高中立体几何最佳解题方法及考题详细解答

时间:2019-05-12 17:22:21下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《高中立体几何最佳解题方法及考题详细解答》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《高中立体几何最佳解题方法及考题详细解答》。

第一篇:高中立体几何最佳解题方法及考题详细解答

高中立体几何最佳解题方法总结

一、线线平行的证明方法

1、利用平行四边形;

2、利用三角形或梯形的中位线;

3、如果一条直线和一个平面平行,经过这条直线的平面与这个相交,那么这条直线和交线平行。(线面平行的性质定理)

4、如果两个平行平面同时和第三个平面相交,那么它们的交线平行。(面面平行的性质定理)

5、如果两条直线垂直于同一个平面,那么这两条直线平行。(线面垂直的性质定理)

6、平行于同一条直线的两个直线平行。

7、夹在两个平行平面之间的平行线段相等。

二、线面平行的证明方法

1、定义法:直线和平面没有公共点。

2、如果平面外的一条直线和这个平面内的一条直线平行,那么这条直线就和这个平面平行。(线面平行的判定定理)

3、两个平面平行,其中一个平面内的任意一条直线必平行于另一个平面。

4、反证法。

三、面面平行的证明方法

1、定义法:两个平面没有公共点。

2、如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行。(面面平行的判定定理)

3、平行于同一个平面的两个平面平行。

4、经过平面外一点,有且只有一个平面与已知平面平行。

5、垂直于同一条直线的两个平面平行。

四、线线垂直的证明方法

1、勾股定理;

2、等腰三角形;

3、菱形对角线;

4、圆所对的圆周角是直角;

5、点在线上的射影;

6、如果一条直线和这个平面垂直,那么这条直线和这个平面内的任意直线都垂直。

7、在平面内的一条直线,如果和这个平面一条斜线垂直,那么它也和这条斜线的射影垂直。(三垂线定理)

8、在平面内的一条直线,如果和这个平面一条斜线的射影垂直,那么它也和这条斜线垂直。

9、如果两条平行线中的一条垂直于一条直线,那么另一条也垂直于这条直线。

五、线面垂直的证明方法:

1、定义法:直线与平面内的任意直线都垂直;

2、点在面内的射影;

3、如果一条直线和一个平面内的两条相交直线垂直,那么这条直线就和这个平面垂直。(线面垂直的判定定理)

4、如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线必垂直于另一个平面。(面面垂直的性质定理)

5、两条平行直线中的一条垂直于平面,那么另一条必垂直于这个平面。

6、一条直线垂直于两个平行平面中的一个平面,那么这条直线必垂直于另一个平面。

7、两相交平面同时垂直于第三个平面,那么它们的交线必垂直于第三个平面。

8、过一点,有且只有一条直线与已知平面垂直。

9、过一点,有且只有一个平面与已知直线垂直。

六、面面垂直的证明方法:

1、定义法:两个平面的二面角是直二面角;

2、如果一个平面经过另一个平面的一条垂线,那么这两个平面垂直;(面面垂直的判定定理)

3、如果一个平面与另一个平面的垂线平行,那么这两个平面互相垂直。

4、如果一个平面与另一个平面的垂面平行,那么这两个平面互相垂直。

a

a

高中立体几何经典考题及方法汇总

1线面平行的判定

1、如图,在正方体ABCDA1B1C1D1中,E是AA1的中点,求证: AC1//平面BDE。

证明:连接AC交BD于O,连接EO,∵E为AA1的中点,O为AC的中点 ∴EO为三角形A1AC的中位线 ∴EO//AC1 又EO在平面BDE内,AC1在平面BDE外

