去年8 月开工,有望在年底发
电,年发电量2.3 亿度。徐晓明表示,作为国家特许权招标项目,如东风电场旨在探索促进风力发电的规模化发展和商业化经营。根据国家发改委的要求,一期工程发电机组累计发电利用小时数达3 万小时前为第一段电价执行期,通过特许权招标方式确定,全部由电网公司收购;3 万小时后为第二阶段,与其他发电企业竞价上网。风力发电是新能源中比较成熟的一种,如充分利用,可成为仅次于火电、水电的第三大电源。目前,长三角正掀起一轮风力发电热:总投资16 亿元、年上网电量4.24 亿千瓦时的盐城东台风力发电场项目已得到国家发改委批复;南通启东40 亿元风电项目已向江苏省发改委申报;年初,浙江舟山市岱山县计划投资20 亿元,建设总装机容量达20 万千瓦的海上风电场;上海也正在拟订《10 万千瓦近海风力发电场计划》等可再生能源计划,希望到2010 年,可再生资源发电达到发电总装机容量的5%。
2004 年11 月27 日,著名物理学家和社会活动家何祚庥院士应邀在福州大学“海峡两岸科教创新论坛”作专题报告指出,大力发展风力发电及大型锂离子电池储能技术是解决中国能源短缺问题的重要途径,并建议海峡两岸携手合作,共同发展海上大型风电产业。他预计,风力发电(包括风机和电能)将成为未来中国的第一大产业。他认为,我国风电如果以每年30%的速度发展,到2020 年占到全部电力的10%具有可行性。相对于水电、核电而言,风电更有望成为解决我国能源和电力可持续发展战略最现实的途径之一。
2005 年1~9 月,国家发改委审批同意开工的风电场达到8 个,总装机容量达到80 万千瓦,预计全年将会达到120 万千瓦。如按每台风机800kW 计算,每台增速齿轮箱50 万元人民币计算,则国内的市场规模可达1500 台,7.5 亿元人民币,而且市场每年至少要以60%的速度增长。
据有关专家预测,我国风电场的建设将向以下方向发展: ①总结特许权风电场开发经验,在全国范围内开发几十个 10~20 万千瓦规模的大型风电场;推行固定电价方式(或称“保护”电价、购电法)的激励政策,促进中小型风电场的发展,培育稳定的风电市场。
②风电设备制造企业抓住新增市场机遇,扩大现有产品生产批量的同时,继续引进国外先进技术,实现产品升级换代,满足市场对兆瓦级机组的需求,在积累实际经验的基础上,提高自主开发能力,降低机组生产成本。
③风电的发展与当地的经济承受能力和电网容量相适应。在经济发达能源短缺的沿海地区加速风电发展;在资源丰富的西部地区,随着电网容量增长和大规模开发风电,在政策上要解决跨省区销售风电的问题,如配额制,绿色电力交易等。
④规模开发和分散开发相结合。以规模化带动产业化,设想建立几个百万千瓦级超大型风电基地。因地制宜开发各地具有较好条件的中小型风电场。农村电网增强后可以考虑单机分散并网,如丹麦、德国目前的方式,德国虽然没有10 万千瓦规模的风电场,但风电装机已经超过1200 万千瓦,分布式电源也是未来电力结构发展的一种趋
势。
⑤海上风能资源比陆上大,不但风速高,而且很少有静风期,能更有效地利用风电机组以提高发电容量。海水表面粗糙度低,海平面摩擦力小,风速随高度的变化小,不需要很高的塔架,可以降低风电机组成本。海上风的湍流强度低,又没有复杂地形对气流的影响,作用在风电机组上的疲劳载荷减少,可以延长使用寿命。一般估计风速比平原沿岸高20%,发电量可增加70%,在陆上设计寿命为20 年的风电机组在海上可达25~30 年。要认真研究国外开发海上风能的经验,开始资源勘测和示范工程准备,为今后大规模发展海上风电创造条件。
1.1.2.10 我国几大风电场介绍
新疆是一个风能资源十分丰富的地区,有九大风能利用区,总面积 15 万平方公里,可装机8000 万千瓦。
达坂城风场座落在达坂城山口东西长约 80km,南北宽约20km,是南北疆气流活动的主要通道,这个地区风能蕴藏量为250 亿千瓦时,可装机容量400 万千瓦。2003 年底已装机299 台,总装机容量20 万千瓦,是我国最大的风电场。
广东南澳风电场地处台湾海峡喇叭口西南端,素有“风县”之称。现有各类发电机130台,容量5.7 万千瓦,是中国第二大风力风电场,其最终目标是总装机容量20 万千瓦,建成亚洲最大的海岛风电场。
