机械专业(推荐)

时间:2019-05-12 05:54:28下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《机械专业(推荐)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《机械专业(推荐)》。

第一篇:机械专业(推荐)

机械加工技术专业校外实训基地管理制度

实习实训作为职业教育最重要的教学环节之一,是提高学生实践动手能力的关键,加强实习实训基地建设和管理,是充分利用实习实训场所、条件、环境为学生提供服务的手段,为了有效、计划、合理地利用校外实习实训基地,特制定此实习实训基地管理制度。

一、根据双方意向,由我校相关专业教师考察实习单位的场所、设备、技术、生产状况后,签订《校企合作共建实训基地协议书》。

二、实习实训基地的管理以《校企合作共建实训基地协议书》为依据,遵循平等、友好、协商、合作的原则,双方共同成立实习实训基地专项管理部门,由我校与实习实训基地所在单位共同管理,坚持以实习实训基地单位管理为主的模式。

三、实习实训基地的管理与建设实行互访制,我校每学期由相关专业教研组教师牵头,派请相关人员调研实习实训项目,对实训场地、实训条件、实训内容更新等方面深入调研,向实习实训所在单位提供可行性调研结果。

四、实习实训基地相关部门负责人根据单位业务和生产状况,每学期来校了解专业建设及学生基本情况,联系相关专业教研组及专业实训指导教师进行交流沟通,在实践教学开始前至少一个月向校方专业教研组申请提供实践教学计划,提前预知校方的实习实训方案。

五、经实习实训基地管理部门同意,聘请实习实训单位相关专业技术人员为实习实训指导教师和督导员,指导、督查实践技术操作。

六、相关专业学生的实习实训计划,由相关专业教研组根据当年实习实训学生的专业、人数、生源等基本情况至少提前一个月拟订。其具体实施方案,提交实习实训基地,由实习、实训基地单位根据单位实际具体部署、合理安排实习实训场所,提供必要设施,妥善安置学生住宿,并指派专门实习实训督导员给予具体指导。

七、实习实训过程中,由基地单位和校方相关专业教研组分别选派技术人员和指导教师负责指导学生的实习实训操作,由指导老师按照实习计划、目标、进度,有条不紊地实施教学过程,由单位技术人员进行操作技术指导。

八、学生在实习实训过程中,严格遵守实习实训基地一切规章制度和部门有关规定,对不服从基地单位管理和分配的学生,基地单位有权终止该生的实习实训并退回学校,给予实习实训鉴定不合格处理。鉴定不合格的学生须重新实习实训,否则不计入考核成绩。

九、实习实训结束时,根据每位学生的表现由基地单位有关部门出具书面材料,为学生办理实习实训鉴定手续。

十、实习实训过程中,对基地财产造成损失的,一切责任由损坏人负责赔偿。

附则:乐至县高级职业中学校外实训基地学生管理办法。

第二篇:机械专业英文翻译

Design of machine and machine elements Machine design Machine design is the art of planning or devising new or improved machines to accomplish specific purposes.In general, a machine will consist of a combination of several different mechanical elements properly designed and arranged to work together, as a whole.During the initial planning of a machine, fundamental decisions must be made concerning loading, type of kinematic elements to be used, and correct utilization of the properties of engineering materials.Economic considerations are usually of prime importance when the design of new machinery is undertaken.In general, the lowest over-all costs are designed.Consideration should be given not only to the cost of design, manufacture the necessary safety features and be of pleasing external appearance.The objective is to produce a machine which is not only sufficiently rugged to function properly for a reasonable life, but is at the same time cheap enough to be economically feasible.The engineer in charge of the design of a machine should not only have adequate technical training, but must be a man of sound judgment and wide experience, qualities which are usually acquired only after considerable time has been spent in actual professional work.Design of machine elements

The principles of design are, of course, universal.The same theory or equations may be applied to a very small part, as in an instrument, or, to a larger but similar part used in a piece of heavy equipment.In no ease, however, should mathematical calculations be looked upon as absolute and final.They are all subject to the accuracy of the various assumptions, which must necessarily be made in engineering work.Sometimes only a portion of the total number of parts in a machine are designed on the basis of analytic calculations.The form and size of the remaining parts are designed on the basis of analytic calculations.On the other hand, if the machine is very expensive, or if weight is a factor, as in airplanes, design computations may then be made for almost all the parts.The purpose of the design calculations is, of course, to attempt to predict the stress or deformation in the part in order that it may sagely carry the loads, which will be imposed on it, and that it may last for the expected life of the machine.All calculations are, of course, dependent on the physical properties of the construction materials as determined by laboratory tests.A rational method of design attempts to take the results of relatively simple and fundamental tests such as tension, compression, torsion, and fatigue and apply them to all the complicated and involved situations encountered in present-day machinery.In addition, it has been amply proved that such details as surface condition, fillets, notches, manufacturing tolerances, and heat treatment have a market effect on the strength and useful life of a machine part.The design and drafting departments must specify completely all such particulars, must specify completely all such particulars, and thus exercise the necessary close control over the finished product.As mentioned above, machine design is a vast field of engineering technology.As such, it begins with the conception of an idea and follows through the various phases of design analysis, manufacturing, marketing and consumerism.The following is a list of the major areas of consideration in the general field of machine design: ① Initial design conception;

② Strength analysis;③ Materials selection;④ Appearance;⑤ Manufacturing;⑥ Safety;⑦ Environment effects;⑨ Reliability and life;

Strength is a measure of the ability to resist, without fails, forces which cause stresses and strains.The forces may be;① Gradually applied;② Suddenly applied;2

③ Applied under impact;④ Applied with continuous direction reversals;⑤ Applied at low or elevated temperatures.If a critical part of a machine fails, the whole machine must be shut down until a repair is made.Thus, when designing a new machine, it is extremely important that critical parts be made strong enough to prevent failure.The designer should determine as precisely as possible the nature, magnitude, direction and point of application of all forces.Machine design is mot, however, an exact science and it is, therefore, rarely possible to determine exactly all the applied forces.In addition, different samples of a specified material will exhibit somewhat different abilities to resist loads, temperatures and other environment conditions.In spite of this, design calculations based on appropriate assumptions are invaluable in the proper design of machine.Moreover, it is absolutely essential that a design engineer knows how and why parts fail so that reliable machines which require minimum maintenance can be designed.Sometimes, a failure can be serious, such as when a tire blows out on an automobile traveling at high speeds.On the other hand, a failure may be no more than a nuisance.An example is the loosening of the radiator hose in the automobile cooling system.The consequence of this latter failure is usually the loss of some radiator coolant, a condition which is readily detected and corrected.The type of load a part absorbs is just as significant as the magnitude.Generally speaking, dynamic loads with direction reversals cause greater difficulties than static loads and, therefore, fatigue strength must be considered.Another concern is whether the material is ductile or brittle.For example, brittle materials are considered to be unacceptable where fatigue is involved.In general, the design engineer must consider all possible modes of failure, which include the following: ① Stress;② Deformation;3

③ Wear;④ Corrosion;⑤ Vibration;⑥ Environmental damage;⑦ Loosening of fastening devices.The part sizes and shapes selected must also take into account many dimensional factors which produce external load effects such as geometric discontinuities, residual stresses due to forming of desired contours, and the application of interference fit joint.Selected from” design of machine elements”, 6th edition, m.f.sports, prentice-hall, inc., 1985 and “machine design”, Anthony Esposito, charles e., Merrill publishing company, 1975.Quality assurance and control

Product quality is of paramount importance in manufacturing.If quality is allowed deteriorate, then a manufacturer will soon find sales dropping off followed by a possible business failure.Customers expect quality in the products they buy, and if a manufacturer expects to establish and maintain a name in the business, quality control and assurance functions must be established and maintained before, throughout, and after the production process.Generally speaking, quality assurance encompasses all activities aimed at maintaining quality, including quality control.Quality assurance can be divided into three major areas.These include the following: ①Source and receiving inspection before manufacturing;②In-process quality control during manufacturing;③Quality assurance after manufacturing.Quality control after manufacture includes warranties and product service extended to the users of the product.Source and receiving inspection before manufacturing

Quality assurance often begins ling before any actual manufacturing takes place.This may be done through source inspections conducted at the plants that

supply materials, discrete parts, or subassemblies to manufacturer.The manufacturer’s source inspector travels to the supplier factory and inspects raw material or premanufactured parts and assemblies.Source inspections present an opportunity for the manufacturer to sort out and reject raw materials or parts before they are shipped to the manufacturer’s production facility.The responsibility of the source inspector is to check materials and parts against design specifications and to reject the item if specifications are not met.Source inspections may include many of the same inspections that will be used during production.Included in these are: ①Visual inspection;②Metallurgical testing;③Dimensional inspection;④Destructive and nondestructive inspection;⑤Performance inspection.Visual inspections

Visual inspections examine a product or material for such specifications as color, texture, surface finish, or overall appearance of an assembly to determine if there are any obvious deletions of major parts or hardware.Metallurgical testing

Metallurgical testing is often an important part of source inspection, especially if the primary raw material for manufacturing is stock metal such as bar stock or structural materials.Metals testing can involve all the major types of inspections including visual, chemical, spectrographic, and mechanical, which include hardness, tensile, shear, compression, and spectr5ographic analysis for alloy content.Metallurgical testing can be either destructive or nondestructive.Dimensional inspection

Few areas of quality control are as important in manufactured products as dimensional requirements.Dimensions are as important in source inspection as they are in the manufacturing process.This is especially critical if the source supplies parts for an assembly.Dimensions are inspected at the source factory

using standard measuring tools plus special fit, form, and function gages that may required.Meeting dimensional specifications is critical to interchangeability of manufactured parts and to the successful assembly of many parts into complex assemblies such as autos, ships, aircraft, and other multipart products.Destructive and nondestructive inspection

In some cases it may be necessary for the source inspections to call for destructive or nondestructive tests on raw materials or p0arts and assemblies.This is particularly true when large amounts of stock raw materials are involved.For example it may be necessary to inspect castings for flaws by radiographic, magnetic particle, or dye penetrant techniques before they are shipped to the manufacturer for final machining.Specifications calling for burn-in time for electronics or endurance run tests for mechanical components are further examples of nondestructive tests.It is sometimes necessary to test material and parts to destruction, but because of the costs and time involved destructive testing is avoided whenever possible.Examples include pressure tests to determine if safety factors are adequate in the design.Destructive tests are probably more frequent in the testing of prototype designs than in routine inspection of raw material or parts.Once design specifications are known to be met in regard to the strength of materials, it is often not necessary to test further parts to destruction unless they are genuinely suspect.Performance inspection

