六年级下册《圆柱的体积》教学设计

时间:2019-05-12 22:38:11下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《六年级下册《圆柱的体积》教学设计》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《六年级下册《圆柱的体积》教学设计》。

第一篇:六年级下册《圆柱的体积》教学设计

六年级下册《圆柱的体积》教学设计 杨枝小学 张婷 邹琴 周雯磊

教学内容:苏教版数学第12册p25 例4和相应的练习教学目标:

1、知识技能

结合具体情境,让学生探索并掌握圆柱体积的计算方法,并能运用计算公式解决简单的实际问题。

2、过程方法

让学生经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,渗透数学思想,体验数学研究的方法。

3、情感态度价值观

通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。

教学重点:

掌握和运用圆柱体积计算公式 教学难点:

圆柱体积公式的推导过程

教学准备:课件 光盘 等底的烧杯、长方体、正方体玻璃容器 教学过程:

一、目标导学,猜想推理

1.出示光盘,这是什么图形?(圆形)

提问:这个圆,可以知道什么?(半径、直径、周长、面积)

2.在桌面上,在一张光盘上叠加一些光盘,发现,这些光盘形成了一个什么图形?(圆柱)。继续叠加,提问:圆柱在变化吗?(变高了,体积变大了)追问:什么没有变?(底面积)

猜想:圆柱的体积会和什么有关?(底面积和高)

3、出示和(内底相等)光盘的烧杯,倒入和圆柱光盘等高的水(1)提问:它们之间有什么关系?(体积相等)那么,烧杯里的水有多少呢?你有什么好办法?

(生:把烧杯里的水分别倒入长方体、正方体玻璃器皿中,计算长方体、正方体的体积)

(2)你觉得圆柱的体积和什么有关系?(长方体和正方体体积有关)(设计意图:从生活情景入手,初略感知圆柱的体积与底面积和高有关。通过猜想,并在实验、交流中建立初步的圆柱体积与长方体和正方体体积的计算方法有关的直观感知。然后顺势提出“如何计算圆柱体的体积”这一全课的核心问题,从而引发学生的猜测、操作、交流等数学活动,为学生经历了“做数学”的过程做铺垫。)

二、图柱转化,自主探究,验证猜想。

(材料:圆柱体积木、圆柱体插拼教学具、课件)

1、教师出示一个烧杯,烧杯里的水有多少呢?体积你们会算吗?

2、提示:

(1)以前学过的长方体和正方体的体积,对我们研究圆柱体体积有帮助吗?(2)你觉得圆柱的体积和什么有关系?你能猜一猜圆柱的体积怎样计算吗?

3、小组合作交流:怎样将圆柱体转化成一个长方体呢?

4、小组代表汇报

(学生按照自己的方式来转化,会有多种转化方法,教师适时加以鼓励)

5、演示操作

(1)请一名学生演示用切插拼的方法把圆柱体转化成长方体。其他学生模仿操作。(2)这是一个标准的长方体吗?为什么?如果分割得份数越多,你会有什么发现?(3)电脑演示圆柱体转化成长方体的过程:

仔细观察:圆柱体转化成一个长方体后,长方体的长相当于圆柱的什么?长方体的宽和高又相当于圆柱的什么?

动画演示:把圆柱的底面平均分成32份、64份,切开后拼成的物体会有什么变化?(拼成的物体越来越接近长方体)

6、组织讨论

(1)圆柱体转化成一个长方体后,什么变了,什么没有变?你有什么发现? 学生讨论后交流。

指出:形状变了,体积没有变 强调:底面的形状变了,底面积没有变,高没有变,所以体积没有变(2)根据学生的观察、分析、推想,老师完成板书:

长方体的体积=底面积×高

圆柱的体积=底面积×高

(3)你的猜想正确吗?学生齐读圆柱的体积计算公式。

追问:圆柱体的体积计算公式我们是怎样推导出来的?

7、小结:

要想求出一个圆柱的体积,需要知道什么条件?

8、学生自学第8页例4上面的一段话:用字母表示公式。学生反馈自学情况:v=sh(设计意图:在本节课中,教师让全班学生以小组为单位围坐在一起,为他们提供自主探究的空间,同时尽量延长小组交流的时间,试图把学习的时间、空间还给学生,让其进行自主探究、合作交流。数学的价值不在技能而在思想,在探究的过程中,教师不是安排了一整套指令让学生进行程序操作,获得一点基本技能,而是提供了相关知识背景、实验素材,使用了“对我们有帮助吗?”“你有什么发现?”“你是怎样想的?”等这样一些指向探索的话语鼓励学生独立思考、动手操作、合作探究,让学生经历了“做数学”的过程。)

三、运用公式,多重探究。

就用这些公式,来解决刚才的实际问题吧。出示图片及相应条件: 1:填表。(见P.27,练习一)

2:一叠光盘。(底面积是100平方厘米,高是2.1分米,它是体积是多少?)

3:一个圆柱形状的零件,底面半径5厘米,高8厘米。这个零件的体积是多少立方厘米?(p26 试一试)4:圆柱形保温瓶。(从里面量底面直径是20厘米,高是25厘米,它的容积是多少立方分米?(得数保留一位小数)

四、巧用条件,解决问题。

如果更换条件,你还能用其他方法得到体积吗? 1.一张光盘的面积是100平方厘米,每张厚0.1厘米,共40张,求一叠光盘的体积。(一张光盘的面积乘光盘高。)

3、古建筑中的一根红色柱子,用绳子测量柱子的周长,计算圆柱的体积(测得周长是62.8分米,高3米)

(设计意图:在巩固发展阶段,教师设计了两道开放性的习题,其中计算圆柱体积木体积,可以从测量圆柱的底面半径、直径、周长等不同角度求解;计算旋转直尺所形成的圆柱体积一题,旋转轴不同得到的圆柱体是完全不一样的,这体现了解题方法的多样性。这样安排从表面上看,似乎只是学生的空间观念、基本技能得到了培养;但深层次地分析,可以发现学生的思维得到了发展,创新精神、实践能力得到了提高。)

五、开放训练,拓展提升。

这是一个土豆,利用今天学的知识,你有办法算出它的体积吗?

