初中数学优秀教学设计
初中数学优秀教学设计1
一、教学目标:
1、知识目标:
①能准确理解绝对值的几何意义和代数意义。
②能准确熟练地求一个有理数的绝对值。
③使学生知道绝对值是一个非负数,能更深刻地理解相反数的概念。
2、能力目标:
①初步培养学生观察、分析、归纳和概括的思维能力。
②初步培养学生由抽象到具体再到抽象的思维能力。
3、情感目标:
①通过向学生渗透数形结合思想和分类讨论的思想,让学生领略到数学的奥妙,从而激起他们的好奇心和求知欲望。
②通过课堂上生动、活泼和愉快、轻松地学习,使学生感受到学习数学的快乐,从而增强他们的自信心。
二、教学重点和难点
教学重点:绝对值的几何意义和代数意义,以及求一个数的绝对值。
教学难点:绝对值定义的得出、意义的理解及求一个负数的绝对值。
三、教学方法
启发引导式、讨论式和谈话法
四、教学过程
(一)复习提问
问题:相反数6与-6在数轴上与原点的距离各是多少?两个相反数在数轴上的点有什么特征?
(二)新授
1、引入
结合教材P63图2-11和复习问题,讲解6与-6的绝对值的`意义。
2、数a的绝对值的意义
①几何意义
一个数a的绝对值就是数轴上表示数a的点到原点的距离。数a的绝对值记作|a|.
举例说明数a的绝对值的几何意义。(按教材P63的倒数第二段进行讲解。)
强调:表示0的点与原点的距离是0,所以|0|=0.
指出:表示“距离”的数是非负数,所以绝对值是一个非负数。
②代数意义
把有理数分成正数、零、负数,根据绝对值的几何意义可以得出绝对值的代数意义:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.
用字母a表示数,则绝对值的代数意义可以表示为:
指出:绝对值的代数定义可以作为求一个数的绝对值的方法。
3、例题精讲
例1.求8,-8的绝对值。
按教材方法讲解。
例2.计算:|2.5|+|-3|-|-3|.
解:|2.5|+|-3|-|-3|=2.5+3-3=6-3=3
例3.已知一个数的绝对值等于2,求这个数。
解:∵|2|=2,|-2|=2
∴这个数是2或-2.
五、巩固练习
练习一:教材P641、2,P66习题2.4A组1、2.
练习二:
1、绝对值小于4的整数是____.
2、绝对值最小的数是____.
已知|2x-1|+|y-2|=0,求代数式3x2y的值。
六、归纳小结
本节课从几何与代数两个方面说明了绝对值的意义,由绝对值的意义可知,任何数的绝对值都是非负数。绝对值的代数意义可以作为求一个数的绝对值的方法。
七、布置作业
教材P66习题2.4A组3、4、5.
初中数学优秀教学设计2
一、内容简介
本节课的主题:通过一系列的探究活动,引导学生从计算结果中总结出完全平方公式的两种形式。
关键信息:
1、以教材作为出发点,依据《数学课程标准》,引导学生体会、参与科学探究过程。首先提出等号左边的两个相乘的多项式和等号右边得出的三项有什么关系。通过学生自主、独立的发现问题,对可能的答案做出假设与猜想,并通过多次的检验,得出正确的结论。学生通过收集和处理信息、表达与交流等活动,获得知识、技能、方法、态度特别是创新精神和实践能力等方面的发展。
2、用标准的数学语言得出结论,使学生感受科学的严谨,启迪学习态度和方法。
二、学习者分析:
1、在学习本课之前应具备的基本知识和技能:
①同类项的定义。
②合并同类项法则
③多项式乘以多项式法则。
2、学习者对即将学习的内容已经具备的.水平:
在学习完全平方公式之前,学生已经能够整理出公式的右边形式。这节课的目的就是让学生从等号的左边形式和右边形式之间的关系,总结出公式的应用方法。
三、教学/学习目标及其对应的课程标准:
(一)教学目标:
1、经历探索完全平方公式的过程,进一步发展符号感和推力能力。
2、会推导完全平方公式,并能运用公式进行简单的计算。
(二)知识与技能:经历从具体情境中抽象出符号的过程,认识有理
数、实数、代数式、防城、不等式、函数;掌握必要的运算,(包括估算)技能;探索具体问题中的数量关系和变化规律,并能运用代数式、防城、不等式、函数等进行描述。
(四)解决问题:能结合具体情景发现并提出数学问题;尝试从不同
角度寻求解决问题的方法,并能有效地解决问题,尝试评价不同方法之间的差异;通过对解决问题过程的反思,获得解决问题的经验。
(五)情感与态度:敢于面对数学活动中的困难,并有独立克服困难
和运用知识解决问题的成功体验,有学好数学的自信心;并尊重与理解他人的见解;能从交流中获益。
四、教育理念和教学方式:
1、教师是学生学习的组织者、促进者、合作者:学生是学习的主人,在教师指导下主动的、富有个性的学习,用自己的身体去亲自经历,用自己的心灵去亲自感悟。
教学是师生交往、积极互动、共同发展的过程。当学生迷路的时
候,教师不轻易告诉方向,而是引导他怎样去辨明方向;当学生登山畏惧了的时候,教师不是拖着他走,而是唤起他内在的精神动力,鼓励他不断向上攀登。
2、采用“问题情景—探究交流—得出结论—强化训练”的模式
展开教学。
3、教学评价方式:
(1) 通过课堂观察,关注学生在观察、总结、训练等活动中的主
动参与程度与合作交流意识,及时给与鼓励、强化、指导和矫正。
(2) 通过判断和举例,给学生更多机会,在自然放松的状态下,
揭示思维过程和反馈知识与技能的掌握情况,使老师可以及时诊断学情,调查教学。
(3) 通过课后访谈和作业分析,及时查漏补缺,确保达到预期的
教学效果。
五、教学媒体 :多媒体
六、教学和活动过程:
教学过程设计如下:
〈一〉、提出问题
[引入] 同学们,前面我们学习了多项式乘多项式法则和合并同类项法则,通过运算下列四个小题,你能总结出结果与多项式中两个单项式的关系吗?
(2m+3n)2=_______________,(-2m-3n)2=______________,
(2m-3n)2=_______________,(-2m+3n)2=_______________。
〈二〉、分析问题
1、[学生回答] 分组交流、讨论
(2m+3n)2= 4m2+12mn+9n2,(-2m-3n)2= 4m2+12mn+9n2,
(2m-3n)2= 4m2-12mn+9n2, (-2m+3n)2= 4m2-12mn+9n2。
(1)原式的特点。
(2)结果的项数特点。
(3)三项系数的特点(特别是符号的特点)。
(4)三项与原多项式中两个单项式的关系。
2、[学生回答] 总结完全平方公式的语言描述:
两数和的平方,等于它们平方的和,加上它们乘积的两倍;
两数差的平方,等于它们平方的和,减去它们乘积的两倍。
3、[学生回答] 完全平方公式的数学表达式:
(a+b)2=a2+2ab+b2;
(a-b)2=a2-2ab+b2.
〈三〉、运用公式,解决问题
1、口答:(抢答形式,活跃课堂气氛,激发学生的学习积极性)
(m+n)2=____________, (m-n)2=_______________,
(-m+n)2=____________, (-m-n)2=______________,
(a+3)2=______________, (-c+5)2=______________,
(-7-a)2=______________, (0.5-a)2=______________.
2、判断:
( )① (a-2b)2= a2-2ab+b2
( )② (2m+n)2= 2m2+4mn+n2
( )③ (-n-3m)2= n2-6mn+9m2
( )④ (5a+0.2b)2= 25a2+5ab+0.4b2
( )⑤ (5a-0.2b)2= 5a2-5ab+0.04b2
( )⑥ (-a-2b)2=(a+2b)2
( )⑦ (2a-4b)2=(4a-2b)2
( )⑧ (-5m+n)2=(-n+5m)2
3、小试牛刀
① (x+y)2 =______________;② (-y-x)2 =_______________;
③ (2x+3)2 =_____________;④ (3a-2)2 =_______________;
⑤ (2x+3y)2 =____________;⑥ (4x-5y)2 =______________;
⑦ (0.5m+n)2 =___________;⑧ (a-0.6b)2 =_____________.
〈四〉、[学生小结]
你认为完全平方公式在应用过程中,需要注意那些问题?
(1) 公式右边共有3项。
(2) 两个平方项符号永远为正。
(3)中间项的符号由等号左边的两项符号是否相同决定。
(4)中间项是等号左边两项乘积的2倍。
〈五〉、冒险岛:
(1)(-3a+2b)2=________________________________
(2)(-7-2m) 2 =__________________________________
(3)(-0.5m+2n) 2=_______________________________
(4)(3/5a-1/2b) 2=________________________________
(5)(mn+3) 2=__________________________________
(6)(a2b-0.2) 2=_________________________________
(7)(2xy2-3x2y) 2=_______________________________
(8)(2n3-3m3) 2=________________________________
〈六〉、学生自我评价
[小结] 通过本节课的学习,你有什么收获和感悟?
本节课,我们自己通过计算、分析结果,总结出了完全平方公式。在知识探索的过程中,同学们积极思考,大胆探索,团结协作共同取得了进步。
〈七〉[作业] P34 随堂练习P36习题
七、课后反思
本节课虽然算不上课本中的难点,但在整式一章中是个重点。它是多项式乘法特殊形式下的一种简便运算。学生需要熟练掌握公式两种形式的使用方法,以提高运算速度。授课过程中,应注重让学生总结公式的等号两边的特点,让学生用语言表达公式的内容,让学生说明运用公式过程中容易出现的问题和特别注意的细节。然后再通过逐层深入的练习,巩固完全平方公式两种形式的应用。为完全平方公式第二节课的实际应用和提高应用做好充分的准备
初中数学优秀教学设计3
教学目的:
1、在解决实际问题的过程中,进一步巩固形如ax+b=c、ax-b=c的方程的解法,同时理解并掌握形如ax÷b=c的方程的解法,会列上述方程解决两步计算的实际问题。
2、提高分析数量关系的能力,培养学生思维的灵活性。
3、在积极参与数学活动的过程中,树立学好数学的信心。
教学重点、难点:
引导学生独立分析问题,找出题目中的等量关系。
教学对策:
在积极参与数学活动的过程中,树立学好数学的信心。
教学准备:
教学光盘
教学过程:
一、复习准备
1、解方程(练习一第6题的第1、3小题)
4x+12=502.3x-1.02=0.36
学生独立完成,再指名学生板演并讲评,集体订正。
二、尝试练习
师:刚才的两道题同学们完成得很好,这道题你们还能自己解决吗?试试看。
出示:30x÷2=360
学生独立尝试完成,全班交流。
指名学生说一说,解这个方程是第一步需要做什么?这样做依据了等式的什么性质?
三、巩固练习
1、出示练习一第7题。
(1)分析数量关系
提问:谁来说说三角形的面积公式是怎样的?根据学生回答板书:S=ah÷2。联系这个公式你能找出数量之间的相等关系吗?(生独立思考后在小组内交流)指名口答。你觉得在这些数量关系中,哪一个等量关系适合列方程?根据这个数量关系我们可以列出怎样的方程?板书:1.3x÷2=0.39。
第⑵题生独立思考并列出方程,在小组内说说自己的思考过程后全班交流。板书:3x+18=19.8。
(2)学生独立计算,并检验答案是否正确,全班核对。
小结:在一个实际问题中,可能会有几个不同的等量关系,我们应该选择合适的等量关系来列方程。
2、练习一第8题。
学生读题后可用自己喜欢的方法将与杨树和松树有关的信息分别列表整理(如列表,作标记等)
学生独立解决后再说说数量之间有怎样的数量关系,是根据什么样的数量关系列出的方程,最后核对解方程的过程。(提示学生可从得数的合理性来初步检验)
3、练习一第9题。
学生独立思考,指名分析数量关系,教师结合学生回答画出线段图帮助学生理解题意。
学生独立解方程再集体订正。
4、练习一第10题。
教师简单介绍相关天文知识后,学生独立解答,然后及时交流,教师及时讲评。
5、练习一第11题。
学生读题后教师提问:在本题中出现了两个问题,那么我们在写设句时要注意什么?(提示学生用不同的字母分别表示小亮出生时的身高和体重)
学生独立解决,集体核对。结合学生板演情况进行讲评,进一步规范学生的.书写格式。
6、练习一第12题。
提问:你能看懂这张发票上所提供的信息吗?数量间有怎样的等量关系呢
学生独立列方程解答,同桌同学互相检查,再集体订正。
7、练习一第13题。
学生阅读第13题,理解后独立解决问题,再交流。
教师再补充几题,如:98.6、212华氏度相当于多少摄氏度等。
四、全课小结
说一说你这一节课的学习收获及还有什么问题。
五、布置作业
完成配套习题。
教后反思:
本课时是一节练习课,练习目标有两个,一是通过练习让学生掌握形如ax+b=c和ax-b=c的方程的解法,会列方程解决两步计算的实际问题;二是借助一些对比练习,让学生感受方程的思想方法和价值。课前,我学习了高教导的“课前思考”,在今天的练习课中补充了两组题目,让学生进行对比练习。题目是这样的:
(1)果园里有桃树60棵,比梨树的3倍少6棵,梨树有多少棵?
