第一篇:初中数学知识点归纳(写写帮整理)
初中数学知识点归纳
有理数的加法运算
同号两数来相加,绝对值加不变号。异号相加大减小,大数决定和符号。互为相反数求和,结果是零须记好。【注】“大”减“小”是指绝对值的大小。有理数的减法运算
减正等于加负,减负等于加正。有理数的乘法运算符号法则
同号得正异号负,一项为零积是零。合并同类项
说起合并同类项,法则千万不能忘。只求系数代数和,字母指数留原样。去、添括号法则
去括号或添括号,关键要看连接号。扩号前面是正号,去添括号不变号。括号前面是负号,去添括号都变号。解方程
已知未知闹分离,分离要靠移完成。移加变减减变加,移乘变除除变乘。平方差公式
两数和乘两数差,等于两数平方差。积化和差变两项,完全平方不是它。完全平方公式
二数和或差平方,展开式它共三项。首平方与末平方,首末二倍中间放。和的平方加联结,先减后加差平方。完全平方公式
首平方又末平方,二倍首末在中央。和的平方加再加,先减后加差平方。解一元一次方程
先去分母再括号,移项变号要记牢。同类各项去合并,系数化“1”还没好。求得未知须检验,回代值等才算了。解一元一次方程
先去分母再括号,移项合并同类项。系数化1还没好,准确无误不白忙。因式分解与乘法
和差化积是乘法,乘法本身是运算。积化和差是分解,因式分解非运算。因式分解
两式平方符号异,因式分解你别怕。两底和乘两底差,分解结果就是它。两式平方符号同,底积2倍坐中央。因式分解能与否,符号上面有文章。同和异差先平方,还要加上正负号。同正则正负就负,异则需添幂符号。因式分解
一提二套三分组,十字相乘也上数。四种方法都不行,拆项添项去重组。重组无望试求根,换元或者算余数。多种方法灵活选,连乘结果是基础。同式相乘若出现,乘方表示要记住。
【注】 一提(提公因式)二套(套公式)因式分解
一提二套三分组,叉乘求根也上数。
五种方法都不行,拆项添项去重组。对症下药稳又准,连乘结果是基础。二次三项式的因式分解
先想完全平方式,十字相乘是其次。两种方法行不通,求根分解去尝试。比和比例
两数相除也叫比,两比相等叫比例。外项积等内项积,等积可化八比例。分别交换内外项,统统都要叫更比。同时交换内外项,便要称其为反比。前后项和比后项,比值不变叫合比。前后项差比后项,组成比例是分比。两项和比两项差,比值相等合分比。前项和比后项和,比值不变叫等比。解比例
外项积等内项积,列出方程并解之 求比值
由已知去求比值,多种途径可利用。活用比例七性质,变量替换也走红。消元也是好办法,殊途同归会变通。正比例与反比例
商定变量成正比,积定变量成反比。正比例与反比例
变化过程商一定,两个变量成正比。变化过程积一定,两个变量成反比。判断四数成比例
四数是否成比例,递增递减先排序。两端积等中间积,四数一定成比例。判断四式成比例
四式是否成比例,生或降幂先排序。两端积等中间积,四式便可成比例。比例中项
成比例的四项中,外项相同会遇到。有时内项会相同,比例中项少不了。比例中项很重要,多种场合会碰到。成比例的四项中,外项相同有不少。有时内项会相同,比例中项出现了。同数平方等异积,比例中项无处逃。根式与无理式
表示方根代数式,都可称其为根式。根式异于无理式,被开方式无限制。被开方式有字母,才能称为无理式。无理式都是根式,区分它们有标志。被开方式有字母,又可称为无理式。求定义域
求定义域有讲究,四项原则须留意。负数不能开平方,分母为零无意义。指是分数底正数,数零没有零次幂。限制条件不唯一,满足多个不等式。求定义域要过关,四项原则须注意。负数不能开平方,分母为零无意义。分数指数底正数,数零没有零次幂。限制条件不唯一,不等式组求解集。解一元一次不等式
先去分母再括号,移项合并同类项。
系数化“1”有讲究,同乘除负要变向。先去分母再括号,移项别忘要变号。同类各项去合并,系数化“1”注意了。同乘除正无防碍,同乘除负也变号。解一元一次不等式组
大于头来小于尾,大小不一中间找。大大小小没有解,四种情况全来了。同向取两边,异向取中间。中间无元素,无解便出现。
幼儿园小鬼当家,(同小相对取较小)敬老院以老为荣,(同大就要取较大)军营里没老没少。(大小小大就是它)大大小小解集空。(小小大大哪有哇)解一元二次不等式
首先化成一般式,构造函数第二站。
判别式值若非负,曲线横轴有交点。A正开口它向上,大于零则取两边。代数式若小于零,解集交点数之间。方程若无实数根,口上大零解为全。小于零将没有解,开口向下正相反。用平方差公式因式分解
异号两个平方项,因式分解有办法。两底和乘两底差,分解结果就是它。用完全平方公式因式分解
