第一篇:并行IO口电路扩展几个问题(本站推荐)
并行I/O口电路扩展几个问题,你会吗?
7-1 为什么当系统接有外部程序存贮器时,P2口不能再作I/O口使用了?
7-2 8255有几种工作方式?试说明其每种工作方式的意义?
7-3 8155扩展器有几部分组成?试说明其作用?
7-4 试设计一个8031单片机系统,系统至少有120条外部I/O口线和4KEPROM,并写出其地址。
7-5 在单片机中控制I/O操作有几种方法?试说明各种方法的特点。
7-6 三态缓冲器为什么能实现数据隔离?
7-7 MCS-51单片机采用哪一种I/O编址方式?有哪些特点可以证明?
7-8 “在MCS-51中,由于I/O与RAM是统一编址的,因此要把外部RAM的64K地址空间拨出一部分给扩展I/O口使用”。这种说法对吗?
7-9 如何在一个4*4的键盘中使用扫描进行被按键的识别?
7-10 写出8255A方式0可能出现的16种控制字及相对应的各口输入/输出状态。7-11 使用定时器中断方法设计一个秒闪电路,让LED显示器每秒有400ms点亮。假定晶
振频率为6MHz,画电路连接图并编写程序。
7-12 单片机用内部定时方法产生频率为100kHz等宽矩形波,假定单片机的晶振频率为
12MHz,请编程实现。
7-13有晶振频率为6MHz的MCS-51单片机,使用定时器0以定时方法在P1.0输出周期为
400us,占空比为10:1的矩形脉冲,以定时工作方式2编程实现。
7-14以定时器/计数器1进行外部事件计数。每计数1000个脉冲后,定时器/计数器1转为定时工作方式,定时10ms后,又转为计数方式,如此循环不止。假定单片机晶振频率为6MHz,请使用工作方式1编程实现。
7-15以中断方法设计单片机秒,分脉冲发生器。假定P1.0每秒钟产生一个机器周期的正脉冲,P1.1每分钟产生一个周期的正脉冲。
7-16一个定时器的定时时间有限,如何实现两个定时器的串行定时,以满足较长定时时间的要求?
7-17使用一个定时器,如何通过软硬件结合的方法,实现较长时间的定时?
7-18假定单片机晶振频率为6MHz,要求每隔100ms,从外部RAM以data开始的数据区传送
一个数据到P1口输出,共传送100个数据。要求以两个定时器串行定时方法实现。7-19每隔1秒钟读一次P1.0,如果所读的状态为“1”,内部RAM10H单元加1,如果所读的状态为“0”,则内部RAM 11H单元加1,假定单片机晶振频率为12MHz,请以软硬件结合方法定时实现之。
第二篇:51单片机IO口工作原理
51单片机I/O口工作原理
一、P0端口的结构及工作原理 P0端口8位中的一位结构图见下图:
由上图可见,P0端口由锁存器、输入缓冲器、切换开关、一个与非门、一个与门及场效应管驱动电路构成。再看图的右边,标号为P0.X引脚的图标,也就是说P0.X引脚可以是P0.0到P0.7的任何一位,即在P0口有8个与上图相同的电路组成。
下面,我们先就组成P0口的每个单元部份跟大家介绍一下:
先看输入缓冲器:在P0口中,有两个三态的缓冲器,在学数字电路时,我们已知道,三态门有三个状态,即在其的输出端可以是高电平、低电平,同时还有一种就是高阻状态(或称为禁止状态),大家看上图,上面一个是读锁存器的缓冲器,也就是说,要读取D锁存器输出端Q的数据,那就得使读锁存器的这个缓冲器的三态控制端(上图中标号为„读锁存器‟端)有效。下面一个是读引脚的缓冲器,要读取P0.X引脚上的数据,也要使标号为„读引脚‟的这个三态缓冲器的控制端有效,引脚上的数据才会传输到我们单片机的内部数据总线上。
D锁存器:构成一个锁存器,通常要用一个时序电路,时序的单元电路在学数字电路时我们已知道,一个触发器可以保存一位的二进制数(即具有保持功能),在51单片机的32根I/O口线中都是用一个D触发器来构成锁存器的。大家看上图中的D锁存器,D端是数据输入端,CP是控制端(也就是时序控制信号输入端),Q是输出端,Q非是反向输出端。