Performance inspections involve checking the function of assemblies, especially those of complex mechanical systems, prior to installation in other products.Examples include electronic equipment subcomponents, aircraft and auto engines, pumps, valves, and other mechanical systems requiring performance evaluation prior to their shipment and final installation.Selected form “modern materials and manufacturing process”

Electro-hydraulic drum brakes Application

The YWW series electro-hydraulic brake is a normally closed brake, suitable for horizontal mounting.It is mainly used in portal cranes, bucket stacker/reclaimers’slewing mechanism.The YKW series electro-hydraulic brake is a normally opened brake, suitable for horizontal mounting, employing a thruster as actuator.with the foot controlling switch the operator can release or close the brake.It is mainly used for deceleration braking of portal cranes’slewing mechanism.In a non-operating state the machinery can be braked by a manual close device.The RKW series brake is a normally opened brake, which is operated by foot driven hydraulic pump, suitable for horizontal mounting.Mainly used in the slewing mechanism of middle and small portal cranes.When needed, the brake is activated by a manual closed device.Main design features Interlocking shoes balancing devices(patented technology)constantly equalizes the clearance of brake shoes on both sides and made adjustment unnecessary, thus avoiding one side of the brake lining sticking to the brake wheel.The brake is equipped with a shoed autoaligning device.Main hinge points are equipped with self-lubricating bearing, making high efficiency of transmission, long service life.Lubricating is unnecessary during operation.Adjustable bracket ensure the brake works well.The brake spring is arranged inside a square tube and a surveyor’s rod is placed on one side.It is easy to read braking torque value and avoid measuring and computing.Brake lining is of card whole-piece shaping structure, easy to replace.Brake linings of various materials such as half-metal(non-asbestos)hard and half-hard, soft(including asbestos)substance are available for customers to choose.All adopt the company’s new types of thruster as corollary equipment which work accurately and have long life.Hydraulic Power Transmission The Two Types Of Power Transmission

In hydraulic power transmission the apparatus(pump)used for conversion of the mechanical(or electrical,thermal)energy to hydraulic energy is arranged on the input of the kinematic chain ,and the apparatus(motor)used for conversion of the hydraulic energy to mechanical energy is arranged on the output(fig.2-1)

The theoretical design of the energy converters depends on the component of the bernouilli equation to be used for hydraulic power transmission.In systerms where, mainly, hydrostatic pressure is utilized, displacement(hydrostatic)pumps and motors are used, while in those where the hydrodynamic pressure is utilized is utilized gor power transmission hydrodynamic energy converters(e.g.centrifugal pumps)are used.The specific characteristic of the energy converters is the weight required for transmission of unit power.It can be demonstrated that the use of hydrostatic energy converters for the low and medium powers, and of hydrodynamic energy converters of high power are more favorite(fig.2-2).This is the main reason why hydrostatic energy converters are used in industrial apparatus.transformation of the energy in hydraulic transmission.1.2.3.4.5.6.7.driving motor(electric, diesel engine);mechanical energy;pump;

hydraulic energy;

hydraulic motor;mechanical energy;

load variation of the mass per unit power in hydrostatic and hydrodynamic energy converters

1、hydrostatic;2.hydrodynamic Only displacement energy converters are dealt with in the following.The

elements performing converters provide one or several size.Expansion of the working chambers in a pump is produced by the external energy admitted, and in the motor by the hydraulic energy.Inflow of the fluid occurs during expansion of the working chamber, while the outflow(displacement)is realized during contraction.Such devices are usually called displacement energy converters.The Hydrostatic Power

In order to have a fluid of volume V1 flowing in a vessel at pressure work spent on compression W1 and transfer of the process, let us imagine a piston mechanism(fig.2-3(a))which may be connected with the aid of valves Z0 and Z1 to the external medium under pressure P0 and reservoir of pressure p1.in the upper position of the piston(x=x0)with Z0 open the cylinder chamber is filled with fluid of volume V0 and pressure P0.now shut the value Z0 and start the piston moving downwards.If Z1 is shut the fluid volume in position X=X1 of the piston decreases from V0 to V1, while the pressure rises to P1.the external work required for actuation of the piston(assuming isothermal change)is W1=-∫0x0(P-P0)Adx=-∫v1v0(P-P0)dv

Select from Hydraulic Power Transmission

机器和机器零件的设计

机器设计

机器设计为了特定的目的而发明或改进机器的一种艺术。一般来讲,机器时有多种不同的合理设计并有序装配在一起的部件构成的,在最初的机器设计阶段,必须基本明确负载、元件的运动情况、工程材料的合理使用性能。负责新机器的设计最初的最重要的是经济性考虑。一般来说,选择总成本最低的设计方案,不仅要考虑设计、制造、销售、安装的成本。还要考虑服务的费用,机械要保证必要的安全性能和美观的外形。

制造机器的目标不仅要追求保证只用功能的合理寿命,还要保证足够便宜以同时保证其经济的可行性。负责设计机器的工程师,不仅要经过专业的培训,而且必须是一个准确判断而又有丰富经验的人,具有一种有足够时间从事专门的实际工作的素质。

机器零件的设计

相同的理论或方程可应用在一个一起的非常小的零件上,也可用在一个复杂的设备的大型相似件上,既然如此,毫无疑问,数学计算是绝对的和最终的。他们都符合不同的设想,这必须由工程量决定。有时,一台机器的零件全部计算仅仅是设计的一部分。零件的结构和尺寸通常根据实际考虑。另一方面,如果机器和昂贵,或者质量很重要,例如飞机,那麽每一个零件都要设计计算。

当然,设计计算的目的是试图预测零件的应力和变形,以保证其安全的带动负载,这是必要的,并且其也许影响到机器的最终寿命。当然,所有的计算依赖于这些结构材料通过试验测定的物理性能。国际上的设计方法试图通过从一些相对简单的而基本的实验中得到一些结果,这些试验,例如结构复杂的及现代机械设计到的电压、转矩和疲劳强度。

另外,可以充分证明,一些细节,如表面粗糙度、圆角、开槽、制造公差和热处理都对机械零件的强度及使用寿命有影响。设计和构建布局要完全详细地说明每一个细节,并且对最终产品进行必要的测试。

综上所述,机械设计是一个非常宽的工程技术领域。例如,从设计理念到设计分析的每一个阶段,制造,市场,销售。以下是机械设计的一般领域应考虑的主要方面的清单:

①最初的设计理念

②受力分析

③材料的选择

④外形

⑤制造

⑥安全性

⑦环境影响

⑧可靠性及寿命

在没有破坏的情况下,强度是抵抗引起应力和应变的一种量度。这些力可能是:

①渐变力

②瞬时力

③冲击力

④不断变化的力

⑤温差

如果一个机器的关键件损坏,整个机器必须关闭,直到修理好为止。设计一台新机器时,关键件具有足够的抵抗破坏的能力是非常重要的。设计者应尽可能准确地确定所有的性质、大小、方向及作用点。机器设计不是这样,但精确的科学是这样,因此很难准确地确定所有力。另外,一种特殊材料的不同样本会显现出不同的性能,像抗负载、温度和其他外部条件。尽管如此,在机械设计中给予合理综合的设计计算是非常有用的。

此外,显而易见的是一个知道零件是如何和为什麽破坏的设计师可以设计出需要很少维修的可靠机器。有时,一次失败是严重的,例如高速行驶的汽车的轮胎爆裂。另一方面,失败未必是麻烦。例如,汽车的冷却系统的散热器皮带管松开。这种破坏的后果通常是损失一些散热片,可以探测并改正过来。零件负载类型是一个重要的标志。一般而言,变化的动负载比静负载会引起更大的差异。因此,疲劳强度必须符合。另一个关心的方面是这种材料是否直或易碎。例如有疲劳破坏的地方不易使用易碎的材料。一般的,设计师要靠考虑所有破坏情况,其包括以下方面:

①应力

②应变

③外形

④腐蚀

⑤震动

⑥外部环境破坏

⑦紧固件的松脱

零件的尺寸和外形的选择也有很多因素。外部负荷的影响,如几何间断,由于轮廓而产生的残余应力和组合件干涉。

质量保证与控制

产品质量是生产中最重要的。如果放任质量恶化下去,生产者会很快发现销售量锐减,可能从而会导致产业的失败。用户期望他们买的产品质量性能好,而且如果制造商想建立并维持其信誉,必须在产品制造前制造过程中及制造过程后进行质量控制和质量保证。一般来说,质量保证包括所有的活动,其包括质量建立和质量控制。质量保证可以被分为三个主要领域,他们如下所述: ①制造之前的原材料的检查 ②在制造加工过程中的质量控制 ③制造之后的质量保证

生产制造后的质量控制包括保证书和面对产品用户的服务。生产制造之前的原材料检验

质量保证常常在实际生产制造之前就开始了。这些都是生产者在供应原材料、散件或配件的车间里进行检验。生产制造公司的原材料检验员到供应厂并且检查原材料及于制造的另配件。原材料检验为生产者提供了一次机会,那就是在原料及散件被运到生产车间之前先进行挑选淘汰。原料检察员的责任是去检查原料和零件是否达到设计规格并且淘汰那些未达到特殊指标的原料。原料检验有很多于检查产品相同的检验。其如下所述: ①目测 ②冶金测试 ③尺寸测试

④损伤检验 ⑤性能检验 目测

目测检验一种产品或原料的某些特征,如颜色、纹理、表面光洁度或部件的总体外观,从而判断其是否具有明显的缺损。冶金测试

冶金测试常常是原料间严厉的一个很重要的部分,尤其是像棒料、建筑材料毛坯一些原材料。金属测试包含所有主要的检验类型,其中有目测,化学检验,光谱检验和机械性能检验,其包括硬度、伸缩性能、剪切性能、压缩性能和合成 12

成分的光谱分析。冶金测试既可用于成品件也可用于预制件。尺寸检验

质量控制的一些领域是重要的生产件的要求尺寸。尺寸在检验过程中,像其在生产过程中一样重要。如果这些零件是为总成供应的,那尺寸尤其严格。一些尺寸在生产车间用标准测量工具进行检验,像特种接头、造型和需求的功能标准度量。符合尺寸规格对所制造多部件的互换性和对多部件成功组装成复杂的装置,如汽车、轮船、飞机和其他多部件产品都地极其重要的。损伤检验

