第一篇:小学数学六下:《圆柱的体积》教学设计
【教学内容】圆柱的体积
【教学课型】新授课
【教学目标】
知识与技能
1、让学生经历通过用切割拼合的方法借助长方体的体积公式,推导出圆柱体积公式的教学活动过程,使学生理解圆柱体积公式的推导过程。
2、能够运用公式正确地计算圆柱的体积。并会解决一些简单的实际问题。
3、体会类比,转化等思想,初步发展推理能力。
过程与方法
教学时,要充分利用教具、学具,引导学生观察、操作和交流探索新知。
情感、态度与价值观
通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。
【教学重点】
1、掌握圆柱体积计算公式及熟练运用计公式解决实际问题。
2、引导学生经历圆柱体积计算方法的探索过程,体会化曲为直的数学思想方法。
【教学难点】理解圆柱体积计算公式的推导过程
【教学准备】
教具:圆柱教具。多媒体
学具:圆柱学具,数学课本。
【教学过程】
一、复习引入,质疑问难
1.复习
教师出示圆柱教具(学生拿出自制的圆柱),让同学们回忆圆柱面的组成(两个底面一个侧面),圆柱的侧面沿高展开是一个长方形(特殊情况是正方形),圆柱的高的含义,圆的面积,圆的周长,圆柱的表面积)
我们学习圆柱,除了学习这些之外,还需要学习另外一个重要的量--圆柱的体积。能用你自己的话说说,什么是圆柱的体积?(圆柱的体积就是圆柱所占空间的大小)
在我们生活中随处可以看到圆柱形的物体,有的大,有的小。多媒体放映圆柱形物体图片,同学们注意观察一下圆柱形物体所占空间的大小(即体积),为了说明圆柱形物体体积的大小,我们就需要计算圆柱体体积是多少?这就是我们这一节所要探讨的内容。
2.复习长方体、正方体的体积
师:同学们想一想,以前我们学过那些立体图形的体积呢?
(教师出示长方体、正方体让同学们回顾它们的体积公式。)
总结长方体、正方体的体积都可以用底面积乘高去计算。
板书: 长/正方体体积=底面积×高
如果用v表示体积,s表示底面积,h表示高。那么 v=sh
3.猜一猜 议一议
我们学习了长方体、正方体体积,那圆柱的体积该怎样计算呢?
请同学们分组讨论,你们有什么方法计算圆柱的体积。
(用水或沙子转化计算,用橡皮泥转化计算,用圆形纸片叠加计算&&)
师:如果想准确地计算出这个圆柱的体积,该怎样算呢?猜测一下。
生1:两个底面积的和乘2。
师:胆略过人,真佩服!
师:你同意这个猜测吗?(大部分学生摇头。)
生2:底面积乘高。(大部分同学表示同意)
<<<12&&&师:怎样证明你的猜想是正确的呢?
我们今天就来一起看一看
二、图形转化,猜想推理
1.教师:同学们我们已经知道圆的面积公式,请大家想一想圆的面积计算公式是怎样推导出来的?(生回答)
在学生的回答的同时,教师演示把圆平均分成若干等份,拼成一个近似的长方形,找出长方形的长是圆的周长的一半,宽就是半径,从而推导出圆的面积的计算公式的过程。)
2.设疑揭题:既然我们能运用化圆为方’的数学方法推导出了圆面积的计算公式,那对于圆柱的体积,能不能也利用这种转化的思想?你们想到什么?
(引导学生体会:我们虽然不会算圆柱的体积,但我们会计算长方体的体积;如果能将圆柱转化成长方体就好办了)。
3.探究推导圆柱的体积计算公式。
小组合作,用老师提供的学具尝试操作,并研究转换后的长方体和原来的圆柱体(体积,底面积,高)之间的关系。
师:哪个小组来汇报一下你们的研究结果?
生1:我们小组发现,转化后的圆柱形状变了,但是体积没变,底面积没变,高也没有变。
生2:我们小组发现,长方体的体积和原来圆柱的体积相等,长方体的底面积和圆柱的底面积相等,长方体的高等于圆柱的高。
师:大家的发言都非常的精彩,你们说的都是正确的。我们一起来看看电脑是怎么做的
课件显示将圆柱等分成32份、64份、128份、256份&&学生观察思考
师:如果继续分下去,你会有什么发现?
(引导学生体会圆柱底面等分的份数越多,拼组成的立体图形就越接近于长方体,体会无限逼近的数学极限思想。)
生:我发现分成的扇形越多就越接近于长方体。
师:刚才我们又用了化圆为方的方法,把圆柱体转化成了长方体,你能总结出圆柱的体积公式吗?
说说你的想法。
学生议论,指名汇报:
(拼成的近似长方体的底面积等于圆柱的底面积,近似长方体的高就是圆柱的高,因此要求圆柱的体积就是求切拼后的近似长方体的体积。)
4.演示
长方体的体积=底面积×高
圆柱的体积=底面积×高
找出相对应的部分,加深理解。
教师:如果用s表示底面积,h表示高,那么圆柱体积公式怎样表示?
板书:v=sh
教师:计算圆柱的体积必须知道什么条件?(底面积和高)
5.分类讨论:
.已知圆柱体的底面半径r和高h,怎样求体积?s=πr2 v=sh
.已知圆柱体的底面直径d和高h,怎样求体积?r=d/2 s=πr2 v=sh
.已知圆柱体的底面周长c和高h,怎样求体积 ?
r=c÷ 2π s=πr2 v=sh
三、运用新知,解决问题
1.课件出示例3:有一根圆柱形钢材,底面积是50平方厘米,长是2.1米,你能求出它的体积吗?
获取信息,思考以下问题:
①这道题已知什么?求什么?