(2)果园里有梨树60棵,比桃树的3倍少6棵,桃树有多少棵?课堂上,我先请学生分析每一题的数量关系,然后选择合适的方法来解答。学生们经过分析、比较,发现类似第1小题这样的题目适合用方程解,类似第2小题这样的题目适合用算术方法解。另一组补充的题目是:
(1)王老师买了3个足球,付了200元,找回8元。每个足球多少元?
(2)水果店运进5箱苹果,卖出56千克,还剩34千克。每箱苹果多少千克?对于这两题,我请学生认真分析数量关系后用自己喜欢的方法来解答,而且如果是列方程的话,试着列出不同的方程;如果是用算术方法解的可以列出不同的算式。课堂上学生思维活跃,在正确分析数量关系后列出了不同的方程或算式。
通过本节练习课,我想教师在教学中要更多地指导学生关注怎样从一个个具体的问题情境中分析数量之间的相等关系,关注怎样根据数量关系列出方程,从而在经历实际问题数学化的过程中,获得对用方程解决实际问题策略的体验,进一步丰富学生解决问题的策略,加深学生对方程作为一种重要的数学思想方法的理解。
初中数学优秀教学设计4
一、教学目标
1、知识与技能目标
掌握有理数乘法法则,能利用乘法法则正确进行有理数乘法运算。
2、能力与过程目标
经历探索、归纳有理数乘法法则的过程,发展学生观察、归纳、猜测、验证等能力。
3、情感与态度目标
通过学生自己探索出法则,让学生获得成功的喜悦。
二、教学重点、难点
重点:运用有理数乘法法则正确进行计算。
难点:有理数乘法法则的探索过程,符号法则及对法则的`理解。
三、教学过程
1、创设问题情景,激发学生的求知欲望,导入新课。
教师:由于长期干旱,水库放水抗旱。每天放水2米,已经放了3天,现在水深20米,问放水抗旱前水库水深多少米?
学生:26米。
教师:能写出算式吗?学生:……
教师:这涉及有理数乘法运算法则,正是我们今天需要讨论的问题
2、小组探索、归纳法则
(1)教师出示以下问题,学生以组为单位探索。
以原点为起点,规定向东的方向为正方向,向西的方向为负方向。
① 2 ×3
2看作向东运动2米,×3看作向原方向运动3次。
结果:向 运动 米
2 ×3=
② -2 ×3
-2看作向西运动2米,×3看作向原方向运动3次。
结果:向 运动 米
-2 ×3=
③ 2 ×(-3)
2看作向东运动2米,×(-3)看作向反方向运动3次。
结果:向 运动 米
2 ×(-3)=
④ (-2) ×(-3)
-2看作向西运动2米,×(-3)看作向反方向运动3次。
结果:向 运动 米
(-2) ×(-3)=
(2)学生归纳法则
①符号:在上述4个式子中,我们只看符号,有什么规律?
(+)×(+)=( ) 同号得
(-)×(+)=( ) 异号得
(+)×(-)=( ) 异号得
(-)×(-)=( ) 同号得
②积的绝对值等于 。
③任何数与零相乘,积仍为 。
(3)师生共同用文字叙述有理数乘法法则。
3、运用法则计算,巩固法则。
(1)教师按课本P75 例1板书,要求学生述说每一步理由。
(2)引导学生观察、分析例子中两因数的关系,得出两个有理数互为倒数,它们的积为 。
(3)学生做练习,教师评析。
(4)教师引导学生做例题,让学生说出每步法则,使之进一步熟悉法则,同时让学生总结出多因数相乘的符号法则。
初中数学优秀教学设计5
一、教学目标:
1.理解二元一次方程及二元一次方程的解的概念;
2.学会求出某二元一次方程的几个解和检验某对数值是否为二元一次方程的解;
3.学会把二元一次方程中的一个未知数用另一个未知数的一次式来表示;
4.在解决问题的过程中,渗透类比的思想方法,并渗透德育教育.
二、教学重点、难点:
重点:二元一次方程的意义及二元一次方程的解的概念.
难点:把一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式,其实质是解一个含有字母系数的方程.
三、教学方法与教学手段:
通过与一元一次方程的比较,加强学生的类比的思想方法; 通过“合作学习”,使学生认识数学是根据实际的需要而产生发展的观点.
四、教学过程:
1.情景导入:
新闻链接:桐乡70岁以上老人可领取生活补助,
得到方程:80a+150b=902 880.
2.新课教学:
引导学生观察方程80a+150b=902 880与一元一次方程有异同?
得出二元一次方程的概念:含有两个未知数,并且所含未知数的项的次数都是1次的方程叫做二元一次方程.
做一做:
(1)根据题意列出方程:
①小明去看望奶奶,买了5 kg苹果和3 kg梨共花去23元,分别求苹果和梨的单价.设苹果的单价x元/kg , 梨的单价y元/kg ;
②在高速公路上,一辆轿车行驶2时的路程比一辆卡车行驶3时的路程还多20千米,如果设轿车的速度是a千米/小时,卡车的速度是b千米/小时,可得方程: .
(2)课本P80练习2. 判定哪些式子是二元一次方程方程.
合作学习:
活动背景爱心满人间——记求是中学“学雷锋、关爱老人”志愿者活动.
问题:参加活动的36名志愿者,分为劳动组和文艺组,其中劳动组每组3人,文艺组每组6人.
团支书拟安排8个劳动组,2个文艺组,单从人数上考虑,此方案是否可行? 为什么? 把x=8,y=2代入二元一次方程3x+6y=36,看看左右两边有没有相等? 由学生检验得出代入方程后,能使方程两边相等. 得出二元一次方程的解的概念:使二元一次方程两边的值相等的一对未知数的值叫做二元一次方程的一个解.
并提出注意二元一次方程解的书写方法.
3.合作学习:
给定方程x+2y=8,男同学给出y(x取绝对值小于10的整数)的值,女同学马上给出对应的x的值; 接下来男女同学互换.(比一比哪位同学反应快)请算的最快最准确的同学讲他的计算方法.提问:给出x的值,计算y的值时,y的系数为多少时,计算y最为简便?
出示例题:已知二元一次方程 x+2y=8.
(1)用关于y的代数式表示x;
(2)用关于x的代数式表示y;
(3)求当x= 2,0,-3时,对应的.y的值,并写出方程x+2y=8的三个解.
(当用含x的一次式来表示y后,再请同学做游戏,让同学体会一下计算的速度是否要快)
4.课堂练习:
(1)已知:5xm-2yn=4是二元一次方程,则m+n=;
(2)二元一次方程2x-y=3中,方程可变形为y= 当x=2时,y= ;
5.你能解决吗?
小红到邮局给远在农村的爷爷寄挂号信,需要邮资3元8角.小红有票额为6角和8角的邮票若干张,问各需要多少张这两种面额的邮票?说说你的方案.
6.课堂小结:
(1)二元一次方程的意义及二元一次方程的解的概念(注意书写格式);
(2)二元一次方程解的不定性和相关性;
(3)会把二元一次方程化为用一个未知数的代数式表示另一个未知数的形式.
7.布置作业:(1)教材P82; (2)作业本.
教学设计意图:
依照课程标准,通过分析教材中教学情境设计和例习题安排的意图,在此基础上依据学生实际,制订了本堂课的教学目标,教学重点和难点,课堂教学的设计始终围绕这教学重点和难点展开.
在充分理解教材编写意图、教学要求和教学理念的基础上,根据学生实际,从学生的已有经验出发,创设了教学情境:关心老人,突出情感主线,并贯穿整个教学. 并对教学
内容进行适当的重组、补充和加工等,创造性地使用了教材. 所选择的例习题都体现实际问题数学化的思想,让学生感受到数学的魅力. 这两个方面的设计贯穿整堂课,把知识内容和情感体验自然连贯起来.
其次,在教学过程设计中,体现了让学生展示解决问题的思维过程,通过几个合作学习,激发学生主动去接触问题,从而达到解决问题的目的. 重视学生学习过程中的自我评价和生生间的相互评价,关注学生对解题思路回顾能力的培养.
二元一次方程概念的教学中,通过与一元一次方程的类比的方法,使得学生加深印象. 在突破难点的设计上,通过游戏的形式激发学生的学习兴趣,并在选题时,通过降低例题的难度,使学生迅速掌握用关于一个未知数的代数式表示另一个字母的方法,体会运用这种方法的可使求二元一次方程求解更简便.
初中数学优秀教学设计6
一、学情分析
学生通过上节课的学习,已经掌握了如何用没有刻度的直尺和圆规作一条线段等于已知线段。同时在学习中学生已经初步理解了作图的步骤,具备了基本的作图能力,并能简单的表达作图过程,为本节课的学习奠定了良好的知识基础。同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。
二、教学目标分析
教科书基于学生在上节课学习了如何作一条线段等于已知线段,并积累了一定的活动经验,提出本节课的主要教学任务是:会用尺规作一个角等于已知角,并了解它在尺规作图中的简单应用。为此,本节课的教学目标是:
1、能按照作图语言来完成作图动作,能用尺规作一个角等于已知角,并了解它在尺规作图中的简单应用。
2、能利用尺规作角的和、差、倍。
3、能够通过尺规设计并绘制简单的.图案。
4、在尺规作图过程当中,积累数学活动经验,培养动手能力和逻辑分析能力。
三、教学设计分析
1、回顾与思考
活动内容:
(1)怎样利用没有刻度的直尺和圆规作一条线段等于已知线段?
(2)练习:已知线段a,b,c,作一条线段m,使得m=a+b—c
活动目的:
通过回顾上节课学习的用尺规作线段,既达到了复习巩固,反馈落实的目的,同时熟练尺规的使用,积累活动经验,也为后面学习用尺规作角起到了铺垫的作用。
2、情境引入,探索发现
活动内容:如图2
初中数学优秀教学设计7
一、教材分析
本节内容是人民教育出版社出版《义务教育课程实验教科书(五四学制)数学》(供天津用)八年级下册第十章整式第一节整式加减第2小节整式的加减。
二、设计思想
本节内容是学生掌握了“整式”有关概念的延展学习,为后继学习整式运算、因式分解、一元二次方程及函数知识奠定基础,是“数”向“式”的正式过度,具有十分重要地位。
八年级学生已具有了较强的数的运算技能和“合并”的意识(解一元一次方程中用)同时也具有初步的观察、归纳、探索的技能。因此,我结合教材,立足让每个学生都有发展的宗旨,我采用合作探究的学习方式开展教学活动,通过设计有针对性、多样式的问题引导学生,给学生提供充足的、和谐的探索空间让学生学习。通过学习活动不但培养学生化简意识,提升数学运算技能而且让学生深刻体会到数学是解决实际问题的重要工具,增强应用数学的意识。
三、教学目标:
(一)知识技能目标:
1、理解同类项的含义,并能辨别同类项。
2、掌握合并同类项的方法,熟练的合并同类项。
3、掌握整式加减运算的方法,熟练进行运算。
(二)过程方法目标:
1、通过探究同类项定义、合并同类项的方法的活动,培养学生观察、归纳、探究的能力。
2、通过合并同类项、整式加减运算的练习活动,提高学生运算技能,提升运算的准确率培养学生化简意识,发展学生的抽象概括能力。
3、通过研究引例、探究例1的`活动,发展学生的形象思维,初步培养学生的符号感。
(三)情感价值目标:
1、通过交流协商、分组探究,培养学生合作交流的意识和敢于探索未知问题的精神。
2、通过学习活动培养学生科学、严谨的学习态度。
四、教学重、难点:
合并同类项
五、教学关键:
同类项的概念
六、教学准备:
教师:
1、筛选数学题目,精心设置问题情境。
2、制作大小不等的两个长方体纸盒实物模型,并能展开。
3、设计多媒体教学课件。(要凸显①单项式中系数、字母、指数的特征②长方体纸盒立体图、展开图。)
学生:
1、复习有关单项式的概念、有理数四则运算及去括号的法则)
2、每小组制作大小不等的两个长方体纸盒模型。
初中数学优秀教学设计8
课型:新授课
学习目标:
1.能根据具体问题中的数量关系列出一元二次方程并利用它解决具体问题.