在一些情况下,对原材料或零部件采取损伤测试的原始测验是很必要的。特别是涉及到大批的原材料时。例如,在被运到生产车间作最终机器之前,对铸件进行X-射线、电磁离子、染色渗透剂技术的探伤是很必要的,又对机器总成的电子或持久运作测试而确定的规格,是无损测试的又一例证。有时,对材料及零件的测试是很必要的,但由于无损测试的花费和成本及时间不是任何时候都允许的。

例如,有压力测试决定在设计中其是否安全。损伤测试经常用于设计样机的测试,而不是原材料或零件的常规检验。一旦设计达到了所希望的材料强度,通常对零件做进一步的损伤测试是不必要的,除非他们确实存在疑点。

性能测试

性能测试在零部件被其他产品被安装之前,检查部件的功能,尤其是那些机械构造复杂的部件。例如电子设备零件,飞机和汽车发动机,泵、阀及其他需要在装运和最后安装前进行性能测验的机械系统。

选自《现代材料和制造工艺》

汽车起重机的不同类型

根据汽车吊的使用情况,像:工作的范围,工作的自然情况。他们的构造装备体现着不同的理念。

1、工作范围(不同的设计)

当起重机工作在一个小范围内(仓库,码头,戏台等)告诉是没有必要的。根据这种应用,我们的装置最高速为35km/h。

驱动装置布置在后面,集成了车辆和起重机的控制,这种类型称为:单驱起重机。当起重机在大场地内工作时,有几个较远的工作点,高速轴就是必要的了。随之而来的,布置在车辆后端的单驱动是不可能的。由于这个原因,提供两个驱动是必要的,相对的允许像传统卡车那样驱动车辆。这种类型的起重机,在构造上必须装备一个特殊的变速箱,对起重机允许像传统车辆那样的前进和后退。我们这种类型的起重机装备了一个特殊的变速箱,可以提供一个前进速度和一个后退速度,一般其最大运输速度为:55/60km/h,这种类型称为双驱起重机。

2、地面情况

当起重机操作困难时,在平整的路面上(体育场,码头,仓库等)起构造是传统概念的单驱动的运输工具。

如果起重机离开路面移动到恶劣路况下(脏且沙软的路面)不平的,其构造根据“全工况路面”的限定标准而建立,其要求实现:

双驱甚至是三驱;两种速度范围,有一个特别慢的值;不同驱动轴的转换系统;轴端的特殊轴承;特殊的制动;提供低压的大尺寸的轮胎,在软地面上运转;独立的大车轮;悬空的地面监视和清晰的构造是非常重要的;安装及驾驶服务

所有的主要点是绝对必要的对于在无路的情况下的各种类型的车辆,有一个良好的运行。

当然起重机不得不在各种路况下工作,为此其装备了双驱。

(附图见英文资料)

液力传动

动力传动的两种类型

在液力传动中,用来将机械能(电能、化学能)转化成液力能的装置(泵)被布置在传动链的输入端,而用来将液力能转化成机械能的装置(马达)被布置在输出端。(图2-1)

这种能量转化的理论上的设计依据是液力传动的各部分的伯努里方程。

在系统中,流体静压力主要用来替代泵和马达,而在某些方面,流体动力是作为液力能转化后的力传动而被利用的(如离心泵)这种能量转换的特征取决于单位力的传动。他能说明这种微小力的液体静压力能转换和高压力的液体动力能转换更受人们的欢迎。(图2-2)者是液力转换被应用于工业器械的主要原因。液力传动的能量转换

1、原动机(电机、内燃机)

2、机械能

3、泵

4、液力能

5、液压马达

6、机械能

7、负载 在流体静力能和流体动力能中单位里的质量变化

替代能量转换仅应用以下几方面,在液体静压力转换中相关的替代执行元件提供一个或数个工作室,他们恒定或尺寸可变。

泵的工作室在外部能量进入时伸长,马达是靠液力能,工作是伸长时液体流入,而收缩时实现流体流出。这些装置通常被称为能量转换装置。液体充满一个体积为V1的容器,在压力P1下所作的功W是压缩功W1和改变液体的功W2组成的。

为了分析这个过程,让我们假设一个活塞机构(图2-3(a)),它是有两个阀Z0、Z1和贮液器连接而成,表面压力为P0,贮

液器内部压力为 P1,活塞处于上部的X=X0处,Z0打开,液体充满体积为V0的汽缸,压力为 P0,现在关闭阀Z0,并且开始向下移动活塞,如果 Z1关闭,当活塞下降到 X=X1处时,液体体积由V0变为V1,此时压力升至P1,驱动活塞所作的外部功是(假设热量改变)

W1=-∫X1X0(P-P0)Adx=-∫V1V0(P-P0)dv

制动器的应用

YWW系列电力液压块式制动器是一种常闭、卧式安装的制动器,主要用于门座式起重机、斗轮堆取料机以及中大型塔式起重机回转机构的制动。

YKW系列电力液压块式制动器是一种常开、卧式安装的制动器,推动器为闭合(上闸)驱动装置,它通过脚踏开关控制,司机在司机室内可随意空。主要用于门座式起重机和塔式起重机等回转机构的减速制动。当需要在机构断电时(非工作状态)进行制动,可通过增设手动闭合(上闸)来实现。

RKW系列制动器为常开式、液压驱动、卧式安装的制动器。通过脚踏式液压泵进行控制,可实现随意制动。主要用于中小型门座式起重机和塔式起重机的回转机构。带有手动闭合(上闸)装置,在非工作状态下有需要时,可通过其进行维持制动。主要设计特点

联锁式退距均等装置,专利技术,在使用过程中可始终保持两侧瓦块制动衬浮贴制动轮的现象;设有瓦块自动随位装置。

主要摆动铰点均设有自动润滑轴承,传动效率高,寿命长,在使用过程中无需润滑。

设有可调式支撑装置,确保制动器工作灵活自如。

制动弹簧在方管内布置)(仅YWW产品)并在一侧设有标尺,用户可十分方便的读出制动力距值,免去测量和计算的麻烦。

制动衬垫为卡装式整体结构,更换十分方便,快捷,备有半金属(无石棉)硬质和半硬质,软质(含石棉)等不同材质的制动衬垫供用户选择。全部采用本公司新型推动器配套,动作灵敏,寿命长。

第三篇:机械专业英语翻译

第一单元 极限与公差

几何精度设计是在机械制图上使用的一个三维国际工程设计语言。这个语言主要由符号组成,这些符号是清楚地定义在由美国机械工程协会出版的ASME Y14.5M-1994中。这个制图标准在北美使用和全世界都认同。它代替了更早的ANSI Y14.5M-1982标准和已经发展到几乎等同于它的ISO副本。这个标准在确定使用各种几何符号的方式和在清楚地展示设计者的意图的其他方法上是完善的。

几何精度设计的合理使用保证了工程设计想要的形状、配合和功能,没有在车间的假想或每个人都诠释不同的精细制作的笔记。几何精度设计将通过在整个工程设计、制造和品质功能中提供相同的解释,增加制造公差,提升效率和品质来节约公司花销。我们的经验表明许多设计者、车间和品质控制人员,尽管在几何精度设计工作了许多年,但还是没有完全了解要求和没有利用到几何精度设计的所有优点。

设计和生产系统,复杂性,电算化,和全球制造对准确的工程图纸提出了强制性要求。功能测量,刀具,零件尺寸和制造受益于几何精度设计。几何精度设计的学习是重要的,因为它是设计、制造过程和质量三者沟通的粘合剂。

制造,设计系统需要一个易懂的语言,否则,它是不一致的和不可用的。一门技术语言被定义为一个标准,这个被广泛使用的标准是ASME Y14.5M-1994。我们的目的是让几何精度设计和制造过程协调一致。你可以已经在计算机辅助设计课或制图课上接触到几何精度设计。

第二单元

力学概论

力学的基本概念:

力学是用来处理运动,时间和力的科学分析的分支,它由静力学和动力学组成。静力学研究静态系统的分析,这时,时间不是一个考虑的因素;动力学则是随时间变化的系统。力是通过相配合的表面传递到机器各个构件的。例如,从齿轮到轴或一个齿轮通过啮合齿传动到另一个齿轮或连杆通过轴承传到杠杆,从V带到滚轮或从凸轮到传动件。有许多理由都必须知道力的大小。力在边界及配合表面的分布必须要合理,其强度必须在构成表面的材料的工作极限内。例如,如果作用在套筒轴承上的力太大,将会把油膜挤出,并导致金属表面的胶合,过热和轴承过快失效,动力学的研究主要是确定李的大小、时间和位置。

下面将说明一下我们这方面的研究

力:我们最早的关于力的想法是源于我们对推、举和拉河中物体的需要。因此力是一个物体对另一个物体的作用。自觉对力的联系包括力作用的位置,方向和大小,这些称为力的特性。

物质:物质是一种材料或实物,如果它完全封闭则称为物体。

质量:牛顿吧质量定义为物体的数量,由体积和密度来衡量。这定义并不是很多人满意的,因为密度是单位体积的质量。通过猜想我们可以谅解牛顿,可能他并不认为那是个定义。然而,他已经认识到了一个事实,那就是所有的物体都具有不同于重量的内在性质。所以,尽管月球重量不同于地球重量,但一块月球上的岩石仍有特定不变的本质数量。这个恒定的本质数量或物质食粮就是岩石的质量。

国际单位制最大的有点事它对任何物体有且仅有一个单位。长度的单位为米,质量的单位为千克,力的单位为牛顿,时间的单位为秒等等。为了和这种特性保持一致,就要求一个给定的单位或词不能仅一个被认可的技术名称在二个物理量中使用。然而,习惯叫做“重量”的这个词已经在技术和非技术领域广泛使用,表示着物体所受的引力和其本身质量。

粒子:粒子就是指尺寸小到可以忽略的物体。

刚体:物体要么是弹性的,要么是塑性的,只要作用上力都会产生变形。当物体形变量很小时,通常将其假想为刚体,即没有变形的能力,作此假想以便简化分析。

可变形的物体,作为应力和应变是由将要分析的作用力所提供的,则刚体假说将不再适用。因此我们认为物体时可变形的。这种分析常称为弹性物体分析,兵并应用这附加的假说,即在力作用范围内,物体仍保持弹性。

牛顿定律,牛顿三大定律是:

牛顿第一定律:如果一对平衡力作用在一个质点上,那么这个质点仍将保持静止或匀速直线运动。

牛顿第二定律:如果作用在质点上的力不是平衡的,则该质点将经历一个加速度且加速度与合理大小成比例,沿合力方向。

牛顿第三定律:当一对质点相互作用,作用力与反作用力其大小相同,方向相反,作用在过二个质点的直线上。

2,力和力矩:

当一个物体从一个组成系统中聚集到一起,任意两物体间相互作用的力称为约束力。约束力使物体以特定的方式运动。作用在系统上的力称为作用力。

有的力在作用中并没有实际的物理接触。例如,电力磁力和引力。有许多,但不是大多数的力我们会涉及到。这些力是通过物理的或机械上的接触相互作用的。

力是个矢量,力的要素是:力的大小,方向和作用点。力的方向包括那条沿力的指向为方向的直线。因此力可能沿直线正向,也可能沿直线反向。二个大小相等,方向相反,作用不共线的合力。任意二个这种力作用在物体上将会形成一个力偶,力臂是作用线的垂直距离,作用和面是通过二个作用力的平面。

第三单元

简单机械

图3-1给出了直杠的三种布置情况,每个例子中F是支点;P是作用力,作用在b点上;W是载荷,作用在c点上,当杠杆处于平衡时,为P使杠杆绕f转动的趋势必须与载荷w使杠杆往反方向旋转的趋势相平衡。忽略在支点上的摩擦力,以上关系可用数学式表达为:P*BF=WX从上式可以看出,施加的作用力乘以支点到一作用点应等于另一侧的乘积,从这可以导出“机械效率”这个量,它等于载荷除以作用力:

机械效率=W/P=bf/cf

图3-1A中如果bf/cf=3,就意味着30磅的载荷能被10磅的为所平衡。如果力稍超过这个数值,杠杆将会随着为P的增大而绕点f旋转,为P比载荷W增加得更快更大,这也是机械效率,但应忽略摩擦力的作用,显然,f、c间的距离越短,杠杆的力放大八月入越大。

图3-1A的布置情况可在钳子和剪刀上找到,而图3-1B的情况可在手推车中找到,f相相当是车轮,W为载荷,力P由操作者施加在手柄上。图3-1C中,杠杆的作用于是作为一种运动放大装置,它用在脚踏板上来驱动一些小机械。脚踏板上b的小运动可在c产生大运动。

图3-1D中所示的差动滑轮就是基于杠杆原理。半径为R的轮A和半径为r的轮B固定在轴上,并可以转动。力P是由一条位于轮边缘一个槽中的绳子所提供的,载荷 W由绕在驱动轴上的绳子来提升。当驱动轴静止时,力P促使轴的转动趋势与W促使轴的转动趋势相等,且方向相反。忽略轴承摩擦力的话,力P和大轮半径R的乘积将等于载荷W与驱动轴半径的乘积:P*R=w*r 机械效率还是等于W/P,也等于轮R与驱动轴R的比值。

这种情况和杠杆类似。然而杠杆只能移动载荷很短的距离。而差动滑轮能移动开荷 的距离,只限制于线强长度。

当轮A和绳由装辐条的轮代替时,差动涔轮就仅适于从井里提升一桶桶的水。然而更重要的是差动滑轮的原理在许多工具和机械中是很显而易见的。例如,螺刀,由手提供的力作用在大半径上就能在小半径上转化出很大的力作用在螺钉上。

滑轮是一种最基本的简单机械之一。它从根本上说是由一个轮子和一个支承组成,轮子的轮边带有槽,槽上绕着柔软的绳子,而支承有如固定的或可动的轴承组,一个往下的拉力会产生一个大小相同的向上的力。图3-1E中滑轮和可动组B结合时,如果饭略摩察力的话,绳中所有点的张力P是一样的,因此在绳松开的这边给定一个向下的拉力,将可以提起这个拉力两倍的重物W,而重物W的上升速度交为绳移动速度的一半。因此机械效率为2倍,若使用种种带有固定的和可动的轴承组的滑轮组合,那机械效率将比2倍还要大。例如熟知的轴承级和滑车组合就是一种基本的力放大装置。

现在来考虑一下图3-2中楔的运动。它由力P向左边击打。当角度Q越小,摩擦力F也越小时,以r表示的分力N将会越大。对于任一楔表面的粗糙度以及对奕的摩托车擦力,如果角Q大于一个给定值,即使力P撤掉后,楔仍会保持原位或像粘住了。

可楔紧的锥度在机床主轴中常用来夹抚持切削刀具,如钻头铰刀。其它应用楔原理的机械装置有木刨,子,刀,金属世削刀具和凸轮

丝杠可以认为是楔锥在一个圆柱体上。丝杠是由在实心圆柱上切削出连续不断的槽所形成的,这些被实心材料分开的,连续的,圆周的槽称为螺纹。螺纹和槽都是螺旋形的。

如果将图3-3右侧所示的图ACC`A`H上线段AB`和BD 在左侧直径为d的圆柱上,将会形成1。5图的螺旋。其对应的轴向距离l称为导程。导程角λ是用来度量螺旋的倾斜角。

一些早期的螺钉,其切削方法类似于用展开的如图3-3左边的螺旋一条柔软的金属薄板,以右螺角形式,缠绕在圆柱形毛坯上,以便右角的一臂能平行于轴线,斜边用在圆柱上形成螺旋,用作切削螺旋槽的导向。

如果滑动无件被约束为沿平行圆柱轴线运动,如图3-3中的F,沿着轴线00`运动,它就能被圆柱体的旋转、螺旋或是拉直螺旋的平移所驱动。另一种情况,楔的运动是很明显的。如果螺帽的一部分构件F,它限制了旋转运动但轴向运动是自由的,丝杆螺帽组合将会把螺旋运动转化成

第四单元

机构

基本类型

机构的目的是为了传递运动,而不管机构有没有变更。虽然机构有许多中组成形式,但总的来说只有三种分类,如图4-1所示

图中的每种机构,杆2和杆4都是通过O点和Q点联接到杆1的。这两种机构的运动传递方式如图4-1所示:(A)通过柔性的包裹联接器传递,如皮带,绳子,缆和链条等;(B)通过直接接触传递,如用凸轮,齿轮或是摩擦轮;(C)用刚性的联接杆或联轴器传递。在各种情况中杆2都是驱动件,它以每分钟n2转的转速转动,而杆4是从动件,以每分钟n4的转速转动,对于这三种情况,杆2和杆4的转速比是由Of的长度与Qf的长度比值所决定的。图4-1A中由于点f固定与OQ的中心,所以它的速率是一个常量,在图4-1B和4-1C中,由于点f将会随着物体的转动而移动,故其速率是变化的。直接接触的物体能设计成只会摆动,如图4-1B,或只会持续转动。在所有的情况中,点f都是位于有公法线和中心线的交点上。

直接接触机构

在大多数的情况中,直接接触的表面互相之间是滑动的,并仅仅只有滑动运动。这样表面情况是很容易恶化的。而在特定的条件下,表面磨损不厉害的纯滚动接触具有更高的效率。如果其他条件满足了,物体将会以匀速传递运动。这些特定的情况在齿轮联接和凸轮联接中是很有用的。纯滚动的条件是接触点位于中心线上。

共有三种纯滚动接触的情况,当两物体是圆柱体时,公法线和中心线是重合的,所能传递的载荷是由其表面摩擦所决定的,这就是所谓的基于摩擦的滚动。对于不依赖于摩擦的驱动,其公法线一定不能穿过驱动件或从动件的中心。忽略摩擦,且两相互接触物体间的力沿着法线作用时,当力的作用线没有穿过从动件的转动枢轴线时,从动件将被主动驱动。图4-1B中的物体,接触点在P,提供主动驱动。

任一直接接触物体,其速率比的公式中唯一的变量就是图4-1B中点f的位置。因此,保持匀速或恒定速率比的条件是公法线在一些固定点上通过中心线。尽管法线可能会转动,但只要它在相同点通过中心线,速率比将会保持恒定。

对于大多数给定的物体形状或轮廓,另一物体的,轮廓都能被构造出来,用于以匀速速率传递运动。这就是共轭轮廓。其本身就是存在能传递共轭运动的数学曲线;摆线和渐进线就是其中的两种;用于齿轮轮齿中。摆线就是跟踪空间中滚动轮边缘的一点所形成的轨迹。轮齿的轮廓是跟踪小圆边缘的一点在大圆内外侧滚动所形成的轨迹。渐开线就是处于大圆的内外侧,渐开线就是跟踪小圆边缘一点沿大圆内外侧滚动所形成的轨迹。渐开线也是跟踪从圆柱体上展开的线上的一点所形成的轨迹。通过研究一对渐开线的接触能很好地理解两渐开线轮齿表面的相互作用方式。图4-2中,由基圆1和基圆2产生的两条渐开线通过点m、f和n想联接,且应注意到由于基圆2比基圆1大,渐开线便有不同的形状。

第五单元

连杆机构

连杆机构也许可以定义为实体物体或连杆的载体,其中每根杆件通过销联接(铰链)或滑动接头至少和其他两个杆件相联接。为了满足这个定义,连杆机构必须形成一个无限的封闭的链或一系列封闭的链。很明显,由很多杆联接的链与只有一个杆相比,其性能是不同的。这在机械上就提出了一个非常重要的问题,那就是为传递运动而给定机构的适应性问题。其适应性取决于杆件和街头的数量。

自由度,三杆机构(包括三杆联接在一起的)很明显是一个刚性框架;连杆之间不可能有相对运动,为了表达四杆机构中连杆的相对位置,只需知道任意两杆间的夹角。(算上固定连杆OQ,图5-1C所示机构有4个连杆,因此是四杆机构。)这个连杆机构有一个自由度。要确定五杆机构中连杆的相对位置需要两个角度,也就是它有两个自由度。

带有一个自由度的连杆机构,其运动是有约束的。例如,连杆所有点在其它连杆上的轨迹是固定而又确定的。通过假定连杆上所求轨迹是固定的,并移动与约束相协调的连杆,轨迹是很容易得到的或很容易可视化观察到。

四杆机构。当所受约束的连杆机构中的一个构件固定时,这个连杆机构将变成一个在机械中能够完成有用的机械功能的机构,在销连接的连杆机构中,输入杆(主动杆)和输出杆(从动杆)通常是以枢轴的连接方式连接到固定杆上的;这个连接杆(连接件)通常既不是输入杆,也不是输出杆。由于任意连杆都能固定。如果四种机构中,连杆都不等长,并且都有不同的输入-输出关系,那么就能得到四杆机构。这四种机构也就是所谓的基本连杆机构的转换。

