第一篇:五上《探索活动:三角形的面积》教学设计
五上《探索活动:三角形的面积》教学设计
教学目的
1、使学生理解并掌握三角形面积的计算公式,能正确地计算三角形的面积。
2、通过操作,培养学生的分析推理能力。培养学生应用所学知识解决实际问题的能力,发展学生的空间概念。
3、引导学生运用转化的方法探索规律。
教学重点
理解并掌握三角形面积的计算公式。
教学难点
理解三角形面积计算公式的推导过程。
教学过程
一、激发
1、出示平行四边形:底1.5厘米,高2厘米。
提问:(1)这是什么图形?计算平行四边形的面积我们学过哪些方法?(板书:平行四边形面积=底×高)
(2)底是2厘米,高是1.5厘米,求它的面积。(3)平行四边形面积的计算公式是怎样推导的?
2、出示三角形,三角形按角可以分为哪几种?
3、既然长方形、正方形、平行四边形都可以用数方格的方法或利用公式计算的方法,求它们的面积,三角形面积可以用哪些计算方法呢?(揭示课题:三角形面积的计算)
二、尝试
1、用数方格的方法求三角形的面积。(1)看书。(2)订正数的结果。
(3)如果不数方格,怎样计算三角形的面积,能不能像平行四边形那样,找出一个公式来?
(4)三角形与平行四边形不同,按角可以分为三种,是不是都可以转化成我们学过的图形?我们分别验证一下。
2、用直角三角形推导。
(1)用两个完全一样的直角三角形可以拼成哪些图形?学生自由拼图。(2)拼成的这些图形中,哪几个图形的面积我们不会计算?(3)利用拼成的长方形和平行四边形,怎样求三角形面积?
(4)小结:通过刚才的实验,想一想,每个直角三角形的面积与拼成图形的面积有什么关系?
引导学生得出:每个直角三角形的面积等于拼成的平行四边形面积的的一半。
3、用锐角三角形推导。
(1)两个完全一样的锐角三角形能拼成平行四边形吗?学生试拼。提问:你发现了什么?
引导学生得出:两个完全一样的锐角三角形也可以拼成平行四边形。
(2)刚才同学们都把两个完全一样的锐角三角形,拼成了平行四边形,在转化的过程中,怎样按照一定的规律来做呢?(教师边演示边讲述边提问)
①把两个锐角三角形重叠放置。
提问:怎样操作才能拼成一个平行四边形?直接把一个三角形向左或向右平移,能拼成一个平行四边形吗?
②怎样才能使上面的三角形倒过来,使它原来的底在上面,底所对的顶点在下面?我们用旋转的方法,按住三角形右边的顶点不动,使三角形向逆时针方向转动180度,(也可以左边顶点不动,顺时针转动180度)直到两个三角形的底成一条直线为止。
③再把右边的三角形向上沿着第一个三角形的右边平移,直到拼成一个平行四边形为止。
(3)教师带着学生规范地操作。
重点指导:哪点不动?哪点动?旋转多少度?怎样平移?转化的过程中旋转和平移有什么不同?(平移时各个点沿着直线移动,旋转时一个点不动,其它点都绕着不动点转动。)
(4)对照拼成的图形,你发现了什么?
引导学生得出:每个锐角三角形的面积等于拼成的平行四边形面积的一半。板书:
三角形的面积=平行四边形面积的一半(5)练习
①两个完全一样的钝角三角形能用刚才的方法来拼吗?学生实验,教师巡回指导。②通过刚才的操作,你又发现了什么?
引导学生得出:每个钝角三角形的面积等于拼成的平行四边形面积的一半。三角形的面积=平行四边形面积的一半
4、归纳、总结公式。
(1)通过以上三个实验,同学们互相讨论一下,你发现了什么规律?(2)汇报结果。引导学生明确: ①两个完全一样的三角形都可以拼成一个平行四边形。
②每个三角形的面积等于拼成的平行四边形面积的一半。(同时板书)③这个平行四边形的底等于三角形的底。(同时板书)④这个平行四边形的高等于三角形的高。(同时板书)
(3)三角形面积的计算公式是怎样推导出来的?为什么要加上“除以2”?(强化理解推导过程)
板书:三角形面积=底×高÷2(4)完成书空。
5、教学字母公式。(1)学生看书。
(2)提问:通过看书,你知道了什么?