对于D触发器来讲,当D输入端有一个输入信号,如果这时控制端CP没有信号(也就是时序脉冲没有到来),这时输入端D的数据是无法传输到输出端Q及反向输出端Q非的。如果时序控制端CP的时序脉冲一旦到了,这时D端输入的数据就会传输到Q及Q非端。数据传送过来后,当CP时序控制端的时序信号消失了,这时,输出端还会保持着上次输入端D的数据(即把上次的数据锁存起来了)。如果下一个时序控制脉冲信号来了,这时D端的数据才再次传送到Q端,从而改变Q端的状态。
多路开关:在51单片机中,当内部的存储器够用(也就是不需要外扩展存储器时,这里讲的存储器包括数据存储器及程序存储器)时,P0口可以作为通用的输入输出端口(即I/O)使用,对于8031(内部没有ROM)的单片机或者编写的程序超过了单片机内部的存储器容量,需要外扩存储器时,P0口就作为„地址/数据‟总线使用。那么这个多路选择开关就是用于选择是做为普通I/O口使用还是作为„数据/地址‟总线使用的选择开关了。大家看上图,当多路开关与下面接通时,P0口是作为普通的I/O口使用的,当多路开关是与上面接通时,P0口是作为„地址/数据‟总线使用的。
输出驱动部份:从上图中我们已看出,P0口的输出是由两个MOS管组成的推拉式结构,也就是说,这两个MOS管一次只能导通一个,当V1导通时,V2就截止,当V2导通时,V1截止。
与门、与非门:这两个单元电路的逻辑原理我们在第四课数字及常用逻辑电路时已做过介绍,不明白的同学请回到第四节去看看。
前面我们已将P0口的各单元部件进行了一个详细的讲解,下面我们就来研究一下P0口做为I/O口及地址/数据总线使用时的具体工作过程。
1、作为I/O端口使用时的工作原理
P0口作为I/O端口使用时,多路开关的控制信号为0(低电平),看上图中的线线部份,多路开关的控制信号同时与与门的一个输入端是相接的,我们知道与门的逻辑特点是“全1出1,有0出0”那么控制信号是0的话,这时与门输出的也是一个0(低电平),与让的输出是0,V1管就截止,在多路控制开关的控制信号是0(低电平)时,多路开关是与锁存器的Q非端相接的(即P0口作为I/O口线使用)。
P0口用作I/O口线,其由数据总线向引脚输出(即输出状态Output)的工作过程:当写锁存器信号CP
有效,数据总线的信号→锁存器的输入端D→锁存器的反向输出Q非端→多路开关→V2管的栅极→V2的漏极到输出端P0.X。前面我们已讲了,当多路开关的控制信号为低电平0时,与门输出为低电平,V1管是截止的,所以作为输出口时,P0是漏极开路输出,类似于OC门,当驱动上接电流负载时,需要外接上拉电阻。
下图就是由内部数据总线向P0口输出数据的流程图(红色箭头)。
P0口用作I/O口线,其由引脚向内部数据总线输入(即输入状态Input)的工作过程:
数据输入时(读P0口)有两种情况
1、读引脚
读芯片引脚上的数据,读引脚数时,读引脚缓冲器打开(即三态缓冲器的控制端要有效),通过内部数据总线输入,请看下图(红色简头)。
2、读锁存器
通过打开读锁存器三态缓冲器读取锁存器输出端Q的状态,请看下图(红色箭头):
在输入状态下,从锁存器和从引脚上读来的信号一般是一致的,但也有例外。例如,当从内部总线输出低电平后,锁存器Q=0,Q非=1,场效应管T2开通,端口线呈低电平状态。此时无论端口线上外接的信号是低电乎还是高电平,从引脚读入单片机的信号都是低电平,因而不能正确地读入端口引脚上的信号。又如,当从内部总线输出高电平后,锁存器Q=1,Q非=0,场效应管T2截止。如外接引脚信号为低电平,从引脚上读入的信号就与从锁存器读入的信号不同。为此,8031单片机在对端口P0一P3的输入操作上,有如下约定:为此,8051单片机在对端口P0一P3的输入操作上,有如下约定:凡属于读-修改-写方式的指令,从锁存器读入信号,其它指令则从端口引脚线上读入信号。
