第一篇:解简易方程(一) 教学设计资料
教学目标
1.使学生初步理解“方程”“方程的解”和“解方程”的含义。
2.初步掌握解简易方程的方法并会检验。
教学重点
使学生初步掌握解方程的方法和书写格式。
教学难点
帮助学生建立“方程”的概念,并会应用。
教学设计
一、复习准备
(一)口算下面各题。
30+()=50()×2=10
(二)列式。
1.一支钢笔 元,2支钢笔多少元?
2.与4的和。
二、新授教学
(一)方程的意义
1.介绍天平
这是一架天平、可以用来称物品的重量。当天平的指针指在标尺中间时,表示天平平衡,即天平两端的重量相等。
2.引出方程
(1)出示图片:天平1
教师提问:这个天平平衡吗?说明了什么?谁会用等式表示?
(2)出示图片:天平2
教师提问:请同学们观察,天平平衡说明了什么?怎样用式子表示?
教师板书:20+?=100
教师说明:这个未知数“?”,如果用 来表示就可以写成20+ =100.(3)出示图片:篮球
教师提问:这幅图是什么意思?怎样用含有未知数的等式表示?
教师板书:
3.方程的意义。
教师提问:观察上面三个等式回答问题。这三个等式有什么相同点和不同点?
相同点:都是相等的式子。
不同点:第一个等式不含有未知数,第二个和第三个等式含有未知数。
教师板书:象这种含有未知数的等式,叫方程。
教师强调:含有未知数、等式
4.思考:方程和等式之间到底是什么关系呢?
(1)出示图片:等式与方程
(2)小结:所有的方程都是等式,但是等式不一定都是方程。
(二)教学例1
1.方程的解
教师提问:在 中,等于多少时方程左边和右边相等?
在 中,等于多少时方程的左边和右边相等?
教师说明:使方程左右两边相等的未知数的值,叫做方程的解。
如: 是方程 的解
是方程 的解
2.解方程
教师板书:求方程的解的过程叫做解方程。
3.教学例1
第二篇:解简易方程(二) 教学设计资料
教学目标
1.使学生初步学会 这一类简易方程的解法。
2.理解这类方程的格式。
3.进一步掌握解方程的格式。
教学重点
掌握解 这一类方程的解法。
教学难点
理解这一类方程的算理。
教学步骤
一、复习引入
(一)复习方程的意义。
1.什么叫方程?
2.什么叫解方程?
(二)用方程表示下面的数量关系。
1.与4的和等于40.2.的3倍等于40.3.的3倍加上4等于40.二、新授教学
(一)教学例2
例2.看图列方程,并求出方程的解。
1.读题,理解题意。
2.分析图意,找等量关系。
3.教师提问
(1)观察图形你都知道了什么?
(2)3盒零4支和多少相等?
(3)怎样列方程?
4.列方程并解答。
(1)教师板书:
(2)教师提问:要想求每盒彩色笔多少支,应当先求什么?解这个方程要先算一步?
(3)教师说明:要把 看作是一个数。即;,加数等于和减另一个加数,那么.5.学生独立解答。
6.集体订正,板书全部解题过程。
解:(根据加数=和-另一个加数)
(根据因数=积÷另一个因数)
检验:把 代入原方程,左边=3×12+4=40,右边=40,左边=右边,所以 是原方程的解。
7.小结:解这样的方程,关键是要把 看作是一个数,先求出,再求出 得多少。
8.练习:
(二)教学例3
例3.解方程
1.思考
(1)例3与例2有什么相同点?有什么不同点?
(2)应该先算什么,再算什么,最后算什么?
2.学生独立解答,集体订正。
3.小结:解这一类方程,要先根据四则运算的顺序,把方程中包含的计算算出来,再
把 与因数的积看成是一个数,根据四则运算各部分间的关系一步步求出解。
4.练习:解方程
三、课堂小结
今天你学习的解方程与以前所学的解方程有什么不同?
四、巩固练习
(一)口头解下列方程,并说出每一步的根据。
第三篇:解简易方程(三) 教学设计资料
教学目标
1.使学生初步学会 这一类简易方程的解法。
2.知道计算这类方程的道理。
教学重点
掌握解 这一类方程的解法。
教学难点
理解这一类方程的算理。
教学过程
一、复习引入
(一)解下列方程
(二)乘法分配律的意义是什么?用字母怎样表示?