(设计意图:教师选择这样具有多样化解决策略的开放性的问题能尽可能地保证每个学生在掌握数学基本技能的前提下,不同的人在数学上得到不同的发展。)

板书设计:

圆柱的体积

长方体的体积=底面积×高

圆柱的体积=底面积×高

第二篇:六年级下册圆柱的体积教学设计

六年级下册《圆柱的体积》教学设计

教学目标

1、使学生掌握圆柱体积公式,会用公式计算圆柱体积,能解决一些实际问题。

2、让学生经历观察、操作、讨论等数学活动过程,理解圆柱体积公式的推导过程,引导学生探讨问题,体验转化和极限的思想。

3、在图形的变换中,培养学生的迁移能力、逻辑思维能力,并进一步发展其空间观念,领悟学习数学的方法,激发学生兴趣,渗透事物是普遍联系的唯物辨证思想。

教学重点、难点

1、圆柱体积计算公式的推导过程并能正确应用。

2、借助教具演示,弄清圆柱与长方体的关系。教具、学具准备

多媒体课件、长方体、圆柱形容器若干个;学生准备推导圆柱体积计算公式用学具。

教学设想

《 圆柱的体积 》是学生在有了圆柱、圆和长方体的相关的基础上进行教学的。在知识与技能上,通过对圆柱的具体研究,理解圆柱的体积公式的推导过程,会计算圆柱的体积,在方法的选择上,抓住新旧知识的联系,通过想象、课件演示、实践操作,从经历和体验中思考,培养学生科学的思维方法;贴近学生生活实际,创设情境,解决问题,体现数学知识“从生活中来到生活去”的理念,激发学生的学习兴趣和对科学知识的求知欲,使学生乐于探索,善于探索。教学过程

一、创设情境,激疑引入

“水是生命之源!”节约用水是我们每个公民应尽的义务。前两天,老师家的水龙头出了问题,拧上阀门之后,还是不停的滴水,你们看,一刻钟就滴了这么多的水。

1、出示装了水的圆柱容器。

(1)启发思考:容器里面的水形成了什么形状?(圆柱)你能知道这些水的体积?

(2)讨论后汇报:

生1:用量筒或量杯直接量出它的体积;

生2:用秤称出水的重量,然后进一步知道体积;

生3:把它倒入长方体容器中,从里面量出长、宽和水面的高后再计算。

师:现在老师只有这些工具(圆柱形容器,长方形容器,半圆形容器和其他不规则容器),你怎么办?

生1:把水到入长方体容器中„„

生2:我们学过了长方体的体积计算,只要量出长、宽、高就行

[设计意图:通过本环节,给学生创设一个生活中的情境,提出问题,学习身边的数学,激起学生的学习兴趣;根据需要渗透圆柱体(新问题)和长方体(已知)的知识联系为所学内容作了铺垫的准备]

2、创设问题情境。师:(课件显示)如果要求某些建筑中圆柱形柱子的体积,或是求压路机圆柱形大前轮的体积,能用同学们想出来的办法吗? [设计意图:进一步从实际需要提出问题,激发学生从问题中思考寻求一种更广泛的方法来解决圆柱体积的问题的欲望] 师:今天,就让我们来研究解决任意圆柱体积的方法。(板书课题:圆柱的体积)

二、经历体验,探究新知

1、回顾旧知,帮助迁移

(1)教师首先提出具体问题:圆柱体和我们以前学过的哪些几何图形有联系? 生1:圆柱的上下两个底面是圆形

生2:侧面展开是长方形„„

生3:说明圆柱和我们学过的圆和长方形有联系 师:请同学们想想圆柱的体积与什么有关? 生1:可能与它的大小有关

生2:不是吧,应该与它的高有关

[设计意图:温故而知新,既复习了旧知识又引出了新知识,学生在不知不觉中就学到了新知。](2)请大家回忆一下:在学习圆的面积时,我们是怎样将圆转化成已学过的图形,来推导出圆面积公式的。配合学生回答演示课件。

[设计意图:通过想象,进一步发展学生的空间观念,由“形”到“体”;同时使学生感悟圆柱的体积与它的底面积和高的联系,通过圆面积推导过程的再现,为实现经验和方法的迁移作铺垫]

2、小组合作,探究新知

(1)启发猜想:我们要解决圆柱的体积的问题,可以怎么办?(引导学生说出圆柱可能转化成我们学过的长方体。并通过讨论得出:反圆柱的底面积分成许多相等的扇形,然后反圆柱切开,再拼起来,就转化近似的长方体了。)(2)学生以小组为单位操作体验。

把圆柱的底面积分成许多相等的扇形,然后把圆柱切开,再把它拼起来,就转化成近似的长方体了。使学生进一步明确分的份数越多,形体中的 越接近

,也就越接近长方体。同时演示一组动画(将圆柱底面等分成32份、64等份、128等份„„)

[设计意图:教师提出问题,学生带着问题大胆猜测、动手体验。这样学生在自主探索、体验、领悟的过程中成为了发现者和创造者。](3)学生小组汇报交流:

近似的长方体的体积等于圆柱的体积,近似的长方体的底面积等于圆柱的底面积,近似的长方体的高就是圆柱的高。根据长方体的体积等于底面积乘高,得出圆柱的体积也等于底面积乘高。教师根据学生汇报,用教具进行演示。