两平方项在两端,底积2倍在中部。同正两底和平方,全负和方相反数。分成两底差平方,方正倍积要为负。两边为负中间正,底差平方相反数。一平方又一平方,底积2倍在中路。三正两底和平方,全负和方相反数。分成两底差平方,两端为正倍积负。两边若负中间正,底差平方相反数。用公式法解一元二次方程
要用公式解方程,首先化成一般式。调整系数随其后,使其成为最简比。确定参数abc,计算方程判别式。判别式值与零比,有无实根便得知。有实根可套公式,没有实根要告之。用常规配方法解一元二次方程
左未右已先分离,二系化“1”是其次。一系折半再平方,两边同加没问题。左边分解右合并,直接开方去解题。该种解法叫配方,解方程时多练习。用间接配方法解一元二次方程
已知未知先分离,因式分解是其次。调整系数等互反,和差积套恒等式。完全平方等常数,间接配方显优势 【注】 恒等式 解一元二次方程
方程没有一次项,直接开方最理想。如果缺少常数项,因式分解没商量。b、c相等都为零,等根是零不要忘。b、c同时不为零,因式分解或配方,也可直接套公式,因题而异择良方。正比例函数的鉴别
判断正比例函数,检验当分两步走。一量表示另一量,初中数学口诀
上海市同洲模范学校 宋立峰 有理数的加法运算
同号两数来相加,绝对值加不变号。异号相加大减小,大数决定和符号。互为相反数求和,结果是零须记好。【注】“大”减“小”是指绝对值的大小。有理数的减法运算
减正等于加负,减负等于加正。有理数的乘法运算符号法则
同号得正异号负,一项为零积是零。合并同类项
说起合并同类项,法则千万不能忘。只求系数代数和,字母指数留原样 去、添括号法则
去括号或添括号,关键要看连接号。扩号前面是正号,去添括号不变号。括号前面是负号,去添括号都变号。解方程
已知未知闹分离,分离要靠移完成。移加变减减变加,移乘变除除变乘。平方差公式
两数和乘两数差,等于两数平方差。积化和差变两项,完全平方不是它。完全平方公式
二数和或差平方,展开式它共三项。首平方与末平方,首末二倍中间放。和的平方加联结,先减后加差平方。完全平方公式
首平方又末平方,二倍首末在中央。和的平方加再加,先减后加差平方。解一元一次方程
先去分母再括号,移项变号要记牢。同类各项去合并,系数化“1”还没好。求得未知须检验,回代值等才算了。解一元一次方程
先去分母再括号,移项合并同类项。系数化1还没好,准确无误不白忙。因式分解与乘法
和差化积是乘法,乘法本身是运算。积化和差是分解,因式分解非运算。因式分解
两式平方符号异,因式分解你别怕。两底和乘两底差,分解结果就是它。
两式平方符号同,底积2倍坐中央。因式分解能与否,符号上面有文章。
同和异差先平方,还要加上正负号。同正则正负就负,异则需添幂符号。因式分解
一提二套三分组,十字相乘也上数。四种方法都不行,拆项添项去重组。重组无望试求根,换元或者算余数。多种方法灵活选,连乘结果是基础。同式相乘若出现,乘方表示要记住。
【注】 一提(提公因式)二套(套公式)因式分解
一提二套三分组,叉乘求根也上数。五种方法都不行,拆项添项去重组。
对症下药稳又准,连乘结果是基础。二次三项式的因式分解
先想完全平方式,十字相乘是其次。两种方法行不通,求根分解去尝试。比和比例
两数相除也叫比,两比相等叫比例。外项积等内项积,等积可化八比例。分别交换内外项,统统都要叫更比。同时交换内外项,便要称其为反比。前后项和比后项,比值不变叫合比。前后项差比后项,组成比例是分比。两项和比两项差,比值相等合分比。前项和比后项和,比值不变叫等比。解比例
外项积等内项积,列出方程并解之。求比值
由已知去求比值,多种途径可利用。活用比例七性质,变量替换也走红。消元也是好办法,殊途同归会变通。正比例与反比例
商定变量成正比,积定变量成反比。正比例与反比例
变化过程商一定,两个变量成正比。变化过程积一定,两个变量成反比。判断四数成比例
四数是否成比例,递增递减先排序。两端积等中间积,四数一定成比例。判断四式成比例
四式是否成比例,生或降幂先排序。两端积等中间积,四式便可成比例。比例中项
成比例的四项中,外项相同会遇到。有时内项会相同,比例中项少不了。比例中项很重要,多种场合会碰到。成比例的四项中,外项相同有不少。有时内项会相同,比例中项出现了。同数平方等异积,比例中项无处逃。根式与无理式
表示方根代数式,都可称其为根式。根式异于无理式,被开方式无限制。被开方式有字母,才能称为无理式。无理式都是根式,区分它们有标志。被开方式有字母,又可称为无理式。求定义域
求定义域有讲究,四项原则须留意。负数不能开平方,分母为零无意义。指是分数底正数,数零没有零次幂。限制条件不唯一,满足多个不等式。求定义域要过关,四项原则须注意。负数不能开平方,分母为零无意义。分数指数底正数,数零没有零次幂。限制条件不唯一,不等式组求解集。解一元一次不等式