引导学生回答:如果用S表示三角形面积,a和h分别表示三角形的底和高,三角形的面积公式也可以用字母表示为:S=ah÷2。(板书)
三、应用
1、教学例题:一种零件有一面是三角形,三角形的底是5.6厘米,高是4厘米。这个三角形的面积是多少平方厘米?
①读题,理解题意。②学生试做,指名板演。
③订正,提问:计算三角形面积为什么要“除以2”?
2、做一做。
订正时提问:计算时应注意哪些问题?
3、填空。
两个完全一样的三角形可以拼成一个(),这个平行四边形的底等于(),这个平行四边形的高等于()。因为每个三角形的面积等于拼成的平行四边形的面积的(),所以()。
4、练习。
5、利用公式求方格上的三角形的面积。
四、体验
今天有何收获?怎样求三角形的面积?三角形面积的计算公式是怎样推导的?
第二篇:五上三角形面积教学设计
五上《三角形的面积》教学设计
【教学内容】:人教版五年级上册第五单元第84~85页内容
【教学目标】:
1、探索并掌握三角形的面积公式,能正确计算三角形的面积,并能应用公式解决简单的实际问题。
2、使学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,发展学生的空间观念和初步的推理能力。
3、让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣。
【教学重点】:探索并掌握三角形的面积公式,能正确计算三角形的面积。【教学难点】:理解三角形面积公式的推导过程。
【教学准备】:每小组各两个完全一样的直角三角形、锐角三角形、钝角三角形,每小组各一个长方形、正方形和平行四边形的纸模型;一条红领巾;多媒体课件。
【教学过程】:
一、动手操作,发现规律
1、师:同学们,我们来玩一个游戏好吗?(好)。请大家拿出信封内的长方形、正方形和平行四边形,听好了,既然是游戏当然就有游戏规则,请想一想,如何在每个图形上折一次,使折痕两边的形状、大小完全一样,先思考或讨论有几种折法,再开始折,并用彩色笔画出折痕。
2、小组学生代表上台汇报操作结果。
3、师根据汇报有选择地在黑板上贴出以下四种折法:
4、让学生观察后提问。
师:这三个图形分别折成了两个形状、大小完全一样的什么图形? 生:这三个图形分别折成了两个形状,大小完全一样的三角形。
师:如果我们知道长方形长为30厘米,宽为20厘米,它的面积是多少?每个三角形的面积是多少?你是怎样求出来的?
生1:长方形的面积是30×20=600(平方厘米)每个三角形的面积是600÷2=300(平方厘米)
师:如果我们知道正方形边长为30厘米,它的面积是多少?每个三角形的面积又是多少呢?为什么? 生2:正方形的面积是30×30=900(平方厘米)
每个三角形的面积是900÷2=450(平方厘米)
师:如果我们知道平行四边形的底为40厘米,高为20厘米,它的面积是多少?每个三角形的面积呢?为什么?
生3:平行四边形的面积是40×20=800(平方厘米)
每个三角形的面积是800÷2=400(平方厘米)
【设计意图】:通过动手操作,即做到复习旧知,又让学生初步理解三角形的面积与平行四边形之间的联系,为新知的探索做好铺垫。
5、引出课题。
师:看来今天我们班的同学很乐意表现自己,老师真为你们而高兴。如果我们从桌子上任意取一个三角形,(师拿起任意一个三角形模型)这个三角形的面积怎样求呢?这就是我们今天要学习研究的内容。
【设计意图】:从不会计算的面积图形中揭示课题,激发学生的探究兴趣。
6、板书课题:三角形的面积
二、探索三角形面积计算公式
1、玩游戏,小组内交流问题。
师:刚才同学们玩了一次折一折的游戏,想不想再继续玩?(想)好,现在我们再来玩一个。请听好要求:拿出信封里面的学具,从中找出两个形状、大小完全一样的三角形拼一拼,看你能发现了什么?同时在拼时要思考以下几个问题:
(课件出示以下问题)
A、两个完全一样的三角形能拼出什么图形? B、拼成图形的面积你会算吗?
C、拼成的图形与原来每一个三角形有什么联系?(学生在小组里动手拼一拼,并相互交流以上问题)
【设计意图】:给学生留出足够的空间,发挥学生的主观能动性和合作精神自主探索三角形的面积的公式。
2、学生代表上台演示汇报(2名学生,1人汇报,1人演示)(生1边演示)
生2边汇报: 我们用2个完全一样的锐角三角形拼成了一个平行四边形,拼成的平行四边形的面积=底×高,每一个锐角三角形的面积是这个平行四边形面积的一半,所以一个三角形的面积=底×高÷2。师:哦!原来是这样!同学们,你们明白了吗?请把掌声送给刚才这两位小老师。
师:刚才这个小组是用两个完全一样的锐角三角形来拼组的。你们还有其他新的发现吗?