(4)概括板书:根据圆柱与近似长方体的关系,推导公式: 长方体的体积

底面积

×

圆柱的体积

底面积

×

高 用字母表示计算公式V= sh [设计意图:首先通过学生的联想建立圆柱体和长方体的联系,初步建立转化的雏形,然后再通过实践操作,动画演示,验证了学生的发现,从学生的认识和发现中,围绕着圆柱体和长方体之间的联系,抽象出圆柱体的体积公式。这个过程,学生从形象具体的知识形成过程(想象、操作、演示)中,认识得以升华(较抽象的认识——公式)]

三、实践应用,巩固新知。

1、火眼金睛判对错。

(1)长方体、正方体、圆柱的体积都等于底面积乘高。()(2)圆柱的高越大,圆柱的体积就越大。()

(3)如果两个圆柱的体积相等,则它们一定等底等高。()

[设计意图:加深对刚学知识的分析和理解。]

2、计算下面各圆柱的体积。

(1)底面积是30平方厘米,高4厘米。(2)底面周长是12。56米,高是2米。(3)底面半径是2厘米,高10厘米。

[设计意图:让学生灵活运用公式进行计算。]

3、实践练习。

提供在创设情景中圆柱形接水容器的内底面直径和高。

这个圆柱形容器,内底面直径是10厘米,高12厘米,水面高度10厘米。

[设计意图:让学生领悟数学与现实生活的联系。]

4、课堂作业。

为了美化环境,阳光小区在楼前的空地上建了四个同样大小的圆柱形花坛。花坛的底面内直径为4米,高为0、6米,如果里面填土的高度是0、4米,这四个花坛共需要填土多少立方米?

[设计意图:使学生进一步感受到生活中处处有数学,同时培养学生的环保意识。]

四、反思回顾

师:通过本节课的学习,你有什么收获吗? 板书设计:

圆柱的体积

根据圆柱与近似长方体的关系,推导公式:

长方体的体积

底面积

×

圆柱的体积

底面积

×

高 用字母表示计算公式V= sh 教学反思:

本节的教学从生活的实际创设情境,提出问题,让学生学习有用的数学,提高了学生运用数学知识解决身边问题的能力,从学数学的角度,注意了数学知识的特点。运用已有的知识(长方体体积的计算)经验(圆面积公式的推导)解决新的问题,在新旧知识的联系上,巧妙的利用想象、课件演示将圆和圆柱有机的联系到一起,使学生想象合理、联系有方。在探究新知中,通过想象和操作,让学生充分经历了知识的形成过程,为较抽象的理论概括提供了必要而有效的感性材料,加强了实践与知识的联系,并创造性的补充了一些与学生身边实际生活相联系的练习题,提高了学生的学习兴趣。

第三篇:数学六年级下册《圆柱的体积》教学设计

数学六年级下册《圆柱的体积》教学设计

数学六年级下册《圆柱的体积》教学设计1

一、教学内容

教材第25页 例5、例6

二、学习目标

1、知识目标:理解、掌握圆柱的体积公式的推导过程,能利用圆柱的体积计算公式解决问题。

2、能力目标:经历圆柱的体积公式的推导过程,学会运用转化的思想解决一些具体问题。

3、情感目标:感受圆柱的体积的计算与生活密不可分,激发学生学习数学的热情。

三、教学重难点

1、重点:理解、掌握圆柱的体积公式的推导过程。

2、难点:圆柱体积公式的推导过程。

四、教学准备

多媒体课件

五、教学过程

<一>创设情境、生成问题

师:前面我们学过长方体和正方体的体积计算方法,你还记得是怎么计算的吗?(课件出示一个长方体和一个正方体)

生答:长方体的体积用长X宽X高,正方体的体积是用棱长X棱长X棱长,或者用一个公用的底面积X高来计算

师:这位同学回答的非常好,今天这节课我们就一起来研究圆柱体的体积计算方法。

板书:圆柱的体积(课件)

<二>探索交流、解决问题

1、猜想

师:长方体和正方体体积的大小取决于三条棱的长度,或者说取决于底面积和高,那么你认为圆柱的体积取决于什么呢?

(生自由猜想,并讨论交流)师适当板书记录

刚才那几个同学都很有想法,觉得圆柱的体积的大小可能和XXXX有关系,有人这样说过,伟大的猜想必须要经过验证才能得到证明,否则的话只能是空想,接下来通过两组图片大家进行验证一下

(课件出示两组图片,第一组两个圆柱等底不等高,第二组两个圆柱等高不等底)

师:第一组图片中的两个圆柱有什么特征?

生:底面一样,但是高度却不一样,体积也不一样

师:第二组图片中的两个圆柱有什么特征?

生:这组图片中的两个圆柱高度一样,但是底面却不一样,体积也不一样

师:那么通过刚才两个同学的回答,你能得出什么结论呢?

小结:圆柱的体积的大小取决于圆柱底面的大小和高度的大小

师:那么你能大胆的猜想一下圆柱的体积是如何计算的吗?

生猜想......

师:我们的猜想对不对,还是要用实验去证明

2、推导圆柱体积计算公式

师:怎么样进行实验呢?结合我们以往学习几何图形的.经验,小组讨论交流,说说自己的想法

生:我们是把圆柱的底面分成若干偶数分,然后用刀割开,在进行拼组,变成一个长方体,这样通过转化,圆柱就变成了一个近似的长方体,分的份数越多,越接近一个长方体,然后通过求长方体的体积去求圆柱的体积

师:用心思考的同学总能找到解决问题的办法,那么接下来同学们就利用手里的学习用具完成这个验证实验并完成老师给你们的实践作业纸

(课件出示作业纸)对应和公式推导

选取小组的作业纸进行展示,有其他同学进行评定

课件演示结果

小结:通过转化的数学思想我们将圆柱的体积转化成已经学过的长方体的体积,圆柱的体积计算公式是底面积乘高。

另外,圆柱的底面积、直径、半径和周长四个数据中的任意一个和圆柱的高两个数据就可以求出圆柱的体积。

<三>巩固应用、内化提高

2、

3、下面这个杯子能不能装下这袋奶?(杯子的数据是从里面测量得到的)

8cm

8cm

498ml

498ml

10cm

10cm

<四>回顾整理、反思提升

今天这节课你有什么新的收获说出来和大家一起分享吧!