内蒙古辉腾锡勒风电场位于内蒙古乌兰察布盟锡林以南,是我国重要的风电场之一,规划装机容量400 万千瓦。辉腾锡勒具有建世界一流风电场的有利条件:丰富的风能资源储量,风力资源品质良好,土地成本低廉,靠近电网,交通方便。1996 年开始建设,现装机容量近10 万千瓦。
1.1.2.11 国家对风电投资的政策 1.1.2.11.1 世界鼓励风电的政策措施
在最近十年世界风电之所以得到飞速发展,是世界各国积极采取各种激励政策加以鼓励和引导的结果。下面介绍一下保护性电价、配额制、可再生能源效益基金和招投标4 种 最主要的政策。
1.1.2.11.2 长期保护性电价
长期保护性电价(Feed-in-Tariff)政策为风电和其他可再生能源开发商提供的上网电价以及电力公司的购电合同。上网电价由政府部门或电力监督机构确定。价格水平和购电合同期限都应具有足够的吸引力,以保证将社会资金吸引到可再生能源部门。长期保护性电价政策的吸引力在于它消除了风电和其他可再生能源发电通常所面临的不确定性和风险。从实践看,保护性电价是一种有效地刺激风电发展的措施。目前欧洲有14 个国家采用这一政策。德国、丹麦等国风电迅速增长,主要归功于保护性电价政策措施的实施。我国目前实施 的风电电价政策也是保护性电价政策的一种类型。
1.1.2.11.3 可再生能源配额政策
可再生能源配额制(Renewable Portfolio System,RPS)是以数量为基础的政策。该政策规定,在指定日期之前总电力供应量中可再生能源应达到一个目标数量。还规定了达标的责任人,通常是电力零售供应商。通常引人可交易的绿色证书机制来审计和监督RPS政策的执行。如我国将对电力企业规定可再生能源发电容量不小于总装机容量5%的配额。如一个大的发电企业有1000 万千瓦火力发电装机容量,就必须按照5%的配额发展50 万千瓦风力发电项目。配额制政策的优势在于它是一种框架性政策,容易融合其他政策措施,并有多种设计方案,利于保持政策的连续性。配额制目标保证可再生能源市场逐步扩大,绿色证书交易机制中的竞争和交易则促进发电成本不断降低,交易市场提供了更宽广的配
额完成方式,也提供了资源和资金协调分配的途径。
1.1.2.11.4 公共效益基金
公共效益基金(Public Benefit Fund,PBF)是风能和其他可再生能源发展的一种融资机制。设立PBF 的动机是为了帮助那些不能完全通过市场竞争方式达到其目的地特定公共政策提供启动资金。合理运用这种手段可以有效地弥补市场在处理外部性缺陷,使得产品或服务的价格能够比较真实地反映其经济成本和社会成本,从而实现公
平性的原则,同时也促进整个行业朝着真实成本更低的方向改进。设立公共效益基金已经成为发达国家非 常通行的政策。
1.1.2.11.5 招投标政策
招投标政策是指政府采用招投标程序选择风能和其他可再生能源发电项目的开发商。能提供最低上网电价的开发商中标,中标开发商负责风电项目的投资、建设、运营和维护,政府与中标开发商签订电力购买协议,保证在规定期间内以竟标电价收购全部电量。该政策的优势因素表现在招投标政策采用竞争方式选择项目开发商,对降低风电成本有很好的刺激作用。招投标政策利用了具有法律效益的合同约束,保障可再生能源电力上网,有助于降低投资者风险并有助于项目融资。该政策与可再生能源发展规划结合,能加强政策的作用。我国的正在进行风电场特许权招标试点,就是实施该政策的表现形式。
1.1.2.11.6 我国对风电发展的政策
原国家计委于 2002 年12 月对江苏如东市和广东惠来市两个风电场特许权示范项目建议书批复,明确规定为促进风电规模化发展和商业化经营,每个风电场建设规模为10 万千瓦,单机容量不小于600kW,机组采购本地化率不低于50%。项目通过公开招标选择投资者,承诺上网电价最低和设备本地化率最高的投标人为中标人。特许经营期为第一台机组投产后25 年,经营期内执行两段制电价政策,32