(点用直角三角形拼组的小组代表汇报)(学生汇报的过程略)师:汇报得真好!还有吗?
(点用直角三角形拼组的小组代表汇报)(学生汇报的过程略)
(注明:每一种拼组学生汇报后都贴在黑板上。在老师小结时,故意把其中的一个三角形拿掉,并用画虚线表示。)
【设计意图】:让各组学生口头表达自己小组推导过程,锻炼学生整理思维、理顺思路的能力和口头表达能力。
3、根据学生的汇报,老师小结。
师:看来不管是锐角三角形、直角三角形,还是钝角三角形,只要两个完全一样的三角形就能拼成一个平行四边形,大家都说其中一个三角形的面积是平行四边形面积的一半。
师追问:是不是任意一个三角形面积是任意一个平行四边形面积的一半?(师任意拿起一个三角形和不等底等高的平行四边形的纸板,让学生对比进行引导)
生:不是。三角形的底和高必须与平行四边形的底和高相等时才对。同学们现在说的很有道理,我们再来回忆一下刚才大家拼图形的过程。老师板书:
三角形的面积是这个等底等高的平行四边形面积的一半。(板书)师:看来,我们通过玩一玩,拼一拼,知道了怎样求一个三角形的面积了。那谁来说一说三角形的面积的计算公式是什么?
生:三角形的面积=底×高÷2(老师板书)
师追问:同学们,老师有点不明白,为什么写这个公式时用三角形的底乘高呢?“底×高”表示什么意思?为什么要“÷2”?
生:“底×高”表示用两个完全一样的三角形拼成的平行四边形的面积;因为一个三角形的面积是拼成的平行四边形面积的一半,所以要“÷2”。(学生加深对三角形面积计算公式的理解后,让学生齐读公式)
【设计意图】:通过小结追问,让学生更进一步对三角形的面积=底×高÷2的理解,为下一步解决实际问题做好充分的准备。
师:同学们,如果用a表示三角形的底,h表示三角形的高,s表示三角形的面积,三角形面积的字母公式是什么?
生:s=ah÷2(板书)
4、介绍P85页的数学知识。
师:同学们,你们知道吗?今天我们一起动手推导出来的三角形的面积计算公式,很早以前,我们的祖先就已经发现了,请看屏幕。(多媒体出示P85页的数学知识)
师:同学们,我国古代数学家固然伟大。但是,老师觉得你们更了不起!他们年纪很大了才发现的,而咱们年纪轻轻的不也找到三角形面积的计算方法了吗?来,把热烈的掌声送给咱们自己!(响起掌声)好,接下来我们是不是更有信心继续展示自我?(是)
【设计意图】:通过数学知识的介绍,渗透爱国主义思想教育,同时增强学生利用知识解决实际问题的信心。
三、学以致用,解决问题。
师:同学们,我们已经推导出了三角形面积计算公式,现在我们就用三角形的面积计算公式解决一些实际问题,好吗?(好)
1、计算生活中的三角形的面积(1)计算红领巾的面积
师:老师这里有一条红领巾,(举起实物)如果想求它的面积有多少?需要知道什么条件?
生:需要三角形的底和高。(课件出示例2)
红领巾的底是100cm,高33cm,它的面积是多少平方厘米? 师:请同学们算一算。(学生练习后讲评订正)(2)计算三角形标志牌的面积
师:我们经常见到类似以下标志的标志牌(课件出示,注明:“4.8分米”是边提问边出示),你知道这个标志牌的面积吗?谁口算一下。
生:3×4÷2=6(平方分米)师:都是这样做的吗?为什么不用3×2.5÷2呢? 生:因为2.5分米不是3分米对应的高。
师:如果与2.5分米对应的底边是4.8分米(课件出示)还可以怎样列式? 生:2.5×4.8÷2
师:通过这道题的解答,你明白了什么?
生:我们要计算三角形的面积时必须找准相对应的底和高,才利用三角形面积的计算公式来计算。
(3)认识道路交通警示标志。师:请看屏幕。(多媒体出示)师:你们认识这些交通警告标志吗?