数学六年级下册《圆柱的体积》教学设计2

教学目标

1、经历探究和推导圆柱的体积计算公式的过程,理解并掌握圆柱体积计算方法,并能正确计算圆柱体积,达标率100%。

2、能运用圆柱的体积计算方法,解决有关的实际问题,发展学生的实践能力,达标率95%。

3、能积极参与圆柱体积计算公式推导活动,能有条理地、清晰地阐述活动过程,发展学生的观察能力和分析、综合、归纳推理能力,达标率95%。

4、激发学生的学习兴趣,让学生体验成功的快乐,达标率100%。

5、培养学生的转化思想,渗透辩证法和极限的思想,达标率95%。

教学重点

圆柱的体积计算方法

教学难点

圆柱体积计算公式的推导。

教学设想

本节课第一个环节激活旧知、引出新知,采用复习长方体、正方体的体积公式,圆面积计算公式的推导过程,从转化的思想、方法上为推导圆柱的体积公式做一些铺垫。第二个环节自主合作、探索新知,采用了激趣設疑的方法层层深入,调动同学们学习的热情,激发学生探究的欲望。学生积极合作交流,主动参与到圆柱体积计算公式的推导过程中,从而体验探索成功的快乐,激发学生的学习兴趣。学会学习方法,获得学习经验。然后通过例题教学加深对圆柱的体积公式的理解,体会计算公式在实际生活中的应用,发展学生的实践能力。第三个环节巩固练习、拓展提高,采用了分层教学的方法,设计的练习题由易到难,这样设计的目的,是考虑使差生吃得消,中等生吃得好,尖子生吃得饱。通过本节课的教学,学生在自主探索和合作交流过程中真正理解和掌握数学的知识与技能、特别是让学生获得数学的思想和方法,获得数学活动的经验,同时陶冶了情操。

教法、学法

演示法、启发引导; 实验、合作探究、尝试练习。

评价方案

1、通过小组合作实验完成活动检测目标1、4、5的达成。

2、通过提问检测目标3、4、5的达成。

3、通过评价样题检测目标1、2、4的达成。

评价样题

1、

2、

教学过程

一、激活旧知,引出新知

1、计算下面物体的体积

(1)长方体的长20厘米,宽10厘米,高8厘米。

(9) 正方体棱6分米

2、回忆一下圆面积的计算公式是如何推导出来的?

[学情预设:学生可能说出通过分割、拼合的办法变成长方形或者平行四边形,或者三角形,或者梯形来推导出圆的面积。这时教师要及时总结不论是拼成哪种图形都是把圆转化成已学过面积计算的图形,再根据转化后的图形与圆各部分之间的关系推导出它的面积。]

教师(结合课件演示)把一个圆平均分割,再拼合就变成了一个近似的平行四边形,分的份数越多越接近一个长方形。长方形的长,相当于圆周长的一半,长方形的宽相当于圆的半径。因为长方形的面积=长×宽,所以,用圆周长的一半×半径就可以求出圆的面积,周长一半就等于πR,半径是R,所以圆的面积是S=πR2。

[设计意图:从转化的思想、方法上为推导圆柱的体积公式做一些铺垫。]

3、什么叫体积?如何求长方体的体积?如何求正方体的体积?长方体和正方体的通用公式是什么?

[设计意图:为定义圆柱体的体积,为推导圆柱体的.体积公式做知识上的铺垫。]

板书:长方体的体积=底面积×高.

[设计意图:原有的基础是后续学习的前提和起点,新知总是在旧知的基础上生长发展的。这种承上启下的关系决定了我们的教学必须从学生原有的认知结构出发,找准新旧知识的连接点,为新课的学习做好思想方法与知识的铺垫。]

圆柱体也有体积,说一说什么是圆柱的体积?学生交流后汇报。

板书:圆柱体所占空间的大小叫做圆柱的体积。

师:这节课,我们就来学习圆柱的体积.(板书课题:圆柱的体积)

二、自主合作,探索新知

1.求圆柱体容器中水的体积

出示长方体容器:问,这是什么?

[学情预设:学生可能说出长方体容器。]

问:怎么求长方体容器中水的体积呢?

[学情预设:学生可能说出量出它所容纳水的长、宽、高,就可以求出水的体积。]

问:如果换成圆柱体容器又如何求其中水的体积呢?

[学情预设:学生可能说出,把圆柱体容器中的水倒入长方体容器,量出长方体容器所容纳水的长、宽、高,就可以求出圆柱体容器中水的体积。](演示:把圆柱体容器中的水倒入长方体容器)

2.橡皮泥圆柱体的体积

(出示橡皮泥做成的圆柱体)

问:这是一个什么样的立体图形?

问:它是用橡皮泥做成的。你能想办法求出它的体积吗?

[学情预设:学生可能说出把这个圆柱体捏成一个长方体,从而量出长方体的长、宽、高,求出这个圆柱的体积。]

3.常用圆柱的体积.

课件出示圆柱体压路机的滚筒的图片。

问:压路机的滚筒是一个很大的的圆柱体,你又如何求出它的体积呢?