二、教学新授
(一)教学例5
例5.一个工地用汽车运土,每辆车运 吨,一天上午运了4车,下午运了3车。这一天共运土多少吨?
1.读题,理解题意。
2.出示图片:示意图
3.教师提问:通过观察这幅图,你都知道了什么?
教师板书:
上午
下午
一天
4.教师说明:这个式子中含有两个未知数,这就是今天要学习的解简易方程。
板书课题:解简易方程。
5.学生分组讨论计算方法。
(1)表示4个,表示3个,一共是(4+3)个,也就是.(2)可以根据乘法分配律把4和3相加,就是(4+3)个,.6.教师说明:两种思考方法既有联系又有区别,最后的结果都是正确的。
教师板书:
=(4+3)=
答:这一天共运土 吨。
7.思考:上午比下午多运的吨数是多少?怎样列式?
教师提示:1个,可以写成.“1”可以省略不写。
8.教师小结
一个式子中如果含有两个 的加减法,可以根据乘法分配律和式子所表示的意义,将 前面的因数相加或相减,再乘,计算出结果。
9.练习
(二)教学例6
例6.解方程
1.教师提问
(1)这个方程有什么特点?
(2)应该怎样解答?
2.学生独立解答。
第四篇:“解简易方程(一)”教学设计及反思
“解简易方程”教学设计及反思
城区四十七校
谢晓晴
“问题是数学的心脏”,问题意识是一种探索意识,是创造的起点。学生有了问题,才会思考和探索;有探索才会有创新,才会有发展。教师要把自己置身于学生的位置,处处以学生的眼光看待“已知”的教学内容,设身处地地设计问题,引发学生的思考。
在五(1)班上课时,我通过天平的演示让学生得出两种等式:一是不含未知数的等式,二是含有未知数的等式。让学生比较得出方程的概念,然后通过练习判断哪些是方程?哪些不是方程。接着让学生自学得出什么是方程的解和解方程的概念,最后出示例1让学生观察比较解方程与求未知数X的解题过程有什么异同?让学生了解解方程的步骤。本节课从课堂效果上来看,不错,因为这个班的数学成绩向来是不错的,课堂习惯比较好,学生的思维清晰,会说。
而在五(6)班上课时,我考虑这堂课的概念多,“含有未知数的等式,叫做方程”、“使等式左右两边相等的未知数的值,叫做方程的解”、“求未知数的值的过程,叫做解方程”,而且学生容易混淆。在教学设计时,我把“方程的意义”作为教学的重点,而对“方程的解和解方程”概念的教学想通过学生的自学和新旧知识(求未知数x)的联系,让学生自己去理解。所以在设计教学方案时,重点考虑的是方程意义的教学。方程意义的教学目标定位是,不仅仅是让学生了解方程的概念,能指出哪些是方程;更多思考的是学生对方程后继的学习和发展,注重知识的渗透,如:近期的“用字母表示数”“用方程解应用题”、远期的解较复杂方程或方程组时用到的“等式的性质”以及“不等式”“集合”知识等。这次,我在处理教材时,删繁就简,让学生做“分类游戏”: ① 按自己的标准把下列各式分类:
8+9
20+5=25
17-11=6
6+3<11 学生在分类中感知“等式”的意义。② 进一步分类探讨:
6÷3=2
4×5=20
5>4
x+4=9 激疑“x+4=9” 归于哪类?能说明理由吗?那么, 2a=18;x=2呢?让学生在分类探索中理解“含有未知数的等式叫方程”。
在“分类”活动中,学生根据自已的理解进行分类,在学生“不同标准”的分类中,分析感知“方程的意义”,同时,分类思想也渗透于教学中。因为 我觉得新课程改革下的课堂,已不再由教师指令性语言来主宰,把选择分类的权利留给学生,无疑是关注学生个性的表现。可课堂效果却不是很好,学生课堂的习惯很不好,不敢说,或者是不知如何表述,或者是表述的不准确,课堂比较安静,课后我不断的反思:两个班的教法一个是比较传统的,而另一个是在新课改的指导下,根据新课标来设计的,为什么反而前者的效果好些呢?我想问题的关键是学生的课堂思维过程的训练有待加强,数学课堂也应该重视学生“说”的训练,在说的过程中激活学生的思维,让学生在新课改的指引下学会自主探索,学得主动,学得投入。