2.学会运用数学知识分析解决实际问题,体会数学的价值。
重点:列一元二次方程解应用题
难点:学会分析问题中的等量关系
一、知识回顾
列方程解应用题的一般步骤是①②③④⑤⑥
二、自学教材、合作探究
1、自学教材45页,学习分析“探究一”中的数量关系
设每轮传染中平均一个人传染了x个人。开始有一人患了流感,第一轮的传染源就是这个人,他传染了x个人,那么,用代数式表示,第一轮后共有( )人患了流感;第二轮传染中,这些人中的每个人又传染了x个人,用代数式表示,第二轮后共有( )人患了流感。则可列方程为:
2、解这个方程,得
3、想一想:三轮传染后有多少人患流感?四轮呢?
三、检查自学效果
1.(xxxx年毕节地区)有一人患了流感,经过两轮传染后共有100人患了流感,那么每轮传染中,平均一个人传染的'人数为( )
A.8人B.9人C.10人D.11人
2.生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件;全组共互赠了182件.如果全组有x名学生,则根据题意列出的方程是( )
A. B. C. D.
四、指导学生应用
某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?(xxxx广东中考9分)
解:设每轮感染中平均每一台电脑会感染台电脑,1分
4分
解之得6分
8分
答:每轮平均每一台电脑会感染台电脑,3轮感染后,被感染的电脑超过700台。
五、巩固训练:
1.一个多边形的对角线有9条,则这个多边形的边数是( ).
A.6 B.7 C.8 D.9
2.元旦期间,一个小组有若干人,新年互送贺卡一张,已知全组共送贺卡132张,则这个小组共有( )人
A.11 B.12 C.13 D.14
3.九年级(3)班文学小组在举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,全组共互赠了240本图书,如果设全组共有x名同学,依题意,可列出的方程是( )
A.x(x+1)=240 B.x(x-1)=240
C.2x(x+1)=240 D.x(x+1)=240
4.参加中秋晚会的每两个人都握了一次手,所有人共握手10次,则有( )人参加聚会。
5.学校组织了一次篮球单循环比赛,共进行了15场比赛,那么有个球队参加了这次比赛。
6.甲型H1N1流感病毒的传染性极强,某地因1人患了甲型H1N1流感没有及时隔离治疗,经过两天传染后共有9人患了甲型H1N1流感,每天传染中平均一个人传染了几个人?如果按照这个传染速度,再经过5天的传染后,这个地区一共将会有多少人患甲型H1N1流感?
反思:2题和4题列方程时为何不一样呢?
六、归纳小结:
1.本节课我们学习了列一元一次方程解应用题,要注意解题步骤,特别地,要检验解的结果是否正确与符合题意,并注意题型的积累。
2.(方法归纳)解应用题地步骤是:审、设、列、解、检、答,关键是寻找等量关系,可以采用列式法,线段图示法,列表法等来帮助寻找,并注重检验。
七、效果测评:
1.解下列方程。(1)+10x+21=0(2)-x=1
2.两个相邻的偶数的积是240,求这两个偶数。
3.参加一次足球联赛的每两个队之间都进行两场比赛,共要比赛90场,共有多少个队参加比赛?
初中数学优秀教学设计9
一、教学目标
1、了解二次根式的意义;
2、掌握用简单的一元一次不等式解决二次根式中字母的取值问题;
3、掌握二次根式的性质和,并能灵活应用;
4、通过二次根式的计算培养学生的逻辑思维能力;
5、通过二次根式性质和的介绍渗透对称性、规律性的数学美。
二、教学重点和难点
重点:
(1)二次根的意义;
(2)二次根式中字母的`取值范围。
难点:确定二次根式中字母的取值范围。
三、教学方法
启发式、讲练结合。
四、教学过程
(一)复习提问
1、什么叫平方根、算术平方根?
2、说出下列各式的意义,并计算
(二)引入新课
新课:二次根式
定义:式子叫做二次根式。
对于请同学们讨论论应注意的问题,引导学生总结:
(1)式子只有在条件a≥0时才叫二次根式,是二次根式吗?呢?
若根式中含有字母必须保证根号下式子大于等于零,因此字母范围的限制也是根式的一部分。
(2)是二次根式,而,提问学生:2是二次根式吗?显然不是,因此二次
根式指的是某种式子的“外在形态”。请学生举出几个二次根式的例子,并说明为什么是二次根式。下面例题根据二次根式定义,由学生分析、回答。
例1当a为实数时,下列各式中哪些是二次根式?
例2 x是怎样的实数时,式子在实数范围有意义?
解:略。
说明:这个问题实质上是在x是什么数时,x—3是非负数,式子有意义。
例3当字母取何值时,下列各式为二次根式:
分析:由二次根式的定义,被开方数必须是非负数,把问题转化为解不等式。
解:(1)∵a、b为任意实数时,都有a2+b2≥0,∴当a、b为任意实数时,是二次根式。
(2)—3x≥0,x≤0,即x≤0时,是二次根式。
(3),且x≠0,∴x>0,当x>0时,是二次根式。
(4),即,故x—2≥0且x—2≠0,∴x>2。当x>2时,是二次根式。
例4下列各式是二次根式,求式子中的字母所满足的条件:
分析:这个例题根据二次根式定义,让学生分析式子中字母应满足的条件,进一步巩固二次根式的定义,。即:只有在条件a≥0时才叫二次根式,本题已知各式都为二次根式,故要求各式中的被开方数都大于等于零。
解:(1)由2a+3≥0,得。
(2)由,得3a—1>0,解得。
(3)由于x取任何实数时都有|x|≥0,因此,|x|+0。1>0,于是,式子是二次根式。所以所求字母x的取值范围是全体实数。
(4)由—b2≥0得b2≤0,只有当b=0时,才有b2=0,因此,字母b所满足的条件是:b=0。
初中数学教学设计1
一、案例实施背景
教材为人教版义务教育课程标准实验教科书七年级数学(下册)。
二、案例主题分析与设计
本节课是人教版义务教育课程标准实验教科书七年级数学(下册)第五章第3节内容——5.3.1平行线的性质,它是直线平行的继续,是后面研究平移等内容的基础,是“空间与图形”的重要组成部分。
《数学课程标准》强调:数学教学是数学活动的教学,是师生之间、生生之间交往互动与共同发展的过程;动手实践,自主探索,合作交流是孩子学习数学的重要方式;合作交流的学习形式是培养孩子积极参与、自主学习的有效途径。本节课将以“生活?数学”“活动?思考”“表达?应用”为主线开展课堂教学,以学生看得到、感受得到的基本素材创设问题情境,引导学生活动,并在活动中激发学生认真思考、积极探索,主动获取数学知识,从而促进学生研究性学习方式的形成,同时通过小组内学生相互协作研究,培养学生合作性学习精神。
三、案例教学目标
1.知识与技能:掌握平行线的性质,能应用性质解决相关问题。
2 .数学思考:在平行线的性质的探究过程中,让学生经历观察、比较、联想、分析、归纳、猜想、概括的全过程。
3.解决问题:通过探究平行线的性质,使学生形成数形结合的数学思想方法,以及建模能力、创新意识和创新精神。
4.情感态度与价值观:在探究活动中,让学生获得亲自参与研究的情感体验,从而增强学生学习数学的热情和团结合作、勇于探索、锲而不舍的精神。
四、案例教学重、难点
1.重点:对平行线性质的掌握与应用。
2.难点:对平行线性质1的探究。
五、案例教学用具
1.教具:多媒体平台及多媒体课件.
2.学具:三角尺、量角器、剪刀。
六、案例教学过程
1.创设情境,设疑激思
⑴播放一组幻灯片。
内容:①供火车行驶的铁轨上;②游泳池中的泳道隔栏;③横格纸中的线。
⑵提问温故:日常生活中我们经常会遇到平行线,你能说出直线平行的条件吗?
⑶学生活动:针对问题,学生思考后回答——①同位角相等两直线平行;②内错角相等两直线平行;③同旁内角互补两直线平行。
⑷教师肯定学生的回答并提出新问题:若两直线平行,那么同位角、内错角、同旁内角各有什么关系呢?从而引出课题:7.2探索平行线的性质(板书)。
2.数形结合,探究性质
⑴画图探究,归纳猜想。
教师提要求,学生实践操作:任意画出两条平行线(a∥b),画一条截线c与这两条平行线相交,标出8个角。(统一采用阿拉伯数字标角)
教师提出研究性问题一:
指出图中的同位角,并度量这些角,填写结果:
第一组:同位角( )( ) 角的度数( )( ) 数量关系( )
第二组:同位角( )( ) 角的度数( )( ) 数量关系( )
第三组:同位角( )( ) 角的度数( )( ) 数量关系( )
第四组:同位角( )( ) 角的度数( )( ) 数量关系( )
教师提出研究性问题二:
将图中的同位角任先一组剪下后叠合。学生活动一:画图—剪图—叠合—猜想学生活动二:画图—剪图—叠合—猜想让学生根据活动得出的数据与操作得出的结果归纳猜想:两直线平行,同位角相等。
教师提出研究性问题三:
再画出一条截线d,看你的猜想结论是否仍然成立?
学生活动:探究、按小组讨论,最后得出结论:仍然成立。
⑵教师用《几何画板》课件验证猜想,让学生直观感受猜想
⑶教师展示平行线性质1:两条平行线被第三条直线所截,同位角相等。(两直线平行,同位角相等)
3.引申思考,培养创新
教师提出研究性问题四:
请判断两条平行线被第三条直线所截,内错角、同旁内角各有什么关系?学生活动:独立探究——小组讨论——成果展示。
教师活动:评价学生的研究成果,并引导学生说理
因为a∥b(已知)所以∠1=∠2(两直线平行,同位角相等)
又∠1=∠3(对顶角相等)∠1+∠4=180°(邻补角的定义)
所以∠2=∠3(等量代换)∠2+∠4=180°(等量代换)
教师展示:平行线性质2:两条平行线被第三条直线所截,内错角相等。(两直线平行,内错角相等)
平行线性质3:两条平行线被第三条直线所截,同旁内角互补。(两直线平行,同旁内角互补)
4.实际应用,优势互补
⑴(抢答)课本P21 练一练
1、2及习题5.3
1、3.
⑵(讨论解答)课本P22习题5.
32、
4、5.
5.课堂总结:
这节课你有哪些收获?
⑴学生总结:平行线的性质
1、
2、3.⑵教师补充总结:
①用“运动”的观点观察数学问题;(如前面将同位角剪下叠合后分析问题)。
②用数形结合的方法来解决问题;(如我们前面将同位角测量后分析问题)。③用准确的语言来表达问题(如平行线的性质
1、
2、3的表述)。
④用逻辑推理的形式来论证问题。(如我们前面对性质2和3的说理过程)
6 .作业。学习与评价: P 2 3 6 ( 选择);P24
7、12(拓展与延伸)。
七、教学反思
数学课要注重引导学生探索与获取知识的过程而不单注重学生对知识内容的认识,因为“过程”不仅能引导学生更好地理解知识,还能够引导学生在活动中思考,更好地感受知识的价值,增强应用数学知识解决问题的意识;感受生活与数学的联系,获得“情感、态度、价值观”方面的体验。这节课的'教学实现了三个方面的转变:
1.教的转变
本节课教师的角色从知识的传授者转变为学生学习的组织者、引导者、合作者与共同研究者。教师成为了学生的导师、伙伴、甚至成为了学生的学生,在课堂上除了导引学生活动外,还要认真聆听学生“教”你他们活动的过程和通过活动所得的知识或方法。
2.学的转变
学生的角色从学会转变为会学,跟老师学转变为自主去学。本节课学生不是停留在学会课本知识的层面上,而是站在研究者的角度深入其境,不是简单地“学”数学,而是深入地“做”数学。
3.课堂氛围的转变
整节课以“流畅、开放、合作、隐导”为基本特征,教师对学生的思维活动减少干预,教学过程呈现一种比较流畅的特征,整节课学生与学生、学生与教师之间以“对话”“讨论”为出发点,以互助、合作为手段,以解决问题为目的,让学生在一个较为宽松的环境中自主选择获得成功的方向,判断发现的价值。
总之,在数学教学的花园里,教师只要为学生布置好和谐的场景和明晰的路标,然后就让他们自由地快活地去跳舞吧!
初中数学教学设计2
课型:新授课
学习目标:
1.能根据具体问题中的数量关系列出一元二次方程并利用它解决具体问题.