[设计意图:用圆柱体容器所盛的没有形状的水到可以变形的圆柱形橡皮泥,这些都可以转化的办法转化为长方体来求出体积,这一过程就是要逐步渗透把圆柱体转化为长方体的方法和思想,这样从思想上、方法上给学生一个思维的台阶。当出示圆柱体压路机的滚筒图片后,由于前面的物体是可以变形的,而压路机的滚筒是不可以变形的,学生想不出解决的办法,学生处于愤悱状态,对学生来说解决求压路机的滚筒体积具有很强的挑战性,调动了学生学习的积极性。这样设计,为后面同学们操作、讨论推导圆柱的体积从思想方法上作了进一步的铺垫,并通过构造认知冲突,层层深入,调动同学们学习的热情,激发学生探求的欲望。这样,对学生思想方法的铺垫也已水到渠成。]

小结:看来我们以上的方法求圆柱的体积有它的局限性,所以必须探究求圆柱体积的一般规律。

4.探究规律

问:圆我们可以通过分割、拼合转化成已学过的长方形面积计算公式的图形推导出圆的面积,圆柱体能不能也转化成已学过体积的图形来求出它的体积呢?下面请四人小组讨论,围绕下面几个问题进行讨论、操作:

课件出示操作讨论提纲:

(1)圆柱体可以转化为什么样的立体图形?

(2)转化后的立体图形体积与圆柱的体积大小是否有变化?

(3)转化后的形体与与原来圆柱体各部分间的对应关系,推导出圆柱的体积。

学生讨论,教师参与小组讨论、点拨、操作。

问:下面哪个小组来先进行汇报。

各组派代表边汇报边演示。

[学情预设:学生可能会说圆柱体可以转化为长方体,转化后的长方体不是标准的长方体,只有把圆柱分割的份数多一些,才可以拼成一个标准的长方体。因为长方体是由圆柱体转化而成的,在转化的过程中,体积既没有增加,也没有减少,说明求出了转化后长方体的体积,也就相当于求出了圆柱体的体积。长方体的体积等于圆柱体的体积,长方体的底面积等于圆柱的底面积,长方体的高相当于圆柱体的高。因为长方体的体积=底面积×高,所以,圆柱体的体积=底面积×高。]

问:谁还有补充?(学生补充讲解)

教师拿两个相同的圆柱体体积演示模型演示,边演示边讲解。

师:同学们看,老师这里有两个圆柱体,它们的底相同,高也完全相同,这是两个完全相同的圆柱体。我把其中的一个沿着它的底面直径剪开,两等分、四等分、八等分、十六等分,还可以继续分割,通过分割、拼合,把圆柱体转化成近似的长方体,如果我把它分割的份数越多,拼成的图形就越接近长方体。因为长方体是由圆柱体转化而成的,在转化的过程中,体积既没有增加,也没有减少,说明求出了转化后长方体的体积,也就相当于求出了圆柱体的体积。

结合课件演示讲解。

师:长方体的体积等于圆柱体的体积,长方体的底面积等于圆柱的底面积,长方体的高相当于圆柱体的高。因为长方体的体积=底面积×高,所以,圆柱体的体积=底面积×高。

师:如果圆柱的体积用V来表示,底面积用S表示,高用h来表示。如何表示圆柱的体积计算公式呢?(板书:V=Sh)

〔设计意图:学生合作交流,自主探索、经历圆柱体体积计算公式的推导过程,理解和掌握了计算方法,加深了印象,从而体验探索成功的快乐,激发学生的学习兴趣。学会学习方法,获得学习经验。达成目标1、3、4、5.〕

5、实际应用

(1)、师:给你圆柱的底面积和高,你会求圆柱的体积吗?

例1、一根圆柱形木料,底面积75平方厘米,高是90厘米,它的体积是多少?

学生独立完成,集体反馈矫正,说思路。

(2)、完成评价样题

〔设计意图:通过尝试练习加深对圆柱的体积公式的理解,体会计算公式在实际生活中的应用,发展学生的实践能力。达成目标2、4. 〕

三、巩固练习,拓展提高

1、应用公式进行口算:

底面积(平方米)S 高(米)h 圆柱的体积(立方米)V

7 3

5.6 4

0.03 2

2、

3、

[设计意图:第一层次是已知底面积和高求圆柱体积的口算题,面向全体学生;第二个层次是已知底面半径和高、底面直径和高、底面周长和高,求体积的三种练习题,面向全体学生;第三个层次是求放入水中物体的体积就是求上升的圆柱形水的体积,面向中上层学生。这样设计的目的,是考虑使差生吃得消,中等生吃得好,尖子生吃得饱。在做练习过程中,一、二层次的练习板演尽量让学困生和中等生去做,给他们展示自己的机会。并及时了解学生信息并根据学生反馈及时调整教学进程,同时对学生存在的问题及时指导。达成目标2、4. ]

四、全课总结,共谈收获

通过今天的学习,你有什么收获?

[设计意图:师生共同小结,学会了什么?怎样求圆柱的体积?这样起到强化重点的目的。]

五、课外创新,拓展延伸

长方体可以这样放(上、下面朝下),还可以这样放(左、右面朝下),还可哪样放(前、后面朝下)。 上、下面朝下时求出圆柱的体积=底面积×高,圆柱的体积还有没有别的计算方法 左、右面朝下或前、后面朝下时求出的圆柱体体积公式又是什么 请同学们下课以后进行实验操作,认真思考。

[设计意图:这样设计的目的是就是延伸学生学习时间,提供给学生自主探究的内容,把学生探究的欲望从课内延伸到课外。]

六、布置作业

练习三第3、4、5题

七、板书设计

圆柱的体积

圆柱体所占空间的大小叫做圆柱的体积。

长方体的体积 = 底面积 × 高,

圆柱体的体积 = 底面积 × 高

V = Sh

[设计意图:这样设计的目的是就是学生在弄清转化后长方体与与原来圆柱体各部分间的对应关系,推导出圆柱的体积,理解和掌握公式的由来,学生看后一目了然,印象深刻。]

PAGE

2

数学六年级下册《圆柱的体积》教学设计3

教学内容:

人教版六年级下册第19~20页圆柱体积公式的推导和练习三的第1~3题。

教学目标:

1、通过观察、操作、讨论等教学活动过程,理解圆柱体积计算公式的推导过程,并会正确地计算圆柱的体积。

2、在图形的变换中,培养迁移能力,逻辑思维能力,并进一步发展其空间观念。

3、探索和解决问题,体验转化及极限的思想方法。

4学会由未知向已知转化的学习方法。

教学重点:掌握和运用圆柱体积计算公式。

教学难点:掌握圆柱体积公式的推导过程。

教学方法:尝试指导法

学法指导:猜想→讨论→操作→概括→尝试→辨析→总结

教学用具:圆柱的体积公式演示课件。

学习用具:准备推导圆柱体积计算公式所用的学具。

教学过程:

一、激疑引入

同学们,你们看,茶叶罐是什么形状的?如何求它的体积?你有办法吗?……今天,就让我们一起来研究圆柱体积的计算方法(板书课题:圆柱的体积)。

二、探究新知

1、猜想

现在该怎样来计算圆柱的体积呢?不妨大胆猜想一下好吗?