这堂课上完,还有一个体会就是教学时间不够,知识巩固的时间太少。上课时我看了表,方程意义的教学的练习足足用了35分钟。“方程的解和解方程”的教学因为练习时间不足,而不到位。课后我一直想:这35分钟花得是否值得?怎样处理知识目标和发展目标的关系?„„还有方程意义教学时天平的演示,一直是我在演示,学生在看,学生的自主性不够,这是我教学设计时就有的困惑,但如果让分小组学生自己操作,教学时间会更加不够。该怎样解决这个矛盾?这些问题还有待考虑。
第五篇:解简易方程教学设计
解简易方程教学设计
一.教学目标:
(1)使学生理解方程的意义、方程的解和解方程的概念,掌握方程与等式之间的关系。
(2)结合教学,培养学生事实求是的学习态度,求真务实的科学精神,养成良好的学习习惯。渗透一一对应的数学思想。
二.教学重点及难点:理解方程的意义,掌握方程与等式之间的关系。
三.教具:天平一只,算式卡片若干张,粉笔盒一只。
四.教学过程设计
(一)游戏导入,揭示课题
1、师生共同做个游戏:用手指指尖顶住直尺,使直尺能保持平衡,感知平衡。
说说生活中,你还见过哪些平衡现象?
2、勤劳聪明的人类根据平衡原理制成了天平,今天我们要借助天平来学习新的知识《解简易方程》。(板书课题)看了课题,同学们想知道些什么?
二)教学新课
1、方程的意义
(1)认识天平:简单介绍天平的结构和使用方法。(2)操作天平:
a、一边放两个50克的砝码,另一边放100克的砝码,天平平衡。请学生用一个式子来表示这种关系。(板书:50+50=100 50×2=100)b、一边放一个20克的砝码和一个粉笔盒,另一边放100克砝码,天平平衡。粉笔盒的重量不知道,可以怎么表示?你也能用一个式子来表示这种关系吗?(板书:x+20=100)
c、让学生操作天平,出现不平衡现象,也用式子表示。(20+x>50等)(3)出示小黑板
30+20=50 2x+50>100 80<2x
3x=180 100+20<100+50 100+2x=50×3 x-18=24 60÷20=3 x÷11=5(4)组织学生观察以上式子。
请同学们观察以上式子,想想能不能将这些式子分分类,并说出你分类的标准。(小组讨论,写下来)
按符号的不同分成两大类:(生说师在小黑板作记号)80<2x 2x+50>100 100+20<100+50
指出:这些用大于、小于号连成的式子左右两边不相等,就叫做不等式。
谁再来说几个等式?同桌互相说几个等式。
30+20=50 3x=180 100+2x=50×3 x-18=24 60÷20=3
指出:这些用等号连接成的表示两边相等的式子都叫等式。(板书:等式)(5)观察以上等式,你能不能再分分类,也说一说你分类的标准?(同桌讨论)
30+20=50 60÷20=3
3x=180 100+2x=50×3 x-18=24 x÷11=5
揭示:含有未知数的等式叫做方程(板书:方程)
①说一说什么叫方程?必须具备哪几个条件?
②再举几个例子,写下来同桌交换检查。
游戏练习:下面式子哪些是方程,哪些不是方程?
(卡片出示)是用“√”手势表示,不是用“×”手势表示。
6+x=14 3+x 50÷2=2
56+x>23 51÷a=17 x+y=18(6)方程和等式的关系
刚才我们是从等式中找出方程的。这说明方程和等式有很密切的关系,你能画图来表示他们之间的关系吗?(小组合作,讨论完成)(学生画,请他们黑板展示并同时说说方程与等式之间的关系)
教师可以将书上的图与学生的图做对比,指出:有时可以借助简单明了的图来帮助理解深奥的知识,这也是一种很重要性的学习方法。
2、教学方程的解、解方程的概念 出示x+20=100,看了这个方程,你还知道些什么?