当图5-1左边中最短杆a固定时,杆b和杆d就能完成整圈的旋转运动。这就是双曲柄机构。若曲柄b以恒定的速度转动,则曲柄d将以变化的速度作同向转动。双曲柄机构本身,或者和别机构联接起来时,其曲柄都能提供有用的运动效果,图中,曲柄b是主动杆,它以匀速率逆时针旋转;曲柄d为从动件;三者都能同时完成整圈的旋转运动。但当b转过150°的角度是,从动杆d只能转动50°的角度。这就是意味着从B运动到B’时,曲柄d将比b转得慢,而从B’运动到B时,d比b转得快。如果将同样比例的曲柄d联接到包装机械的主轴上,例如联接运动较慢的轴上,那它将会暂停运动或者停顿。这在必须慢速的地方将派上用场。

通过将最短杆a作为主动杆能得到四杆机构的第二种转换。如图5-1右所示,在杆a做整圈旋转运动的同时;其相对的杆,可能在杆b,c,或杆d,却只能在φ角的范围内摆动。这称为曲柄摇杆机构。它是产生带有急回动作的摆动运动的有用装置。产生急回运动的原因是:当杆a逆时针旋转时,会带动杆 c从B摆动到B’,其摆过角度为θ1,而杆c从B’摆动到B时,其摆过的角度为θ2。由于曲柄a的转速是恒定的,且θ1大于θ2,因此摇杆从右摆动到左的时间将长于其它摆动途径。只有当活动杆件沿一个方向移动,急回装置快速将杆件送回初始位置时,机械才是做有用功。

图5-1右所示的极端位置,曲柄a与连接杆b共线,且假定摇杆c为主动杆时,就必须提供方法使从动杆a通过死点。在用脚踏式操作的磨刀机上,脚踏板连接着杆c,磨刀机主轴连接着杆a,就是靠着磨刀机的角动量使杆通过死点。

在四杆机构的第三种转换中,最短杆a为连接杆,其它的杆件只能摆动,这就是双摇杆机构。

连杆机构的综合,在连杆机构中,用图形法和分析法很容易测定出杆件的位移,速度和加速度。设计或综合连杆来满足特定要求就难得多了。还没有可用的方法来设计双曲柄机构以满足给定的输入-输出的关系谱。能做的就是调查一些选定的特定结构的性能特性。并挑选出其中最佳的

在曲柄摇杆机构中,设计者能控制摇杆的摆动角度,并在一定的程度上控制急回。而曲柄和要干的位移,速度和加速度却无法关联起来。

若四杆机构中的连杆总是以相同或相反的方向转动,并且他们的转动范围远小于180°,那么就有可能将曲柄转动在3点,4点,5点或者甚至更多的位置关联起来。图形法和分析法都能建立这种关联。

第六单元 飞轮

飞轮是一个连接到机械主轴上的重的轮子,它的目的是为了抵消和减轻在机械速度上由所提供的或所需要的动力的造成的速度不均匀性引起的任何波动。飞轮也被用来测试制动器和储存可以在紧急情况下使用的能量,或者可以在快速释放时提供大的力。

抵抗一个旋转物体使其速度发生变化的办法是改变它的惯性矩。这个性质取决于对旋转轴的材料的处置上。惯性矩是与物体的每个构件的重量和它们到旋转轴的距离的平方获得的乘积成正比。普通几何形状物体的惯性矩可以在手册中得到;对于非普通的形状,它们可以由整体的积分或者通过经验来确定。从惯性矩的性质可知,一个飞轮的材质在尽可能离旋转轴远的地方集中是最有效的。因此最好的飞轮有一个通过轮辐或圆盘连接到中心轮毂重的轮缘。

一个飞轮的运行情况完全取决于扭矩或作用在它身上的转动力。如果一个顺时针的扭矩作用在一个固定的飞轮一段时间,这个飞轮将获得一个顺时针角度方向的速度,它与平均扭矩乘以时间段的积成正比,与飞轮的惯性矩成反比。如果一个旋转飞轮受到与它旋转方向相同的一个扭矩作用,它的速度将提升;反之,速度将下降。飞轮的惯性矩越大,由一个给定的扭矩引起的速度变化将越小。如果没有扭矩作用在飞轮上,它的速度将不会改变。

在一个往复式发动机的每个旋转期间作用在曲柄轴上的扭矩都会变化。这种变化是由于在汽缸中的蒸汽或气压的不均匀性和连杆(将活塞压力转变为曲柄轴扭矩)与曲柄轴之间的变化的夹角造成的。当曲柄和连杆是共线的,这时将没有扭矩传递给曲柄,每次旋转这种情况会发生两次。在发动机上飞轮的一个附带的功能是带领曲柄轴经过这些死点位置。

所有的旋转机械都构件都具有惯性矩和像飞轮一样都会对扭矩变化作出反应。这些构件启动、暂停或速度变化所需要的扭矩被称之为惯性扭矩或惯性载荷。惯性载荷存在于所有机械中,当机械启动时它们的存在尤其明显。

飞轮在间歇地传递机械功的机械上是特别有用的。例如,在冲床上,在活塞的下行冲程期间冲压或成型金属盘所需的大的力才会发生。在下行冲程的剩余时间,整个上行冲程和冲程之间的时段,机器是空转的,来自驱动马达的所需的动力是很低的。使用一个具有传递足够大的扭矩去创造冲孔成型所需的大的力的驱动马达是不经济的。飞轮作用于储存在机器空转时由低动力马达造成的能量和在下行冲程做工部分释放部分能量。

在1880年代,一个快速旋转的飞轮被用作鱼雷推动系统的动力源;据报道,在450米的距离将获得24海里/时的速度。在飞机上,直径25厘米,转速52000转/分钟的飞轮有足够的能量去升起和降下起落架。这个飞轮储能系统重90千克,低于完成相同功能的液压系统。在公交运输方面的一个近来(1970年)的应用是在无轨电车上使用飞轮的提议。新型的高密度的钢轮,重300千克,转速为每分钟20000转,它将允许电车离开电线行驶在临近十公里的区域内。在飞轮上获得高密度储能能力的关键在于由材料可以带动的旋转引起的离心应力的大小。相同的材料,平的圆盘可以比轮缘形的轮子多储能百分之50,而锥形的等压力盘可以比轮缘形的轮子多储能百分之100。

第八单元 材料的热处理

热处理是在固态下加热和冷却材料来改变它的的物理性质的工艺。根据所使用的工序,钢可以被硬化来抵抗切割运动和磨损,或者它可以被软化来进行进一步加工。结合适当的热处理,可以消除内部应力,细化晶粒,增加韧性,或生产一个韧性的内部和硬的表面的材料。直到热处理之前,在机械车间制造的大部分产物只有很少的价值或没有价值。热处理不仅可以用于钢上面,也可以用在许多非铁金属上面,例如铝,铜和黄铜。钢热处理的工序包括硬化淬火,回火,退火和表面淬火。

在许多人处理工艺上,加热的速度是重要的。热度以一定的速率从钢的外部传导到内部。如果钢加热太快,外部将会比内部更热,不会得到均匀的结构。如果工件在形状上是不规则的,为了消除变形和裂纹,缓慢的加热速度是更加必要的。工件越重,为了达到均匀的结果,加热时间必须更久。尽管已经达到了正确的温度,工件也应该保持在这个温度相当一段时间来使它最厚的截面达到相同的温度。

1硬化

硬化是一个加热和冷却的过程来增加它的硬度和拉伸强度,降低延展性,和得到一个良好的晶粒结构。这工序包括在温度的临界点加热金属,随后快速冷却。随着金属被加热,铁和碳之间发生物理和化学的改变。这个临界点或临界温度是钢具有最理想特性的点。当钢达到在1400到1600华氏度间的某个温度,如果它被快速冷却,这个变化对制出硬,又强的材料是理想的。如果金属缓慢冷却,它将会变回原本的状态。通过把热的金属投入水,油或盐水中(淬火),可以得到所想要的特性。金属对比之前是非常强和硬的和有更少的延展性。

2回火

已经通过快速淬火硬化的钢是脆的和不适合于大部分用途。通过回火,硬度和脆性将减少到耐用条件所需要的点。随着这些性质减少,钢的抗拉强度也会减小,而在延展性和韧性会增加。这个工艺包括了淬硬钢再加热到低于临界范围的某个温度,随后以任何速度冷却。虽然这个过程软化了金属,但它完全不同于退火,在这个过程中回火有助于对物理性质的精细控制,和在大部分过程中,回火不会把金属软化到退火将达到的程度。最后从硬化金属完全回火所得到的结构被称为回火马氏体。

因为硬化金属的主要成分马氏体的不稳定性,所以回火是合理的。从300到400华氏度的低温不会造成硬度降低,它主要用于消除内部应变。随着回火温度的增高,马氏体的分解将以更快的速度发生,和在大约600华氏度,变成被称为回火马氏体的结构是非常快的。

回火工艺可以被描述成沉淀和结块,或渗碳体聚结的工艺。大量渗碳体的沉淀是在600华氏度,这会产生硬度降低。温度升高会造成碳化物的聚结,而硬度会继续降低。

3退火

退火的主要目的是软化硬的钢以致使它可以被机加工和冷加工。通常这是通过加热金属到稍稍在形成奥氏体的临界温度之上,并保持这个温度直到工件的温度处处相同,和那时以一个缓慢的可控速度冷却以致使工件的表面温度和中心温度近似相等来完成的。这个过程被称为完全退火,因为它消除了之前结构的所有的痕迹,提纯了结晶结构,和软化了金属。退火也消除了以前在金属产生的内部应力。

当硬化的金属二次加热到临界范围之上,组织将变回奥氏体,和缓慢冷却,那时将提供足够的时间完成奥氏体到更软的结构的转变。对于亚共析钢,这些结构是珠光体和铁素体。通过参考平衡态图标,可以注意到过共析钢退火温度是更低的,稍稍在A线之上。没有理由去加热到A线之上,因为在这个点硬的组织渗碳体开始析出。通过加热到更低的临界范围之上和缓慢冷却,所有的马氏体会转变成珠光体。在钢里面任何自由的渗碳体都不收这些处理的影响。