②能不能根据公式直接计算
③计算之前要注意什么?(要注意先统一计量单位)
学生独立解答 集体订正。
教师巡视
讲解,并板书解答过程。
2.课件出示教课书36页第1题、第2 题
学生在书上进行填表。及时反馈,矫正。
教师个别辅导
讲解,并解答过程。
3.课件出示解决问题(生活中的数学)
(1)学生独立思考,然后分组讨论
(2)学生独立解答
教师个别辅导
讲解解答过程。
四、全课小结
结合板书,引导学生说出本课所学的内容,我们是这样设计的:这节课我们学习了哪些内容?圆柱体积的计算公式是怎样推导出来的?你有什么收获?然后教师归纳,通过本节课的学习,我们懂得了新知识的得来是通过已学的知识来解决的,以后希望同学们多动脑,勤思考,在我们的生活中还有好多问题需要利用所学知识来解决的,望同学们能学会运用,善于用转化的思想来武装自己的头脑,思考问题。
五、作业布置
课本36页第3、4题
六、课外延伸
课下量一个圆柱形杯子的高和底面直径(底面周长),算出这个杯子大约可以装水多少克?(1立方厘米水重1克)
板书设计: 《 圆 柱 的 体 积 》
长/正方体体积=底面积×高
圆柱的体积=底面积×高
字母公式v=sh <<<12&&&
第二篇:六下《圆柱的体积》教学反思---副本
《圆柱的体积》教学反思
本课主要内容是圆柱的体积公式的推导及其应用。因为公式的推导过程是个难点,因此在教学设计时,我采用新的教学理念,让学生自己动手实践、自主探索与合作交流,在实践中体验,帮助学生理解公式的来源,从而获得知识。
下面我从教学过程、教学策略、教学技能等方面谈谈自己的一些反思。
一、在教学过程的设计方面
1、导入时,力求突破教材,有所创新
圆柱的体积的导入,课本是先让学生回忆“长方体、正方体的体积都可以用它们的底面积乘高来计算”,再接着马上提问:“圆柱的体积怎样计算呢?”让学生们猜一猜。猜想计算方法固然有好处,但要让学生马上做实验理解圆柱体积计算公式的推导过程,我觉得这样教学引入,学生的思维跳跃得太快,衔接性不强,不利于学生理解和掌握实验的用意,课堂效果就会明显不佳。于是我设计时不妨在回忆了长方体、正方体体积计算方法之后,接着复习一下圆面积计算公式的推导过程,这样有助于学生猜想,并能更好地联系旧知,思维过度自然、流畅,便于学生的思维走向正确的方向,这时教师的引导才是行之有效的。不过应该注意时间的控制,不能花费太多的时间。
2、新课时,要实现人人参与,主动学习
学生进行数学探究时,应给予充分的思考空间,创设实践操作的条件,营造出思考的环境氛围。在推导圆柱体积公式过程时,我让学
生经历先想-观察-动手操作的过程。把圆柱的底面分成若干份(例如,分成16等份),然后把圆柱切开,照课本上的图拼起来,圆柱体就转化成一个近似的长方体;接着让学生小组交流长方体的长和宽与圆柱的各部分有什么关系?圆柱的体积怎样计算的道理,从而推导出圆柱体积的计算公式。这样学生亲身参与操作,有了空间感觉的体验,也有了充分的思考空间。这样设计我觉得能突破难点,课堂效果很好。
3、练习时,形式多样,层层递进
例题“练一练”中的题目都比较浅显,学生还能容易掌握,但遇到多转几个弯的题目就束手无策了。所以,为了让学生能熟练地掌握计算圆柱的体积,我在设计练习时动了一番脑,花心思去考虑怎样才能让学生用最短的时间完成不同类型的题目。通过反思,我概括出五种类型:
a.已知圆柱底面积(s)和高(h),计算圆柱体积可以应用这一公式:V=sh。
b.已知圆柱底面半径(r)和高(h),计算圆柱体积可以应用这一公式:V=πr²h。
c.已知圆柱底面直径(d)和高(h),计算圆柱体积可以应用这一公式:V=π(d/2)²h。
d.已知圆柱底面周长(c)和高(h),计算圆柱体积可以应用这一公式:V=π(c÷π÷2)²h。
e.已知圆柱侧面积(s侧)和高(h),计算圆柱体积可以应用这一公式:V=π(s侧÷h÷π÷2)²h。
因为是第一课时所以在巩固练习中,只要从前四种类型去考虑,做到面面俱到,逐层深入,由易到难,使学生真正掌握好计算圆柱体积的方法.另外,还设计了解决生活中的问题,让学生能学以致用解决生活中的问题。
二、在教学策略方面
我采用多媒体的直观教具相结合的手段,在圆柱体积公式推导过程中指导学生充分利用手中的学具、教具,学生在兴趣盎然中经历了自主探究、独立思考、分析整理、合作交流、总结归纳等过程,发现了教学问题的存在,经历了知识产生的过程,理解和掌握了数学基本知识,从而促进了学生的思维发展。而在巩固练习这一环节,我用多媒体发挥它大容量、节省时间的优点。
三、在教学技能方面
学生通过实践、探索、发现,得到的知识是“活”的,这样的知识对学生自身智力和创造力发展会起到积极的推动作用。所有的答案也不是老师告诉的,而是学生在自己艰苦的学习过程中发现并从学生的口里说出来的,这样的知识具有个人意义,理解更深刻。但是我觉得这个引导的过程需要教师有认真准备,随时能解决课堂上可能出现的一些问题。
传统的教学只关注教给学生多少知识,把学生当成知识的“容器”。学生的学习只是被动地接受、记忆、模仿,往往学生只知其然
而不知其所以然,其思维根本得不到发展。而我在本课创设了丰富的教学情景,四、存在的问题
不足之处是:由于这节课的设计是以学生为主、发挥学生的主体作用,要充分展示学生的思维过程,所以在学生动手实践、交流讨论和思考的时间上教师应合理把握,不能时间较多,否则会导致练习的时间较少。
另外,在练习设计上,题形虽然全,但觉得题量偏多,因为这部分练习涉及的计算多、难,这样练习题还需精心设计。
第三篇:小学数学《圆柱的体积》教学设计
教学内容:圆柱体积公式的推导
教学目的:
1.通过用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公式,使学生理解圆柱的体积公式的推导过程。
2.能够运用公式正确地计算圆柱的体积。
教具准备:圆柱的体积公式演示课件
教学过程:
一、复习回顾
1、圆柱的侧面积怎么求?
(圆柱的侧面积=底面周长×高。)
2、长方体的体积怎样计算?
学生回答,教师引导学生想到长方体和正方体体积的统一公式“底面积×高”。
板书:长方体的体积=底面积×高
3、拿出一个圆柱形物体,指名学生指出圆柱的底面、高、侧面、表面各是什么?圆柱有几个底面?有多少条高?
二、回忆导入
师:请大家想一想,我们在学习圆的面积时,是怎样把因变成已学过的图形再计算面积的?
让学生回忆,说一说圆面积计算公式的推导过程:把圆等分切割,拼成一个近似的长方形,找出圆的面积和所拼成的长方形面积之间的关系,再利用求长方形面积的计算公式导出求圆面积的计算公式。
师:今天将要学习的圆柱的体积大家能不能把圆柱转化成我们已经学过的图形来求出它的体积?