先去分母再括号,移项合并同类项。系数化“1”有讲究,同乘除负要变向。先去分母再括号,移项别忘要变号。同类各项去合并,系数化“1”注意了。同乘除正无防碍,同乘除负也变号。解一元一次不等式组
大于头来小于尾,大小不一中间找。大大小小没有解,四种情况全来了。同向取两边,异向取中间。中间无元素,无解便出现。
幼儿园小鬼当家,(同小相对取较小)敬老院以老为荣,(同大就要取较大)军营里没老没少。(大小小大就是它)大大小小解集空。(小小大大哪有哇)解一元二次不等式
首先化成一般式,构造函数第二站。判别式值若非负,曲线横轴有交点。A正开口它向上,大于零则取两边。代数式若小于零,解集交点数之间。方程若无实数根,口上大零解为全。小于零将没有解,开口向下正相反。用平方差公式因式分解
异号两个平方项,因式分解有办法。两底和乘两底差,分解结果就是它。用完全平方公式因式分解
两平方项在两端,底积2倍在中部。同正两底和平方,全负和方相反数。分成两底差平方,方正倍积要为负。两边为负中间正,底差平方相反数。一平方又一平方,底积2倍在中路。三正两底和平方,全负和方相反数。分成两底差平方,两端为正倍积负。两边若负中间正,底差平方相反数。用公式法解一元二次方程
要用公式解方程,首先化成一般式。调整系数随其后,使其成为最简比。确定参数abc,计算方程判别式。判别式值与零比,有无实根便得知。有实根可套公式,没有实根要告之。用常规配方法解一元二次方程
左未右已先分离,二系化“1”是其次。一系折半再平方,两边同加没问题。左边分解右合并,直接开方去解题。该种解法叫配方,解方程时多练习。用间接配方法解一元二次方程
已知未知先分离,因式分解是其次。调整系数等互反,和差积套恒等式。完全平方等常数,间接配方显优势 【注】 恒等式 解一元二次方程
方程没有一次项,直接开方最理想。如果缺少常数项,因式分解没商量。b、c相等都为零,等根是零不要忘。b、c同时不为零,因式分解或配方,也可直接套公式,因题而异择良方。正比例函数的鉴别
判断正比例函数,检验当分两步走。一量表示另一量,是与否。
若有还要看取值,全体实数都要有。正比例函数是否,辨别需分两步走。一量表示另一量,有没有。
若有再去看取值,全体实数都需要。区分正比例函数,衡量可分两步走。
一量表示另一量,是与否。
若有还要看取值,全体实数都要有。正比例函数的图象与性质
正比函数图直线,经过 和原点。K正一三负二四,变化趋势记心间。K正左低右边高,同大同小向爬山。K负左高右边低,一大另小下山峦。一次函数
一次函数图直线,经过 点。
K正左低右边高,越走越高向爬山。K负左高右边低,越来越低很明显。K称斜率b截距,截距为零变正函。反比例函数
反比函数双曲线,经过 点。
K正一三负二四,两轴是它渐近线。K正左高右边低,一三象限滑下山。K负左低右边高,二四象限如爬山。二次函数
二次方程零换y,二次函数便出现。全体实数定义域,图像叫做抛物线。抛物线有对称轴,两边单调正相反。A定开口及大小,线轴交点叫顶点。顶点非高即最低。上低下高很显眼。如果要画抛物线,平移也可去描点,提取配方定顶点,两条途径再挑选。列表描点后连线,平移规律记心间。左加右减括号内,号外上加下要减。二次方程零换y,就得到二次函数。图像叫做抛物线,定义域全体实数。A定开口及大小,开口向上是正数。绝对值大开口小,开口向下A负数。抛物线有对称轴,增减特性可看图。线轴交点叫顶点,顶点纵标最值出。如果要画抛物线,描点平移两条路。提取配方定顶点,平移描点皆成图。列表描点后连线,三点大致定全图。若要平移也不难,先画基础抛物线,顶点移到新位置,开口大小随基础。【注】基础抛物线 直线、射线与线段
直线射线与线段,形状相似有关联。直线长短不确定,可向两方无限延。射线仅有一端点,反向延长成直线。线段定长两端点,双向延伸变直线。两点定线是共性,组成图形最常见。角
一点出发两射线,组成图形叫做角。共线反向是平角,平角之半叫直角。平角两倍成周角,小于直角叫锐角。直平之间是钝角,平周之间叫优角。互余两角和直角,和是平角互补角。一点出发两射线,组成图形叫做角。平角反向且共线,平角之半叫直角。平角两倍成周角,小于直角叫锐角。钝角界于直平间,平周之间叫优角。和为直角叫互余,互为补角和平角。证等积或比例线段
等积或比例线段,多种途径可以证。
证等积要改等比,对照图形看特征。共点共线线相交,平行截比把题证。三点定型十分像,想法来把相似证。图形明显不相似,等线段比替换证。换后结论能成立,原来命题即得证。实在不行用面积,射影角分线也成。只要学习肯登攀,手脑并用无不胜。解无理方程