2.学会运用数学知识分析解决实际问题,体会数学的价值。
重点:列一元二次方程解应用题
难点:学会分析问题中的等量关系
一、知识回顾
列方程解应用题的一般步骤是①②③④⑤⑥
二、自学教材、合作探究
1、自学教材45页,学习分析“探究一”中的数量关系
设每轮传染中平均一个人传染了x个人。开始有一人患了流感,第一轮的传染源就是这个人,他传染了x个人,那么,用代数式表示,第一轮后共有( )人患了流感;第二轮传染中,这些人中的每个人又传染了x个人,用代数式表示,第二轮后共有( )人患了流感。则可列方程为:
2、解这个方程,得
3、想一想:三轮传染后有多少人患流感?四轮呢?
三、检查自学效果
1.(xxxx年毕节地区)有一人患了流感,经过两轮传染后共有100人患了流感,那么每轮传染中,平均一个人传染的人数为( )
A.8人B.9人C.10人D.11人
2.生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件;全组共互赠了182件.如果全组有x名学生,则根据题意列出的.方程是( )
A. B. C. D.
四、指导学生应用
某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?(xxxx广东中考9分)
解:设每轮感染中平均每一台电脑会感染台电脑,1分
4分
解之得6分
8分
答:每轮平均每一台电脑会感染台电脑,3轮感染后,被感染的电脑超过700台。
五、巩固训练:
1.一个多边形的对角线有9条,则这个多边形的边数是( ).
A.6 B.7 C.8 D.9
2.元旦期间,一个小组有若干人,新年互送贺卡一张,已知全组共送贺卡132张,则这个小组共有( )人
A.11 B.12 C.13 D.14
3.九年级(3)班文学小组在举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,全组共互赠了240本图书,如果设全组共有x名同学,依题意,可列出的方程是( )
A.x(x+1)=240 B.x(x-1)=240
C.2x(x+1)=240 D.x(x+1)=240
4.参加中秋晚会的每两个人都握了一次手,所有人共握手10次,则有( )人参加聚会。
5.学校组织了一次篮球单循环比赛,共进行了15场比赛,那么有个球队参加了这次比赛。
6.甲型H1N1流感病毒的传染性极强,某地因1人患了甲型H1N1流感没有及时隔离治疗,经过两天传染后共有9人患了甲型H1N1流感,每天传染中平均一个人传染了几个人?如果按照这个传染速度,再经过5天的传染后,这个地区一共将会有多少人患甲型H1N1流感?
反思:2题和4题列方程时为何不一样呢?
六、归纳小结:
1.本节课我们学习了列一元一次方程解应用题,要注意解题步骤,特别地,要检验解的结果是否正确与符合题意,并注意题型的积累。
2.(方法归纳)解应用题地步骤是:审、设、列、解、检、答,关键是寻找等量关系,可以采用列式法,线段图示法,列表法等来帮助寻找,并注重检验。
七、效果测评:
1.解下列方程。(1)+10x+21=0(2)-x=1
2.两个相邻的偶数的积是240,求这两个偶数。
3.参加一次足球联赛的每两个队之间都进行两场比赛,共要比赛90场,共有多少个队参加比赛?
初中数学教学设计3
一、教学设计:
1 学习方式:
对于全等三角形的研究,实际是平面几何中对封闭的两个图形关系研究的第一步。它是两个三角形间最简单,最常见的关系。它不仅是学习后面知识的基础,并且是证明线段相等、角相等以及两线互相垂直、平行的重要依据。因此必须熟练地掌握全等三角形的判定方法,并且灵活的应用。为了使学生更好地掌握这一部分内容,遵循启发式教学原则,用设问形式创设问题情景,设计一系列实践活动,引导学生操作、观察、探索、交流、发现、思维,使学生经历从现实世界抽象出几何模型和运用所学内容,解决实际问题的过程,真正把学生放到主体位置。
2 学习任务分析:
充分利用教科书提供的素材和活动,鼓励学生经历观察、操作、推理、想象等活动,发展学生的空间观念,体会分析问题、解决问题的方法,积累数学活动经验。培养学生有条理的思考,表达和交流的能力,并且在以直观操作的基础上,将直观与简单推理相结合,注意学生推理意识的建立和对推理过程的理解,能运用自己的方式有条理的表达推理过程,为以后的证明打下基础。
3 学生的认知起点分析:
学生通过前面的学习已了解了图形的全等的概念及特征,掌握了全等图形的对应边、对应角的关系,这为探究三角形全等的条件做好了知识上的准备。另外,学生也具备了利用已知条件作三角形的基本作图能力,这使学生能主动参与本节课的操作、探究成为可能。
4 教学目标:
(1) 学生在教师引导下,积极主动地经历探索三角形全等的条件的过程,体会利用操作、归纳获得数学结论的.过程。
(2) 掌握三角形全等的“边边边”、“边角边”、“角边角”、“角角边”的判定方法,了解三角形的稳定性,能用三角形的全等解决一些实际问题。
(3) 培养学生的空间观念,推理能力,发展有条理地表达能力,积累数学活动经验。
5 教学的重点与难点:
重点:三角形全等条件的探索过程是本节课的重点。从设置情景提出问题,到动手操作,交流,直至归纳得出结论,整个过程学生不仅得到了两个三角形全等的条件,更重要得是经历了知识的形成过程,体会了一种分析问题的方法,积累了数学活动经验,这将有利于学生更好的理解数学,应用数学。难点:三角形全等条件的探索过程,特别是创设出问题后,学生面对开放性问题,要做出全面、正确得分析,并对各种情况进行讨论,对初一学生有一定的难度。
根据初一学生年龄、生理及心理特征,还不具备独立系统地推理论证几何问题的能力,思维受到一定的局限,考虑问题不够全面,因此要充分发挥教师的主导作用,适时点拨、引导,尽可能调动所有学生的积极性、主动性参与到合作探讨中来,使学生在与他人的合作交流中获取新知,并使个性思维得以发展。
6 教学过程
教学步骤
教师活动
学生活动
教学媒体(资源)和教学方式
复习过渡
引入新知
创设情景
提出问题
建立模型
探索发现
归纳总结
得出新知巩固运用
及其推广
反思小结
提炼规律
电脑显示,带领学生复习全等三角定义及其性质。
电脑显示,小明画了一个三角形,怎样才能画一个三角形与他的三角形全等?我们知道全等三角形三条边
分别对应相等,三个角分别对应相等,那麽,反之这六个元素分别对应,这样的两个三角形一定全等.但是,是否一定需要六个条件呢?条件能否尽可能少吗?
对学生分类中出现的问题,予以纠正,对学生提出的解决问题的不同策略,要给予肯定和鼓励,以满足多样化的学生需要,发展学生个性思维。
初中数学教学设计4
一、背景
新课标要求,应让学生在实际背景中理解基本的数量关系和变化规律,注重使学生经历从实际问题中建立数学模型、估计、求解、验证解的正确性与合理性的过程。在实际工作中让学生学会从具体问题情景中抽象出数学问题,使用各种数学语言表达问题、建立数学关系式、获得合理的解答、理解并掌握相应的数学知识与技能,这些多数教师都注意到了,但要做好,还有一定难度。
二、教学片段
在刚过去的这个学期,我上了一节“一元一次不等式组的应用”。
出示例题:小宝和爸爸、妈妈三人在操场上玩跷跷板,爸爸体重为72千克,坐在跷跷板的一端,体重只有妈妈一半的小宝和妈妈一同坐在另一端。这时,爸爸的一端仍然着地,后来小宝借来一副质量为6千克的哑铃,加在他和妈妈坐的一端,结果,爸爸被高高地跷起。猜猜看,小宝的体重约多少千克?
我问学生:“你们玩过跷跷板吗?先看看题,一会请同学复述一下。”学生复述后,基本已经熟悉了题目。我接着让学生思考:他们三人坐了几次跷跷板?第一次坐时情况怎样?第二次呢?学生议论了一会儿,自主发言,很快发现本题中存在的`两种文字形式的不等关系:
爸爸体重>小宝体重+妈妈体重
爸爸体重<小宝体重+妈妈体重+一副哑铃重量
我引导:你还能怎么判断小宝体重?学生安静了几分钟后,开始议论。一学生举手了:“可以列不等式组。”我给出提示:“小宝的体重应该同时满足上述的两个条件。怎么把这个意思表达成数学式子呢?”这时学生们七嘴八舌地讨论起来,都抢着回答,
我注意到一位平时不爱说话的学生紧锁眉头,便让他发言:“可以设小宝的体重为x千克,能列出两个不等式。可是接下来我就不知道了。”我听了心中一动,意识到这应是思想渗透的好机会,便解释说:“我们在初中会遇到许多问题都可以用类似的方法来研究解决,比方说前面列方程组”不等我说完,学生都齐声答:“列不等式组。”全班12小组积极投入到解题活动中了。5分钟后,我请学生板演,自己下去巡查、指导,发现学生的解题思路都很清楚,只是部分学生对答案的表达不够准确。于是提议学生说说列不等式组解应用题分几步,应注意什么。此时学生也基本上形成了对不等式方法的完整认识。我便出示拓展应用课件:
一次考试共25道选择题,做对一道得4分,做错一道减2分,不做得0分。若小明想确保考试成绩在60分以上,那么他至少要做对多少题?