∴AC1//平面BDE。

2线面垂直的判定

2、已知ABC中ACB90,SA面ABC,ADSC,求证:AD面SBC. 证明:∵ACB90°BCAC

又SA面ABCSABC

BC面SACBCAD

3线面平行的判定(利用平行四边形),线面垂直的判定

3、已知正方体ABCDA1B1C1D1,O是底ABCD对角线的交点.又SCAD,SCBCCAD面SBC

A

D

1B

C

D

C

S

A

C

B

D1A1

BC1

面AB1D1.求证:(1)C1O∥面AB1D1;(2)AC1

证明:(1)连结A1C1,设

AC11B1D1O1,连结AO1

D

A

B

C

∵ ABCDA1B1C1D1是正方体A1ACC1是平行四边形

∴A1C1∥AC且 AC11AC又O1,O分别是AC11,AC的中点,∴O1C1∥AO且O1C1AO

AOC1O1是平行四边形C1O∥AO1,AO1

面AB1D1,C1O面AB1D1∴C1O∥面AB1D1

(2)CC1面A1B1C1D1CC!1B1D又

∵AC11B1D1

同理可证

ACAD11,B1D1面A1C1C即A1CB 1D1,又

D1B1AD1D1

面AB1D1AC1

4线面垂直的判定

4、正方体ABCDA'B'C'D'中,求证:(1)AC平面B'D'DB;(2)BD'平面ACB'.5 线面平行的判定(利用平行四边形)

5、正方体ABCD—A1B1C1D1中.(1)求证:平面A1BD∥平面B1D1C;(2)若E、F分别是AA1,CC1的中点,求证:平面EB1D1∥平面FBD. 证明:(1)由B1B∥DD1,得四边形BB1D1D是平行四边形,∴B1D1∥BD,又BD 平面B1D1C,B1D1平面B1D1C,∴BD∥平面B1D1C. 同理A1D∥平面B1D1C.

而A1D∩BD=D,∴平面A1BD∥平面B1CD.

A

(2)由BD∥B1D1,得BD∥平面EB1D1.取BB1中点G,∴AE∥B1G.

从而得B1E∥AG,同理GF∥AD.∴AG∥DF.∴B1E∥DF.∴DF∥平面EB1D1.∴平面EB1D1∥平面FBD.

6三垂线定理

6、如图P是ABC所在平面外一点,PAPB,CB平面PAB,M是PC的中点,N是AB上的点,AN3NB

(1)求证:MNAB;(2)当APB90,AB2BC4时,求MN的长。证明:(1)取PA的中点Q,连结MQ,NQ,∵M是PB的中点,M∴MQ//BC,∵ CB平面PAB,∴MQ平面PAB∴QN是MN在平面PAB内的射影,取 AB的中点D,连结 PD,∵PAPB,∴CPDAB,又AN3NB,∴BNND∴QN//PD,∴QNAB,由三垂线定理得MN

AB B

P

A

N

(2)∵APB90,PAPB,∴PD

AB2,∴QN1,∵MQ平面PAB.∴MQNQ,且

2MQ

BC

1,∴MN2

7线面平行的判定(利用三角形中位线),面面垂直的判定

7、如图,在正方体ABCDA1B1C1D1中,E是AA1的中点.(1)求证:AC1//平面BDE;(2)求证:平面A1AC平面BDE.证明:(1)设ACBDO,∵E、O分别是AA1、AC的中点,AC1∥EO

平面BDE,EO平面BDE,AC又AC∥平面BDE 1

1(2)∵AA1平面ABCD,BD平面ABCD,AA1BD 又BDAC,ACAA1A,BD平面A1AC,BD平面BDE,平面BDE平面A1AC

8线面垂直的判定,构造直角三角形

8、已知ABCD是矩形,PA平面ABCD,AB2,PAAD4,E为BC的中点.

(1)求证:DE平面PAE;(2)求直线DP与平面PAE所成的角. 证明:在ADE中,ADAEDE,AEDE ∵PA平面ABCD,DE平面ABCD,PADE 又PAAEA,DE平面PAE(2)DPE为DP与平面PAE所成的角

在Rt

PAD,PDRt

DCE中,DE在RtDEP中,PD2DE,DPE30

9线面垂直的判定,构造直角三角形,面面垂直的性质定理,二面角的求法(定义法)

9、如图,在四棱锥PABCD中,底面ABCD是DAB60且边长为a的菱形,侧面PAD是等边三角形,且平面PAD垂直于底面ABCD.