一无一有各一边,两无也要放两边。乘方根号无踪迹,方程可解无负担。两无一有相对难,两次乘方也好办。特殊情况去换元,得解验根是必然。解分式方程
先约后乘公分母,整式方程转化出。特殊情况可换元,去掉分母是出路。求得解后要验根,原留增舍别含糊。列方程解应用题
列方程解应用题,审设列解双检答。审题弄清已未知,设元直间两办法。列表画图造方程,解方程时守章法。检验准且合题意,问求同一才作答。添加辅助线
学习几何体会深,成败也许一线牵。分散条件要集中,常要添加辅助线。畏惧心理不要有,其次要把观念变。熟能生巧有规律,真知灼见靠实践。图中已知有中线,倍长中线把线连。旋转构造全等形,等线段角可代换。多条中线连中点,便可得到中位线。倘若知角平分线,既可两边作垂线。也可沿线去翻折,全等图形立呈现。角分线若加垂线,等腰三角形可见。角分线加平行线,等线段角位置变。已知线段中垂线,连接两端等线段。辅助线必画虚线,便与原图联系看。两点间距离公式
同轴两点求距离,大减小数就为之。与轴等距两个点,间距求法亦如此。平面任意两个点,横纵标差先求值。差方相加开平方,距离公式要牢记。矩形的判定
任意一个四边形,三个直角成矩形; 对角线等互平分,四边形它是矩形。已知平行四边形,一个直角叫矩形; 两对角线若相等,理所当然为矩形。菱形的判定
任意一个四边形,四边相等成菱形; 四边形的对角线,垂直互分是菱形。已知平行四边形,邻边相等叫菱形; 两对角线若垂直,顺理成章为菱形。
第二篇:初中数学知识点
定理 圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角
①直线L和⊙O相交 d<r
②直线L和⊙O相切 d=r
③直线L和⊙O相离 d>r
切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线切线的性质定理 圆的切线垂直于经过切点的半径
推论1 经过圆心且垂直于切线的直线必经过切点
推论2 经过切点且垂直于切线的直线必经过圆心
切线长定理 从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角
圆的外切四边形的两组对边的和相等
弦切角定理 弦切角等于它所夹的弧对的圆周角
推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积相等
第三篇:初中数学知识点总结
初中数学知识点总结过两点有且只有一条直线两点之间线段最短同角或等角的补角相等同角或等角的余角相等过一点有且只有一条直线和已知直线垂直直线外一点与直线上各点连接的所有线段中,垂线段最短平行公理 经过直线外一点,有且只有一条直线与这条直线平行如果两条直线都和第三条直线平行,这两条直线也互相平行同位角相等,两直线平行内错角相等,两直线平行同旁内角互补,两直线平行
12两直线平行,同位角相等两直线平行,内错角相等两直线平行,同旁内角互补定理 三角形两边的和大于第三边推论 三角形两边的差小于第三边三角形内角和定理 三角形三个内角的和等于180°推论1 直角三角形的两个锐角互余推论2 三角形的一个外角等于和它不相邻的两个内角的和推论3 三角形的一个外角大于任何一个和它不相邻的内角全等三角形的对应边、对应角相等
22边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等23 角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等边边边公理(SSS)有三边对应相等的两个三角形全等斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等定理2 到一个角的两边的距离相同的点,在这个角的平分线上角的平分线是到角的两边距离相等的所有点的集合等腰三角形的性质定理 等腰三角形的两个底角相等(即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边
等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°
等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
第四篇:初中数学知识点归纳:几何
学冠教育-初中数学知识点归纳:几何
初中数学几何公式大全——初中几何公式包括:线、角、圆、正方形、矩形等数学学几何的公式,以供同学们学习和理解!