第一段为风电场累计上网电量相当于达到等效满负荷小时数3 万小时之前,执行投标人在投标书中要求的上网电价,第二段为3万小时的电量之后到特许期结束,执行当时电力市场中的平均上网电价。风电场建成后的可供电量由所在地电网企业按上述电价收购,风电电价对销售电价的影响纳入全省电价方
案统一考虑。这是我国电力体制改革,厂网分家后风电发展的重要举措,明确了风电不参与电力市场竞争,对规定的上网电量承诺固定电价,引人投资者竞争的机制,降低上网电价,打破电力部门办风电的垄断,有利于吸引国内外各种投资者。对于银行安排基本建设贷款的风电项目可给予2%财政贴息。
江苏如东风电场作为亚洲最大的风电工程,被国家发改委明确批复为CDM(清洁发展机制)项目,继去年 8 月成功启动100 兆瓦一期工程后,现今二期建设规模为150 兆瓦,完成后预计每年可减排二氧化碳37 万吨,实现减排收入1000 万元,无论是在环境保护抑或成本增殖方面都凸显了风电新时代的到来。其三期规划总装机容量达到85 万千瓦,投资超过50 亿元
2002 年4 月财政部和国家税务总局联合发布通知,即规定风力发电企业的增值税减半 征收。
2005 年2 月28 日,《可再生能源法》颁布,在《可再生能源法》的条文中,投资人士寄予厚望的有关风力发电强制上网、全额收购、分类定价等等原则都得到了保留。此外,《可再生能源法》明确规定
了风力发电的接入成本将由电网承担,这实在是一大利好。《可再生能源法》的颁布在发展风力发电的过程中无疑是一个里程碑。从技术上来讲,现在风力发电机组的技术已经基本成熟,国内也开始有企业能够生产600 千瓦的发电机组,随着各地大规模地上马风力项目,相信很快会把成本降下来;从市场上讲,现在投资火力发电,风险已经开始呈现,煤价居高不下、贷款审批趋严,还受到越来越多的环保压力,而投资风力发电,国家可以承诺全额收购电力、允许较高的上网费用、在贷款、土地、税收等方
面还有不少优惠;从政策上讲,遵循国家指出的投资方向无疑是个省心、省力的投资选择。
在 2005 年5 月17 日结束的全国风电建设前期会议上,国家发展和改革委员会能源局决定,在2010 年建立起完备的风力发电工业体系,风电技术水平和装备能力达到国际水平。
国家发展和改革委员会能源局局长徐锭明说,目前中国已装备风力发电机1300 多台,建成43 个风电场,风电装机容量为76 万千瓦,但目前仍处在风电建设的初期阶段,风电事业受到风机制造水平较低、科技人才不足和政策措施跟不上等三大因素制约。
中国幅员辽阔,风能资源丰富,风电又属绿色能源,发展风电的条件很好。国家发展和改革委员会能源局计划,到2010 年,全国风电装机容量达到400 万千瓦,大型风电场基本立足于国内制造的装备,风电上网电价进一步降低,使风力发电基本能与常规电力相竞争。
同时,研究制订促进风电发展的法规和政策,使可再生能源配额制等市场保障政策和具体措施落实到位。到2020 年,全国风电装机容量达到2000 万千瓦,在风能资源丰富 的地区建成若干个百万千瓦级风电基地,风电在局部地区电力供应中达到较高比例,市场竞争力明显增强。
按照徐锭明的说法,今后几年,全国要搞几次风电建设大战役,彻底提升风电工业水平,使风电从目前的“游击队”水平变成“正规军”水平,风能利用遍布全国城乡。
据《人民日报》2005 年11 月07 日第十一版报道:
“我国风力发电发展了 20 多年,但至今装机容量还只有76 万千瓦,仅占全国总装机容量的0.2%。现在,跨越式发展的机会终于来了!我们要将基础研究的成果运用于设备设计和制造,在世界风能界刮起一阵强劲的‘中国风’!”今天,国内第一个风电叶片自主研发机构———华翼风电叶片研发中心在北京人民大会堂宣告成立,师昌绪、徐建中、何祚庥等12 位院士难掩心中的激动。
事实上,强劲的“中国风”已经刮起。在国家发改委、科技部等部门的支持下,目前,从200 千瓦到750 千瓦风能发电设备的国产化已基本完成,其中600 千瓦、750 千瓦风电设备的国产化率超过了95%;完全自主研制的1000 千瓦以上风电机组已开发成功,国内第一台单机1200 千瓦的风力发电机在新疆达坂城投入使用;在保定高新技术产业开发区新能源设备产业基地,600 千瓦、750 千瓦风机叶片的制造成本只有国外产品的30%,而重心偏矩、叶片平衡、叶