(1)若G为AD的中点,求证:BG平面PAD;(2)求证:ADPB;

(3)求二面角ABCP的大小. 证明:(1)ABD为等边三角形且G为AD的中点,BGAD 又平面PAD平面ABCD,BG平面PAD

(2)PAD是等边三角形且G为AD的中点,ADPG 且ADBG,PGBGG,AD平面PBG,22

2PB平面PBG,ADPB

(3)由ADPB,AD∥BC,BCPB 又BGAD,AD∥BC,BGBC PBG为二面角ABCP的平面角

在RtPBG中,PGBG,PBG450 10线面垂直的判定,运用勾股定理寻求线线垂直

平面MBD.

10、如图1,在正方体ABCDA1B1C1D1中,M为CC1 的中点,AC交BD于点O,求证:AO

1证明:连结MO,A1M,∵DB⊥A1A,DB⊥AC,A1AACA,平面A1ACC1 ∴DB⊥AO∴DB⊥平面A1ACC1,而AO1.1

设正方体棱长为a,则AO1

3a,MO2a2. 2

4.在Rt△ACA1M211M中,9222

2OO

M∵AO,∴AMOA1Ma.11

∵OM∩DB=O,∴ AO1⊥平面MBD.

11线面垂直的判定

11、如图2,在三棱锥A-BCD中,BC=AC,AD=BD,作BE⊥CD,E为垂足,作AH⊥BE于H.求证:AH⊥平面BCD.证明:取AB的中点F,连结CF,DF.∵ACBC,∴CFAB.

∵ADBD,∴DFAB.

又CFDFF,∴AB平面CDF.∵CD平面CDF,∴CDAB.又CDBE,BEABB,∴CD平面ABE,CDAH.

∵AHCD,AHBE,CDBEE,∴ AH平面BCD. 12线面垂直的判定,三垂线定理

12、证明:在正方体ABCD-A1B1C1D1中,A1C⊥平面BC1D

A

C

证明:连结AC

⊥AC∵BD∴ AC为A1C在平面AC上的射影

BDA1C

A1C平面BC1D

同理可证A1CBC1

第二篇:高中立体几何证明方法

高中立体几何

一、平行与垂直关系的论证

由判定定理和性质定理构成一套完整的定理体系,在应用中:低一级位置关系判定高一级位置关系;高一级位置关系推出低一级位置关系,前者是判定定理,后者是性质定理。1.线线、线面、面面平行关系的转化:

面面平行性质

//

a,

ab

//b)

线面平行性质

////



a

b

a//a//b

//

a

//

a//

2.线线、线面、面面垂直关系的转化:

在内射影a

则aOAaPOaPOaAO

l

线面垂直定义



a



la



ba a,ab



a a

面面垂直定义

l,且二面角l

成直二面角



3.平行与垂直关系的转化:

a//ba

a

a

b

a



//

面面平行判定2 面面平行性质

3ab

a//b

//a

a

4.应用以上“转化”的基本思路——“由求证想判定,由已知想性质。”5.唯一性结论:

二、三类角

1.三类角的定义:

(1)异面直线所成的角θ:0°<θ≤90°

(2)直线与平面所成的角:0°≤θ≤90°(0时,b∥或b

)

(3)二面角:二面角的平面角θ,0°<θ≤180°

2.三类角的求法:转化为平面角“一找、二作、三算”即:(1)找出或作出有关的角;(2)证明其符合定义;(3)指出所求作的角;(4)计算大小。

(三)空间距离:求点到直线的距离,经常应用三垂线定理作出点到直线的垂线,然后在相关三角形中求解。求点到面的距离,一般找出(或作出)过此点与已知平面垂直的平面利用面面垂直的性质求之也可以利用“三棱锥体积法”直接求距离,直线与平面的距离,面面距离都可转化为点到面的距离。

第三篇:高中数列解题方法

1.公式法:

等差数列求和公式:Sn

n(a1an)n(n-1)na1d 2

2Snna1(q1)

等比数列求和公式:a1(1-qn)(a1-anq)Sn(q1)1q1q

等差数列通项公式:ana1(n1)d

等比数列通项公式:ana1qn

12.错位相减法

适用题型:适用于通项公式为等差的一次函数乘以等比的数列形式 和等差等比数列相乘{an},{bn}分别是等差数列和等比数列.Sna1b1a2b2a3b3...anbn

例题:

已知ana1(n1)d,bna1qn1,cnanbn,求{cn}的前n项和Sn

3.倒序相加法

这是推导等差数列的前n项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n个(a1an)

例题:已知等差数列{an},求该数列前n项和Sn

4.分组法

有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.5.裂项法

适用于分式形式的通项公式,把一项拆成两个或多个的差的形式,即然后累加时抵消中间的许多项。

常用公式:

111n(n1)nn1

1111(2)()(2n1)(2n1)22n12n1 11(3)(a)aba(1)

例题:求数列an1的前n项和S

n n(n1)

小结:此类变形的特点是将原数列每一项拆为两项之后,其中中间的大部分项都互相抵消了。只剩下有限的几项。

注意: 余下的项具有如下的特点

1余下的项前后的位置前后是对称的。

2余下的项前后的正负性是相反的。

6.数学归纳法

一般地,证明一个与正整数n有关的命题,有如下步骤:

(1)证明当n取第一个值时命题成立;

(2)假设当n=k(k≥n的第一个值,k为自然数)时命题成立,证明当n=k+1时命题也成立。

例题:求证: 1×2×3×4 + 2×3×4×5 + 3×4×5×6 + …… + n(n+1)(n+2)(n+3)= n(n1)(n2)(n3)(n4)5

7.通项化归

先将通项公式进行化简,再进行求和。

8.(备用)a3b3(ab)(a2abb2)

ab(ab)(aabb)3322

第四篇:高中理科数学解析几何解题方法集锦

22弦长问题:|AB|=(1k)[(x1x2)4x1x2]。

Ⅰ.求曲线的方程

1.曲线的形状已知这类问题一般可用待定系数法解决。

分析:曲线的形状已知,可以用待定系数法。

2.曲线的形状未知-----求轨迹方程这种方法叫做直接法。

一般地,如果选择了m个参数,则需要列出m+1个方程。

Ⅱ.研究圆锥曲线有关的问题

1.有关最值问题

2.有关范围问题

分析:这是一道直线与圆锥曲线位置关系的问题,对于(1),可以设法得到关于a的不等式,通过解不等式求出a的范围,即:“求范围,找不等式”。或者将a表示为另一个变量的函数,利用求函数的值域求出a的范围;对于(2)首先要把△NAB的面积表示为一个变量的函数,然后再求它的最大值,即:“最值问题,函数思想”。

x2y2

1(ab0),A,B是椭圆上的两点,线段AB的垂直平分线与已知椭圆a2b2

a2b2a2b2

x0x轴相交于点P(x0,0),证明:.aa

第五篇:高中立体几何中线面平行的常见方法

高中立体几何证明平行的专题训练

立体几何中证明线面平行或面面平行都可转化为 线线平行,而证明线线平行一般有以下的一些方法:

(1)通过“平移”。

(2)利用三角形中位线的性质。

(3)利用平行四边形的性质。

(4)利用对应线段成比例。

(5)利用面面平行,等等。

(1)通过“平移”再利用平行四边形的性质

1.如图,四棱锥P-ABCD的底面是平行四边形,点E、F分别为棱AB、PD的中点.求证:AF∥平面PCE;

分析:取PC的中点G,连EG.,FG,则易证AEGF是平行四边形

(第1题图)

2、如图,已知直角梯形ABCD中,AB∥CD,AB⊥BC,AB=1,BC=2,CD=1+,过A作AE⊥CD,垂足为E,G、F分别为AD、CE的中点,现将△ADE沿AE折叠,使得DE⊥EC.(Ⅰ)求证:BC⊥面CDE;(Ⅱ)求证:FG∥面BCD;