初中几何公式:线
同角或等角的余角相等
过一点有且只有一条直线和已知直线垂直
过两点有且只有一条直线
两点之间线段最短
同角或等角的补角相等
直线外一点与直线上各点连接的所有线段中,垂线段最短
平行公理
经过直线外一点,有且只有一条直线与这条直线平行
如果两条直线都和第三条直线平行,这两条直线也互相平行
初中几何公式:角
同位角相等,两直线平行
内错角相等,两直线平行
同旁内角互补,两直线平行
两直线平行,同位角相等
两直线平行,内错角相等
两直线平行,同旁内角互补
初中几何公式:三角形
定理
三角形两边的和大于第三边
推论
三角形两边的差小于第三边
三角形内角和定理
三角形三个内角的和等于
180°
推论
直角三角形的两个锐角互余
推论
三角形的一个外角等于和它不相邻的两个内角的和
推论
三角形的一个外角大于任何一个和它不相邻的内角
全等三角形的对应边、对应角相等
边角边公理
有两边和它们的夹角对应相等的两个三角形全等
角边角公理
有两角和它们的夹边对应相等的两个三角形全等
推论
有两角和其中一角的对边对应相等的两个三角形全等
边边边公理
有三边对应相等的两个三角形全等
斜边、直角边公理
有斜边和一条直角边对应相等的两个直角三角形全等
定理
在角的平分线上的点到这个角的两边的距离相等
定理
到一个角的两边的距离相同的点,在这个角的平分线上
角的平分线是到角的两边距离相等的所有点的集合资
初中几何公式:等腰三角形
等腰三角形的性质定理
等腰三角形的两个底角相等
推论
等腰三角形顶角的平分线平分底边并且垂直于底边
等腰三角形的顶角平分线、底边上的中线和高互相重合33
推论
等边三角形的各角都相等,并且每一个角都等于
60°
等腰三角形的判定定理
如果一个三角形有两个角相等,那么这两个角所对的边也相
等(等角对等边)
推论
三个角都相等的三角形是等边三角形
推论
有一个角等于
60°的等腰三角形是等边三角形
在直角三角形中,如果一个锐角等于
30°那么它所对的直角边等于斜边的一半
直角三角形斜边上的中线等于斜边上的一半
定理
线段垂直平分线上的点和这条线段两个端点的距离相等
逆定理
和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42
定理
关于某条直线对称的两个图形是全等形
定理
如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
定理
两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
逆定理
如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这
条直线对称
勾股定理
直角三角形两直角边
a、b的平方和、等于斜边
c的平方,即
a+b=c
勾股定理的逆定理
如果三角形的三边长
a、b、c
有关系
a+b=c,那么这个三角形是
直角三角形
初中几何公式:四边形
定理
四边形的内角和等于
360°
四边形的外角和等于
360°
多边形内角和定理
n
边形的内角的和等于(n-2)×180°
推论
任意多边的外角和等于
360°
平行四边形性质定理
平行四边形的对角相等
平行四边形性质定理
平行四边形的对边相等
推论
夹在两条平行线间的平行线段相等
平行四边形性质定理
平行四边形的对角线互相平分
平行四边形判定定理
两组对角分别相等的四边形是平行四边形
平行四边形判定定理
两组对边分别相等的四边形是平行四边形
平行四边形判定定理
对角线互相平分的四边形是平行四边形
要
平行四边形判定定理
一组对边平行相等的四边形是平行四边形
初中几何公式:矩形
矩形性质定理
矩形的四个角都是直角
矩形性质定理
矩形的对角线相等
矩形判定定理
有三个角是直角的四边形是矩形
矩形判定定理
对角线相等的平行四边形是矩形
初中几何公式:菱形
菱形性质定理
菱形的四条边都相等
菱形性质定理
菱形的对角线互相垂直,并且每一条对角线平分一组对角
菱形面积=对角线乘积的一半,即
S=(a×b)÷2
菱形判定定理
四边都相等的四边形是菱形
菱形判定定理
对角线互相垂直的平行四边形是菱形
初中几何公式:正方形
正方形性质定理
正方形的四个角都是直角,四条边都相等
正方形性质定理
正方形的两条对角线相等,并且互相垂直平分,每条对角线平分
一组对角
定理
关于中心对称的两个图形是全等的72
定理
关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平
分
逆定理
如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个
图形关于这一点对称
初中几何公式:等腰梯形
等腰梯形性质定理
等腰梯形在同一底上的两个角相等
等腰梯形的两条对角线相等
等腰梯形判定定理
在同一底上的两个角相等的梯形是等腰梯形
对角线相等的梯形是等腰梯形
初中几何公式:等分
平行线等分线段定理
如果一组平行线在一条直线上截得的线段
相等,那么在其他
直线上截得的线段也相等
推论
经过梯形一腰的中点与底平行的直线,必平分另一腰
推论
经过三角形一边的中点与另一边平行的直线,必平分第三边
三角形中位线定理
三角形的中位线平行于第三边,并且等于它的一半
梯形中位线定理
梯形的中位线平行于两底,并且等于两底和的一半
L=(a+b)÷2
S=L×h
(1)比例的基本性质
如果
a:b=c:d,那么
ad=bc
如果
ad=bc,那么
a:b=c:d
(2)合比性质
如果
a/b=c/d,那么(a±b)/b=(c±d)/d
要
资料
(3)等比性质
如果
a/b=c/d=…=m/n(b+d+…+n≠0),那么
(a+c+…+m)/(b+d+…+n)=a/b
平行线分线段成比例定理
三条平行线截两条直线,所得的对应线段成比例
推论