片强度等指标大大优于国外同类产品,迫使国外这两个系列的产品全面退出中国市场。
伴随着技术上的突破,风力发电厂的建设如异军突起。在广东、江苏、吉林,上百台风机组成的风力发电厂正在加紧建设,风力发电的成本降至每千瓦时0.38 元左右,与火力发电的成本已相当接近。
“国内风电技术和产业的这些成绩,来之不易。而将来的发展,更是担子不轻。”国家发改委副主任张国宝说,根据发改委正在制订的可再生能源规划,到2020 年,我国风力发电的总装机容量要达到3000 万千瓦。按这个速度发展,今后15 年内每年的装机容量将是过去20 年总量的3 倍。
我国的风力发电经过 20 多年发展,到2004 年底,已在14 个省区市建立起43 个风力发电厂,累计安装风力发电机组1292 台,总装机容量为76.4 万千瓦。
过去很长一段时间内,与发达国家相比,我国风力发电的研究和制造能力都有不小差距,绝大多数风力发电厂都是利用发达国家的贷款购买国外设备,规模小,成本高。国产风电面临着提高研发设计制造能力、提高引进设备国产化率、降低成本等三大难题。过去 10 年,风电一直是世界上增长最快的能源。目前全球风电装机容量达4760 万千瓦,风力发电量占世界总电量的0.5%,预计2020 年风力发电将占世界电力总量的12%。据理论推算,中国风能可开发的装机容量为2.53 亿千瓦,居世界前列。
中国风能协会秘书长秦海岩最近指出,根据我国的国情,要实现
风电产业化,需要采取分步实施的方法。在《可再生能源法》的政策框架体系下,我们将2020 年目标分为三个阶段实施。
第一阶段:2005 至2010 年,完善我国的风电发展的政策框架体系,完善我国陆地风资源普查工作,开始着手海上风资源试点普查工作,建立和健全我国的风机检测和认证制度,进行有关风电并网可靠性研究,筹建风机设计和风电场开发的国家队。国家用50 万千瓦的风电场资源,采取风电场开发和风机整机制造供货联合(一体化)招标的方式,支持2 到3 家国内独资或合资控股的、年产兆瓦级风机20 万千瓦的制造(总装)厂,实现新建风电场的风机全部本地化供应(风机零部件的本地化生产率要达到90%)。在风机检测和认证方面,在2009 年前完成两轮自主知识产权风机的整机现场检测,2010 年前颁发我国的风机认证标识。
第二阶段:2011 年至2015 年,建立起专业化的国家队,能够进行独立自主的风机设计、风电场设计、风电场运行管理。另外,国家再用50 万千瓦的风电场资源,采取风电场开发和风机制造供货联合(一体化)招标的方式,再支持2 家国内独资或合资控股的、年产兆瓦级风机20 万千瓦的制造(总装)厂。与此同时,全面开展我国沿海地区的近海海上风资源普查工作,完善我国风电场开发、风机制造的工业基础。到2015 年末,至少应有5 家国内独资或合资控股的、年产兆瓦级风机20 万千瓦的制造(总装)厂,实现国内新建风电场的风机零部件95%以上本地化生产。
第三阶段:2016 年至2020 年,全面实现我国自主知识产权的
风电场开发和运营,以及风机制造的工业产业化,并走出国门,进入世界风电市场。
随着风力发电这种新型能源日益受到各方的“追捧”,国家也开始对风力发电的管理
进行进一步的规范。2005 年8 月10 日,国家发改委在其网站上公布了《国家发展改革委关于风电建设管理有关要求的通知》(下称《通知》),对风电场建设的核准和风电场上网电价进行了进一步的明确和规范。
总装机容量 5 万千瓦及以下的风电项目已经下放到各省(区、市)发展改革委核准。
《通知》规定,风电场建设的核准要以风电发展规划为基础,核准的内容主要是风电场规模、场址条件和风电设备国产化率。风电场建设规模要与电力系统、风能资源状况等有关条件相协调;风电场址距电网相对较近,易于送出;风电设备国产化率要达到70%以上,不满足设备国产化率要求的风电场不允许建设,进口设备海关要照章纳税。
《通知》还对风电场上网电价的确定进行了规定:风电场的上网电价由国务院价格主管部门根据各地的实际情况,按照成本加收益的原则分地区测算确定,并向社会公布。风电特许权建设项目的电价则通过招标方式确定,但是,不得高于国务院价格主管部门规定 的上网电价水平。