学生相互讨论,思考应怎样进行转化。说出自己想到的方法。
师:这节课我们就让我们一起来研究圆柱的体积。
板书课题:圆校的体积
三、新课讲授
师:看到这个标题你想知道的什么?
学生回答后老师出示教学目标及重难点
1、圆柱体积计算公式的推导。
师出示一个圆柱,让学生观察底面提问:“大家看,这是不是一圆?”(是。)
“这是一个圆,那么要求这个圆的面积,刚才我们已经复习了,可以用什么方法求出它的面积?”
学生很容易想到可以将圆转化成长方形来求出圆的面积,于是教师可以先把底面分成若干份相等的扇形(如分成16等份)。
然后引导学生观察:沿着圆柱底面的扇形和圆柱的高把圆柱切开,可以得到大小相等的16块。展示给学生看,问:现在把底面切成了16份,应该怎样把它拼成一个长方形?
学生回答后,老师操作演示,“大家看,圆柱的底面被拼成了什么图形?”
生:长方形。
师:大家再看看整个圆柱,它又被拼成了什么形状?
(有点接近长方体:)
师:由于我们分得不够细,所以看起来还不太像长方体;如果分成的扇形越多,拼成的立体图形就越接近于长方体了。
师:把圆柱拼成近似的长方体后,体积发生变化没有?圆柱的体积可以怎样求?
引导学生想到由于体积没有发生变化,所以可以通过求切拼后的长方体的体积来求圆柱的体积。
师:“长方体的体积等于什么?”让全班学生齐答,教师接着板书:“长方体的体积=底面积×高”。
师:请大家观察,拼成的近似长方体的底面积与原来圆柱的哪一部分有关系?近似长方体的高与原来圆柱的哪一部分有关系?
通过观察,使学生明确:长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。
板书:圆柱的体积=底面积×高
师:如果用V表示圆柱的体积,S表示圆柱的底面积,H表示圆柱的高,可以得到圆柱的体积公式; V=SH(板书)
2、公式应用
出示例4。
(1)教师指名学生分别回答下面的问题:
①这道题已知什么?求什么?
②能不能根据公式直接计算?
③计算之前要注意什么?
通过提问,使学生明确计算时既要分析已知条件和问题,还要注意要先统一计量单位。
(2)出示下面几种解答方案,让学生判断哪个是正确的?
①V=SH=50×2.1=10
5答:它的体积是105立方厘米。
②2.1米;210厘米
V=SH=50×210=10500
答:它的体积是10500立方厘米。
③50平方厘米=0,5平方米
V=SH=0.5×2,1=1.05
答:它的体积是1.05立方米。
④50平方厘米=0.005平方米
V=SH=0.005×2.1=0.0105立方米
答:它的体积是0.0105立方米。
先让学生思考,然后指名学生回答哪个是正确的解答,并比较一下哪一种解答更简单。对不正确的说说错在什么地方。
四、巩固练习:
1、做“做一做”的第1题。
让学生独立做后集体订正。
2、完成练习八的1、2题
这两道题分别是已知底面积(或直径)和高,求圆柱体积的习题。要求学生审题后,知道底面直径的要先求出底面积,再求圆柱的体积。
3、能力扩展
五:课堂总结:
通过这节课的学习,你有什么收获?你是怎样联系学过的知识进行学习的。
六:布置作业:
练习十一的第1—2题。
这两道题分别是已知底面积(或直径)和高,求圆柱体积的习题。要求学生审题后,知道底面直径的要先求出底面积,再求圆柱的体积。
第四篇:圆柱体积教学设计(通用)
圆柱体积教学设计(通用9篇)
作为一名教职工,时常要开展教学设计的准备工作,教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。怎样写教学设计才更能起到其作用呢?以下是小编帮大家整理的圆柱体积教学设计(通用9篇),仅供参考,大家一起来看看吧。
圆柱体积教学设计1一、教学目标
【知识与技能】
掌握圆柱的体积计算公式,能够正确计算圆柱的体积。
【过程与方法】
通过观察、类比、分析的过程,提高分析问题、解决问题的能力,发展空间观念。
【情感态度价值观】
感受数学与生活的联系,激发学习兴趣,提高学习数学的自信心。
二、教学重难点
【教学重点】
圆柱的体积公式。
【教学难点】
圆柱体积公式的推导过程。
三、教学过程
(一)引入新课
提问:长方体和正方体的体积公式是什么?
预设:长方体的体积=长×宽×高,正方体体积=棱长×棱长×棱长,两者共有的体积公式:长方体
(正方体)体积=底面积×高。今天我们再来研究另一个熟悉的几何图形,圆柱的体积公式。从而引出本节课题《圆柱的体积》。
(二)探索新知
1.圆柱体积公式的猜想
在大屏幕出示底面积和高都相等的长方体、正方体和圆柱。
提问:长方体和正方体的体积相等吗?
预设:根据长方体(正方体)体积=底面积×高,所以长方体和正方体体积相等。
追问:类比之前学过的体积公式,圆柱的体积可能和哪些因素有关?圆柱的体积公式可能是什么?
预设:圆柱的体积和底面积、高有关,圆柱的体积公式=底面积×高。
2.圆柱体积公式的推导
回忆圆的面积是通过转化为长方形,从而推导出圆的面积公式。提问:圆柱可以转化成已知体积公式的哪个图形呢?
预设:可以把圆柱转换成长方体。
让学生根据提前下发的能自动等份分割的圆柱体学具,同桌之间相互交流:如何把圆柱转化为长方体呢?
预设:学生分一分,拼一拼,组合成近似长方体的图形。此时教师应借助多媒体设备展示把圆柱等份分成32份,64份甚至更多份的情境,随着等份分割的份数越多,拼成的图形就越接近长方体。
组织学生进行小组讨论:观察拼成的长方体和原来的圆柱具有怎样的关系?5分钟后请小组代表进行回答。
预设:长方体的底面积、高和体积分别等于原来圆柱的底面积、高和体积。
3.圆柱体积公式的推出
提问:圆柱的体积公式是什么?
预设:圆柱的体积=底面积×高
用大写字母V表示圆柱的体积,S表示底面积,h表示圆柱的高,用字母表示圆柱的体积公式。
预设:V=Sh
教师强调字母V、S是大写,h是小写。
追问:回顾探究圆柱体积公式的过程,有哪些心得体会?
预设1:可以用长方体体积公式推导出圆柱体体积公式;
预设2:把圆柱转化成长方体,与探索圆面积的方法类似;
预设3:计算长方体、正方体、圆柱的体积都可以用底面积乘高。
(三)课堂练习
试一试
一个圆柱形零件,底面半径是5厘米,高是8厘米。这个零件的体积是多少立方厘米?