平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比
例
定理
如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么
这条直线平行于三角形的第三边
平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三
角形三边对应成比例
定理
平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形
与原三角形相似
相似三角形判定定理
两角对应相等,两三角形相似(ASA)
直角三角形被斜边上的高分成的两个直角三角形和原三角形相似
判定定理
两边对应成比例且夹角相等,两三角形相似(SAS)
判定定理
三边对应成比例,两三角形相似(SSS)
定理
如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条
直角边对应成比例,那么这两个直角三角形相似
性质定理
相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似
比
性质定理
相似三角形周长的比等于相似比
性质定理
相似三角形面积的比等于相似比的平方
任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦
值
任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切
值
初中几何公式:圆
圆是定点的距离等于定长的点的集合102
圆的内部可以看作是圆心的距离小于半径的点的集合103
圆的外部可以看作是圆心的距离大于半径的点的集合104
同圆或等圆的半径相等
到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆
和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线
到已知角的两边距离相等的点的轨迹,是这个角的平分线
到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线
定理
不在同一直线上的三个点确定一条直线
垂径定理
垂直于弦的直径平分这条弦并且平分弦所对的两条弧
推论
①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧
资料
W
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
112
推论
圆的两条平行弦所夹的弧相等
113
圆是以圆心为对称中心的中心对称图形
114
定理
在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等
115
推论
在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一
组量相等那么它们所对应的其余各组量都相等
116
定理
一条弧所对的圆周角等于它所对的圆心角的一半
117
推论
同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相
等
118
推论
半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径
119
推论
如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形
120
定理
圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角
121①直线
L
和⊙O
相交
d﹤
r
②直线
L
和⊙O
相切
d=r
③直线
L
和⊙O
相离
d﹤
r
122
切线的判定定理
经过半径的外端并且垂直于这条半径的直线是圆的切线
123
切线的性质定理
圆的切线垂直于经过切点的半径
124
推论
经过圆心且垂直于切线的直线必经过切点
125
推论
经过切点且垂直于切线的直线必经过圆心
126
切线长定理
从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连
线平分两条切线的夹角
127
圆的外切四边形的两组对边的和相等
128
弦切角定理
弦切角等于它所夹的弧对的圆周角
129
推论
如果两个弦切角所夹的弧相等,那么这两个弦切角也相等
130
相交弦定理
圆内的两条相交弦,被交点分成的两条线段长的积相等
131
推论
如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中
项
132
切割线定理
从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条
线段长的比例中项
133
推论
从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等
134
如果两个圆相切,那么切点一定在连心线上
135①两圆外离
d﹤
R+r
②两圆外切
d=R+r
③两圆相交
R
-r﹤
d﹤
R
+r(R
﹤
r)
④两圆内切
d=R
-r(R
﹤
r)
⑤两圆内含
d﹤
R
-r(R
﹤
r)
要
资
136
定理
相交两圆的连心线垂直平分两圆的公共弦
137
定理
把圆分成n(n≥3):
⑴依次连结各分点所得的多边形是这个圆的内接正
n
边形
⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正
n
边
形
138
定理
任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆
139
正
n
边形的每个内角都等于(n-2)×180°/n