这项《通知》最大的变化是强调了风电设备的国产化和明确了风
电设备的进口关税不能减免。这明显体现了国家要鼓励国产风电设备制造业的发展。目前海关规定的风机整机进口税率为12%,部件为3%。但是进口环节增值税为17%,实际进口风机时征税31%,因此一般风电项目投资中设备要占70%。在没有国产设备的情况下,进口税使风电成本增加约20%。
2004 年我国76.4 万千瓦的风电装机容量中,82%来自进口,其中丹麦NECMICON 公司一家的产品,就占到中国总装机容量的30%。多年以来,国内不少有实力的设备制造企业、科研机构一直在试图加快风力发电设备的国产化进程,然而直到今天,进口设备垄断国内市场的局面仍在持续。
成本高、回报期长是阻碍国内风电设备制造迅速扩张的主要原因。要制造一个装机容量在650 千瓦的风力发电设备,大概就要投入300 万到400 万元的资金,虽然制造时期用不了一年,但回报期却需要10 年,因此,这样的高门槛,像650 千瓦这样大功率的风力发电设备国内产的就比较少,只有二三家在生产。
目前已经有很多国内企业看到了风电设备制造的潜力和前景,开始投入设备制造的开发工作,而国外一些著名的风电设备制造公司如丹麦的Vestas 以及美国GE 公司已经对在国内设厂或与国内企业合作开始“跃跃欲动”,有的已经在建厂,有的已经开始在“圈地”。
1.1.3 投资的经济意义
据国际能源署(IEA)预测,2020年,全球风电装机总量将达12.6亿千瓦。单机平均1.5兆瓦,年总电量达3.1万亿千瓦小时,占2020年全球总发电量的12%。要达到12.6亿千瓦的风电容量,总投资估算约需6300亿美元,这将是全球机电制造业和风电建设的一个巨大市场。
在 20 世纪80 年代,诺基亚抓住了信息化的浪潮的机遇,从一家生产卫生纸的企业成长为世界顶级的通讯设备制造商;微软在IBM 的脚下成长为象IBM 一样的巨人。在二十一世纪风电等可再生能源大发展的浪潮下,如果我们不抓住千载难逢的机遇,我们将错失成为世界顶级企业的机会。
在风电事业上进行投资将具有显著的经济效益和社会效益。在国内能源短缺的现状下,投资可再生能源领域在好满足了市场需求符合中国的能源战略,同时具有经济环保的效益。
以风能为资源的电力开发对环境的影响则十分微小,具有显著的环境友好特性,是典型的清洁能源。在四级风区(每小时20~21.4公里),一座750千瓦的风电机,平均每年可以替代热电厂1179吨的CO2、6.9吨的SO2和4.3吨的NO排放。
风能资源无穷无尽,产能丰富。与石油相比,风能是可再生的资源,失而复得,同时风能具有自主性的特点,不会受到国际争端造成的价格震荡和禁运等冲击。利用不到1%的土地开发风能,可以提供20%的国家电力需求。而1%的土地中,只有5%是设备安装等必须使用的,其他95%还可以继续用于农业或畜牧业。
风能资源比较丰富的地区大多边远,风能开发为边远地区就业增长、经济发展、农业用地增加收入等带来机会。从世界范围看,风能和太阳能产业可能成为新世纪制造业中就业机会最多的产业之一。
1.2 研究工作的依据和范围
1.2.1 国家有关的发展规划、计划文件。包括对该行业的鼓励、特许、限制、禁止等有关规定。国家出台的政策和法规有:
1.2000~2015 年新能源和可再生能源产业发展规划
2.2002 年4 月财政部和国家税务总局联合发文,对风力发电实行按增值税应纳税额减半征收的优惠政策。
3.国家计委于2002 年12 月对江苏如东市和广东惠来市两个风电场特许权示范项目建议书批复,开展风电场特许权招标,风电不参与市场竞争。
4.《可再生能源法》 2005 年2 月28 日颁布 2006 年1 月1 日起实施明确规定风力发电强制上网、全额收购、分类定价、风力发电的接入成本由电网承担等原则。
5.2005 年8 月10 日《国家发展改革委关于风电建设管理有关要求的通知》规定风电设备国产化率要达到70%以上,不满足设备国产化率要求的风电场不允许建设,进口设备海关要照章纳税。
6.国家发改委《可再生能源中长期发展规划》,2020 年风电装机容量将要达到3000万千瓦。
7.国家“十一五”规划,树立科学的发展规,走自主创新和可持续发展的道路。