2、表扬鼓励,实践迁移

(1)有同学能把圆柱转化成我们已学过的立体图形,来计算它的体积,真是既聪明又能干!

让学生互相讨论,思考应如何转化,然后组织全班汇报。(把圆柱的底面分成许多相等的扇形,然后把圆柱切开,再把它拼起来,就转化成近似的长方体了。)

(2)操作:学生操作学具,切割拼合。

(3)感知:将圆柱体模具(已切好)当场演示。

①让一位学生把切割好的一半拿上又叉开;

②另一位学生将切割好的另一半拼合上去;

③观察得到一个什么形体?同时你发现了什么?逐步引导学生观察、对比、分析。

(4)课件演示,让学生明白:分成的扇形越多,拼成的立体图形就越接近于长方体。

(5)讨论:圆柱与所拼成的近似长方体之间的有什么联系?

(6)汇报:你发现了什么?【圆柱→近似长方体:①体积相等;②底面积相等;③高相等;④表面积不相等。】

(7)概括总结

①让学生试着总结公式;

②老师在学生总结的基础上用课件出示

长方体的体积=底面积×高

↓ ↓ ↓

圆柱体的体积=底面积×高

用字母表示:v=sh

3、运用新知,尝试解答

[做一做]一根圆柱形木料,底面积为75cm2,长90cm。它的体积是多少?

(1)尝试:让学生理解题意,自己尝试解答。

(2)展示:根据v=sh可得:75×90=6750(cm3)

(3)讲评并强调:计算体积时结果应用体积单位。

(4)拓展:如果已知圆柱底面的半径r和高h,该怎么来计算圆柱的体积呢?如果已知的是底面的直径d和高h呢?

让学生独立思考,写出计算公式,再相互交流。

得到:v=πr2h

[完成教材第20页例6]一个圆柱形水杯,从里面量底面直径是8厘米,高是10厘米。已知一袋纯牛奶有498mL。问这个杯子能不能装下这袋牛奶?

1、教师引导学生:要回答这个问题,先要计算出杯子的'容积。

2学生独立计算杯子的容积,然后与牛奶的容积作比较,就完成了任务。

三、巩固练习

1、完成下表。

底面积/ m2

高/m

圆柱的体积/ m3

7

3

5.6

4

2一个压路机的前轮是圆柱形,轮宽2.5米,半径1米。它的体积是多少立方米?

四、全课小结

同学们,今天我们学习了什么知识?你还有什么不懂的问题?

五、布置作业(练习三第2、3题)

板书设计

圆柱的体积

圆柱转化近似长方体

长方体的体积=底面积×高

↓ ↓ ↓

圆柱的体积=底面积×高

V柱=sh

V柱=πr2h

第四篇:六年级数学下册《圆柱的体积》教学设计

六年级数学下册《圆柱的体积》教学设计

教材分析:

本节内容是在学生了解了圆柱体的特征,掌握了圆柱表面积的计算方法基础上进行教学的,是几何知识的综合运用,为后面学习圆锥的体积打下基础,教材重视类比,转化思想的渗透,引导学生经历“类比猜想——验证说明”的探索过程,掌握圆柱体积的计算方法。

学生分析:

学生已掌握了长方体和正方体体积的计算方法以及圆的面积计算公式的推导过程,在圆柱的体积这节课最大化的体现动手实践,自主探索,合作交流,为突破重、难点。本节课在教法和学法上从以下几方面着手:先利用教具通过直观教学让学生观察,比较,动手操作,经历知识产生的过程,发展学生思维能力;让学生通过“类比猜想——验证说明”的探索过程,主动学习,掌握知识形成技能,合作探究学习成为课堂的主要学习方式。

学习目标: 1.使学生理解和掌握圆柱体积的计算方法,在推导圆柱体积计算公式的过程中培养学生初步的空间观念和动手操作的技能。

2.使学生能够通过观察,大胆猜想和验证获得新知识在教学活动过程中发展学生的推理能力,渗透转化思想。

3.引导学生积极参与数学学习活动,培养学生的数学意识和合作意识。

教学过程:

出示教学情境:一个杯子能装多少水呢?

想一想:杯子里的水是什么形状?准备用什么方法来计算水的体积?

让学生讨论得出:把杯子里的水倒入长方体或正方体容器,只要量出相关数据,就能求出水的体积;倒入量筒里直接得到水的体积。

(设计意图:让学生根据自己已有的知识经验,把圆柱形杯子里的水倒入长方体或正方体容器,使形状转化成自己熟悉的长方体或正方体,只要求出长方体或正方体的体积就知道水的体积。)出示第二情境:圆柱形的木柱子的体积是多少?用这种方法还行吗?怎么办?

(设计意图:创设问题情境,引起学生认知冲突,激起学生求知欲望,使学生带着积极的思维参与到学习中去,从而产生认知的飞跃。)

探究新知:怎样计算圆柱的体积?(板书课题:计算圆柱的体积)

大胆猜想:你觉得圆柱体积的大小和什么有关?圆柱的体积可能等于什么?(说说猜想依据)

长方体,正方体的体积都等于“底面积×高”猜想圆柱的体积也可能等于“底面积×高”。

(设计意图:在新知识的探索中,合理的猜测能为探索问题,解决问题的思维方向起到导航和推进作用。)

验证:能否将圆柱转化为学过的立体图形?