第九单元 材料的选择与机械零件的强度

1材料的选择

这些年来,工程材料的选择已经显得非常重要。此外,选择过程应该是一个对材料的连续不断的重新评价过程。新材料不断出现,而一些原有的材料的可以被利用的数量可能会减少。环境污染,材料的回收利用.工人的健康及安全等方面的关心经常会对材料选择附加新的限制条件。为了减轻重量或者节约能源,可能会要求使用不同的材料,来自国内和国际的竞争.对产品维修方便性要求的提高和顾客的反馈等方面的压力。此外,材料与材料加工之间的相互依赖关系已经被人们认识得更清楚,新的加工方法的出现通常会促使人们对被加工材料进行重新评价。因此,为了能在合理的成本和确保质量的前提下获得满意的结果,设计工程师和制造工程师都必须认真仔细地选择,确定和使用材料。

制造任何产品的第一步工作都是设计,设计通常可以分为几个明确的阶段,(a)总体设计b)功能设计c)生产设计。在总体设计阶段,设计者着重考虑产品应该具有的功能。通常要设想和考虑几个方案,然后决定这种想法是否可行;如果可行,则应该对其中一个或几个方案作进一步的改进,在此阶段,关于材料选择唯一要考虑的问题是:是否有性能符合要求的材料可供选用,如果没有的话,是否有较大的把握在成本和时间都允许的限度内研制出一种新材料。

在功能设计或工程设计阶段,要做出一个切实可行的设计,在这个阶段要绘制出和相当完整的图纸,选择并确定各种零件的材料,通常要制造出样机或者实物模型,并对其进行试验,评价产品的功能,可靠性,外观和适用性等,虽然这种试验可能会表明,在产品进入到生产阶段之间,应该更换某些材料,但是,绝对不能将这一点作为不认真选择材料的借口,应该结合产品的功能,认真仔细地考虑产品外观,成本和可靠性。一个很有成就的公司在制造所有样机时,所选用的材料应该和其在生产中使用的材料相同,并尽可能使用同样的制造技术,这样做对公司是很有的。功能完备的样机如果不能根据预期的销售量经济地制造出来,或者是样机与正式生产的装置在质量和可靠性方面有很大不同,则这种样机就没有多大的价值。设计工程师最好能在这一阶段全部完成材料的分析,选择和和确定工作,而不是将其留到生产设计阶段去做。因为,在生产设计阶段材料的更换是由其他人进行的,这些人对产品的所有功能的了解可能不如设计工程师。

在生产设计阶段中,与材料有关的主要问题是应该把材料完全确定下来,使它与现有的设备相一对一,能够利用现有设备经济地进行加工,材料的数量能够比较容易地保证供应。

在制造过程中,不可避免地会出现对使用中的材料作一些更改的情况,经验表明,可以采用某些理家材料作为替代品。然而,在大多数情况下,在进行生产以后改换材料要比在开始生产前改换材料所花费的代价要高在生产设计阶段做好材料选择工作,可以避免大多数的这种材料更换情况,在生产制造开始后出现了可供使用的新材料的。当然,这些新核燃料可能降低成本,改进产品性能。但是,必须对新材料进行认真的平价,以倚其所有性能都被人们所了解。应当时刻牢记,新材料的性能和可靠性很少能像现有材料那样为人们所了解大部分的产品失效和产品责任事故案件是由于在选用新材料作为替代材料之前,没有真正了解它们的长期使用性能而引起的。

产品的责任诉讼迫使设计人员和公司在选择材料时,采用最好的程序,在材料选择过程中,五个最觉的问题为:(A)不了解或者未能利用关于材料应用方面的最新和最好的信息资料(B)未能和考虑产品可以的合理用途,如有可能,设计人员还应进一步和考虑由于产品使用方法不当造成的后果。在近年来的许多产品责任诉讼案件中,由于错误地使用产品而受到伤害的控告生产大家,并且赢得判决(C)所使用材料的数据不全或者有些数据不确定,尤其是当具长期性能数据是如此的时候(D)质量控制方法不适当和经验证明由一些完全 不称职的人员选择材料。

通过对上违一个问题的分析,可以得出这些问题是没有充分理由存在的结论,对这些问题的分析和研究以给避免这些问题的指明方向。以往采用最好的材料选择办法也不能避免发生产品责任诉讼,设计人员工业界按照适当的程序进行最佳选择,可以大减少诉讼的数量。

因为所生产的压痕尺寸的函数,这表明由于硬度是非破坏性试验,而且不需要专门的,因而硬度是一个容易测量的性能,通常可以直接在实际的机械零件上进行硬度试验。

第十单元

车床及其他机床

车床

1.车床用于旋转工件,并朝着生成所需要加工的表面方向进给切削刀具。2.最常见的车床形式是图10-1a中以图解方式显示的六角车床,它由一个支撑着床头箱,拖板和六角刀架的水平床身组成,工件夹在卡盘和夹头中,或者安装在机床主轴端部的花盘上。3.工件的旋转由一台电机通过一个齿轮系驱动主轴提供。4.切削刀具安装在横向滑板及六角刀架上,在横向滑板上的刀具在平行于工件旋转轴线方向或在工件旋转轴线的法线方向驱动或给进。六角刀架可以通过分度头将各种刀具定位并可以沿车床的床身方向驱动或给进。

5.现代六角车床由计算机控制所有工件和刀具运动,这些车床称为计算机数字控制(CNC)车床,而且刀具或横向滑板可以在水平面上的任一方向进给以使工件上产生所需的廓形。6.图10-1b说明的是通过工件旋转以及托板沿车床床身运动所产生的柱面,这一工序称为外圆车削。

7.车床设定的进给运动也就是工件每转一圈刀具移动的距离,机床的进给量f的定义是:刀具或工件每一行程或每转一圈,刀具相对于工件在进给运动的方向的位移,这样,为了车削长度为Lw的柱面,工件的转数是Lw/f,则加工时间Tm由下式给出的Tm=Lw/(fnw),式中nw是工件的旋转速度。

8.在此应当强调t,是刀具沿工件走一次(一次切削)的时间,但是,这一次通过并不意味着加工工序的完成,如果首次切削用于以高进给来去除大量材料(粗切),在操作过程中产生的力将有可能引起机床结构的明显挠曲,引起的精度损失可能需要以小进给量进一步加工(精切),使工件直径在规定的界限内并提供光滑的加工表面。由于这些原因,在粗切时常被加工成稍大一点的尺寸,留下少量材料在随后的精加工中去除。立式镗床

9.水平主轴的车床不适于车削沉重的大直径工件,否则机床主轴的轴线将不得不升高到机床操作工够不到固定刀具或固定工件的装置的高度,此外,在垂直的花盘上安装零件或在顶尖之间支撑零件会有困难,因此使用了一种与车窗相同的工作原理,但具有垂直轴线的机床并称为立式镗床(图10-2),这种机床像车床那样旋转工作并向刀具施加连续的,线性的进给运动。

10.(立式镗床)使用单刃刀具,而且进行的作业一般限于车削,端面车削和镗削。

11.便于定位大型工件的水平工件台由一个带有径向T型槽的,起夹持作用的旋转工作台构成

卧式镗床

12,这里介绍的另一种实用单刃刀具并具有旋转主运动的机床是卧式镗床(图10-3),这种机床主要用于沉重的圆柱形工件,在这种工件内有一个待加工的内圆柱形表面,一般讲,在描述机床时,使用卧式或立式来讲。两个词指的是提供主运动的机床轴(主轴)的姿态,可见,在卧式镗床中,主轴是水平的。

13,此类机床的主要特征是,工件在加工过程中保持静止,所有造型运动都施加在刀具上。最常见的加工工序是镗削,如图所示,镗削是通过旋转刀具来实现的,刀具安装在与主轴相连接的镗杆上,然后沿旋转线进给主轴,镗杆和刀具的进给是用于移动工件的机床运动只是用来给工件定位,在进行加工时一般不使用,端面车削工序可以通过使用专门刀具架(图10-4),在其旋转时径向进给刀具来实现。

此外先前推导的镗削和端车加工时间和金属切削率的公式仍将适用。刨床

14,刨床适用于在非常大的部件上加工平面,在这种机床(图10-5)上,线性运动作用在工件上,二刀具则垂直于该运动的方向进给,主运动通常利用变速马达通过齿条与齿轮传动来实现,而且进给运动是断续的工序用提供的T型槽固定在机床的工作台上,加工时间tm和金属切削率zw可以按下面公式估算:tm=bw/(fnr),式中bw是待加工面得宽度。Nr是切削行程的频率,f是进给量,金属切削率zw由下式给出zw=fapv,式中v是切削速度,ap是切口深度(去除材料层的深度)

第十一单元基本的加工工序——切削、镗削、和磨削

基本的加工工序

机床是从早期的埃及人的脚踏动力车床和约翰。威尔金森的镗床发展而来,它们用于为工件和刀具两者提供坚固的支撑并且可以精确控制它们的相对位置和相对速度。基本上讲,在金属切削中一个磨尖的楔形工具以紧凑变形的切削形式从有韧性的工件表面去除一条很窄的金属。切削是一种废弃的产品,与其他工件相比它相当短但是比未切削的部分厚度有相对的增加。机器表面的几何形状取决于刀具的形状和加工操作过程中刀具的路径。

大多数加工工序产出不同几何形状的部件。如果一个粗糙的圆柱形工件绕中心轴旋转而且刀具穿破工件表面并与旋转中心平行的方向前几,就会产生一个旋转面,这道工序叫做车削。如果以类似的方式加工一根空心管的内部,则这道工序叫镗削。制造一个直径均匀变化的锥形外表面叫做锥体车削。短的锥面或柱面也可以仿形车削。如果刀具尖端以一条半径可变的路径前进,就可以制造出像保龄球杆那种仿形表面。如果工件足够短(约1英寸)而且支撑具有足够的刚性,仿形表面可以通过进给一个垂直于旋转轴的仿形刀具来制造。

常常需要的是平坦的或平的表面。它们可以通过径向车削或端面车削来完成,期中刀具尖端沿垂直于旋转轴的方向运动。在其他情况下,更方便的是固定工件不动;以一系列直线式切削的方式使刀具横过工件作往复运动,在每次切削行程前具有一定横向进给量。这一工序叫做刨削,是在牛头刨床上进行的。对于大一些的工件,很容易保持刀具固定不动,而像龙门刨削那样在其厦门拉动工件。仿形面可以通过使用仿形刀具来制造。