1.2.2 拟建地区的环境现状资料
重庆市是西部的老工业基地,机型制造业基础雄厚,是装备制造业的基地。在该地区投资建厂,在人才、资源和政策方面具有一定的优势,具有可行性。
1.2.3 主要工艺和装置的技术资料及自然、社会、经济方面的有关资料等等。1.2.3.1 方案一
公司的规模初期按年产 500 台设计,随着风电市场的扩大再增加设备,扩大生产能力,按流水线方式组织生产。
公司约需要7000 千万的投资。公司的规模初期控制在100 人左 右。每台份齿轮箱上,有9 个齿轮件,内齿圈一般情况下采用调质件,可不磨齿,其余8件为渗碳淬火齿轮要磨齿,生产能力按年产500 台计算,每年共有4000 个齿轮需要磨齿,按每个齿轮平均磨齿时间6 小时,一年350 天计算,需要磨齿机3 台,按Φ500 直径2 台,Φ800 直径1 台配置。滚齿机也按3 台配置,Φ500 直径2 台,Φ1200(可扩展至1600)高效滚齿机1 台,可滚内外斜齿,主要用于加工内齿圈和直径较大的齿轮。箱体和行星架的加工采用龙门镗铣床和落地镗铣床各一台。主要和关键设备采用进口或高精度的设备。
方案一的优点是自己可以比较有效地控制加工质量和进度,对市场的反应敏捷及时;缺点是所需资金比较大,资金筹措可能会比较困难。
1.2.3.2 方案二
考虑到方案一所需资金大,不易筹措的实际困难,为了及时把握当前这一良好发展时机,我们准备先从简单处着手,可考虑采用生产外包这一方式,可以减少加工设备的大笔资金投入,集中精力抓住设计技术的提高,同时通过有效的手段来控制和保证外包生产的质量进度。
生产外包后对厂房和设备的要求大幅度降低,主要的设备为装配试验设备。
该方案的优点是所需资金较少,项目容易启动,在固定资产上的投资仅有 40 万,总投入资金约160 万,相对易于启动和实施;缺点是主要零部件的加工都通过外协来进行,进度和质量取决于供应商,很多因素处于非有效控制状态,抗风险的能力比较低,自身或者外界突发事件的影响,可能对本项目产生严重的影响。为尽量减少风险,增强抗风险的能力,我们必须尽力加大资金的投入量。
采用本方案,成败的关键在于合格供应商的选择和如何对其质量、进度和成本价格进行有效的控制上。
2.需求预测和拟建规模
2.1 国内外需求情况的预测
援引国家发改委副主任张国宝的话,根据发改委正在制订的可再生能源规划,到2020年,我国风力发电的总装机容量要达到3000 万千瓦。按这个速度发展,今后15 年内每年的装机容量将是过去20 年总量的3 倍。而在2004 年底的风电装机容量为76 万千瓦,也就是说,今后每年将新增风电装机容量近200 万千瓦,平均按每台风机1500kW,其增速齿轮箱每台120 万人民币,其齿轮箱的市场规模为平均每年1334 台,16 亿元人民币。因此,风电齿轮箱是齿轮箱市场中一个快速增长的细分市场。
风电一直是世界上增长最快并且不断超越其预期发展速度的能源,1997~2002 年全球风电累计装机容量的平均增长率一直保持在33%,而每年新增风电装机容量的增长率则更高,平均为35.7%。2004 年欧洲风能协会和绿色和平组织签署了《风力12——关于2020年风电达到世界电力总量的12%的蓝图》的报告,“风力12%”的蓝图展示出风力发电不再是一种可有可无的补充能源,已经成为解决世界能源问题的不可或缺的重要力量。
根据“风力12”发表的2005~2020 年世界风电和电力需求增长的预测报告
按照风电目前的发展趋势,将2005~2007 年期间的平均当年装机容量增长率设为25%是可行的,2008~2012 年期间降为20%,以后到2015 年期间再降为15%,2017~2020 年期间再降为10%。推算的结果2010 年风电装机1.98 亿千瓦,风电电量0.43×104亿度,2020
年风电装机12.45 亿千瓦,风电电量3.05×104 亿度,占当时世界总电消费量25.58×104 亿度的11.9%。按2007 年预计的装机容量0.4 亿千瓦计算,假设每台单机1500 千瓦,则需要齿轮箱26667 台,按每台120 万人民币计算,则市场规模达到320 亿圆人民币,而且其市场规模每年还按20%的速度递增,在2020 年将达到1272 亿圆人民币的市场规模。