(四)小结作业
提问:通过本节课的学习有什么收获?
课后作业:找找生活当中的圆柱物体,量一量底面积和高,算一算物体体积。
教学目标
1.理解圆柱体体积公式的推导过程,掌握计算公式
2.会运用公式计算圆柱的体积
教学重点
圆柱体体积的计算
教学难点
理解圆柱体体积公式的推导过程
教学过程
(一)教师提问
1.什么叫体积?怎样求长方体的体积?
2.圆的面积公式是什么?
3.圆的面积公式是怎样推导的?
(二)谈话导入
同学们,我们在研究圆面积公式的推导时,是把它转化成我们学过的长方形知识的来解决的.那圆柱的体积怎样计算呢?能不能也把它转化成我们学过的立体图形来计算呢?这节课我们就来研究这个问题.(板书:圆柱的体积)
(一)教学圆柱体的体积公式.(演示动画“圆柱体的体积1”)
1.教师演示
把圆柱的底面分成了16个相等的扇形,再按照这些扇形沿着圆柱的高把圆柱切开,这样就得到了16块体积大小相等,底面是扇形的形体
2.学生利用学具操作
3.启发学生思考、讨论:
(1)圆柱体切开后可以拼成一个什么形体?(近似的长方体)
(2)通过刚才的实验你发现了什么?
①拼成的近似的长方体和圆柱体相比,体积大小没变,形状变了
②拼成的近似的长方体和圆柱体相比,底面的形状变了,由圆变成了近似的长方形,而底面的面积大小没有发生变化
③近似长方体的高就是圆柱的高,没有变化
4.学生根据圆的面积公式推导过程,进行猜想
(1)如果把圆柱的底面平均分成32份,拼成的长方体形状怎样?
(2)如果把圆柱的底面平均分成64份,拼成的长方体形状怎样?
(3)如果把圆柱的底面平均分成128份,拼成的长方体形状怎样?
5.启发学生说出通过以上的观察,发现了什么?
(1)平均分的份数越多,拼起来的形体越近似于长方体
(2)平均分的份数越多,每份扇形的底面就越小,弧就越短,拼起来的长方体的长就越近似于一条线段,这样整个形体就越近似于长方体
6.推导圆柱的体积公式
(1)学生分组讨论:圆柱体的体积怎样计算?
(2)学生汇报讨论结果,并说明理由.
因为长方体的体积等于底面积乘高.(板书:长方体的体积=底面积×高)近似长方体的体积等于圆柱的体积,(板书:圆柱的体积),近似长方体的底面积等于圆柱的底面积,(板书:底面积)近似长方体的高等于圆柱的高,(板书:高)所以圆柱的体积等于底面积乘高.(板书:圆柱的体积=底面积×高)
(3)用字母表示圆柱的体积公式.(板书:V=Sh)
(二)教学例4.
1.出示例4
例4.一根圆柱形钢材,底面积是50平方厘米,高是2.1米,它的体积是多少?
2.1米=210厘米
50×210=10500(立方厘米)
答:它的体积是10500立方厘米.
2.反馈练习
(1)一根圆柱形木料,底面积是75平方厘米,长90厘米,它的体积是多少?
(2)一个圆柱形罐头盒的内底面半径是5厘米,高15厘米,它的容积是多少?
(三)教学例5.
1.出示例5
例5.一个圆柱形水桶,从里面量底面直径是20厘米,高是25厘米,这个水桶的容积是多少立方分米?
水桶的底面积:
=3.14×100
=314(平方厘米)
水桶的容积:
314×25
=7850(立方厘米)
=7.8(立方分米)
答:这个水桶的容积大约是7.8立方分米.
通过本节课的学习,你有什么收获?
1.圆柱体体积公式的推导方法.
2.公式的应用.
(一)填表
(二)求下面各圆柱的体积
(三)一个圆柱形水池,半径是10米,深1.5米.这个水池占地面积是多少?水池的容积是多少立方米?
(一)求下列图形的表面积和体积(图中单位:厘米)
(二)两个底面积相等的圆柱,一个圆柱的高为4.5分米,体积为81立方分米.另一个圆柱的高为3分米,体积是多少?
教学目标:
1、了解圆柱体体积(包括容积)的含义,进一步理解体积和容积的含义。
2、经历探索圆柱体积计算方法的过程,掌握圆柱体积的计算方法,能正确计算圆柱的体积,并会解决一些简单的实际问题。
3、培养初步的空间观念和思维能力;进一步认识“转化”的思考方法。
教学重点:
理解和掌握圆柱的体积计算公式,会求圆柱的体积
教学难点:
理解圆柱体积计算公式的推导过程。
教学用具:
圆柱体积演示教具。
教学过程:
以2人小组回顾下列内容:(要求1题组员给组长说,组长补充。2题同桌互说。说完后坐好。)
1、说一说:
(1)什么叫体积?常用的体积单位有哪些?
(2)长方体、正方体的体积怎样计算?如何用字母表示?
长方体、正方体的体积=()×()用字母表示()
2、求下面各圆的面积(只说出解题思路,不计算。)
(1)r=1厘米
;(2)d=4分米;
(3)C=6.28米。
(二)揭示课题
你想知道课本第8页左上方“柱子的体积”吗?你想知道“一个圆柱形杯子能装多少水”吗?今天就来学习“圆柱的体积”。(板书课题)
请仔细阅读课本第8-9页的内容,完成下面问题
(一)以小组合作完成1、2题。
1、猜一猜,圆柱的体积可能等于()×()
2、我们在学习圆的面积计算公式时,指出:把一个圆分成若干等份,可以拼成一个近似的长方形。这个长方形的面积就是圆的面积。圆柱的底面也可以像上面说的那样转化成一个近似的长方形,通过切、拼的方法,把圆柱转化为一个近似的长方体(如课本第8页右下图所示)。(用自己手中的学具进行切、拼)观察拼成的长方体与原来的圆柱之间的关系
(1)圆柱的底面积变成了长方体的()。
(2)圆柱的高变成了长方体的()。
(3)圆柱转化成长方体后,体积没变。因为长方体的体积=()×(),所以圆柱的体积=()×()。如果用字母V代表圆柱的体积,S代表底面积,h代表高,那么圆柱的体积公式可用字母表示为()
[汇报交流,教师用教具演示讲解2题]
(二)独立完成3、4题。
3、如果已知课本第8页左上方柱子的底面半径为0.4米,高5米,怎样计算柱子的体积?