设置这道题,既有调查本节课效果的意图,也想巩固拓展一下学生的思维。没料到相当多学生对“至少”一词理解不准确,导致失误。这正好让我们的“本课小结”填补了一个空白——弄清题目中描述数量关系的关键词才是解题的关键。
三、反思
本节课讲完后,我感到一丝欣慰,看到孩子们跃跃欲试的学习劲头,突然领悟到:教师的教学行为至关重要,成功的教学,能开启学生心灵的窗户,能帮学生树立学习的自信心。
本节课我有几个深刻的感受:
1、在课前准备的时候,我就觉得不等式组的应用是个难点。所以在课堂教学中设置了几个台阶,这也正好符合了循序渐进的教学原则。
2、例题贴近学生实际,我在教学中有采用了更亲近的教学语言,有利于激发学生的探究欲望。
3、关注学生的学习状态,随时采取灵活适宜的教学方法,师生互动,生生互动,课堂教学才更加有效。
4、学生在学习后,确实感受到“不等式的方法”就像方程的方法一样是从字母表示数开始研究解决的。这种方法可以帮助我们用数学的方式解决实际问题。
初中数学教学设计5
现代教学论研究指出,从本质上讲,学生学习的根本原因是问题。在数学课堂教学中,教师可根据不同的教学内容,围绕不同的教学目标,设计出符合学生实际的教学问题,围绕所设计的问题开展教学活动。这样,在课堂教学环节中,问题该怎样设计?围绕问题该怎样进行教学,才能使教学效率得以提高?这是摆在我们面前急需解决的问题。
本文将结合自己的教学实践,就问题设计的策略及反思等方面谈谈自己的看法。
一、注重问题情境的创设
著名数学家费赖登塔尔认为:“数学源于现实又寓于现实,数学教学应从学生所接触的客观实际中提出问题,然后升华为数学概念、运算法则或数学思想。”这一观念既反映了数学的本质,同时说明了在数学课堂教学中创设问题情境的重要性。比如,在《有理数的加法》一节的教学导入时,我首先出示了一周来本班的积分统计表(表中的得分用正数表示,失分用负数表示,)让学生观察:
星期 一 二 三 四 五 六 合计
积分 +3 -2 -4 -2 +2 +4
然后提出问题:“谁能帮我们班算出这一周的总积分呢?”结果我发现大多数同学能用“抵消”的方法统计出这一周本班的总积分。然后我出了一道算式题:“(+3)+(-2)+(-4)+(-2)=?”发现学生不知道该怎样算。当学生产生这样的认知冲突时我便引入了本节课要学习的内容,最后我用表中的数据分成了几种类型,如正数加正数、负数加负数、正数加负数等,展开新知学习,教学效果较以前有明显改观。
本节课成功之处在于:(1)导入的情境问题贴近学生的现实,调动了学生的积极性。(2)情境问题为后面的教学埋下了伏笔,引发了学生的认知冲突。当然,情境问题的创设不当,会直接影响教学。比如,在《函数》一节的教学时,我用游乐园中的摩天轮引入,当我提出问题:“同学们,当你坐在摩天轮上,随着时间的变化,你离开地面的高度是如何变化的?”我发现学生几乎没有反应,只是偶尔听到:“摩天轮?”“很危险……”本来是一个很典型的函数问题,只因为农村学生对该情境的认识模糊,一时没有进入到虚拟情境中来,导致课堂开端出现“僵局”,也影响了后面的教学工作的胜利开展。
2、教学重点、难点处的问题设计
初中数学课堂教学中重点与难点的处理将直接影响教学效果。通过设计好的问题串可以强化重点与突破难点。例如,《结识抛物线》一节的教学重点就是做二次函数y=x2的图像并根据图像认识和理解函数的性质。而作图过程又是一个难点问题,要从所画的图像中发现并归纳性质,首先得画出较准确的函数图像。在学生画图像的过程中,我抓住学生的几种错误画法提出了三个问题让学生讨论交流:(1)根据你画的图像,给自变量x任取一个值,函数y有唯一的值与它对应吗?(2)自变量x的范围是什么?(3)在0 3、例题或课堂练习中的.问题设计 例题教学具有及时巩固知识和灵活运用知识的双重功能,随堂练习是检查学生的数学学习效果和培养学生思维的有效手段之一。数学课堂教学中,教师通过优选例题,精心设计层次分明的练习,能够让学生以积极的态度去思考并解决问题,获得问题解决的成就感和快乐感。例如笔者在《反比例函数的图像与性质》一节的教学中设计了一道这样的问题:已知A(-2,y1)、B(-1,y2)、C(2,y3)三点都在反比例函数y=k/x(k>0)图像上,(1)比较y1、y2、y3的大小关系。(2)若D(a,y1)、E(b,y2)、F(c,y3)三点也在反比例函数y=k/x(k>0)的图像上,其中a0判断y1、y2、y3的大小关系。教学中我发现多数学生对问题(1)采用了直接代入计算的方法得到结果,对问题(2)显然用代入法难以得到结果,这时,我让学生小组讨论来解决。经过讨论后,学生A回答:“因为k>0时,反比例函数y随x的增大而减小,而a 4、在学习反思中的问题设计 初中学生学习数学的方法相对欠缺,学生“重结论,轻过程”的现象较普遍,对学习结果的反思意识淡薄,自我评价不彻底,做错的题目一错再错。作为教师,在平时的教学中要注重引导,彻底分析错因,让学生在错题中有反思的机会。例如,在一元一次方程的教学中,我发现学生解含有分母的方程时很容易出错,针对学生做错的题目,我设计了如的表格: 通过引导学生对错因彻底分析与校正,学生明白了产生错误的真正原因是什么,认识到了自己的不足。然后我出了几道解方程的练习,结果发现,学生确实重视了错误,效果明显有所好转。 总之,在数学教学中,教学问题的设计确实是一种学问,是一种艺术。要让学生在实实在在的问题情境中去亲历体验,在对问题的分析、探索与交流的过程中主动思考,与人分享成果,来体验成功的快乐,增强他们的自信心。 初中数学教学设计6 课题:12.3等腰三角形(第一课时) 教学内容:新人教版八年级上册十二章第三节等腰三角形的第一课时 任课教师:东湾中学李晓伟 设计理念: 教学的实质是以教材中提供的素材或实际生活中的一些问题为载体,通过一系列探究互动过程,渗透分类讨论、数形结合和方程的思想方法,达到学生知识的构建、能力的培养、情感的陶冶、意识的创新。 ㈠教材的地位和作用分析 等腰三角形是新人教版八年级上册十二章第三节等腰三角形的第一课时的内容。本节课是在前面学习了三角形的有关概念及性质、轴对称变换、全等三角形、垂直平分线和尺规作图的基础上,研究等腰三角形的定义及其重要性质,它既是前面所学知识的延伸,也是后面直角三角形、等边三角形的知识的重要储备,我们常常利用它证明角相等、线段相等、两直线垂直,因此本节课具有承上启下的重要作用。 另外,本堂课通过“活动探究”、“观察—猜想—证明”等途径,进一步培养学生的动手能力、观察能力、分析能力和逻辑推理能力,因此,本堂课无论在知识上,还是在对学生能力的培养及情感教育等方面都有着十分重要的作用。 ㈡教学内容的分析 本堂课是等腰三角形的第一堂课,在认识等腰三角形的基础上着重介绍“等腰三角形的性质”。在教学设计的过程中,通过展示我国今年举办的精彩绝伦的盛会—上海世博会图片中的等腰三角形,结合云南丰富的文化资源,让学生感知生活中处处有数学,感受图形的和谐美、对称美;通过学生感兴趣的数学情景引入等腰三角形定义,提高学生的学习乐趣;让学生通过动手剪等腰三角形、对折等腰三角形等活动,探究发现等腰三角形的性质,经历知识的“再发现”过程。在探究活动的过程中发展创新思维能力,改变学生的学习方式。在发现等腰三角形的性质的基础上,再经过推理证明等腰三角形的性质,使得推理证明成为学生观察、实验、探究得出结论的自然延伸,有机地将等腰三角形的认识与等腰三角形的性质的证明结合起来,从中发展学生推理能力。 在例题的选取上,注重联系实际,激发学生学习兴趣,让学生主动用数学知识解决实际问题,同时渗透分类讨论、数形结合和方程的数学思想方法,让学生形成自我的数学思维和能力,发展学生应用数学的意识。 二、目标及其解析 ㈠教学目标: 知识技能: 1.了解等腰三角形的概念,认识等腰三角形是轴对称图形;2.经历探究等腰三角形性质的过程,理解等腰三角形的性质的证明; 3.掌握等腰三角形的性质,能运用等腰三角形的性质解决生活中简单的实际问题。 数学思考: 1.经历“观察?实验?猜想?论证”的过程,发展学生几何直观; 2.经历证明等腰三角形的性质的过程,体会证明的必要性,发展合情推理能力和初步的演绎推理能力. 解决问题: 1.能运用等腰三角形的性质解决生活中的实际问题,发展数学的应用能力,获得解决问题的经验; 2.在小组活动和探究过程中,学会与人合作,体会与他人合作的重要性. 情感态度: 1.经历“观察?实验?猜想?论证”的过程,体验数学活动充满着探究性和创造性,感受证明的必要性、证明过程的严谨性以及结论的确定性,并有克服困难和运用知识解决问题的成功体验,建立学好数学的自信心; 2.经历运用等腰三角形解决实际问题的过程,认识数学是解决实际问题和进行交流的重要工具,了解数学对促进社会进步和发展人类理性精神的作用; 3.在独立思考的基础上,通过小组合作,积极参与对数学问题的讨论,敢于发表自己的观点,并尊重与理解他人的见解,在交流中获益. ㈡教学重点: 等腰三角形的性质及应用。 ㈢教学难点: 等腰三角形性质的证明。 ㈣解析 本堂课是等腰三角形的第一堂课,所以对于本堂课的知识目标的定位,主要考虑如下:1.了解等腰三角形的概念,认识等腰三角形是轴对称图形,在本堂课中要达到如下要求:⑴理解等腰三角形的定义,知道等腰三角形的顶角、底角、腰和底边;⑵知道等腰三角形是轴对称图形,它有一条对称轴,即:顶角角平分线(底边上的高或底边上的中线)所在直线; 2.经历探究等腰三角形性质的过程,掌握等腰三角形的性质的证明,在课堂中让学生参与等腰三角形性质的探索,鼓励学生用规范的数学言语表述证明过程,发展学生的数学语言能力和演绎推理能力,引导学生完成对等腰三角形的性质的证明; 3.会利用等腰三角形的性质解决简单的实际问题,本堂课要达到以下要求:掌握等腰三角形的性质,会利用等腰三角形的性质解决简单的实际问题。 三、问题诊断分析 1.在这堂课中,学生可能遇到的第一个困难是等腰三角形性质的发现,特别是等腰三角形顶角的角平分线、底边上的中线、底边上的高相互重合这一性质,解决这一问题教师主要借助等腰三角形对称性的研究,并引导学生理解“重合”这个词的涵义。 2.这堂课学生可能遇到的第二个问题是证明等腰三角形的性质,这一问题主要有三个原因:第一学生刚接触几何证明不久,对数学语言表达方式还不熟悉;这一困难,并不是一堂课就能解决的,而要在以后学习中帮助学生增强数学语言运用的能力,能有条理地、清晰地阐述自己的`观点。在这堂课中我通过等腰三角形性质的证明,鼓励学生运用规范的数学语言来表述,使学生数学语言能力和演绎推理能力得到提升;第二是添加辅助线的问题,这也是学生在证明中的一个难点。要解决这一问题,我借助等腰三角形是轴对称图形,通过研究等腰三角形的对称轴,让学生理解三种添加辅助线的方法,即作顶角角平分线、底边上的高或底边上的中线;第三是证明等腰三角形顶角角平分线、底边上的中线、底边上的高互相重合这一性质,要突破这一难点,我采用先证明等腰三角形两底角相等这一性质,为学生搭一个台阶,更好地解决这个难点。 3.这堂课中学生可能遇到的第三个问题是对等腰三角形的性质的应用,特别是等腰三角形顶角的角平分线、底边上的中线、底边上的高相互重合这一性质的应用;所以我在设计 课堂练习时,注重数学知识与生活实际的联系,提高学生数学学习的兴趣,让学生主动运用数学知识解决实际问题,并通过练习渗透分类讨论、数形结合和方程的数学思想方法,让学生形成自我的数学思维和能力,发展学生应用数学的意识。 四、教法、学法: 教法: 常言道:“教必有法,教无定法”。所以我针对八年级学生的心理特点和认知能力水平,大胆应用生活中的素材,并作了精心的安排,充分体现数学是源于实践又运用于生活。因此,本堂课的教学中,我以学生为主体,让学生积极思维,勇于探索,主动地获取知识。同时,采用了现代化教学技术,激发学生的学习兴趣,使整个课堂“活”起来,提高课堂效率。本堂课以生活中的一些例子为中心,让学生亲自尝试,接受问题的挑战,充分展示自己的观点和见解,给学生创设一个宽松愉快的学习氛围,让学生体验成功的快乐,为终身学习和发展打打下坚实的基础。 本堂课的设计是以课程标准和教材为依据,采用发现式教学。遵循因材施教的原则,坚持以学生为主体,充分发挥学生的主观能动性。教学过程中,注重学生探究能力的培养。还课堂给学生,让学生去亲身体验知识的产生过程,拓展学生的创造性思维。同时,注意加强对学生的启发和引导,鼓励培养学生大胆猜想,小心求证的科学研究的思想。 学法: 学生都渴望与他人交流,合作探究可使学生感受到合作的重要和团队的精神力量,增强集体意识,所以本课采用小组合作的学习方式,让学生遵循“情景问题?