分析:取DB的中点H,连GH,HC则易证FGHC

是平行四边形

3、已知直三棱柱ABC-A1B1C1中,D, E, F分别为AA1, CC1, AB的中点,M为BE的中点, AC⊥BE.求证:

(Ⅰ)C1D⊥BC;(Ⅱ)C1D∥平面B1FM.B分析:连EA,易证C1EAD是平行四边形,于是MF//EA

F

A

1D

A4、如图所示, 四棱锥PABCD底面是直角梯形, BAAD,CDAD,CD=2AB, E为PC的中点, 证明: EB//平面PAD;

分析::取PD的中点F,连EF,AF则易证ABEF是

平行四边形

(2)利用三角形中位线的性质

5、如图,已知E、F、G、M分别是四面体的棱AD、CD、BD、BC的中点,求证:

AM∥平面EFG。

分析:连MD交GF于H,易证EH是△AMD的中位线

6、如图,ABCD是正方形,O是正方形的中心,E是PC的中点。求证: PA ∥平面BDE

7.如图,三棱柱ABC—A1B1C1中,D为AC的中点.求证:AB1//面BDC1;

分析:连B1C交BC1于点E,易证ED是

△B1AC的中位线

8、如图,平面ABEF平面ABCD,四边形ABEF与ABCD都是直角梯形,BADFAB900,BC

//

AD,BE

2//

AF,G,H分别为FA,FD的中点 2

(Ⅰ)证明:四边形BCHG是平行四边形;(Ⅱ)C,D,F,E四点是否共面?为什么?

(.3)

利用平行四边形的性质

9.正方体ABCD—A1B1C1D1中O为正方形ABCD的中心,M为BB1的中点,求证: D1O//平面A1BC1;

分析:连D1B1交A1C1于O1点,易证四边形OBB1O1 是平行四边形

10、在四棱锥P-ABCD中,AB∥CD,AB=

DC,E为PD中点.2求证:AE∥平面PBC;

分析:取PC的中点F,连EF则易证ABFE 是平行四边形

11、在如图所示的几何体中,四边形ABCD为平行四边形,∠ ACB=90,EA⊥平面ABCD,EF∥AB,FG∥BC,EG∥AC.AB=2EF.(Ⅰ)若M是线段AD的中点,求证:GM∥平面ABFE;(Ⅱ)若AC=BC=2AE,求二面角A-BF-C的大小.

(I)证法一:

因为EF//AB,FG//BC,EG//AC,ACB90,所以EGF90,ABC∽EFG.由于AB=2EF,因此,BC=2FC,连接AF,由于FG//BC,FG

BC

2BC 2

在ABCD中,M是线段AD的中点,则AM//BC,且AM

因此FG//AM且FG=AM,所以四边形AFGM为平行四边形,因此GM//FA。又FA平面ABFE,GM平面ABFE,所以GM//平面AB。

(4)利用对应线段成比例

12、如图:S是平行四边形ABCD平面外一点,M、N分别是SA、BD上的点,且求证:MN∥平面SDC

分析:过M作ME//AD,过N作NF//AD 利用相似比易证MNFE是平行四边形

AMBN

=,SMND13、如图正方形ABCD与ABEF交于AB,M,N分别为AC和BF上的点且AM=FN求证:MN∥平面BEC

分析:过M作MG//AB,过N作NH/AB 利用相似比易证MNHG是平行四边形

(6)利用面面平行

14、如图,三棱锥PABC中,PB底面ABC,BCA90,PB=BC=CA,E为PC的中点,M为AB的中点,点F在PA上,且AF2FP.(1)求证:BE平面PAC;(2)求证:CM//平面BEF;

分析: 取AF的中点N,连CN、MN,易证平面CMN//EFB

下载高中立体几何最佳解题方法及考题详细解答word格式文档
下载高中立体几何最佳解题方法及考题详细解答.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