读-修改-写指令的特点是,从端口输入(读)信号,在单片机内加以运算(修改)后,再输出(写)到该端口上。下面是几条读--修改-写指令的例子。
这样安排的原因在于读-修改-写指令需要得到端口原输出的状态,修改后再输出,读锁存器而不是读引脚,可以避免因外部电路的原因而使原端口的状态被读错。
P0端口是8031单片机的总线口,分时出现数据D7一D0、低8位地址A7一AO,以及三态,用来接口存储器、外部电路与外部设备。P0端口是使用最广泛的I/O端口。
2、作为地址/数据复用口使用时的工作原理
在访问外部存储器时P0口作为地址/数据复用口使用。
这时多路开关„控制‟信号为„1‟,„与门‟解锁,„与门‟输出信号电平由“地址/数据”线信号决定;多路开关与反相器的输出端相连,地址信号经“地址/数据”线→反相器→V2场效应管栅极→V2漏极输出。例如:控制信号为1,地址信号为“0”时,与门输出低电平,V1管截止;反相器输出高电平,V2管导通,输出引脚的地址信号为低电平。请看下图(兰色字体为电平):
反之,控制信号为“1”、地址信号为“1”,“与门”输出为高电平,V1管导通;反相器输出低电平,V2管截止,输出引脚的地址信号为高电平。请看下图(兰色字体为电平):
可见,在输出“地址/数据”信息时,V1、V2管是交替导通的,负载能力很强,可以直接与外设存储器相连,无须增加总线驱动器。
P0口又作为数据总线使用。在访问外部程序存储器时,P0口输出低8位地址信息后,将变为数据总线,以便读指令码(输入)。
在取指令期间,“控制”信号为“0”,V1管截止,多路开关也跟着转向锁存器反相输出端Q非;CPU自动将0FFH(11111111,即向D锁存器写入一个高电平„1‟)写入P0口锁存器,使V2管截止,在读引脚信号控制下,通过读引脚三态门电路将指令码读到内部总线。请看下图
如果该指令是输出数据,如MOVX
@DPTR,A(将累加器的内容通过P0口数据总线传送到外部RAM中),则多路开关“控制”信号为„1‟,“与门”解锁,与输出地址信号的工作流程类似,数据据由“地址/数据”线→反相器→V2场效应管栅极→V2漏极输出。
如果该指令是输入数据(读外部数据存储器或程序存储器),如MOVX A,@DPTR(将外部RAM某一存储单元内容通过P0口数据总线输入到累加器A中),则输入的数据仍通过读引脚三态缓冲器到内部总线,其过程类似于上图中的读取指令码流程图。
通过以上的分析可以看出,当P0作为地址/数据总线使用时,在读指令码或输入数据前,CPU自动向P0口锁存器写入0FFH,破坏了P0口原来的状态。因此,不能再作为通用的I/O端口。大家以后在系统设计时务必注意,即程序中不能再含有以P0口作为操作数(包含源操作数和目的操作数)的指令。
二、P1端口的结构及工作原理
P1口的结构最简单,用途也单一,仅作为数据输入/输出端口使用。输出的信息有锁存,输入有读引脚和读锁存器之分。P1端口的一位结构见下图.由图可见,P1端口与P0端口的主要差别在于,P1端口用内部上拉电阻R代替了P0端口的场效应管T1,并且输出的信息仅来自内部总线。由内部总线输出的数据经锁存器反相和场效应管反相后,锁存在端口线上,所以,P1端口是具有输出锁存的静态口。
由上图可见,要正确地从引脚上读入外部信息,必须先使场效应管关断,以便由外部输入的信息确定引脚的状态。为此,在作引脚读入前,必须先对该端口写入l。具有这种操作特点的输入/输出端口,称为准双向I/O口。8051单片机的P1、P2、P3都是准双向口。P0端口由于输出有三态功能,输入前,端口线已处于高阻态,无需先写入l后再作读操作。
P1口的结构相对简单,前面我们已详细的分析了P0口,只要大家认真的分析了P0口的工作原理,P1口我想大家都有能力去分析,这里我就不多论述了。