在每次往复时进给刀具。也可以使用多刃刀具。钻削使用两刃刀具,孔深可达钻头直径的5~10倍。不管是钻头转动还是工件旋转,切削刃与工件间的相对运动是一个重要的因素。在铣削操作中,有许多切削刃的旋转铣刀与工件相接合,这种工件相对铣刀运动缓慢。根据铣刀的几何形状和进给的方式,可以加工出平面和仿形面。可以使用水平或垂直旋转轴,工件可以沿三个坐标方向中的任意一个进给。

基本的机床

机床用于以切削的形式从韧性材料上去除金属来加工特殊几何形状和精密尺寸的部件。切屑是废品,其变化形状从像钢这样的韧性材料的长的连续带状到铸铁形成的易于处理、彻底断掉的切屑,就处理的观点来讲,不想要长的连续带状屑。机床完成5种基本的金属切削工艺:车削,刨削,钻削,铣削和磨削。其他所有金属切削工艺都是这5种基本工艺的变形。因此,仅有4种使用专用可控几何形状的刀具的基本机床:

1、车床

2、刨床

3、钻床

4、磨床。例如:镗削是内部车削:铰削、攻丝和平底锪孔是修改已钻好的孔,与钻削有关;滚齿与切齿基本上是铣削作业;弓锯削和拉削是刨削和研磨的一种形式;而研磨、超精加工、抛光和磨光则是磨削和研磨切削加工作业的各种变化形式。磨削工艺形成碎屑,但是磨粒的几何形状不可控制。

不同加工工艺切削材料的量和速度可能很大,如在大型车削作业或极小,如研磨或超精加工作业,只有表面高出的点被去除。

机床完成3种主要功能:

1、刚性支撑工件或工件的夹具以及切削刀具;

2、提供工件与切削工具间的相对 运动;

3、提供了一定范围的进给和速度,通常每种情况有4~32种选择。加工中的速度和进给

切削速度、进给和深度是经济加工的3个主要变量,其他变量还有工件和刀具材料,冷却剂以及切削刀具的几何形状,金属切削的速率和加工所需的功率就取决于这些变量。

切削深度,进给和切削速率是在任何金属切削作业中都必须建立的机器设置,它们都会影响切削力,功率和对金属切削的速率。切削的深度是唱针进入唱片的量或者是槽的深度。切削速度由任意时刻唱片表面和对于拾音器臂内的唱针的速度来表示进给由唱针每圈径向向内的前进量或者把两个相邻槽的位置间来表示可以通过把它们与留声机的唱针和唱片相比较给出其定义。

第十二单元 计算机辅助设计

好的工程设计需要保证一个部件或机构正确的运转和持续相当长的一段时间。此外,在设计过程的功能性因素包含重量,强度,热性能,运动学和动力学。

第十五单元

柔性制造、一、柔性制造的定义

制造的演变用图表示为一个连续统一体,如图15-1所示。如此图显示的那样,制造的过程和系统处在把手工操作到最后实现全盟的集成制造的过度状态。计算机集成制造的前一步叫做柔性制造。

柔性在现代制造环境中是一个重要的特征。它意味着一个制造系统是用途多且适应性强,同时又能进行产量相对较大的制造。柔性制造系统是多用途的,这是因为它能制造多种多样的部件。它适应性强,因为它能很快地加以改变来制造完全不同的另一种部件。这种柔性在竞争激烈的国际市场上可能成败有别。

这是一个平衡的问题。独立的计算机数字控制(nc)机床有着高度的柔性,但是只能处理批量相对较小的制造。正相反,系列连锁生产线能进行批量较大的制造,但都不很灵活。柔性制造试图运用工业技术在灵活的与制造运行间达到最佳的平衡。这些工业技术包括自动化的材料、处理,成组技术及计算机和分布数字控制。

柔性制造系统(FMS)是一个独立的机床或一组机床服务于一个自动材料处理系统。它是由计算机控制的而且有对刀具处理的能力。由于他有刀具处理能力并受计算机控制,这样的系统可以不断的重新配置来制造更加多样的部件,这就是它被称作柔性制造系统的原因。

一个制造系统要成为柔性制造系统必须具备的要素有:

1、计算机控制

2、自动处理材料能力

3、刀具处理能力

柔性制造向全面集成化制造的目标迈进了重要的一部。它实现了自动制造过程的集成化。在柔性制造中,自动化的制造机器(如车床、铣床、钻床)和自动化材料处理系统之间,通过计算机网络进行即时的沟通。这是小规模的集成,图15-2是柔性制造系统的一个样例。

二、柔性制造的概况

通过综合几个自动化的制造概念,柔性制造系统向全面集成化的目标迈出了重要的一步,这些观念是:

1、独立机床的计算机数字控制

2、制造系统的分布式数字控制

3、自动化的材料处理系统

4、成组技术,零件族

当这些自动化工艺,机器和观念合成到一个集成的系统时,就产生柔性制造系统。在柔性制造系统中,和计算机起了重要作用,当然大的劳动量比手工操作的制造系统要小得很多。然而,人仍然在柔性制造系统的操作中起了至关重要的作用,人的任务包括几个方面:

1、设备故检、维护和修理

2、刀具的变换和设置

3、安装和拆卸系统

4、数据输入

5、部件程序的变换

6、程序的开发

柔性制造系统设备像所有制造设备一样,必须有人监管以免出现失常、机器程序错误,以及故障。当发现问题时检修人员必须确定问题的根源,然后给出正确的措施,人还要采取指定的措施来修理运行不正常的机器。甚至当所有系统正常运转时,定期的维护也是必要的。

操作人员还要根据需要设置机床,换刀具,以及重新配置系统。柔性制造系统的刀具处理能力消弱了,但并没有消除,在刀具变换和设置上仍需要人力。在装卸柔性制造系统时也是这样,一旦原材料被送到自动化材料处理系统上,它就会以规定的方式,在系统中移动。然而,初装到材料处理系统仍然是由人员完成的,成品的拆卸也是同样。

与计算机的交流仍需要人力完成,人开发零件程序,通过计算机控制柔性制造系统。当重新配置FMS制造另一种类型零件时,他们还在必要的时候变换程序。人在柔性制造系统中劳动力密集型的成分越来越少,但仍然是很重要的。

柔性制造系统中的各层控制都是由计算机来完成的。在柔性制造系统中独立的机床是由CNC来控制点。整个的系统是由DNC来控制的。自动化的材料处理系统是计算机来控制的,其他的功能如数据收集、系统监控、刀具控制、运输控制也是计算机控制的,人机交互是柔性制造系统中的关键。

二、柔性制造的历史发展

柔性制造产生于20世纪60年代中期,当时英国莫林斯有限公司开发了24号系统。24号系统是一个真正的FMS。然而,它从一开始就注定是失败的,因为自动化、集成化和计算机控制技术还没有发展到能够恰好支持这一系统的程度。第一个FMS是超前的开发。因此,最终因不能工作而被放弃。

在20世纪60年代和70年代的其余时间里,柔性制造仍然是一个学术观念。然而,随着复杂计算机控制技术在20世纪70年代末和80年代初的出现,柔性制造便成为可能。在美国最初的主要用户是汽车、卡车和拖拉机制造商。

四、柔性制造的理由 在制造中,生产率和柔性之间经常存在协调一致的问题。在该领域的一端是具有高生产率却低柔性的连续生产线,在该领域的另一端是能提供最大柔性的独立的计算机数字控制的机床,但它只能进行低生产率的制造。柔性制造处在此连续统一体的中间。在制造中总是需要一个系统,这个系统比单个机床能制造更大批量且用于更多制作过程,但仍保持其柔性。

连续生产线能以高生产率制造大量的零件。这条生产线需要大量的准备工作,但却能制造出大量的相同的零件。它的主要缺点是即使一个部件在设计上有小的改变都能造成整个生产线的停产和建构改变。这是一个致命的弱点,因为这意味着没有高成本,耗时停工和变化连锁生产线结构是不能制造出不同的零件的,即使是来自同一个零件族。

传统上计算机数字控制机床是用来制造少量在设计上稍有不同的零件。这种机床很适合这一用途。因为它们能迅速地改变程序来适应设计上小的或者更大的改变。然而,作为独立的机床它们不能大量地或高生产率地制造零件。

柔性制造系统比独立的计算机数控机床具有更大的生产能力和更高的生产率。它们在柔性方面比不上计算机数字控制机床,但它们却相差不多。柔性制造的中间性能的特殊意义在于大多数制造要求中等量的生产率来制造中等及的产品。同时有足够的柔性以快速改变结构来制造另一个零件或产品。柔性制造填补了制造中长期存在的空白。

柔性制造以其基本能力给制造者提供了许多有点:

1、在一个零件族内具有柔性

2、随意进给零件

3、同时制造不同的零件

第四篇:关于机械专业求职信集锦

关于机械专业求职信集锦五篇

光阴如水,新一轮的招聘又朝我们走来,感觉我们很有必要写求职信了。求职信怎样写才能让人满意呢?下面是小编帮大家整理的机械专业求职信5篇,供大家参考借鉴,希望可以帮助到有需要的朋友。

机械专业求职信 篇1

尊敬的领导:

您好!

当您浏览这一页的时候,您已经为我打开了通往成功的第一扇大门。感谢您能在我即将踏上人生又一崭新征程的时候,给我一次宝贵的机会。希望它不同于您手中若干份雷同的求职材料,并能有助您在激烈的市场竞争与知识经济的大潮中录求到你正在寻找的综合型人才。

我是专科学校的一名大三学生,主修的是机械设计制造及其自动化专业的数控技术方向。欲在各企事业单位寻找一份与计算机相关的管理或技术工作,如:信息采编,网络管理,也愿意从事与本专业数控技术有关的管理技术性工作。

作为一名专科生,“合格加特长”始终是我的目标。在学校里我的学习成绩名列前茅,并积极参加各种课外活动,作为新世纪的大学生,我深深知道只学习本专业的知识是远远不够的,因此我阅读了各个方面的书籍并参加了各种极其有用的培训课程的学习,充实自己的同时也得到了更多机会的锻炼。经过大学三年的努力,我已具有较高的理论及实践能力,有良好的人际关系,能适应新环境。计算机和英语知识的掌握使我工作责任心强,富有创新意识,愿从事具有挑战性的工作。并且,具有一定的组织、社交能力。对未知领域充满热情,自信。有相当的发展潜力,以求不断完善自我。我肯吃苦,踏实苦干,从点滴做起,在工作中始终保持勇于创新的信念和乐观向上的态度。

此致

敬礼!