在国内市场,预测在 2006~2010 年“十一五”期间,在《可再生能源法》和国家及各省市有关政策的支持下,国内风电市场每年将按60%的速度增长。假设2005 年的风电总装机容量为80 万千瓦,则到2010 年风电总装机容量将达到840 万千瓦,当年新增装机容量为315 万千瓦。
根据以上预测,公司“十一五”的目标为到 2010 年风电新增装机容量达到100 万千瓦以上,齿轮箱产量达到1500 台,国内市场占有率超过35%,销售额达到7.5 亿元,利润1.0 亿元。
公司的远期战略目标为,从 2010 年起产品走向世界,并向齿轮箱的其他市场和风电成套总装发展,争取在2020 年建成为世界一流的风电设备供应商,当年新增风电装机容量达到1000 千瓦以上,在世界风电市场的占有率超过8%,销售额突破100 亿元。
2.2 国内现有工厂生产能力的调查
国内风电成套设备供应商主要有新疆金风公司,2005 年的目标是装机达到500 台约40 万千万。
作为中国自己的风电设备供应商——金风科技公司是在科技部支持下成长起来的一家风力发电企业,2004 年科技部批准金风科技公司成立了“国家风能风电工程中心”。金风科技公司在8 年中完成了从第一台产品的生产、试验,到国产风电设备的产业化推广。2004 至2005 年,中国风电市场的年新增装机容量从不到200MW 增长到近600MW,增长率为198%。在如此迅猛增长的市场当中,国产风机仍保持着25%以上的市场占有率,而金风公司的市场份额也从占国产份额的82%增长到90%。
除金风公司外还有 20 家左右小的风电成套设备供应商,比较有实力的如浙江运达公司。浙江运达风力发电工程有限公司以风力发电产品开发、市场开拓、质量控制和设备总成套为主要业务,通过虚拟制造的方式来完成产品的生产。该有较规范的规章制度和质量保证体系,已通过ISO9001 质量管理体系认证,并且公司效益良好。为了增强经济实力,2003 年5 月底完成了增资扩股,由原来的注册资金1000 万元增加到2551 万元,这为公司以后的发展奠定了基础。该公司已被审定批准为浙江省风力发电高新技术研究开发中心,并于2003 年11 月成为区外高新技术企业。该公司在大中型风力发电机组开发研究方面拥有十分丰富的经验。通过与国内各大专业配套厂合作,逐步形成了国内风力发电机组的专业制造基地。公司拥有良好的科研基础和一支素质良好的专业技术队伍,其中教授级高工5 人,46
均在我国风力发电技术领域做出突出贡献,并被国务院批准享受政府特殊津贴;高级工程师7 人,工程师15 人,其中大部分在丹麦、德国接受过风力发电技术专业培训;公司的主要技术骨干曾经主持或参加了国家“六五”、“七五”、“八五”和“九五”重点科技攻关计划中的风力发电专题项目,具有较强的开拓、创新意识。该公司现主要产品为250kW、600kW 和750kW 风力发电机组,该系列机组均采用失速型三浆叶、上风向、水平轴布置,配有先进的PD 集散控制系统,其中250kW、600kW 机组已完全实现国产化,该系列机组在国内有非常好的市场前景,目前250kW 机组和750kW 机组产品在东南沿海地区也显现出较好的市场开发潜力。该公司在国家“八五”科技攻关中完成的200kW/250kW 风力发电机组,已安装在浙江苍南风电场、广东南澳风电场及大连长海风电场。1998 年11 月,该产品被国家科技部等六部委批准,颁发了“国家重点新产品”证书。该公司在“九五”期间,完成了国家科技部“九五”重点科技攻关计划专题“大型风力发电机组研制”、国家计委“九五”重点科技攻关计划专题“600kW 风力发电机组总体设计关键技术研究”以及浙江省重大科技项目“600kW 风力发电机组研制”。目前新开发成功的750kW 风力发电机组是该公司承担的国家“十五”重点科技攻关计划课题。通过与德国Repower 公司的合作,引进、消化、吸收国外先进技术,首批2 台750kW 机组已出售给山东长岛,已于9 月底并网发电,并以此为基础正在进行国家863 项目MW 级大型风力机产品的开发。