单片机复位后,各个端口已自动地被写入了1,此时,可直接作输入操作。如果在应用端口的过程中,已向P1一P3端口线输出过0,则再要输入时,必须先写1后再读引脚,才能得到正确的信息。此外,随输入指令的不同,H端口也有读锁存器与读引脚之分。
三、P2端口的结构及工作原理: P2端口的一位结构见下图:
由图可见,P2端口在片内既有上拉电阻,又有切换开关MUX,所以P2端口在功能上兼有P0端口和P1端口的特点。这主要表现在输出功能上,当切换开关向下接通时,从内部总线输出的一位数据经反相器和场效应管反相后,输出在端口引脚线上;当多路开关向上时,输出的一位地址信号也经反相器和场效应管反相后,输出在端口引脚线上。
对于8031单片机必须外接程序存储器才能构成应用电路(或者我们的应用电路扩展了外部存储器),而P2端口就是用来周期性地输出从外存中取指令的地址(高8位地址),因此,P2端口的多路开关总是在进行切换,分时地输出从内部总线来的数据和从地址信号线上来的地址。因此P2端口是动态的I/O端口。输出数据虽被锁存,但不是稳定地出现在端口线上。其实,这里输出的数据往往也是一种地址,只不过是外部RAM的高8位地址。
在输入功能方面,P2端口与P0和H端口相同,有读引脚和读锁存器之分,并且P2端口也是准双向口。
可见,P2端口的主要特点包括: ①不能输出静态的数据;
②自身输出外部程序存储器的高8位地址;
②执行MOVX指令时,还输出外部RAM的高位地址,故称P2端口为动态地址端口。
即然P2口可以作为I/O口使用,也可以作为地址总线使用,下面我们就不分析下它的两种工作状态。
1、作为I/O端口使用时的工作过程
当没有外部程序存储器或虽然有外部数据存储器,但容易不大于256B,即不需要高8位地址时(在这种情况下,不能通过数据地址寄存器DPTR读写外部数据存储器),P2口可以I/O口使用。这时,“控制”信号为“0”,多路开关转向锁存器同相输出端Q,输出信号经内部总线→锁存器同相输出端Q→反相器→V2管栅极→V2管9漏极输出。
由于V2漏极带有上拉电阻,可以提供一定的上拉电流,负载能力约为8个TTL与非门;作为输出口前,同样需要向锁存器写入“1”,使反相器输出低电平,V2管截止,即引脚悬空时为高电平,防止引脚被钳位在低电平。读引脚有效后,输入信息经读引脚三态门电路到内部数据总线。
2、作为地址总线使用时的工作过程
P2口作为地址总线时,“控制”信号为„1‟,多路开关车向地址线(即向上接通),地址信息经反相器→V2管栅极→漏极输出。由于P2口输出高8位地址,与P0口不同,无须分时使用,因此P2口上的地址信息(程序存储器上的A15~A8)功数据地址寄存器高8位DPH保存时间长,无须锁存。
四、P3端口的结构及工作原理
P3口是一个多功能口,它除了可以作为I/O口外,还具有第二功能,P3端口的一位结构见下图。
由上图可见,P3端口和Pl端口的结构相似,区别仅在于P3端口的各端口线有两种功能选择。当处于第一功能时,第二输出功能线为1,此时,内部总线信号经锁存器和场效应管输入/输出,其作用与P1端口作用相同,也是静态准双向I/O端口。当处于第二功能时,锁存器输出1,通过第二输出功能线输出特定的内含信号,在输入方面,即可以通过缓冲器读入引脚信号,还可以通过替代输入功能读入片内的特定第二功能信号。由于输出信号锁存并且有双重功能,故P3端口为静态双功能端口。P3口的特殊功能(即第二功能): 使P3端品各线处于第二功能的条件是:
1、串行I/O处于运行状态(RXD,TXD);
2、打开了处部中断(INT0,INT1);
3、定时器/计数器处于外部计数状态(T0,T1)
4、执行读写外部RAM的指令(RD,WR)
在应用中,如不设定P3端口各位的第二功能(WR,RD信叼的产生不用设置),则P3端口线自动处于第一功能状态,也就是静态I/O端口的工作状态。在更多的场合是根据应用的需要,把几条端口线设置为第二功能,而另外几条端口线处于第一功能运行状态。在这种情况下,不宜对P3端口作字节操作,需采用位操作的形式。