140
定理
正
n
边形的半径和边心距把正
n
边形分成2n
个全等的直角三角形
141
正
n
边形的面积
Sn=pnrn/2
p
表示正
n
边形的周长
142
正三角形面积√3a/4
a
表示边长
143
如果在一个顶点周围有
k
个正
n
边形的角,由于这些角的和应为
360°,因此
k×(n-2)180°/n=360°化为(n-2)(k-2)=4
144
弧长计算公式:L=n∏R/180
145
扇形面积公式:S
扇形=n∏R
/360=LR
/2
146
内公切线长=
d-(R-r)
外公切线长=
d-(R+r)
第五篇:初中数学证明题知识点(本站推荐)
北师大版初中证明题知识点大全
一、相交线与平行线
1、平行线的性质
(1)两线平行,内错角相等(2)两线平行,同位角相等(3)两线平行,同旁内角互补
2、平行线的判定
(1)内错角相等,两线平行(2)同位角相等,两线平行(3)同旁内角互补,两线平行(4)同平行于一线的两线平行(5)同垂直于一线的两线平行
二、角平分线
1、角平分线的性质
定义:角平分线上的点到这个角的两边的距离相等.2、角平分线的判定
(1)在一个角的内部,到角的两边距离相等的点在这个角的平分线上.(2)把一个角分成相同角度的线叫做角平分线。
3、三角形三内角的平分线性质:三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等.三、垂直平分线
1、垂直平分线的意义及性质
(1)定义:垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线。(2)性质:线段垂直平分线上的点到这条线段两个端点的距离相等。(3)三角形三条边的垂直平分线的性质:三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.2、垂直平分线的判定
线段的中线并且垂直于这条线段 四、三角形全等
1、全等三角形的判定
(1)定理:三边分别相等的两个三角形全等.(SSS)(2)定理:两边及其夹角分别相等的两个三角形全等.(SAS)(3)定理:两角及其夹边分别相等的两个三角形全等.(ASA)
(4)定理:两角分别相等且其中一组等角的对边相等的两个三角形全 等.(AAS)(5)定理:斜边和一条直角边分别相等的两个直角三角形全等.(HL)
2、全等三角形的性质
全等三角形对应边相等、对应角相等.五、相似三角形
1.定义:对应角相等,对应边成比例的两个三角形叫相似三角形. 2.相似比定义:相似三角形对应边的比. 3.相似三角形的判定
(1)对应边相等,对应角成比例。(2)两角对应相等的两个三角形相似。AA(3)两角对应成比例且夹角相等的两个三角形相似。SAS(4)三边对应成比例的两个三角形相似。SSS 4.相似三角形的性质:对应角相等,对应边成比例。
5、相似多边形的周长比等于相似比,面积比等于相似比的平方。
六、勾股定理
222(1)若三角形三边长a,b,c满足abc,那么这个三角形是直角三角形三角形
222(2)若abc,时,以a,b,c为三边的三角形是三角形; 222(3)若abc,时,以a,b,c为三边的三角形是三角形;
(4)用含字母的代数式表示n组勾股数:
2n1,2n,n1(n2,n为正整数);
2n1,2n22n,2n22n1(n为正整数)m2n2,2mn,m2n2(mn,m,n为正整数)
七、等腰三角形
1、等腰三角形的定义:有两条边相等的三角形叫做等腰三角形。
2、等腰三角形的性质:(1)等腰三角形的两个底角相等
(2)等腰三角形顶角的平分线、底边上的中线、底边上的高重合(也称“三线合一”),(3)等腰三角形是轴对称图形,等腰三角形顶角的平分线、底边上的中线、底边上的高它们所在的直线都是等腰三角形的对称轴。
3、等腰三角形的判定:
(1)有两条边相等的三角形是等腰三角形。
(2)如果一个三角形有两个角相等,那么它们所对的边也相等
八、等边三角形
1、等边三角形:三边都相等的三角形叫做等边三角形。
2、等边三角形的性质:
(1)具有等腰三角形的所有性质。
(2)等边三角形的各个角都相等,并且每个角都等于60°。
3、等边三角形的判定
(1)三边都相等的三角形是等边三角形。(2):三个角都相等的三角形是等边三角形(3):有一个角是60°的等腰三角形是等边三角形。
九、直角三角形
1、直角三角形的性质
(1)定理:直角三角形的两个锐角互余.(2)定理:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.(3)勾股定理:直角三角形两条直角边的平方和等于斜边的平方.(4)直角三角形斜边上的中线等于斜边上的一半。
2、直角三角形的判定
(1)定理:有两个角互余的三角形是直角三角形.(2)定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形.十、平行四边形
1、平行四边形的性质
(1)定理:平行四边形的对边相等.(2)定理:平行四边形的对角相等.(3)定理:平行四边形的对角线互相平分.(4)平行四边形是中心对称图形,两条对角线的交点是它的对称中心.2、平行四边形的判定
(1)定义:两组对边分别平行的四边形是平行四边形.(2)定理:两组对边分别相等的四边形是平行四边形.(3)定理:一组对边平行且相等的四边形是平行四边形.(4)定理:对角线互相平分的四边形是平行四边形.十一、特殊平行四边形
菱形
1、菱形定义:有一组邻边相等的平行四边形叫做菱形. 菱形(1)是平行四边形;(2)一组邻边相等.
2、菱形的性质:具有平行四边形的所有性质。还有以下个性:(1)菱形的四条边都相等;
(2)菱形的对角线互相垂直,并且每条对角线平分一组对角;(3)菱形既是中心对称图形,又是轴对称图形。
3、菱形的判定
(1)对角线互相垂直的平行四边形是菱形.