先求底面积,列式计算()
再求体积,列式计算()
综合算式()
4、要想知道“一个圆柱形杯子能装多少水?”可以用杯子的“()×()”(杯子厚度忽略不计)
【要求:完成之后以小组互查,有争议之处四人大组讨论。】
教师根据学生做题情况挑选一些小组进行汇报、交流,并对小组学习情况进行评价。
1、课本9页试一试
2、课本9页练一练1题(只列式,不计算)
【要求:完成后小组互查,教师评价】
课本练一练的2、3、4题
【要求:组长先给组员讲解题思路,然后小组内共同完成】
教师进行错例分析。
1、课本练一练的5题
2、有一条围粮的席子,长6.28米,宽2.5米,把它围成一个筒状的粮食囤,怎样围盛的粮食多?最多能盛多少立方米的粮食?
【要求:先组内讨论确定解题思路,再完成】
1、总结:这节我们利用转化的方法,把圆柱转化为长方体来推导其体积公式,切记用“底面积×高”来求圆柱的体积。
2、作业:课本练一练6题
圆柱体积教学设计4教学目标:
1、使学生能够运用公式正确地计算圆柱的体积和容积。
2、初步学会用转化的数学思想和方法,解决实际问题的能力
3、渗透转化思想,培养学生的自主探索意识。
教学重点:
掌握圆柱体积的计算公式。
教学难点:
灵活应用圆柱的体积公式解决实际问题。
教学过程:
1、复习圆柱体积的推导过程
长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。
长方体的体积=底面积×高,所以圆柱的体积=底面积×高,即V=Sh。
2、复习长方体、正方体的体积公式后,让学生独立完成练习三第6题求体积部分,并指名板演。
1、练习三第4题。
学生独立练习,强调选取有用信息,培养认真审题习惯。
2、练习三第5题。
(1)指导学生变换公式:因为V=Sh,所以h=V÷S。也可以列方程解答。
(2)学生选择喜爱的方法解答这道题目。
3、练习三第10题。
指名说说解答第10题的思路:根据两个圆柱的底面积相等这一条件,先求出其中一个圆柱的.底面积。利用这个底面积再求出另一个圆柱的体积。
4、练习三第8题。
(1)学生读题后,指名说说对题意的理解:求减少的土方石就是求月亮门所占的空间,而月亮门所占的空间是一个底面直径为2米,高为0.25米的圆柱。
(2)在充分理解题意后学生独立完成,集体订正。
4、练习三第9题
(1)学生独立审题后完成。
评讲:要怎样才能判断出800ml的果汁够倒三杯吗?必须先求出什么?怎么求?(需先求出圆柱形玻璃杯的容积,用公式V=Sh)
5、练习三第11题。
此题既可以用外圆柱体积减内圆柱的体积,也可以用圆环的面积乘高。
(3)三、布置作业
完成练习中未做完的习题
教学反思
第五课时特别关注
练习三第4题,在教学中必须应该特别关注。
关注理由:
1、有多余条件,是培养学生收集有用信息的契机。
这道题中出现两个圆柱体的高,分别是花坛的高0.8米和花坛里面填土的高0.5米。学生该如何合理做出选择呢,关键要通过问题来思考。因为问题是求“花坛中共需要填土多少方”,所以应该选用“填土的高度是0.5米”这条数学信息。
在课堂中,我还要求学生思考,如果要用上“0.8米”这个条件下,可以怎么改变问题。有的学生说“可以问花坛的体积是多少立方米”,还有的同学说“可以求花坛中空间的体积是多少立方米”。通过这样的训练,能够有效培养学生收集、处理信息的能力,同时提升他们综合分析问题的能力。
2、有容易忽视的条件,是培养学生认真审题的契机。
一般习题中的数据是用阿拉伯数字呈现,可这道题的问题是求“两个花坛中共需要填土多少方”,这里隐含着一个极易被学生忽视的数据“两个”。其实,配套的插图中也明显绘制出了2个花坛,但在做题中许多学生仍旧会出错。所以,应抓住此题,培养学生良好审题的习惯。如在做这类习题时,建议首先将单位圈出来,以确保列式时单位统一。还可以将问题划横线,以提醒自己将生活问题转化为数学问题等。
学生巧解
——巧求削去部分的体积
今天,全班同学做这样一题:一块长方体木块体积是20立方分米,它的底面为正方形,边长为2分米。现在,将它削成一个的圆柱体,求削去的部分是多少立方分米?
我因为做得既对又快,最终获得全班第一名的成绩。通过对比,我发现自己的方法比同学们巧妙。
同学们的解法是先求长方体的高(即圆柱体的高),用20÷(2×2)=5分米,然后求圆柱体的体积,列式为3.14×(2÷2)2×5=15.7立方分米,最后求削去部分的体积是20—15.7=4.3平方分米。
而我在做这一题时,想起上学期在正方形中画的圆,圆的面积占正方形面积的157/200的结论。因为直柱体的体积都可以写成底面直径乘高,而长方体和削成的圆柱体高相等,所以削成的圆柱体体积也应该是长方体体积的157/200。所以直接用20×(1—157/200)也等于4.3立方分米。
圆柱体积教学设计5教学内容:
本内容是六年级下册第8页至第9页。
教材分析:
本节内容是在学生了解了圆柱体的特征,掌握了圆柱表面积的计算方法基础上进行教学的,是几何知识的综合运用,为后面学习圆锥的体积打下基础,教材重视类比,转化思想的渗透,引导学生经历“类比猜想——验证说明”的探索过程,掌握圆柱体积的计算方法。
学生分析:
学生已掌握了长方体和正方体体积的计算方法以及圆的面积计算公式的推导过程,在圆柱的体积这节课化的体现动手实践,自主探索,合作交流,为突破重、难点。本节课在教法和学法上从以下几方面着手:先利用教具通过直观教学让学生观察,比较,动手操作,经历知识产生的过程,发展学生思维能力;让学生通过“类比猜想——验证说明”的探索过程,主动学习,掌握知识形成技能,合作探究学习成为课堂的主要学习方式。
学习目标:
1、使学生理解和掌握圆柱体积的计算方法,在推导圆柱体积计算公式的过程中培养学生初步的空间观念和动手操作的技能。
2、使学生能够通过观察,大胆猜想和验证获得新知识在教学活动过程中发展学生的推理能力,渗透转化思想。
3、引导学生积极参与数学学习活动,培养学生的数学意识和合作意识。
教学过程:
出示教学情境:一个杯子能装多少水呢?
想一想:杯子里的水是什么形状?准备用什么方法来计算水的体积?