指出x=80,求x=80的过程在方程这部分知识中都有特定的名称,请同学们带着问题自学课本。
出示思考题:①什么叫方程的解?举例说明。
②什么叫解方程?举例说明。(三)巩固学习
我发现
1)等式都是方程。()2)方程都是等式。()
3)x=3是方程18+x=15的解。()4)3x=0也是方程。()
5)含有未知数的式子叫方程。()6)方程是等式,所以等式也叫方程。7)36是方程x÷3=12的解。(四)全课小结,评价深化
1、通过今天的学习,同学们有哪些收获?
2、同学们是怎么学到这些知识?
3、以小组为单位自评或互评课堂表现,发扬优点、改正缺点。
教后反思
“问题是数学的心脏”,问题意识是一种探索意识,是创造的起点。学生有了问题,才会思考和探索;有探索才会有创新,才会有发展。教师要把自己置身于学生的位置,处处以学生的眼光看待“已知”的教学内容,设身处地地设计问题,引发学生的思考。
在503班上时,我通过天平的演示让学生得出两种等式:一是不含未知数的等式,二是含有未知数的等式。让学生比较得出方程的概念,然后通过练习判断哪些是方程?哪些不是方程。接着让学生自学得出什么是方程的解和解方程的概念,最后出示例1让学生观察比较解方程与求未知数X的解题过程有什么异同?让学生了解解方程的步骤。本节课从课堂效果上来看,不错,因为这个班是我带上来的,课堂习惯比较好,学生的思维清晰,会说。
而在502班上时,我考虑这堂课的概念多,“含有未知数的等式,叫做方程”“使等式左右两边相等的未知数的值,叫做方程的解”“求未知数的值的过程,叫做解方程”,而且学生容易混淆。在教学设计时,我把“方程的意义”作为教学的重点,而对“方程的解和解方程”概念的教学想通过学生的自学和新旧知识(求未知数x)的联系,让学生自己去理解。所以在设计教学方案时,重点考虑的是方程意义的教学。方程意义的教学目标定位是,不仅仅是让学生了解方程的概念,能指出哪些是方程;更多思考的是学生对方程后继的学习和发展,注重知识的渗透,如:近期的“用字母表示数”“用方程解应用题”、远期的解较复杂方程或方程组时用到的“等式的性质”以及“不等式”“集合”知识等。
这次,我在处理教材时,删繁就简,让学生做“分类游戏”:
① 按自己的标准把下列各式分类: 8+9 20+5=25 17-11=6 6+3<11
学生在分类中感知“等式”的意义。
② 进一步分类探讨:
6÷3=2 4×5=20 5>4 x+4=9
激疑“x+4=9” 归于哪类?能说明理由吗?那么, 2a=18;x=2呢?让学生在分类探索中理解“含有未知数的等式叫方程”。
在“分类”活动中,学生根据自已的理解进行分类,在学生“不同标准”的分类中,分析感知“方程的意义”,同时,分类思想也渗透于教学中。因为我觉得新课程改革下的课堂,已不再由教师指令性语言来主宰,把选择分类的权利留给学生,无疑是关注学生个性的表现。可课堂效果却不是很好,学生课堂的习惯很不好,不敢说,或者是不知如何表述,或者是表述的不准确,课堂比较安静,课后我不断的反思:两个班的教法一个是比较传统的,而另一个是在新课改的指导下,根据新课标来设计的,为什么反而前者的效果好些呢?我想问题的关键是学生的课堂思维过程的训练有待加强,数学课堂也应该重视学生
“说”的训练,在说的过程中激活学生的思维,让学生在新课改的指引下学会自主探索,学得主动,学得投入。
这堂课上完,还有一个体会就是教学时间不够,知识巩固的时间太少。有一位听课的教师帮我看了表,方程意义的教学的练习足足用了35分钟。“方程的解和解方程”的教学因为练习时间不足,而不到位。课后我一直想 “这35分钟花得是否值得?怎样处理知识目标和发展目标的关系?”。还有方程意义教学时天平的演示,一直是我在演示,学生在看,学生的自主性不够,这是我教学设计时就有的困惑,但如果让分小组学生自己操作,教学时间会更加不够。该怎样解决这个矛盾?