注意此方法包括两个条件:是一个平行四边形;两条对角线互相垂直.(2)四边都相等的四边形是菱形.
矩形
1、矩形定义:有个一角是直角的平行四边形叫做矩形(1)矩形是特殊的平行四边形;(2)有一个角是直角.
2、矩形的性质:具有平行四边形的所以性质。还有以下个性: 性质1 矩形的四个角都是直角; 性质2 矩形的对角线相等。
矩形既是中心对称图形,又是轴对称图形。
3、矩形的判定:
(1)有一个内角是直角的平行四边形叫矩形(定义法)(2)对角线互相平分且相等的平行四边形是矩形.
注意此方法包括两个条件:(1)是一个平行四边形;(2)对角线相等(3)都是直角的四边形是矩形.
(4)直角三角形斜边上的中线等于斜边的一半。
正方形
1、正方形的定义:有一组对边直平行且相等,并且有一个角是直角的平行四边形叫做正方形。
注意:
1、正方形概念的三个要点:(1)是平行四边形;(2)有一组邻边相等;(3)有一个角是直角.
强调:正方形是在平行四边形的前提下定义的,它包含两层意思: ①有一组邻边相等的平行四边形(菱形),②有一个角是直角的平行四边形(矩形)。
说明:正方形不仅是特殊的平行四边形,而且是特殊的矩形,还是特殊的菱形.
2、正方形的性质:具有平行四边形、矩形、菱形的所有性质:(1)边:两组对边平行且相等;(2)角:四个角都是直角;
(3)对角线:对角线相等,互相垂直平分,每条对角线平分一组对角.(4)正方形是中心对称图形,对称中心是对角线的交点;
(5)正方形又是轴对称图形,对称轴是对边中点的连线和对角线所在直线,共有四条对称轴;
注意:正方形的一条对角线把正方形分成两个全等的等腰直角三角形,对角线与边的夹角是45°;正方形的两条对角线把它分成四个全等的等腰直角三角形,这是正方形的特殊性质.
3、正方形的判定方法:
(1)有一组邻边相等的矩形是正方形;(2)对角线互相垂直的矩形是正方形;(3)有一个角是直角的菱形是正方形;(4)对角线相等的菱形是正方形.注意:要确定一个四边形是正方形,应先确定它是矩形或是菱形,然后再加上相应的条件,确定是正方形.十二、梯形
1、梯形的定义:一组对边平行且另一组对边不平行的四边形叫做梯形。
2、等腰梯形定义:两条腰相等的梯形叫做等腰梯形。
3、直角梯形定义:一条腰和底边垂直梯形叫做直角梯形。
4、等腰梯形的性质:等腰梯形同一底上的两个内角相等,对角线相等。
6、等腰梯形的判定:同一同一底上的两个内角相等的梯形是等腰梯形。十三、三角形高,中线,角平分线,中位线
三角形的角平分线
1、定义:在三角形中,一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。
2、性质:三角形的三条角平分线交于一点。交点在三角形的内部。
三角形的中线:
1、定义:在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。
2、性质:三角形的三条中线交于一点,交点在三角形的内部。三角形的高线:
1、定义:从三角形一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。
2、性质:三角形的三条高所在的直线交于一点。锐角三角形的三条高线的交点在它的内部;直角三角形的三条高线的交点是它的斜边的中点;钝角三角形的三条高所在的直线的交点在它的外部;
三角形的中位线
定义:连接三角形两边中点的线段叫做三角形的中位线.性质:三角形的中位线平行于第三边,且等于第三边的一半.3、由三角形的三条中位线,可以得出以下结论:
三条中位线组成一个三角形,其周长为原三角形周长的一半; 三条中位线将原三角形分割成四个全等的三角形; 三条中位线将三角形划分出三个面积相等的平行四边形.十四、三角形内角和,补角,余角,外角
1、三角形的内角的关系:
三角形三个内角和等于180°。直角三角形的两个锐角互余。
2、余角、补角和对顶角(1)余角:
定义:如果两个角的和是直角,那么称这两个角互为余角。性质:同角或等角的余角相等。(2)补角:
定义:如果两个角的和是平角,那么称这两个角互为补角。性质:同角或等角的补角相等。(3)对顶角:
定义:我们把两条直线相交所构成的四个角中,有公共顶点且角的两边互为反向延长线的两个角叫做对顶角。对顶角的性质:对顶角相等。
3、外角
三角形的一个外角等于它不相邻的两个内角之和。
十五、多边形的内角和与外角和
(n2)·180°.定理:n边形的内角和等于定理:多边形的外角和都等于360°.1n(n3)2备注:n边形共有条对角线.