让学生讨论得出:把杯子里的水倒入长方体或正方体容器,只要量出相关数据,就能求出水的体积;倒入量筒里直接得到水的体积。
(设计意图:让学生根据自己已有的知识经验,把圆柱形杯子里的水倒入长方体或正方体容器,使形状转化成自己熟悉的长方体或正方体,只要求出长方体或正方体的体积就知道水的体积。)
出示第二情境:圆柱形的木柱子的体积是多少?用这种方法还行吗?怎么办?
(设计意图:创设问题情境,引起学生认知冲突,激起学生求知欲望,使学生带着积极的思维参与到学习中去,从而产生认知的飞跃。)
探究新知:怎样计算圆柱的体积?(板书课题:计算圆柱的体积)
大胆猜想:你觉得圆柱体积的大小和什么有关?圆柱的体积可能等于什么?(说说猜想依据)
长方体,正方体的体积都等于“底面积×高”猜想圆柱的体积也可能等于“底面积×高”。
(设计意图:在新知识的探索中,合理的猜测能为探索问题,解决问题的思维方向起到导航和推进作用。)
验证:能否将圆柱转化为学过的立体图形?
让学生利用学具动手操作来推导圆柱体积公式(小组合作探究:给学生提供充分的时间和空间),引导学生把圆柱体底面平均分成多个小扇形,沿着高切开,拼成一个近似的长方体。
思考:圆柱体转化成长方体为什么是近似的长方体?怎样才能使转化的立体图形更接近长方体?
(设计意图:让学生明确圆柱体的底面平均分成的扇形越多拼成的立体图形就越接近于长方体,渗透“极限”的思想。)
用课件展示切拼过程,让学生观察等分的份数越多越接近长方体,弥补直观操作等分的份数太多不易操作的缺陷。
学生讨论交流:
1、把圆柱拼成长方体后,什么变了,什么没变?
2、拼成的长方体与圆柱之间有什么联系?
3、通过观察得到什么结论?
得到:圆柱的体积=底面积×高
V=Sh=πr2h
(设计意图:在数学活动中通过观察比较培养学生抽象概括能力,及逻辑思维能力。)
练习设计:
1、计算下面各圆柱的体积。
(1)S=60cm2 h=4cm
(2)r=1cm h=5cm
(3)d=6cm h=10cm2、算一算:已知一根柱子的底面半径为0.4米,高为5米,你能算出它的体积吗?
(设计意图:使学生达到举一反三的效果,从而训练学生的技能,灵活掌握本课重点。)
3、试一试:
(1)一个圆柱形水桶,从桶内量得底面直径是3分米,高是4分米,这个桶的容积是多少升?
(2)一根圆柱形铁棒,底面周长是12.56厘米,长是100厘米,它的体积是多少?
(设计意图:运用圆柱的体积计算公式解决生活实际问题,切实体验到数学源于生活,身边处处是数学。)
4、拓展练习:
(1)填表:
填表后观察:你发现了什么?先独立思考,再小组交流,最后汇报。
(设计意图:在教学时应找出知识间存在着的密切联系,帮助学生建立一个较为完整的知识系统,为以后“比例”的教学作了孕伏)
(2)一个柱形容器的底面直径是10厘米,把一块铁块放入这个容器后,水面上升2厘米,这块铁块的体积是多少?
(设计意图:体会测量不规则物体体积的方法,认识到数学的价值体验,使学生的思维处于积极的状态,培养学生思维灵活性,提高学生创造性解决问题的能力。)
课堂小结:谈谈这节课你有哪些收获?
(设计意图:采用提问式小结,让学生畅谈本节课的收获,包括知识,能力,方法,情感等,通过对本节课所学知识的总结与回顾,培养学生的归纳概括能力,使学生学到的知识系统化,完整化。)
教学反思:
本节课采用新的教学理念,创设情境导入渗透转化思想,让学生在兴趣盎然中径历自主探究,独立思考、合作交流从而获得新知。
情境导入渗透转化思想激发学生的学习欲望,课的开始让学生想方法测量出圆柱形水杯中水的体积,学生想出把水倒入长方体容器中转化成长方体的体积来计算出水的体积,初步引导学生把圆柱体的体积转化为长方体的体积。教会学生数学方法,注重让学生在操作中探究,动手操作能展示学生个体的实践活动,在动手过程中易于激发兴趣,积累知识,发展思维,利于每一位学生自主,独立,创造性的学习知识,发展他们的能力,课中让学生经历知识产生的过程,理解和掌握数学基础知识,让学生在体验和探索过程中不断积累知识,逐步发展其空间观念,促进学生的思维发展。
圆柱体积教学设计6教学目标
圆柱的体积(1)
圆柱的体积(教材第25页例5)。
探索并掌握圆柱的体积计算公式,会运用公式计算圆柱的体积,体会转化的思想方法。
教学重难点
1.掌握圆柱的体积公式,并能运用其解决简单实际问题。
2.理解圆柱体积公式的推导过程。
教学工具
推导圆柱体积公式的圆柱教具一套。
教学过程
复习导入
1、口头回答。
(1)什么叫体积?怎样求长方体的体积?
(2)怎样求圆的面积?圆的面积公式是什么?
(3)圆的面积公式是怎样推导的?在学生回忆的基础上,概括出“转化图形——建立联系——推导公式”的方法。
2、引入新课。
我们在推导圆的面积公式时,是把它转化成近似的长方形,找到这个长方形与圆各部分之间的联系,由长方形的面积公式推导出了圆的面积公式。今天,我们能不能也用这个思路研究圆柱体积的计算问题呢?
教师板书:圆柱的体积(1)。
新课讲授
1、教学圆柱体积公式的推导。
(1)教师演示。
把圆柱的底面分成16个相等的扇形,再按照这些扇形沿着圆柱的高把圆柱切开,这样就得到了16块体积相等,底面是扇形的立体图形。
(2)学生利用学具操作。
(3)启发学生思考、讨论:
①圆柱切开后可以拼成一个什么立体图形?
学生:近似的长方体。
②通过刚才的实验你发现了什么?
教师:拼成的近似长方体和圆柱相比,体积大小变了没有?形状呢?
学生:拼成的近似长方体和圆柱相比,底面的形状变了,由圆变成了近似长方形,而底面的面积大小没有发生变化。近似长方体的高就是圆柱的高,没有变化。故体积不变。
(4)学生根据圆的面积公式推导过程,进行猜想:
①如果把圆柱的底面平均分成32份,拼成的形状是怎样的?
②如果把圆柱的底面平均分成64份,拼成的形状是怎样的?