实践探究?证明结论?解决实际问题”的主线进行学习。让学生从活动中去观察、探索、归纳知识,沿着知识发生,发展的脉络,学生经过自己亲身的实践活动,形成自己的经验,产生对结论的感知,实现对知识意义的主动构建。这不仅让学生对所学内容留下了深刻的印象,而且能力得到培养,素质得以提高,充分地调动学生学习的热情,让学生学会自主学习,学会探索问题的方法。 五、教学支持条件分析 在本堂课中,准备利用长方形纸片、剪刀、圆规和直尺等工具,剪出等腰三角形,利用等腰三角形,通过对折、多媒体动画演示等方法发现等腰三角形的性质,并且借助多媒体信息技术与实际动手操作加强对所学知识的理解和运用。 六、教学基本流程 七、教学过程设计 初中数学教学设计7 在教学过程中,很多教师总认为自己在上课中讲得井井有条,知识条理十分透彻,演算透彻清晰,但结果是有大多数学生不能举一反三,数学学习困难重重。产生这种现象的原因,多数教师都归因于学生素质差、家庭教育环境不良等教师以外的因素,很少发现是自己教学能力和素养导致而成。 课堂教学是师生的双边活动。课堂教学的实质是师生双方的信息交流,共同学校的过程。教师得知学生在数学学习很困难时,是否想到了可能教师自己对教材理解不够,没有准确地把握教材的重点、难点,对教材内容层次没有理清和教学方法不适呢?《数学课程标准》指导下,我们的数学教学目的是要学生在数学学习中,由“听”到“懂”,再到“会”,最后到“通”。为此,教师必须深刻反思自己的教育教学行为,批判性地考察自我主体行为表现及其行为依据。通过观察、回顾、诊断、自我监控等方式,或给予肯定、支持与强化,或给予否定、思索与修正,将“学会教学”与“学会学习”结合起来,从而努力提升教学实践的合理性,提高课堂教学效能,到达提高教学质量的目的。现就以下几方面谈谈自己的看法。 一、教师要反思教育观念 新课标下要求教师要改变学科的教育观,始终体现“学生是教学活动的主体”科学理念,着眼于学生的终身发展,注重培养学生浓厚的学习兴趣和正确的学习习惯。数学非常重视教学内容与实际生活的紧密联系。但是在教学活动中还是有不少教师习惯于传统的教学模式,偏重于知识的传授,强调接受式学习,这样使很多学生在学习数学上失去了兴趣。教学中教师要抓住时机,不断地引导学生在设疑、质疑、解疑的过程中,创设认知“冲突”,激发学生持续的学习兴趣和求知欲望,顺利地建立数学概念,把握数学定义、定理和规律。 教师在探究教学中要立足与培养学生的独立性和自主性,引导他们质疑、调查和探究,学会在实践中学,在合作中学,逐步形成适合于自己的学习策略。例如,在学习等腰三角形三线合一的性质时可以让三个同学合作分别去画出顶角平分线、底边上的高、底边上的中线,这是学生会发现三条线为什么会是一条线?证明三角形全等的方法有多种,为什么 “角边边”不能判定两三角形全等?在学习镶嵌时,可以提这样的问题,为什么正三角形、正方形、长方形正六边形可以,而正五边形不可以?等等。 这样教师不断地设问,不断地质疑,就能引导学生进行积极思考,激发起学生浓厚的学习兴趣和求知欲望,促使学生在生活中发现和归纳各种各样的数学规律,为下一步学习数学知识打下坚实的基础。所以我们的教师必须反思自己的教育观念,紧紧抓住主导和主体的关系,解决好学生学习积极性的问题。 二、教师要反思教学设计 教学设计是课堂教学的蓝本,是对课堂教学的'整体规划和预设,勾勒出了课堂教学活动的效益取向。设计教学方案时,教师对当前的教学内容及其地位(概念的“解构”、思想方法的“析出”、相关知识的联系方式等),学生已有知识经验,教学目的,重点与难点,如何依据学生已有认知水平和知识的逻辑过程设计教学过程,如何突出重点和突破难点,学生在理解概念和思想方法时可能会出现哪些情况以及如何处理这些情况,设计哪些练习以巩固新知识,如何评价学生的学习效果等,都应该有一定的思考和预设。教学设计的反思就是对这些思考和预设是否考虑到 了。教学后,要对实际进程和学生的接受程度进行比较和反思,找出成功和不足之处及其原因,从而有效地改进教学。 三、教师要反思教学方法 教师教得好,本质上讲是学生学得好。在实际教学过程中我们的教学方法是否合乎学生实际呢?上课、评卷、答疑解难时,有的教师自以为讲清楚明白了,学生受到了一定的启发,但反思后发现,教师的讲解并没有很好地从学生原有的知识基础出发,从根本上解决学生认识上鸿沟问题。有的教师只是一味的设想按照自己某个固定的程序去解决某一类问题,也许学生当时听明白了,但往往是是而非,并没有真正理解问题的本质。 初中数学教学中,例习题教学是数学教学中重要的组成部分,是概念类教学的延伸和发展。教材中的例习题都是编者精心编制的,具有典型性和启发性,它们不仅是对基础知识的巩固,同时对培养学生智力、掌握数学思想和方法,及培养学生应用数学意识和能力,提高学生的数学素养等都有重要意义。 四、教师要反思学生学习方法 《数学课程标准》指出,有效的数学学习活动不能单纯依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式,因此,转变数学学习方式,倡导有意义的学习方式是课程改革的核心任务。初中学生年龄一般在十二至十六岁之间,正处生长发育期,思想不成熟,行为不稳定,办事情绪化,喜表露,易冲动, 既有面见师长的羞涩, 有初生牛犊不怕虎的习性。在数学学习上凭兴趣,看心情,个性反映较为突出,有不少学生学习方法也存在一定的问题。同时他们往往又很难发现自己的学习方法不妥。所以,教师就应该反思学生的学习方法,找一找哪些问题,并帮助他们努力改变不恰当的方法,使学生达到《新课标》的要求。 总之,为学之道,必本与思,思则得之,不思则不得。教学也是这个规律,只教不思就会成为教死书的教书匠,学生也得不到很好的受益。要想成为优秀的教师,只有一边教书一边总结,一边教书一边反思,才能实现自己的目的。 初中数学教学设计8 为了提高学生的学习兴趣,增大学生的学习参与面,减小差距。努力作好教学工作,在这一学期中,下文将准备了初中二年级下册数学教学设计如下: 一、教学目标: 通过本期的学习,要使学生在情感与态度上,认识到数学来源于实践,又反作用于实践,认识现实生活中图形间的数量关系,能够设计精美的图案,提高学生的审美情趣,培养学生实事求是、严肃认真的学习态度,激发学生的学习兴趣,培养学生对数学的热爱,对生活的热爱,在民主、和谐、合作、探究、有序、分享发现快乐,感受学习的快乐。对于过程与方法,通过学生积极参与对知识的探究,经历发现知识,发现知识间的内在联系,让学生经历发现知识道路上坎坎坷坷,达到深刻理解掌握知识的目的,达到漫江碧透,鱼翔浅底的境界,在经历这些活动中,提高学生的动手实践能力,提高学生的逻辑推理能力与逻辑思维能力,自主探究,解决问题的能力,提高运算能力,使所有学生在数学上都有不同的发展,尽可能接近其发展的最大值,培养学生良好的学习习惯,发展学生的非智力因素,使学生潜移默化的接受辩证唯物主义的熏陶,提高学生素质。 二、教材分析 本学期教学内容共计五章,知识的前后联系,教材的教学目标,重、难点分析如下: 第十六章 分式 本章的主要内容包括:分式的概念,分式的基本性质,分式的约分与通分,分式的加、减、乘、除运算,整数指数幂的概念及运算性质,分式方程的概念及可化为一元一次方程的分式方程的解法。 第十七章 反比例函数 函数是研究现实世界变化规律的一个重要模型,本单元学生在学习了一次函数后,进一步研究反比例函数。学生在本章中经历:反比例函数概念的.抽象概括过程,体会建立数学模型的思想,进一步发展学生的抽象思维能力;经历反比例函数的图象及其性质的探索过程,在交流中发展能力这是本章的重点之一;经历本章的重点之二:利用反比例函数及图象解决实际问题的过程,发展学生的数学应用能力;经历函数图象信息的识别应用过程,发展学生形象思维;能根据所给信息确定反比例函数表达式,会作反比例函数图象,并利用它们解决简单的实际问题。本章的难点在于对学生抽象思维的培养,以及提高数形结合的意识和能力。 第十八章 勾股定理 直角三角形是一种特殊的三角形,它有许多重要的性质,如两个锐角互余,30度角所对的直角边等于斜边的一半,本章所研究的勾股定理,也是直角三角形的性质,而且是一条非常重要的性质,本章分为两节,第一节介绍勾股定理及其应用,第二节介绍勾股定理的逆定理。 第十九章 四边形 四边形是人们日常生活中应用较广泛的一种图形,尤其是平行四边形、矩形、菱形、正方形、梯形等特殊四边形的用处更多。因此,四边形既是几何中的基本图形,也是空间与图形领域研究的主要对象之一。本章是在学生前面学段已经学过的四边形知识、本学段学过的多边形、平行线、三角形的有关知识的基础上来学习的,也可以说是在已有知识的基础上做进一步系统的整理和研究,本章内容的学习也反复运用了平行线和三角形的知识。从这个角度来看,本章的内容也是前面平行线和三角形等内容的应用和深化。 第二十章 数据的分析 本章主要研究平均数、中位数、众数以及极差、方差等统计量的统计意义,学习如何利用这些统计量分析数据的集中趋势和离散情况,并通过研究如何用样本的平均数和方差估计总体的平均数和方差,进一步体会用样本估计总体的思想。 三、提高学科教育质量的主要措施: 1、认真做好教学七认真工作。把教学七认真作为提高成绩的主要方法,认真研读新课程标准,钻研新教材,根据新课程标准,扩充教材内容,认真上课,批改作业,认真辅导,认真制作测试试卷,也让学生学会认真学习。 2、兴趣是最好的老师,爱因斯坦如是说。激发学生的兴趣,给学生介绍数学家,数学史,介绍相应的数学趣题,给出数学课外思考题,激发学生的兴趣。 3、引导学生积极参与知识的构建,营造民主、和谐、平等、自主、探究、合作、交流、分享发现快乐的高效的学习课堂,让学生体会学习的快乐,享受学习。引导学生写复习提纲,使知识来源于学生的构造。 4、引导学生积极归纳解题规律,引导学生一题多解,多解归一,培养学生透过现象看本质,提高学生举一反三的能力,这是提高学生素质的根本途径之一,培养学生的发散思维,让学生处于一种思如泉涌的状态。 5、运用新课程标准的理念指导教学,积极更新自己脑海中固有的教育理念,不同的教育理念将带来不同的教育效果。 6、培养学生良好的学习习惯,陶行知说:教育就是培养习惯,有助于学生稳步提高学习成绩,发展学生的非智力因素,弥补智力上的不足。 7、指导成立课外兴趣小组的民间组织,开展丰富多彩的课外活动,开展对奥数题的研究,课外调查,操作实践,带动班级学生学习数学,同时发展这一部分学生的特长。 8、开展分层教学,布置作业设置A、B、C三类分层布置分别适合于差、中、好三类学生,课堂上的提问要照顾好、中、差三类学生,使他们都等到发展。 9、进行个别辅导,优生提升能力,扎实打牢基础知识,对差生,一些关键知识,辅导差生过关,为差生以后的发展铺平道路。 10、站在系统的高度,使知识构筑在一个系统,上升到哲学的高度,八方联系,浑然一体,使学生学得轻松,记得牢固。 初中数学教学设计9 课题 正比例函数 一 教学目标 1.通过案例理解正比例函数,能列出正比例函数关系式 2.教会学生应用正比例函数解决生活实际问题的能力 二 教学重点 理解正比例函数的概念 三 教学难点 利用正比例函数解决生活实际问题 四 教学过程 【提出问题】 《阿甘正传》是一部励志影片。片中阿甘曾跑步绕美国数圈,假设他从德州到加州行进了21000千米,耗费了他150天时间。 (1) 阿甘大约平均每天跑步多少千米? (2) 阿甘的行程y(km)与时间x(天)之间有什么关系? (3) 阿甘一个月(30天)的行程是多少千米? 【生】 列算式回答 【师】 点评总结 2.写出下列变量间的函数表达式 (1) 正方形的周长l和半径r之间的关系 【进一步抽象问题让学生思考】 (2) 大米每千克四元,则售价y元与数量x(kg)的函数关系式是什么? (3) 下列函数关系式有什么共同点?(小组合作) 【分析共同点和不同点,找出规律】 (1) y=200x (2) l=2∏r (3) m=7.8V 【生回答,师点评】 【引入新课】 1.正比例函数的概念: 一般地,形如y=kx (k≠0)的函数,叫做正比例函数,其中k叫做比例系数.【板书概念,引导学生分析正比例函数的定义】 2 【例题讲解】 例1 在同一坐标系里,画出下列函数的图像: y=0.5x y=x y=3x 解: 【略】 【掌握函数图像的画法:列表,描点,连线】 3.练习 (1)已知正比例函数y=kx.当 x=3 时 y=6 。求 k的值 (2) 一种笔记本每本的单价为3元。则销售金额y元与销售量x之间的关系式是怎样的? 