20xx年2月17日

机械专业求职信 篇2

尊敬的领导:

您好!

感谢您百忙之中来关注我的个人求职信。

我是一名20xx届本科生,就读于。大学,我的姓名是。所读专业是机械设计及其自动化。在校期间我刻苦学习、严格遵守学校的规章制度、社会公德,尊敬师长,团结同学乐于助人,在德、智、体、美、劳方面得到全面发展。通过我的努力,我在专业课的学习上每年获得学校的奖学金,凭着优异的成绩进入了学校的辅修专业课程《计算机网络》的学习,同样以优良的成绩圆满毕业,能连接局域网及INTERNE的接入。在校期间我还利用业余时间学习了许多计算机知识,WORD、AUTOCAD、PHOTOSHOP、及C语言、汇编语言、HTML等都得以学习和掌握。特别是对WORD、AUTOCAD的应用十分熟练。我已经具备了计算机操作的基本能力,并且坚信会在计算机应用及编程方面创造出一片蔚蓝的天空。

英语是我擅长的科目之一,通过了全国大学英语四级考试,我在英语阅读与写作上更显优势,借助词典能阅读翻译专业型英文资料,总之我有着相当的英语水平。

平时我的课余活动也十分广泛,乒乓球、篮球、羽毛球等球类运动都是我的爱好,还喜欢阅读书籍,这主要是为了培养艺术能力,有艺术才会树立好形象,才能用计算机设计出代表个人、企事业单位的好标志。最后,请领导核实我的情况,相信我,我会在您给我提供的舞台上献上最美的舞姿,希望领导接纳我,我愿我一生的勤勉报答贵单位!我愿与您携手共进!再次感谢您对我的关注。

此致

敬礼!

祝工作顺利!

机械专业求职信 篇3

敬的贵公司领导:

您好!

本人xx,20xx年至今就读于xx职业技术学院,机械制造专业。在三年的学校生活中,我勤奋刻苦,力求上进,努力学习基础与专业知识。课余时间积极拓宽自己的知识,参加学校的各项文娱活动。作为正要跨出校门,迈向社会的大学生,我以满腔的热情与信心去迎接未来的一切。

在校期间我一直担任本班的学习委员,积极配合老师和其他班委的工作,为同学们服务和负责。学习成绩一直是班里的前列,先后获得各种奖学金,参加各种技能比赛也获得优越的成绩,并得到老师和同学们的肯定。

在专业上,几年来我努力学习专业知识,从各门课程的基础知识出发,努力掌握其基本技能技巧,深钻细研,并取得了良好的成绩。大二区间学校安排我们到“天健集团”实习。就得到公司的高度赞扬,记得经理最后对我说:我公司的大门随时为你敞开!

现在,我以满腔的热情,准备投身到现实社会这个大熔炉中,虽然存在很多艰难困苦,但我坚信,大学生活给我的精神财富能够使我战胜它们。“长风破浪会有时,直挂云帆济沧海”,希望贵公司能给我一个发展的平台,我会好好珍惜它,并全力以赴,为实现自己的`人生价值而奋斗,为贵公司的发展贡献力量。

祝贵公司事业稳步发展!

此致

敬礼!

求职者:

机械专业求职信 篇4

尊敬的领导:

您好!

首先,对于您能在百忙之中抽出时间来翻阅我的资料,我表示由衷的感谢。

我是一名机械设计及其自动化专业的毕业生。我热爱我的专业并为其投入了巨大的热情和精力。在校期间我刻苦学习、严格遵守学校的规章制度、社会公德,尊敬师长,团结同学乐于助人,在德、智、体、美、劳方面得到全面发展。通过我的努力,我在专业课的学习上每年获得学校的奖学金,凭着优异的成绩进入了学校的辅修专业课程《计算机网络》的学习,同样以优良的成绩圆满毕业,能连接局域网及INTERNE的接入。在校期间我还利用业余时间学习了许多计算机知识,WORD、AUTOCAD、PHOTOSHOP、及C语言、汇编语言、HTML等都得以学习和掌握。特别是对WORD、AUTOCAD的应用十分熟练。我已经具备了计算机操作的基本能力,并且坚信会在计算机应用及编程方面创造出一片蔚蓝的天空。

英语是我擅长的科目之一,通过了全国大学英语四级,我在英语阅读与写作上更显优势,借助词典能阅读翻译专业型英文资料,总之我有着相当的英语水平。

我有一定的策划组织协调能力。并且为人诚实,责任心强,乐观且积极向上,能吃苦耐劳,学习领悟和适应能力也都不错。在学校工作中,加强锻炼处世能力,学习管理知识,吸收管理经验。这些都是我的长处。只是初出茅庐,需要经受社会的洗礼,承受生活的考验,更需要一个机会来锻炼。

平时我的课余活动也十分广泛,乒乓球、篮球、羽毛球等球类运动都是我的爱好,还喜欢阅读书籍,这主要是为了培养艺术能力,有艺术才会树立好形象,才能用计算机设计出代表个人、企事业单位的好标志。

在人生中精力充沛的时期,我渴望在更广阔的天地里展露自己的才能,我不满足与现有的知识水平,期望在实践中得到锻炼和提高,因此我希望能够加入贵单位。相信我,我会在您给我提供的舞台上献上最美的舞姿,希望领导接纳我,我愿我一生的勤勉报答贵单位!我愿与您携手共进!再次感谢您对我的关注。

此致

敬礼!

求职者:xxxx

****年**月**日

机械专业求职信 篇5

尊敬的领导:

我是一名福建工业学校的一名学生,在中专三年里,我已经学会了一定的计算机软硬件的一些知识作为一名机械科的学生,我热爱我的专业,期待着实际的工作考验。

作为一名初出校门走向社会的学生,我认为我最缺乏的是丰富的社会实践和工作经验,这或许让你犹豫不决,但我有着青年人的热情和赤诚,有着兢兢业业的工作态度和集体合作精神,真心希望贵公司能给我一个机会,我愿与贵公司同甘共苦,共创未来!“长风破浪会有时,直挂云帆济沧海”在机遇与挑战并存的新世纪,我有信心凭自己的能力为贵公司的事业添一份力量,希望贵公司可以成为那个可以实现自我价值的大舞台,也希望为我自己赢得一片天空。

过去并不代表未来,勤奋才是真实的内涵,在求学之路中养成积极乐观,进取的品质和满腔的热情,使我有信心能很快胜任自己的本职工作,并且在实际中不断学习,不断完善自己。我坚信真诚+勤奋可以创造奇迹。

千里马因伯乐而驰骋,我需要你的赏识和认可,如果你能给我一个机会,我会更加严格要求自己,以全新的面貌迎接辉煌的明天。

此致

敬礼!

第五篇:机械专业自荐信

自荐信

尊敬的领导:

您好!

当您翻开这一页的时候,您已经为我打开了通往机遇与成功的第一扇大门。非常感谢您百忙之中抽空阅读我的材料,愿这封信成为我们沟通的开端。十多年的寒窗苦读造就了自强不息的我。激烈的社会竞争,给了我无尽的动力。在日常的生活和学习中,我从不随波逐流,以乐观向上的进取精神,勤奋刻苦的学习态度,踏实肯干的工作作风,团队合作的处世原则,开拓进取,超越自我。“工欲善其事,必先利其器”,大学三年中,获得奖学金,优秀学生干部,成为了一名中共党员,在完成本专业课程的同时,英语通过国家六级考试,熟练的掌握了AutoCAD、Pro/E和SolidWorks制图软件,以及PLC编程,C语言编程和办公软件。另外我还积极参加各种实践活动,锻炼出较强的组织领导能力,深受老师、同学们信赖。我争取全面发展,使自己成为真正符合时代发展的新型人才。

以扎实的理论基础,丰富的专业知识,较强的自学能力,在公平的市场竞争中,我相信自己一定会成功。您需要的是人才,我需要的是工作,若您能给我一次机会,有幸成为贵公司的一员,我会尽心尽力为贵公司和自己的前途奋力拼搏。希望领导能够对我予以考虑,我热切期望您的佳音!

愿贵公司事业蒸蒸日上,祝君身体安康!

此致

敬礼!

自荐人:xxx

2013年10月

下载机械专业(推荐)word格式文档
下载机械专业(推荐).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    机械专业自荐书

    自荐书尊敬的贵公司领导: 您好! 首先感谢您在繁忙的工作中抽出时间阅读本人的求职信。欣闻贵公司正扩展市场,招募人才。恰贵公司招募的岗位是我期待的工作,我自告奋勇,推荐自己。......

    机械专业求职信

    尊敬的领导: 您好! 感谢您能在百忙之中抽出时间阅读本人的求职自荐信。我是苏州市职业大学机电工程系机械制造与自动化1班的学生,将在xxxx年xx月毕业。在即将踏上征程之际,在此......

    机械专业教学计划

    教 学 工 作 计 划 晋州职教中心---- 郭士超 面对新的教育形式、新的学生情况、结合我们职教中心在教育教学改革中的实际状况,贯彻领导提出的“几年内,我校打造河北省最好的......

    机械专业自荐信

    机械专业自荐信 机械专业自荐信 1 尊敬的领导:您好!我是xx学院20届专科毕业生。在完成学业,即将跨出象牙塔走出康乐园进入社会之际,我需要谋求一份适合自己发展的工作。现在......

    机械专业自荐书

    机械专业自荐书 1、机械专业自荐书 尊敬的领导: 您好! 当您浏览这一页的时候,您已经为我打开了通往成功的第一扇大门。感谢您能在我即将踏上人生又一崭新征程的时候,给我一次......

    机械专业求职信

    关于机械专业求职信 关于机械专业求职信1 尊敬的领导:您好!我叫XX,今年XX岁,是XX职业技术学院机械制造专业XX级的应届毕业生。今天我是怀着激动的心情递上这封求职信的。作为一......

    机械专业简历

    基本信息姓名:某某某性别:男民族:汉 籍贯:江苏省连云港市赣榆县出生年月:1992年4月 家庭住址:黑龙江省嫩江县 学校: 燕山大学专业:机械设计制造及其自动化(液压) 学历:本科 联系电话:邮......

    机械专业自我介绍

    机械专业自我介绍范文各位考官大家早上好。我叫XXX,来自XX大学。本人是机械专业本科学历,具有较强的机械专业理论知识和实际动手力。三年的大学生活为我的人生添加了非常多的......