③如果把圆柱的底面平均分成128份,拼成的形状是怎样的?
(5)启发学生说出:通过以上的观察,发现了什么?
①平均分的份数越多,拼起来的形状越接近长方体。
②平均分的份数越多,每份扇形的面积就越小,弧就越短,拼起来的长方体的长就越接近一条线段,这样整个立体形状就越接近长方体。
(6)推导圆柱的体积公式。
①学生分组讨论:圆柱的体积怎样计算?
②学生汇报讨论结果,并说明理由。
教师:因为长方体的体积等于底面积乘高,而近似长方体的体积等于圆柱的体积,近似长方体的底面积等于圆柱的底面积,近似长方体的高等于圆柱的高,所以圆柱的体积=底面积×高。
2、教学补充例题。
(1)出示补充例题:一根圆柱形钢材,底面积是1250px2,高是2.1m。它的体积是多少?
(2)指名学生分别回答下面的问题:
①这道题已知什么?求什么?
②能不能根据公式直接计算?
③计算之前要注意什么?
学生:计算时既要分析已知条件和问题,还要注意先统一计量单位。
(3)出示下面几种解答方案,让学生判断哪个是正确的。
①50×2.1=105(cm3)答:它的体积是2625px3。
②2.1m=5250px 50×210=10500(cm3)
答:它的体积是262500px3。
③1250px2=0.5m2 0.5×2.1=1.05(m3)
答:它的体积是1.05m3。
④1250px2=0.005m2
0.005×2.1=0.0105(m3)
答:它的体积是0.0105m3。
先让学生思考,然后指名学生回答哪个是正确的解答,并比较一下哪一种解答更简单。对不正确的第①、③种解答要说说错在什么地方。
(4)引导思考:如果已知圆柱底面半径r和高h,圆柱体积的计算公式是怎样的?
教师板书:V=πr2h。
课堂作业
教材第25页“做一做”和教材第28页练习五的第1题。学生独立做在练习本上,做完后集体订正。
答案:“做一做”:1.6750(cm3)
2.7.85m3
第1题:(从左往右)
3.14×52×2=157(cm3)
3.14×(4÷2)2×12=150.72(cm3)
3.14×(8÷2)2×8=401.92(cm3)
课堂小结
通过这节课的学习,你有什么收获?你有什么感受?
课后作业
完成练习册中本课时的练习。
第4课时圆柱的体积(1)
课后小结
1.“圆柱的体积”是学生在掌握了圆柱的基本特征以及长方体、正方体体积计算方法等基础上学习的。它是今后学习圆锥体积计算的基础。
2.采用小组合作学习,从而引发自主探究,最后获取知识的新方式来代替教师讲授的老模式,能取得事半功倍的效果。
3.推导公式时间过长,可能导致练习时间少,练习量少,要注意把控。
课后习题
教材第25页“做一做”和教材第28页练习五的第1题。学生独立做在练习本上,做完后集体订正。
答案:“做一做”:1.6750(cm3)
2.7.85m3
第1题:(从左往右)
3.14×52×2=157(cm3)
3.14×(4÷2)2×12=150.72(cm3)
3.14×(8÷2)2×8=401.92(cm3)
圆柱体积教学设计7教学目标:
1、理解圆柱体积公式的推导过程。
2、能够初步地学会运用体积公式解决简单的实际问题。
3、进一步提高学生解决问题的能力。
教学重、难点:
1、理解圆柱体积公式的推导过程。
2、能够初步地学会运用体积公式解决简单的实际问题。
3、理解圆柱体积公式的推导过程。
教学准备:
圆柱切割组合模具、小黑板。
教学过程:
1、什么是体积?(物体所占空间的大小叫做物体的体积。)
2、长方体的体积该怎样计算?归纳到底面积乘高上来。
3、圆的面积怎样计算?
1、计算圆的面积时,是把圆面积转化成我们学过的长方形进行计算的,能不能把圆柱转化成我们学过的立体图形来计算它的体积?
(启发学生思考。)
2、把圆柱的底面分成许多相等的扇形(16等分),然后把圆柱沿高切开,可能会拼成怎样的图形?教师演示,引导学生进行观察。
3、思考:
(1)圆柱切开后可以拼成一个什么形体?(长方体)
(2)通过实验你发现了什么?小组讨论:实验前后,什么变了?什么没变?讨论后,整理出来,再进行汇报。
(拼成的近似长方体体积大小没变,形状变了,拼成的近似长方体和圆柱相比,底面形状变了,由圆变成了近似长方形,而底面的面积大小没有发生变化。近似长方形的高就是圆柱的高,没有变化。)
4、推导圆柱体积公式
小组讨论:怎样计算圆柱的体积?
学生汇报讨论结果。
长方体的体积可以用底面积乘高来计算,而在推导过程中,长方体的底面积就是圆柱的底面积,高就是圆柱的高,所以圆柱的体积也可以用底面积乘高来计算。
师:圆柱的体积怎样计算?用字母公式,怎样表示?
板书:V=Sh5、算一算:已知一根柱子的底面半径为0.4米,高为5米。你能算出它的体积吗?
三、巩固应用练习。
1、一个圆柱形水桶,从桶内量得底面直径是3分米,高是4分米,这个水桶的容积是多少升?说明:求水桶的容积,就是求水桶的体积。想一想先求什么?
2、一根圆柱形铁棒,底面周长是12.56厘米,长是100厘米,它的体积是多少?先求底面半径再求底面积,最后求体积。已知底面周长对解决问题有什么帮助吗?必须先求出什么?
四:课堂小结:
通过这节课你学会了哪些知识,有什么收获?
五:课后作业:
教材第9页,练一练第1、3、4、题
圆柱体积教学设计8一、教学目标
(一)知识与技能
用已学的圆柱体积知识解决生活中的实际问题,并渗透转化思想。
(二)过程与方法
经历探究不规则物体体积的转化、测量和计算过程,让学生在动手操作中初步建立“转化”的数学思想,体验“等积变形”的转化过程。
(三)情感态度和价值观
通过实践,让学生在合作中建立协作精神,并增强学生“用数学”的意识。
二、教学重难点
教学重点:利用所学知识合理灵活地分析、解决不规则物体的体积的计算方法。
教学难点:转化前后的沟通。
三、教学准备
每组一个矿泉水瓶(课前统一搜集农夫山泉矿泉水瓶,装有适量清水,水高度分别为6、7、8、9厘米),直尺。
四、教学过程
(一)复习旧知,做好铺垫
1、板书:圆柱的体积。
问:圆柱的体积怎么计算?体积和容积有什么区别?