端口的负载能力和输入/输出操作:
P0端口能驱动8个LSTTL负载。如需增加负载能力,可在P0总线上增加总线驱动器。P1,P2,P3端口各能驱动4个LSTTL负载。
前已述及,由于P0-P3端口已映射成特殊功能寄存器中的P0一P3端口寄存器,所以对这些端口寄存器的读/写就实现了信息从相应端口的输入/输出。例如: MOV A,P1 ;把Pl端口线上的信息输入到A MoV P1,A ;把A的内容由P1端口输出 MOV P3,#0FFH ;使P3端口线各位置l
第三篇:单片机io口控制实验报告
单片机实验报告
实验名称:
I/O 口控制
姓
名:
张昊 学
号:
110404247 班
级:
通信 2 班 时
间:
2013.11.19
南京理工大学紫金学院电光系
一、实验目的1、学习I/O 口的使用。
2、学习延时子程序的编写和使用。
3、掌握单片机编程器的使用和芯片烧写方法。
二、
实验原理
1、广告流水灯实验 (1)
做单一灯的左移右移,八个发光二极管 L1~L8 分别接在单片机的P1.0~P1.7 接口上,输出“0”的时候,发光二极管亮,开始时P1.0->P1.1->P1.2->P1.3->...->P1.7->P1.6->...P1.0 亮,重复循环。
(2)
系统板上硬件连线:把“单片机系统”A2 区的 J61 接口的 P1.0~P1.6端口与 D1 区的 J52 接口相连。要求:P1.0 对应着 L1,P1.1 对应L2,……,P1.7 对应着 L8。
P1 口广告流水灯实验原理图如下
程序设计流程:流程图如下
2、模拟开关实验 (1)
监视开关 K1(接在 P3.0 端口上),用发光二极管 L1(接在单片机P1.0 端口上)显示开关状态,如果开关合上,L1 亮,开关打开,L1 熄火。
(2)
系统板上硬件连线:把“单片机系统”A2 区的 P1.0 端口用导线连接到 D1 区的 LED1 端口上;把“单片机系统”A2 区的 P3.0 端口用导线连接到 D1 区的 KEY1 端口上; 实验原理图如下图
程序设计流程
否
是
二、实验内容
1、流水灯
#include
unsigned char count=0;bit flag;void main(){ 开始 开关闭合否 L1 灭 L1 亮
P1=0xff;TMOD=0x01;TH0=55536/256;TL0=55536%256;EA=1;ET0=1;TR0=1;while(1){ p10=0;while(flag==0);flag=0;p10=1;p11=0;while(flag==0);flag=0;p11=1;p12=0;while(flag==0);flag=0;p12=1;p13=0;while(flag==0);flag=0;p13=1;p14=0;while(flag==0);flag=0;p14=1;p15=0;while(flag==0);flag=0;p15=1;p16=0;while(flag==0);flag=0;p16=1;p17=0;while(flag==0);flag=0;p17=1;} } void t0_srv()interrupt 1 { TH0=55536/256;TL0=55536%256;count++;if(count==10){ flag=1;
count=0;} } 2、模拟开关
#include
while(1){ if(p30==0)
p10=0;else
p10=1;} }
三、小结与体会
通过本次实验学会了 I/O 口的使用,学会了延时子程序的编写和使用以及掌握了单片机编程器的使用和芯片烧写方法。通过 Proteus ISIS 和 Keil uvision软件的互相配合,使得单片机在电脑上的仿真轻松便捷。通过本次试验,利用简单的试验,2 种软件以及硬件的使用。