让学生利用学具动手操作来推导圆柱体积公式(小组合作探究:给学生提供充分的时间和空间),引导学生把圆柱体底面平均分成多个小扇形,沿着高切开,拼成一个近似的长方体。思考:圆柱体转化成长方体为什么是近似的长方体?怎样才能使转化的立体图形更接近长方体?

(设计意图:让学生明确圆柱体的底面平均分成的扇形越多拼成的立体图形就越接近于长方体,渗透“极限”的思想。)

用课件展示切拼过程,让学生观察等分的份数越多越接近长方体,弥补直观操作等分的份数太多不易操作的缺陷。

学生讨论交流:

1.把圆柱拼成长方体后,什么变了,什么没变? 2.拼成的长方体与圆柱之间有什么联系? 3.通过观察得到什么结论? 得到:圆柱的体积=底面积×高 V=Sh=πr2h(设计意图:在数学活动中通过观察比较培养学生抽象概括能力,及逻辑思维能力。)

练习设计:

1.计算下面各圆柱的体积。

(1)S=60cm2h=4cm(2)r=1cmh=5cm(3)d=6cmh=10cm 2.算一算:已知一根柱子的底面半径为0.4米,高为5米,你能算出它的体积吗?

(设计意图:使学生达到举一反三的效果,从而训练学生的技能,灵活掌握本课重点。)

2.试一试:

(1)一个圆柱形水桶,从桶内量得底面直径是3分米,高是4分米,这个桶的容积是多少升?

(2)一根圆柱形铁棒,底面周长是12.56厘米,长是100厘米,它的体积是多少?

(设计意图:运用圆柱的体积计算公式解决生活实际问题,切实体验到数学源于生活,身边处处是数学。)

课堂小结:谈谈这节课你有哪些收获?

(设计意图:采用提问式小结,让学生畅谈本节课的收获,包括知识,能力,方法,情感等,通过对本节课所学知识的总结与回顾,培养学生的归纳概括能力,使学生学到的知识系统化,完整化。)

第五篇:六年级圆柱的体积教学设计

《圆柱的体积》教学设计

【课题名称】圆柱的体积

【标准相关陈述】结合具体情境,探索并掌握圆柱体积的计算方法。【学习目标】

1、借助体积的定义,通过具体问题情境,能够准确无误的表述出圆柱体积的意义;以小组合作的形式,通过观察、猜测、实验、数据分析、推理与交流等活动,能用自己的语言有条理地表述出圆柱体积公式的推导过程。

2、能根据圆柱体积的计算公式,正确计算出圆柱的体积并能够在具体情境中正确解决相关的实际的简单问题。

3、通过联想、猜测、观察、实验、推断、归纳等数学活动,感受数学思考的严谨性及数学数学结论的确定性,体会数学与生活的联系。【评价设计】

1、通过课堂提问,学生能否表述出圆柱体积的意义,完成对目标1前半部分的评价(表现性评价)。

2、通过小组合作,操作等活动的开展,学生展示、汇报圆柱体积公式的推导过程的情况,完成对目标1后半部分和目标3的评价(表现性评价)。

3、通过给定有关圆柱的条件,能否直接运用公式来计算圆柱的体积,并通过设计一些具体的情境,解决相关实际问题的练习等,完成对目标2的评价(纸笔评价)。【评价样题】

1、求下面各圆柱的体积:

(1)底面半径是2分米,高是3分米。(2)底面直径是6厘米,高是1分米。(3)底面周长是125.6分米,高是9分米。

2、一根圆柱形木料,底面积是75平方厘米,长90厘米,它的体积是多少? 【教学重点】

掌握圆柱体积的计算方法,并能应用公式计算圆柱的体积。【教学难点】

运用体积公式,正确计算圆柱的体积。【教学方法】

启发诱导、合作交流、动手操作、观察实验、演示说明等。【课前准备】

装了半杯水的烧杯、两个圆柱形的物体(体积差不多,一个底面略大、高矮一些,一个底面略小而高长一些)、一具圆柱体体积演示教具、课件。【课型】新授课。【学习活动方案】

一、创设情景,揭示课题。

1、创设情景

教师拿出一个装了半杯水的烧杯,拿出一个圆柱形的物体,准备投入烧杯中。师:同学们想一想会发生什么情况?(教师将圆柱形的物体投入水中。)请仔细观察后,说一说你有什么发现?

(上升的水的体积和圆柱的体积是相等的。)

2、揭示课题

师:同学们发现得都很精彩,谁来说一说什么叫圆柱的体积。(板书课题:圆柱的体积)生:圆柱所占空间的大小就叫圆柱的体积。

此环节通过课堂提问和学生回答问题的情况,完成对目标1前半部分的评价。

二、比较大小,创设求圆柱体积的情景。

教师又拿出一个圆柱。(底面略小而高长一些,体积相差不多)师:这两个圆柱的体积,哪个比较大一些?

师:有的同学说第一个大,有的同学说第二个大,那么你有什么办法能比较它们的大小呢?

生:准备半杯水,将第一个圆柱浸没水中,作好标志,再把第二个圆柱浸没水中,作个标志,哪个水面上升的高一些,哪个圆柱的体积就比较大。

师:这个方法很好。如果要准确地知道哪个圆柱的体积大,大多少,你有什么好办法?(小组讨论)

三、大胆猜想,感知圆柱体积公式。

根据学生的汇报,教师做进一步引导: 师:你觉得圆柱体积的大小和什么有关?(和圆柱的高有关、和圆柱的底面大小有关)师:很好!大胆地推想一下圆柱的体积应如何计算?