当销售金额为360元时,则售出了多少本这种笔记本? 四 小结 五 课外作业 【反思】 由于函数的概念比较抽象,学生不容易理解。而理解函数的'概念是教学的重点。这节课首先通过实例,回顾函数的概念,其次抽象提出正比例函数关系式,由学生观察得到特点,然后引出正比例函数的概念和特点,再通过练习加以巩固,最后通过小组讨论利用正比例函数解决生活中的问题。 初中数学教学设计10 一、案例实施背景 本节课是20xx-20xx学第一学期开学第七周笔者在长青中学的多媒体教室里上的一节公开课,课堂中数学优秀生、中等生及后进生都有,所用教材为北师大版义务教育教科书七年级数学(上册)。 二、案例主题分析与设计 本节课是北师大版义务教育教科书七年级数学(上册)——科学记数法,它是在学习乘方的基础上,研究更简便的记数方法,是第二章有理数及其运算的重要组成部分。 《数学课程标准》强调:数学教学是数学活动的教学,是师生之间、生生之间交往互动与共同发展的过程;动手实践,自主探索,合作交流是孩子学习数学的重要方式;合作交流的学习形式是培养孩子积极参与、自主学习的有效途径。本节课将以“生活·数学”、“活动·思考”、“表达·应用”为主线开展课堂教学,以学生看得到、感受得到的基本素材创设问题情境,引导学生活动,并在活动中激发学生认真思考、积极探索,主动获取数学知识,从而促进学生研究性学习方式的形成,同 时通过小组内学生相互协作研究,培养学生合作性学习精神。 三、案例教学目标 1、知识与技能:掌握科学记数法的方法,能将一些大数写成科学记数法。 2、过程与方法:在寻找科学记数法的探究过程中,让学生经历观察、比较、联想、分析、归纳、猜想、概括的全过程。 3、情感态度与价值观:通过科学记数法的总结,使学生形成数形结合的数学思想方法,以及知识的迁移能力、创新意识和创新精神。 四、案例教学重、难点 1、重点:正确运用科学记数法表示较大的'数 2、难点:正确掌握10的幂指数特征,将科学记数法表示的数写成原数 五、案例教学用具 1、教具:多媒体平台及多媒体课件、图片 六、案例教学过程 一、创设情境,兴趣导学: 1、展示学生收集的非常大的数,与同学交流,你觉得记录这些数据方便吗? 2、展示课本第63页图片,现实中,我们会遇到一些比较 大的数,如世界人口数、地球的半径、光速等,读写这样大的数有一定的困难。 师:(展示刚才演示过的3个大数)我们能不能找到更好的记数方法使下列各数更加便于读、写?请同学们六个人一组,分组进行讨论。 (1) 1 370 000 000 (2) 6 400 000 (3) 300 000 000 生1:答:13.7亿,640万,3亿。 师:回答正确。这是数字加上单位的记数方法,在小学已经学过,是比较常用的一种方法,可是它有一定的局限性。如果我在3亿后面再加上好多个0,那么这种记数方法还好用吗? 生:不好用。(让学生意识到以前所学的方法不够用了) 师:接下来我们一起来探索新的记数方法。 分析:在读写大数时使学生感觉到不方便,从实际生活的需要,自然引入课题,需要寻找一种更简单的方法记数,为新课创设了良好的问题情境。 二、尝试探索,讲授新课: 1、探索10n的特征 计算一下102、103、104、105、1010你发现什么规律? 102=100103 =1 00010 4 =10 000105=100 0001010 =10 000 000 000 (观察并思考,小组讨论) (1)结果中“0”的个数与10的指数有什么关系? (2)结果的位数与10的指数有什么关系? 2、练习:将下列个数写成只有一位整数乘以10n的形式。 (1)500(2)3000(4)40000 师:(学生完成之后)可见这种表示方法不仅书写简短,同时还便于读数。这就是我们本节课研究的内容—科学记数法。 分析:通过教师引导,学生小组讨论,合作探究,成功地找到表示大数的简便记数方法——科学记数法。 4、科学记数法: 像上面这样,把一个大于10的数表示成 a×10n的形式(其中1≤a<10,a是整数数位只有一位的数,n是整数),这种记数方法叫做科学记数法。 (思考,小组讨论) 10的指数与结果的位数有什么关系? 分析:这是本节课的重难点:10的幂指数n与原数的整数位数之间的关系。从特殊数据出发,寻找解决问题的方案,这符合“特殊到一般”的认知规律。在探究过程中,学生的探究活动体现了“化繁为简”、“分析归纳”的数学思想。 三、巩固新知,知识运用: 1、将下列各数写成科学记数法形式。 (1)23 000 000(2)453 000 000(3)13 400 000 000 000 000米,用科学记数法表示是多少米? 分析:学生的模仿能力强,在分析讨论10的指数与结果的位数有什么关系时,会与前面曾经讨论过的10n联系起来,也可以对知识进行迁移和回顾。再加上学生好奇心都特别强,很想将自己总结出来的结论加以应用,针对以上学生特点,给出相应的练习题。这样学生能够体会到学以致用的乐趣,从而调动学生自主学习的积极性。 (观察并思考,小组讨论) 5、如何将一个用科学记数法表示的数写成原数? a×10n将a的小数点向右移动n位原数 分析:这是本节课另一个重点,也是知识的逆向巩固,学生通过寻找写出原数的方法,更加明白在写科学记数法时,如何确定10的指数,同时也学会了如何写出原数。 练习:人体内约有2.5×10 5个细胞,其原数为多少个? 七、教学反思: 数学课要注重引导学生探索与获取知识的过程而不单注重学生对知识内容的认识,因为“过程”不仅能引导学生更好 地理解知识,还能够引导学生在活动中思考,更好地感受知识的价值,增强应用数学知识解决问题的意识;感受生活与数学的联系,获得“情感、态度、价值观”方面的体验。 初中数学教学设计11 20xx年寒假期间,我读《初中数学创新教学设计》一书对我很有帮助,感想很多。 教学设计作为教师进行教学的主要工作之一,对教学起着先导作用,它往往决定着教学工作的方向;同时教学设计的技能作为教师专业发展的重要内容,已成为教师从师任教必备的基本功。所以教师了解初中数学教学设计的内容很有必要。新理念下的初中数学教学设计的内容可以包括: (1) 教学目标。 在新理念下,教学目标一般包括过程性目标和结果性目标两个方面,也可以进一步细分为知识技能,数学思考,解决问题,情感态度等多方面。 (2)任务分析 进行任务分析的重点在于关注几个要点: 一是关注学生的起点;二是关注学生主要的认知障碍和可能的认知途径;三是分析教学内容的重点、难点和关键;四是研究达成目标的主要途径和方法。 在这里,有两个问题十分重要:第一,要关注学生的经验基础,第二,要正确认识教材。对于前者,意味着不仅要考虑学科自身的特点,更应遵循学生学科学习的心理规律;要把学生的个人知识、直接经验和现实世界作为初中数学教学的重要资源。对于后者,意味着要“用教材教,而不是教教材”。创造性的使用教材是本次新课程对我们提出的新要求,教材是极其宏观性的一个蓝本,覆盖着非常广阔的时空,主要对教师教什么、学生学什么起到指向作用。但教材仅仅是教师组织数学课堂教学活动的素材,使学生进行数学学习的平台。新理念下的教材给教师留下了比较大的创造空间,进行任务分析,就必须改变“以教材为本处理教材”的现象,根据学生实际、教学实际和当地实际,模拟教材,重组教材,编制教材,消减技巧性训练,增加其探索性、思考性和现实性的成分,为实施开放式、活动式的探究、合作、参与等新型学习方式创造条件。事实上,对初中生来说,喜好数学问题,对有关的数学活动充满好奇心,这是进一步学习数学的首要前提和发展动力。 (3)教学思路。 主要考虑具体的教学过程,包括创设的情景、活动的线索、学生可能提出的问题,可能的情况下必须附设计说明。 (4)教学反思。 主要针对如下一些问题开展反思: 是否达到预期目标?如果没有达到,分析其原因,并提供改进的方案。有哪些突发的灵感,印象最深的讨论或学生独特的想法?哪些地方与教学设计的不一样,学生提出了哪些没有想到的问题?为什么会提出这些问题? 了解了教学设计的内容,为我们以后教学设计具有很重要的指导意义。 今天,李老师带着我们去看舞剧《羚羚的故事》。到那里以后,先是主持人讲话,之后是大队辅导员李老师讲话,她带我们一起回顾了羚羚的故事的精彩镜头,看完了我觉得他们太辛苦了! 第一幕讲的是在美丽的可可西里,有很多很多的羚羊在玩,羚羚和妹妹跟妈妈在说话,妈妈说:“你们看,蓝蓝的天空多漂亮啊!”羚羚说:“是啊,你看那朵云彩多像我啊!”妈妈说:“这美丽的一切是很多很多妈妈的牺牲换来的!”之后,一位来西藏旅游的少年来了,她和小羚羊玩耍,对小羚羊特别好。 第二幕讲的是羚羚听见“砰”的一声,她问妈妈是怎么回事,妈妈说:“这是枪声,咱们赶快跑吧!”羚羚说:“妹妹呢?”她们到处找,突然发现妹妹已经被击中了!羊妈妈刚想去救她,但是来不及了,偷猎者来了!妹妹被偷猎者带走了,羚羚非常伤心! 第三幕讲的是小羚羊们又累又饿,走不动了。羊妈妈说:“孩子,坚持一下吧!”羚羚问:“妈妈,我们要去哪儿?我们为什么要离开可可西里?”妈妈说:“我们要去一个没有人类的地方,因为现在的可可西里已经不是我们的家园了。”羚羚问:“妈妈,您不是说人类是我们的好朋友么?我们为什么要远离他们?”羊妈妈说:“因为现在来可可西里的人是魔鬼,他们要杀掉我们,用我们的毛皮做衣服,我们要离开这里!”小羚羊们走着走着,大雪来了,大雨来了,大风来了,羚羚实在受不了了。这时,她们的面前出现了一片沼泽地,小羚羊们很着急,怎么过去呢?羊妈妈说:“我们已经没有选择了!”说着,所有的羊妈妈都跳了下去,她们背着小羚羊过去了,但是羊妈妈们却被埋在了沼泽地里。羚羚和小羚羊们大喊着:“妈妈!妈妈!”这时少年来了,她正在寻找小羚羊,小羚羊看到她,跑了过去。少年说:“羚羚,是你吗?你身上怎么这么多伤?你的妈妈呢?”羚羚伤心地说:“妈妈死了,妹妹也死了!” 第四幕讲的是少年带着她的朋友们来了,他们都是动物保护者,他们同小动物们一起打败了偷猎者。小羚羊们又有了新的家园。这时候羚羚也当妈妈了,她们过上了幸福的生活! 看完这个故事,我想说:“可恶的偷猎者,不许再杀害小动物了!”因为中国的珍稀动物越来越少,比如大熊猫、扬子鳄、白鳍豚,我必须要保护小动物,我们每个人都要保护小动物,它们是我们人类的.好朋友!让我们每个人都做环保的小卫士! 研究教学方法的组合运用这一课题,对提高思想政治课教学质量有重要的意义。教学方法是多种多样的,每一种方法都有自己的特点和适用范围。师生在教学中可以也应该自主选择不同的教和学的方法,努力创造新的教和学的方法。教学有法,但无定法,贵在得法,教师教学时必须注意方法选择。我在教学中常用的方法有:演讲法、发现教学法与探究教学法 、训练与实践式教学方法、复习测验式教学法、小组讨论法等。其中用得最多的是演讲法,其优势在于: (1)演讲法可以说明一些原则,可以叙述一些事实,解决高中政治教学当中某些内容抽象学生难以理解的问题和概念。在新课程标准下,高中政治教学目的在于向学生传授基本的理论知识从而让学生具备正确是世界观和方法论,从而具有在现实生活当中解决问题的能力。 虽然高中政治是一门与时事关系非常密切的学科,但是它同样具有抽象性和蒙蔽性,这些仅仅靠学生的自发理解是解决不了的,这时候,演讲法就具备了相当的优势。通过演讲法,教师可以将政治学科当中难以理解的问题结合时事和例子深入浅出的讲述清楚,插入有趣的例子和时事,这样就可以将时效性和趣味性结合起来,既解决了教学重点和难点,同时也可以提高学生对政治这门学科的兴趣,让他们明白,这门学科对他们而言具有相当的实用性,而又不显得课堂空荡荡。教师就可以通过“演讲法”,把教学内容和例子相结合,就可以解决这些对学生而言非常抽象的概念和理念,毕竟,高中的学生的理解能力在挖掘发展当中。 (2)可以节省教学的时间,在高中政治教学的过程当中,有时候教学任务繁重在一节课当中,这个时候,“单向式”的演讲法就可以节省时间,能够顺利完成当节教学任务; 正如之前所说的,任何事物都有其两面性,演讲法有其优点,自然也有它的缺陷。它主要是在于「单向教学」的问题,教师不易掌握学生对教材的接受情况与了解的程度,同时也容易发生灌输式教学的危险,如果教师对课堂出现的问题处理能力不强或者语言表达能力不够,那么在使用演讲法时就很容易陷入让学生觉得枯燥乏味的情绪当中,因为毕竟来说高中政治这门学科对于学生来说已经有“枯燥无味”和“学了也没什么用”的这种先入为主的观念了,所以这时候对于高中的政治老师的课堂处理能力和语言表达能力就提出更高的要求对于使用演讲法来说。