第四篇:单片机及扩展电路的组装与调测实习总结
单片机及扩展电路的组装与调测实习总结
电子工艺实习的两个星期很快就过去了,其中的过程有艰辛也有欢笑,它让我学到了许多课本上没有的知识,丰满了专业技术的羽翼,让我在动手能力及处理事情的能力方面有了很大程度的提高。
电子工艺实习是工科大学生至关重要的实践性教学环节。其目的是使学生理论联系实际掌握电子元器件的主要产品及其结构、性能和焊接安装工艺、调试等的实践知识,通过实习巩固和加深课堂里所学的基本理论和基础专业知识,将理论与实践相结合,提高解决和处理问题的能力,提高学生动手能力。并且通过实习全面了解本专业范围内的主要产品、生产工艺、技术状况以及工厂里工程师和技术员如何利用专业知识解决生产中的技术问题等,为本科生实现由学校到社会的过渡打下基础。
本次实习大概分为三个阶段:练焊、正式焊接、通电检查及调试。现分别从这三个阶段具体陈述下本次实习的心得体会:
一、练焊
练习焊接的过程看似枯燥无味,实际是电子工艺实习中最重要的一个部分。“万丈高楼平地起”,没有牢固的焊接技能,是不可能焊好每一块电路板的,当然也就不可能完全实现它的功能。
练习焊接的一天半时间,教会我的是对待事情的认真态度和耐心。一滴滴的焊锡滴上去,要精准的恰到好处。少锡就不能盖满焊盘,造成虚焊,进而断路。多锡又容易堆满焊盘,造成器件的短路,所以要焊好焊盘并不是一件容易的事情,开始的时候没有掌握要领,前几行并不理想,后来时刻提醒自己不要急躁,逐渐掌握了焊接技术的要领,焊的比以前又快又好了,到最后终于焊出了一排一排亮闪闪的焊珠。
也许这些技术并不需要太多的脑力劳动,导致自己容易产生忽视它的情绪,实际上它却培养了自己以后学习和生活中一个很重要的品质,那就是对待事情的态度。每一件事情都认真对待,每一次都努力做到最好,不要因小失大,造成不必要的损失。
二、正式焊接 清点元件教会了我要细心,贴片电阻和电容都只有很小的物理体积,所以很容易弄丢。以前处理事情的时候总是大大咧咧的,这次在老师的再三叮嘱下,认真清点好了每一个器件。本次实习使我对电子元件有了感性和理性的认识,强大的集成电路都是由一个个小的电子元件组成的,所以它们在电子工艺中有着举足轻重的作用。
正式焊接先从表面贴器件焊起,每一个器件都要小心翼翼。焊芯片的时候遇到些问题,比如管脚太多不容易控制锡的多少,而导致两个管脚连在一起造成了短路,多亏采取积极的补救措施将它们分开。后来逐渐适应,学会了一个窍门,就是先把锡滴在烙铁上,然后在在管脚的适当方向涂抹即可。还有时刻注意分正负元件的正负极,多次检查核对后再焊,免得出现意想不到的错误。
由于练焊过程费了好大心血,所以正式焊接过程还进行的比较顺利,下一步需要进行的就是紧张的测试和调试工作了。
三、通电检查及调试
第一步要不插单片机进行通电检查,用万用表测量U1的输出是否为5V电压,检验结果顺利,为4.9V左右,于是松了一口气,焊接没有太大问题。
于是开始进行程序下载试验,下载成功后发现板子有好多问题,按K4开关后本来应该二极管全部都亮,可是我的电路板上的二极管却全亮以后又灭掉。还有数码管最后一位数显示不出来。经过我努力查找电路板的原理图找到控制问题处的芯片或器件,猜测应该是虚焊造成的问题,于是又拿起烙铁从新焊了一遍看似没有焊牢的部位,再次通电后,果真问题都解决了。原来出现问题并不可怕,可怕的是没有迎接它的勇气。此过程中,我努力寻求同学和老师的帮助,他们都给了我很有用的建议。所以以后要不懂就问,吸取同伴和教导者的经验才能少走弯路,走向成功。
波形检测阶段也很顺利,我又再次熟悉了示波器的应用。正弦波、三角波、方波依次都调了出来,小学期成功结束。