东汽通过引进德国技术,开始进入风电成套设备制造领域,目前
的重点在1.5MW 风机上。
在风电增速箱制造方面,目前国内主要为重庆齿轮箱有限责任公司和南京高精齿轮股份有限公司。
其中重庆齿轮箱有限责任公司在设计方面暂时处于行业领先的地位,而南京高精齿轮股份有限公司则在制造方面处于行业领先的地位。
重庆齿轮箱有限责任公司始建于 1966 年,于1972 年投产。占地面积53 万平方米。现有职工2000 余人,其中专业技术人员484 余人,研究员级高级工程师8 人,高级工程师55 人,高级会计师2 人,高级经济师7 人,享受国务院津贴8 人。公司是中国最大500家机械工业企业之一,国家一级计量单位,国家大型军工企业。重庆市工业企业50 强,重庆市信息化带动工业化重点单位。公司从92 年连续多年被评为重庆市工业50 强,具有每年生产各类齿轮箱约1000 台的能力。其中大型齿轮箱(单重50 吨以上)年产120-150 余台,中型齿轮箱(单重10 吨以上)年产约300 余台,具有年产联轴节减振器2000 余台的能力。该公司现拥有总资产8.9 亿元,其中固定资产原值5.3 亿元,固定资产净值3.5 亿元;2005 年重庆齿轮箱有限责任公司主营业务收入9.6 亿元,工业总产值10.2 亿元,产出以每年35%以上的速度增长。该公司2005 年风电齿轮箱产量为年产300 台,预计到2010 年达到年产1200 台的生产能力。
南京高精齿轮股份有限公司也是一家齿轮箱专业制造厂,2005 年风电齿轮箱产量达到了年产600 台,他们聘请了三名日本人对风
电齿轮箱制造进行管理,具有相当强的上升空间。
2.3 销售预测、价格分析、产品竞争能力,进入国际市场的前景
公司 2006~2010 年风电市场预测及公司目标见表8。每台800kw 齿轮箱的成本详见表9,加工费与材料费基本相当。从表中可以看出每台齿轮箱的变动成本为42 万,销售价格50 万,利润为8 万。风电齿轮箱的制造其提前期在60 天左右,毛坯采购需要30 天左右,加工制造需要30 天左右。
风电齿轮箱在国内制造,由于制造成本低,只要质量好是很容易打入国际市场的。此外,由于我们是在质量和可靠性上展开差异化竞争,在国际市场上应该是很有竞争力的。2.4.投资估算与资金筹措 2.4.1 方案一
根据公司初期的规模,固定资产总投资约7000 千万,其中蓦集资金4000 千瓦,银行贷款3000 千万,资产负债率控制在40%左右。要使公司运转,至少需要征地和装配厂房的建设,估计至少需要500 万左右启动资金。在组织拥有设计和营销能力后,可以采用虚拟组织的形式,生产制造可以采用外协加工的方式,当具有一定资本后,再购买设备自己加工。
公司在 2010 年底要达到1500 台的产量,7.5 亿的销售收入,总投资约需1.7 亿元,分三期进行建设,前期投资规模为7000 千万,产量为500 台,中期和后期各为5000 千万。
2.4.1.1 盈亏平衡分析、利润、净现金流量分析
按照当前国内的制造水平和市场行情,800kw 齿轮箱,每台齿轮箱的变动费用为42 万,售价50 万。7000 千万的固定资产投资,按十年直线法计提折旧,每年的折旧费为700 万,其他固定费用假设为100 万,则每年的固定费用合计为800 万。则盈亏平衡点为:(700+100)/(50-42)=100 台,即盈亏平衡点为100 台,产量在100 台以下则亏损,在100 台以上则盈利。
如在 2009 和2010 年,各追加5000 千万的设备投资,并按十年直线法计提折旧,每年增加的其他固定费用按100 万计算。
3.投资决策评价 3.1.投资期法
在不追加投资的情况下,投资回收期=4+(7000-6695)/2144=4.14(年)。3.2.净现值法
采用净现值法计算,在不追加投资的情况下,假设该项目具有10 年的生命周期,剩余资产的残值不计,则在其10 年生命周期内的总净现值(NPV)为5772.97 万元,投资回收期不到6 年。项目实施带来的净现值与总收益表万元
年次 各年的净现金流量(NCF)5%的复利现值系数 现值 累计现值
第一年-300 0.952-285.60-285.60