2、揭题:这节课,我们要根据这些体积和容积的知识来解决生活中的实际问题。(完整板书:用圆柱的体积解决问题)
【设计意图】通过复习圆柱的体积计算方法以及体积和容积之间的联系和区别,为学习新知做好知识上的准备。
(二)探索实践,体验转化过程
1、创设情境,提出问题。
每个小组桌子上有一个没有装满水的矿泉水瓶。
教师:原本这是一瓶装满水的矿泉水,已经喝了一部分,你能根据它来提一个数学问题吗?(随机板书)
预设1:瓶子还有多少水?(剩下多少水?)
预设2:喝了多少水?(也就是瓶子的空气部分。)
预设3:这个瓶子一共能装多少水?(也就是这个瓶子的容积是多少?)
2、你觉得你能轻松解决什么问题?
(1)预设1:瓶子有多少水?(怎么解决?)
学生:瓶子里剩下的水呈圆柱状,只要量出这个圆柱的底面直径和高就能算出它的体积。
教师:需要用到什么工具?(直尺)你想利用直尺得到哪些数据?(底面直径、水的高度)
小结:知道了底面直径和水的高度,要解决这个问题的确轻而易举。请你准备好直尺,或许等会儿有用哦!
(2)预设2:喝了多少水?
学生:喝掉部分的形状是不规则,没有办法计算。
教师:当物体形状不规则时,我们想求出它的体积可以怎么办?
教师相机引导:能否将空气部分变成一个规则的立体图形呢?
学生能说出方法更好,不能说出则引导:我们不妨把瓶子倒过来看看,你发现了什么?
引导学生发现:在瓶子倒置前后,水的体积不变,空气的体积不变,因此,喝了多少水=倒置后空气部分的体积,倒置后空气部分是一个圆柱,要求出它的体积需要哪些数据?(倒置后空气的高度)
小结:这个方法不错,我们利用水的流动性成功地将不规则的空气部分转化成了一个圆柱体,得到所需数据后能求出它的体积。这样一来,第3个问题还难得到你吗?
圆柱体积教学设计9探究目标:
1、组织学生开展测量、计算、估测等数学实践活动,使学生进一步掌握圆柱体积计算公式,并能运用公式正确地计算圆柱的体积。
2、在探索空间与图形的过程中,培养学生初步的空间观念及实践能力,同时结合具体的情境培养其估测意识。
3、使学生学会与他人合作,并能比较清楚地表达和交流解决问题的过程和结果。
4、让学生体验解决策略的多样性,不断激发其对数学的好奇心和求知欲,使其积极地参与数学学习活动。
教学重难点:
学生会应用圆柱体积公式解决实际问题。
探究过程:
提问:一个圆柱的底面积是80平方厘米,高是20厘米,求它的体积。
提问:如果已知的是底面半径和高,该怎么求呢?
1、出示长方体鱼缸。
要计算这个长方体鱼缸能装多少水,就是求什么?
怎样求这个长方体的容积呢?
2、出示圆柱形鱼缸。
⑴估测。这个圆柱形鱼缸的容积大约是多少?
⑵操作、汇报。如果忽略容器的壁厚,这个圆柱形鱼缸的容积到底是多少呢?学生分小组进行操作计算,各小组派代表演示操作过程,并展示计算过程。
学生可能的回答有:
生1:这个圆柱的底面周长是94.5厘米,它的高是12厘米,计算过程如下:
①94.5÷3.14÷2≈15.0(厘米)
②3.14×152×12=8478(立方厘米)
生2:我们小组测量的是底面直径和高。底面直径长30厘米,高是12厘米,计算过程如下:3.14×(30÷2)2×12=8478(立方厘米)
生3:我们测量的是底面半径和高。3.14×152×12=8478(立方厘米)
⑷评价。
组织学生间进行评价。你最喜欢哪个小组的操作方案?为什么?每一步列式的意义是什么?使学生进一步掌握圆柱体积的计算方法。
⑸反思。引导学生将实际计算结果与自己的估测结果进行对比。自己矫正偏差。
⑹延伸。如果每立方分米水重1千克,这个鱼缸大约能装水多少千克?
3、自学例题。
组织学生自学课本例5。同桌的两名同学结合例5的解答过程提出相关的数学问题,进行互问互答。
做教科书第80页“做一做”中的第2题、练习二十一的第5题。
学生独立完成,指名板演,集体评讲。
学生综合运用所学的知识,进行计算、绘图、裁剪、粘贴等多项操作活动。
在一张长30厘米,宽20厘米的长方形纸上进行合理的裁剪,做一个无盖的圆柱形笔筒。比一比,谁做的笔筒容积最大?
第五篇:圆柱体积教学设计
一、复习导入
1、同学们想一想,我们已经学习了哪些立体图形的体积?怎样计算长方体和正方体的体积?他们的体积体积的通用公式是什么?用字母怎么表示?
2、回忆一下圆面积的计算公式是如何推导出来的?
3、课件出示一个圆柱体
我们把圆转化成了近似的长方形,同学们猜想一下圆柱可以转化成什么图形呢?
二、探索体验
1、学生猜想可以把圆柱转化成什么图形?
2、课件演示:把圆柱体转化成长方体(1)是怎样拼成的?
(2)观察是不是标准的长方体?
(3)演示32等份、64等份拼成的长方体,比较一下发现了什么?引出课题并板书。
3、借鉴圆的面积公式的推导过程试着推导圆柱的体积公式。
4、交流展示
(1)小组讨论,交流汇报。(2)生汇报,师结合讲解板书。圆柱的体积=底面积x高
(3)用字母公式怎样表示呢?v、s、h各表示什么?
5、知道哪些条件可以求出圆柱的体积?
6、计算下面圆柱的体积:
(1)底面积24平方厘米,高12厘米(2)底面半径2厘米,高5厘米
三、课题检测
1、判断
(1)圆柱体、长方体和正方体的体积都可以用底面积乘高的方法来计算。(2)圆柱的底面积扩大3倍,体积也扩大3倍。(3)圆柱体的底面直径和高可以相等。
(4)两个圆柱体的底面积相等,体积也一定相等。
(5)一个长方体与一个圆柱体底面积相等,高也相等,那么它们的体积也相等。
2、联系生活实际解决实际问题。
(1)一个压路机的前轮是圆柱形,轮宽2米,半径1米,它的体积是多少立方米?
(2)一个塑料薄膜盖的蔬菜大棚,长15米,横截面是一个半径2米的半圆,大棚内的空间大约有多大?
四、全课总结 这节课你有什么收获?