电子工艺实习已经结束了,但心中的兴奋却依然存在,此时此刻心还沉浸在实习的气氛当中。本以为实习会是枯燥无味的,但说实话,没想到实习这么快就结束了,还真有点意犹未尽的感觉。通过这几天的亲身体会,虽说只是短短的几天的时间,但自己真的发现原来实习是那么的有趣。并且也使自己认识到了理论学习与实践相结合的重要性。在实习中,让我体会最深的就是:做事情的认真态度。
虽然刚开始对有些器件的确比较陌生,但是通过老师的细致讲解,我对每个一个器件的作用有了初步的认识。在组装过程中,我了解了声光控制灯电路的工作原理,是如何进行工作。在焊接过程中,虽然以前从来没有接触过焊接这样的方法,但是经过一系列的练习,从空焊到慢慢焊接简单的原件,再到能将一个声光控制灯完整的焊接完成,这中间一次次的试炼不仅需要自己的细心,而且更需要耐心,此外更培养了自己的动手能力。
这次实习让我明白,作任何事都要仔细认真,也许一个小小的疏忽都将导致整个工作前功尽弃。遇到实际问题时,只要认真思考,用所学的知识,再一步步探索,是完全可以解决遇到的一般问题的。就拿焊接这门技术来说吧,面对那发烫的电烙铁,那针尖大的焊孔,对初学者来说简直束手无策,但只要认真研究和观察各个元件的性能与特点,就可以完美的把焊接做好,同时认真的观察总结可以在保证质量的同时提高自己的效率。
通过实际动手操作,才发现理论和现实事物之间的差距,才明白不是只要学好课本上的知识就能胜任将来的工作。通过本次实习使我们对电子元件一定的感性和理性认识;对电子信息技术等方面的专业知识做进一步的理解;培养和锻炼我们的实际动手能力,使我们的理论知识与实践充分地结合,作到不仅具有专业知识,而且还具有较强的实践动手能力。在这里将自己这次电子工艺实习感触总结一下:
第一、是心态问题。要做好一件事,心态是很重要的。有好的心态,就会投入十二分的心力去努力,做事效果也是事半功倍。首先觉得我可以,才能有做下去的勇气。
第二、遇到问题不要急、不要慌、不要怕。要有条理的分析问题产生的原因,并对症下药,采取措施解决它。多向老师和同学寻求帮助,他们的建议会让自己受益匪浅。在处理问题的过程中,我们可以学到好多知识和能力。
第三、动手能力的培养。这次实习,使我们动手能力得到很大的提高。在生活中遇到一些小事情时自己动手解决,这样可以增强我们的自信心,对我们将来去适应陌生事物是有很大帮助。电子信息本身就不是泛泛的书本之谈,工科专业最重要的就是实践与理论的结合,把理论运用到实际生活中去。
面对任何事情都不要缺少自信心,我们不怕失败,我们可以输得起任何东西,青春年华、精力、力量,惟独自信不可失。实习是短暂的,但留给我的感受是深刻的。自己现在该做的,就是当认识到自己的不足时,那就该如何去改造自己,如何完善自己。我们要做的那就是在这有限的时间内,完成自己应该完成的事,经历自己应该经历的事情。
读书心存志远,实践悟出真知。实习给我的不单单是一种好的焊接技术,它的背后还有动手能力的锻炼,更有一种思维的培养与创新。能使自己的思考方式不单单局限在理论上的那种方式,更要向实际靠拢。
感谢这两个星期指导我并提供实习条件的老师和陪伴我的同学,还有感谢我自己,又向自我完善的目标靠近了一步。
第五篇:基于双口RAM的并行数字信号模拟器研究设计
龙源期刊网 http://.cn
基于双口RAM的并行数字信号模拟器研究设计
作者:马鹏飞 阎利军 张袁志
来源:《现代电子技术》2013年第05期
摘要: 为了能够和飞行试验中用到的通用采集器相配套,设计了一套适用于航空器飞行试验的并行信号模拟器。模拟器采用P87C51作为控制芯片,双口RAM作为单片机和通用采集器的数据交互媒介,采用USB 2.0高速传输接口与上位机通信,满足了实时控制与数据上传的要求,提高了数据传输速率。讨论了双口RAM的地址空间分配和数据共享冲突等问题。该模拟器保证了飞行试验数据的准确性。
关键词: P87C51; 并行信号; 双口RAM; 飞行试验; 通用采集器
中图分类号: TN911.7⁃34 文献标识码: A 文章编号: 1004⁃373X(2013)05⁃0115⁃03