生:我猜想用圆柱的底面积乘以它的高就可以求出体积。师:你同意他的猜想吗?说说你的理由。

此环节通过实验、观察、操作、猜想等活动的开展状况完成对目标3的评价。

四、小心求证,论证圆柱体积公式。

师:同学们都很会大胆猜想,但还要小心地论证猜想的科学性。

1、回忆转化方法

教师拿出一具圆柱体体积的演示教具,让学生看底面。师:你看到了什么?(圆形)

师:你还记得我们在推导圆的面积公式时是把圆面积转化成什么图形的面积来求它的公式的吗?

(把圆的面积转化成长方形的面积。)

2、论证圆柱的体积公式

教师让大家看整个圆柱,问:怎么求这个圆柱的体积呢?(小组讨论)生:可以把这个圆柱转化成我们已经会求的长方体的体积来求体积。师:说说你们小组是如何转化的。生上台操作展示。

生:我们把圆柱平均分成16分,可以拼成一个近似的长方体,这个长方体的高就是圆柱的高,这个长方体的底面积和圆柱的底面积相等。所以,圆柱的体积可以用底面积乘高来求。

师:你同意吗?照这样做一遍,然后说一说如何求圆柱的体积。

教师课件出示将圆柱分成32份、64份、128份后拼成长方体的过程。然后总结如果分的份数越多就越接近长方体。

3、总结得出圆柱的体积公式。

师:当我们把圆转化成近似的长方体时,这个长方体的高就是圆柱的高,这个长方体的底面积和圆柱的底面积相等,因为长方体的体积=底面积×高,所以圆柱的体积=底面积×高。字母公式是V=Sh ,根据圆的面积公式还可写成V = ∏rh(板书)。

此环节通过小组合作,操作等活动的状况,学生展示、汇报最终成果的完成情况,对目标1后半部分和目标3进行评价。

五、拓展运用,用公式解决问题。

1、例:一根圆柱形钢材,底面积是50平方厘米,高是2.1米,它的体积是多少?

2读题、审题。

提问:你能独立完成这题吗?指名一同学板演,其余学生做在练习本上。

2.1米=210厘米

50×210=10500(立方厘米)答:它的体积是10500立方厘米.

2、集体订正:列式依据是什么?应注意哪些问题?(单位统一,最后结果用体积单位)

六、练习巩固

1、填空:

(1)把圆柱的底面平均分成许多相等的小扇形,然后把圆柱切开,拼成一个近似的长方体,这个长方体的底面积等于圆柱的(),长方体的高就是()的高,因为长方体的体积等于底面积乘高,所以圆柱的体积等于(),用字母表示为()。

(2)把一个棱长20厘米的正方体削成一个最大的圆柱,这个圆柱的底面直径是()厘米,高是()厘米,体积是()立方厘米。

2、判断:

(1)圆柱的底面积越大,体积越大。()

(2)长方体、正方体和圆柱的体积都可以用底面积乘高的方法计算。()(3)表面积相等的两个圆柱,体积也相等。()

3、拓展练习

(1)想一想:已知哪些条件,可以求出圆柱的体积?(2)解题时需要注意那些方面。

通过此环节给定有关圆柱的条件,在例题、练习巩固和检测样题中看学生能否运用公式来计算圆柱的体积,从而完成对目标2的评价。

七、全课小结:

谈谈这节课你有哪些收获。(学生谈)

师:(出示生活许多圆柱形物品)同学们,生活中圆柱无处不在,希望你有一双发现的眼睛,用我们今天学习的知识,去解决生活中的实际问题。如果你有体验和发现,可以写成数学日记,发到老师的邮箱中我们共同探讨。

下载六年级下册《圆柱的体积》教学设计word格式文档
下载六年级下册《圆柱的体积》教学设计.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    六年级数学下册《圆柱体积》教学反思

    优点:我采用多媒体的直观教具相结合的手段,在圆柱体积公式推导过程中指导学生充分利用手中的学具、教具,学生在兴趣盎然中经历了自主探究、独立思考、分析整理、合作交流、总结......

    圆柱体积教学设计(通用)[大全]

    圆柱体积教学设计(通用9篇)作为一名教职工,时常要开展教学设计的准备工作,教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划......

    圆柱体积教学设计

    一、复习导入 1、同学们想一想,我们已经学习了哪些立体图形的体积?怎样计算长方体和正方体的体积?他们的体积体积的通用公式是什么?用字母怎么表示? 2、回忆一下圆面积的计算公式......

    圆柱体积教学设计

    《圆柱的体积》教学设计 南和县贾宋镇中心学校教师 李立强 一、课前系统部分 (一)、课标分析 《圆柱的体积》是冀教版六年级数学下册的内容,在课程标准中属于第二阶段(四-六年级......

    六年级下册数学圆柱的体积(教学设计)五篇范文

    圆柱的体积 教学目标: 1、知识技能 结合具体情境,让学生探索并掌握圆柱体积的计算方法,并能运用计算公式解决简单的实际问题。 2、过程方法 让学生经历观察、实验、猜想、证......

    六年级下册《圆柱的体积》教案

    六年级下册《圆柱的体积》教案 教学目标:.知识与技能:运用迁移规律,引导学生借助圆面积计算公式的推导方法来推导圆柱的体积计算公式,会用圆柱的体积公式计算圆柱形物体的体积......

    关于人教版六年级下册《圆柱的体积》教学反思

    (1)本节可的教学内容是九年义务教育六年级下册的《圆柱的体积》,以前教学此内容时,直接告诉学生:圆柱的体积=底面积×高,用字母表示公式:V=Sh,让学生套公式练习;我教此内容时,不按传统......

    六年级数学下册《圆柱的体积》教学反思

    六年级数学下册《圆柱的体积》教学反思 六年级数学下册《圆柱的体积》教学反思《圆柱的体积》一课是在学生已经学习了“圆的面积计算”和“长方体、正方体的体积”及圆柱的......