因此,当高中政治教师在使用演讲法之时,应当配合其它一些可以使学生参与的方法来使用,譬如:讨论式、问题式、游戏式等等,尽量让学生参与到课堂当中,同时通过语言的渲染力提高学生上课的情绪。 比如在讲述到“公民的政治权利”这个概念时,就可以提出当前社会当中易让人困惑的问题让学生参与讨论,通过这样的设问讨论,学生的情绪就非常高涨,纷纷发表自己的看法,最后再通过演讲法由教师进行总结,这样既可以加深对问题的理解,也可以调节课堂气氛,增强师生之间的互动性,这样就可以很好的弥补了演讲法本身的缺陷。教学的重点并不完全在于将一大堆的知识或材料倾倒给学生。学生积极、热切地参与在教与学的过程中是非常重要的。让学生多有运用手及脑的机会是有益处的。对高中这些年纪稍大一点的学生而言,他们自主性很强,有自己独立的思想,愈给他们参与的机会,就学习得愈好。 在教学目标的落实方面需要改进的主要是加强与学生的沟通,因为不管多好的方法,只有能被学生有效分享,为学生的学习提高助力,帮助学生理解教学内容的教学方法才是真正有效的方法。 初中数学教学设计12 (一)提出问题,导入新课 1、解二元一次方程组 问题 1、母亲26岁结婚,第二年生个儿子,若干年后母亲的年龄是儿子年龄到3倍,此时母亲的年龄为几岁? 解法一:设经过x年后,母亲的年龄是儿子年龄的3倍。 由题意得 26+x=3x 解法二:设母亲的年龄为x岁。 由题意得 x=3(x-26) (二)精选讲例,探求新知 例 2、某班有45位学生,共有班费2400元钱,准备给每位学生订一份报纸。已知《作文报》的订费为60元/年,《科学报》的订费为50元/年,则订阅两种报纸各多少人? 巩固练习小明和小李两人进行投篮比赛,规则:小明投3分球,小李投2分球,两人共投中20次,经计算两人得分相等,问小李和小明各投中几个球。 (三)变式训练,激活学生思维 问题 3、小明和小李两人进行投篮比赛,小明投3分球,小李投2分球,两人共投中100次,小明投中率为40%,小明投中率为40%,经计算两人得分相等,问小李和小明各投中几个球。 问题 4、已知某电脑公司有A型、B型、C型3种型号的电脑,其价格分别为A型6000元/台、B型4000元/台、C型2500元/台,我校计划将100500元钱全部用于从该公司购进其中两种不同型号电脑共36台,请你设计出几种不同的购买方案供学校采用。小红的方案:她认为可以购进A型和B型电脑,请你判断小红提出的`方案是否合理,并通过计算说明。 (四)课堂练习,巩固新知 1、A、B两地相距36千米,甲从A地出发步行到B地,乙从B地出发步行到A地,两人同时出发,4小时候相遇。若6小时后,甲所余路程为乙所余路程的2倍,求甲乙两人的速度。 2、某班借来一批图书,分借给同学阅览,如果每人借6本,那么会有一个同学没书可借,如果每人借5本,那么还剩5本书没人借,问该班有多少人,有多少书。 (五)拓展 1、变题训练问题2中,若学校要购买A、B、C3种型号的电脑,有如何安排? 2、某中学新建一栋4层的教学大楼,每层楼有8间教室,进、出这栋大楼共有4道门,其中两道正门大小相同,两道侧门大小也相同。安全检查中,对4道门进行测试,当同时开启一道正门和两道侧门时,2分钟内可以通过560名学生,当同时开启一道正门和一道侧门时,4分钟内可以通过800名学生。 ⑴问平均每分钟一道正门和一道侧门各可以通过多少名学生。 ⑵检查中发现,紧急情况时因学生拥挤,出门的效率将降低20%,安全检查规定,在紧急情况下全大楼的学生应在5分钟内通过这4道门安全撤离。假设这栋大楼每间教师最多有45名学生,问建造的这4道门是否符合安全规定。 初中数学教学设计13 一教学目标 1.通过案例理解正比例函数,能列出正比例函数关系式 2.教会学生应用正比例函数解决生活实际问题的能力 二教学重点 理解正比例函数的概念 三教学难点 利用正比例函数解决生活实际问题 四教学过程 【提出问题】 1.《阿甘正传》是一部励志影片。片中阿甘曾跑步绕美国数圈,假设他从德州到加州行进了千米,耗费了他150天时间。 (1)阿甘大约平均每天跑步多少千米? (3)阿甘一个月(30天)的行程是多少千米? 【生】列算式回答 【师】点评总结 2.写出下列变量间的函数表达式 (1)正方形的周长l和半径r之间的关系【进一步抽象问题让学生思考】 (2)大米每千克四元,则售价y元与数量x(kg)的函数关系式是什么? (3)下列函数关系式有什么共同点?(小组合作)【分析共同点和不同点,找出规律】 (1)y=200x(2) l=2∏r(3) m= 【生回答,师点评】 【引入新课】 1、正比例函数的概念:一般地,形如y=kx (k≠0)的函数,叫做正比例函数,其中k叫做比例系数.【板书概念,引导学生分析正比例函数的定义】 2 、【例题讲解】 例1在同一坐标系里,画出下列函数的图像:y==x y=3x 解:【略】 【掌握函数图像的.画法:列表,描点,连线】 3、练习 (1)已知正比例函数y=kx.当x=3时y=6 。求k的值 (2)一种笔记本每本的单价为3元。则销售金额y元与销售量x之间的关系式是怎样的?当销售金额为360元时,则售出了多少本这种笔记本? 五课外作业 【反思】 由于函数的概念比较抽象,学生不容易理解。而理解函数的概念是教学的重点。这节课首先通过实例,回顾函数的概念,其次抽象提出正比例函数关系式,由学生观察得到特点,然后引出正比例函数的概念和特点,再通过练习加以巩固,最后通过小组讨论利用正比例函数解决生活中的问题。 初中数学教学设计14 一、学情分析 八年级学生具有强烈的好胜心和求知欲,抽象思维趋于成熟,形象直观思维能力较强,具有一定的独立思考、实践操作、合作交流、归纳概括等能力,能进行简单的推理 二、教材分析 这节课是人教版八年级第十八章第一节的内容,教学内容是勾股定理公式的推导、证明及其简单的应用。本节课是在学生已经掌握了直角三角形有关性质的基础上进行学习的,勾股定理是几何中最重要的定理之一,它揭示的是直角三角形中三条边之间的数量关系,将数与形密切联系起来,为以后学习四边形、圆、解直角三角形等数学知识奠定了基础。它有着丰富的历史背景,在数学的发展中起着重要的作用,在现实生活中也有着广泛的应用。学生通过对勾股定理的学习,可以在原有的`基础上对直角三角形有进一步的认识和理解。 三、教学目标设计 知识与技能 探索勾股定理的内容并证明,能够运用勾股定理进行简单计算和运用 过程与方法 (1)通过观察分析,大胆猜想,探索勾股定理,培养学生动手操作、合作交流、逻辑推理的能力。 (2)在探索勾股定理的过程中,让学生经历“观察—猜想—归纳—验证”的数学过程,并体会数形结合和从特殊到一般的思想方法。 情感态度与价值 (1)在探索勾股定理的过程中,培养学生的合作交流意识和探索精神,增进数学学习的信心,感受数学之美,探究之趣。 (2)利用远程教育资源介绍中国古代勾股方面的成就,激发学生热爱祖国和热爱祖国悠久文化的思想感情,培养学生的民族自豪感和钻研精神。 四、教学重点难点 教学重点 探索和证明勾股定理 ·教学难点 用拼图的方法证明勾股定理 五、教学方法 (学法)“引导探索法” (自主探究,合作学习,采用小组合作的方法。 六、教具准备 课件、三角板 七、教学过程设计 教学环节1 教学过程:创设情境探索新知 教师活动:出示第24届国际数学家大会的会徽的图案向学生提问 (1) 你见过这个图案吗? (2) 你听说过“勾股定理”吗? 学生活动:学生思考回答 设计意图:目的在于从现实生活中提出“赵爽弦图”,进一步激发学生积极主动地投入到探索活动中,同时为探索勾股定理提供背景材料。 教学环节2 教学过程:实验操作获取新知归纳验证完善新知 教师活动:出示课件,引导学生探索 学生活动:猜想实验合作交流画图测量拼图验证 设计意图:渗透从特殊到一般的数学思想。为学生提供参与数学活动的时间和空间,发挥学生的主体作用;让学生自己动手拼出赵爽弦图,培养他们学习数学的成就感。通过拼图活动,使学生对定理的理解更加深刻,体会数学中的数形结合思想,调动学生思维的积极性,激发学生探求新知的欲望。给学生充分的时间与空间讨论、交流,鼓励学生敢于发表自己的见解,感受合作的重要性。 教学环节3 教学过程:解决问题应用新知 教师活动:出示例题和练习 学生活动:交流合作,解决问题 设计意图:通过运用勾股定理对实际问题的解释和应用,培养学生从身边的事物中抽象出几何模型的能力,使学生更加深刻地认识数学的本质:数学来源于生活,并能服务于生活,顺利解决如何将实际问题转化为求直角三角形边长的问题,培养学生的数学应用意识。 教学环节4 教学内容:课堂小结巩固新知布置作业 教师活动:引导学生小结 学生活动:讨论交流、自由发言 设计意图:既引导学生从面积的角度理解勾股定理,又从能力、情感、态度等方面关注学生对课堂整体感受,在轻松愉快的气氛中体会收获的喜悦。 通过布置课外作业,给学生留有继续学习的空间和兴趣,及时获知学生对本节课知识的掌握情况,适当的调整教学进度和教学方法,并对学习有困难的学生给与指导。 八、板书设计 勾股定理:如果直角三角形的两直角边分别为a和b,斜边为c,那么 a2+b2=c2。 九、习题拓展 如图,将长为10米的梯子AC斜靠在墙上,BC长为6米。 (1)求梯子上端A到墙的底端B的距离AB。 (2)若梯子下部C向后移动2米到C1点,那么梯子上部A向下移动了多少米? 十、作业设计 1。收集有关勾股定理的证明方法, 下节课展示、交流。 2。做一棵奇妙的勾股树(选做) 初中数学教学设计15 教材分析: 一元二次方程根与系数的关系的知识内容主要是以前一单元中的求根公式为基础的。教材通过一元二次方程ax2+bx+c=0(a≠0)的根x1、x2得出一元二次方程根与系数的关系,以及以数x1、x2为根的一元二次方程的求方程模型。然后通过4个例题介绍了利用根与系数的关系简化一些计算的知识。 学情分析: 1.学生已学习用求根公式法解一元二次方程。 2.本课的教学对象是九年级学生,学生对事物的认 识多是直观、形象的,他们所注意的多是事物外部的、直接的、具体形象的特征。 3.在教学初始,出示一些学生所熟悉和感兴趣的东西,结合一元二次方程求根公式使他们在现代化的教学模式和传统的教学模式相结合的基础上掌握一元二次方程根与系数的关系。 教学目标: 1、知识目标:要求学生在理解的基础上掌握一元二次方程根与系数的关系式,能运用根与系数的关系由已知一元二次方程的一个根求出另一个根与未知数,会求一元二次方程两个根的倒数和与平方数,两根之差。 2、能力目标:通过韦达定理的教学过程,使学生经历观察、实验、猜想、证明等数学活动过程,发展推理能力,能有条理地、清晰地阐述自己的观点,进一步培养学生的创新意识和创新精神。 3、情感目标:通过情境教学过程,激发学生的求知欲望,培养学生积极学习数学的态度。体验数学活动中充满着探索与创造,体验数学活动中的成功感,建立自信心。 教学重难点: 1、重点:一元二次方程根与系数的关系。 2、难点:让学生从具体方程的根发现一元二次方程根与系数之间的关系,并用语言表述,以及由一个已知方程求作新方程,使新方程的根与已知的方程的根有某种关系,比较抽象,学生真正掌握有一定的难度,是教学的难点。 教学过程: 板书设计: 一元二次方程根与系数的.关系如果ax+bx+c=0(a≠0)的两根是x1,x2,那么x1+x2= ,x1x2= 。 问题6.在方程ax+bx+c=0(a≠0)中,a、b、c的作用吗? ①二次项系数a是否为零,决定着方程是否为二次方程; ②当a≠0时,b=0,a、c异号,方程两根互为相反数; ③当a≠0时,△=b-4ac可判定根的情况; ④当a≠0,b-4ac≥0时,x1+x2=,x1x2=。⑤当a≠0,c=0时,方程必有一根为0。 学生学习活动评价设计: 本节课充分让学生分析、观察、提高了学生的归纳能力及推理论证的能力。 教学反思: 1.一元二次方程根与系数的关系的推导是在求根公式的基础上进行。它深化了两根的和与积同系数之间的关系,是我们今后继续研究一元二次方程根的情况的主要工具,必须熟记,为进一步使用打下基础。 2.以一元二次方程根与系数的关系的探索与推导,向学生展示认识事物的一般规律,提倡积极思维,勇于探索的精神,借此锻炼学生分析、观察、归纳的能力及推理论证的能力 3.一元二次方程的根与系数的关系,在中考中多以填空,选择,解答题的形式出现,考查的频率较高,也常与几何、二次函数等问题结合考查,是考试的热点,它是方程理论的重要组成部分。 4.使学生体会解题方法的多样性,开阔解题思路,优化解题方法,增强择优能力。力求让学生在自主探索和合作交流的过程中进行学习,获得数学活动经验,教师应注意引导。