(学生回答后,老师边小结,课件边出示板书)
向右急转弯 注意危险 减速慢行 注意行人
师:同学们,我们学校门口到人民路口这段路,在放学时经常出现交通混乱,为了改变这种状况,交警大队准备用铁皮制作其中两块这样警示牌,你能算出需要多少铁皮吗?(课件同时出示标有底是9分米,高7.8分米的数据的图形)
(学生练习后讲评订正,订正时主要关注”用简便方法解答”的小结。)(4)画面积相等的三角形。
师:看到同学们这么积极,小精灵也给大家带来了问题,请大家看屏幕(课件出示)
师:上图中哪两个三角形的面积相等?你还能画出和它们面积相等的三角形吗?
(学生打开书87页,在书中画一画,完成第6题)
师:你画出了几个面积相等的三角形?如果给你足够的时间你能画出多少个这样的三角形?
生:无数个
师:通过画这样的三角形,你发现了什么? 生:三角形的面积与底和高有关,与形状无关。
【设计意图】:通过分层次的解决实际问题的练习,既巩固了学生对三角形面积计算公式的理解应用,又使学生感受到三角形面积公式的变形应用,同时对学生进行交通安全教育。〕
四、课堂小结
师:本节课你学到了什么新知识?你觉得计算三角形面积时应注意什么?(学生汇报略)÷2 五:布置作业:
课本P86--87页第2、4、5题
六、板书设计:(略)
第三篇:三角形的面积教学设计五上
三角形的面积教学设计(西师版五年级下册)
一、教学内容分析
三角形的面积是本单元教学内容的第二课时,是在学生掌握了三角形的特征以及长方形、正方形、平行四边形面积计算的基础上学习的,是进一步学习梯形面积和组合图形面积的基础,根据平行四边形面积公式推导的方法提出解决问题的思路,把三角形也转化成学过的图形,通过学生动手操作和探索,推导出三角形面积计算公式,最后用字母表示出面积计算公式,这样一方面使学生初步体会到几何图形的位置变换和转化是有规律的,另一方面有助于发展学生的空间观念。
二、教学目标
1、引导学生用多种方法推导三角形面积的计算公式,理解长方形、平行四边形和三角形之间的内在联系。
2、通过操作使学生进一步学习用转化的思想方法解决新问题。
3、理解三角形的面积与形状无关,与底和高有关,会运用面积公式求三角形面积。
4、引导学生积极探索解决问题的策略,发展动手操作、观察、分析、推理、概括等多种能力,并培养学生的创新意识。
三、学习者特征分析
学生在以前的学习中,初步认识了各种平面图形的特征,掌握了长方形、正方形、平行四边形的面积计算,学生学习时并不陌生,在前面的图形教学中,学生学会了运用折、剪、拼、量、算等方法探究有关图形的知识,在学习方法上也有一定的基础,教学时从学生的现实生活与日常经验出发,设置贴近生活现实的情境,通过多姿多彩的图形,把学习过程变成有趣的、充满想象和富有推理的活动。
四、教学策略选择与设计
1、以旧带新:注意学生已有知识基础和经验背景,按照学生的认知规律组织教学,先复习近平行四边形面积的推导过程,再让学生探究三角形面积的计算方法。
2、自主探究,合作交流,亲身实践。让学生通过动手实践,自主探究,推导出三角形面积计算方法。
3、教学难点分散解决。让学生在做实验中体会两个“完全一样”的三角形才能拼成一个平行四边形,为三角形面积公式的推导做铺垫。课中学生通过观察、分析对比、讨论等方法推导出了三角形的面积公式。
五、教学重点及难点
重点:理解并掌握三角形面积的计算公式。难点:理解三角形面积的推导过程。
六、教学过程
一、情境引入
师:同学们,我们每天都佩戴着鲜艳的红领巾,高高兴兴地来到学校学习新的知识,那你知道做一条红领巾需要多少布料呢?我们佩戴的红领巾是什么形状的?怎样计算三角形的面积呢?这节课我们就一起来研究三角形的计算方法 [设计意图]通过情境的创设,给学生提供现实的问题情境,使学生产生解决问题的欲望,积极主动地参与到学习活动之中。
二、探究新知
1、复习近平行四边形面积的求法
师:回忆一下,平行四边形面积计算公式是什么?是怎么推导的? 师:我们是先把平行四边形转化成长方形,运用学过的长方形面积的计算公式,找到平行四边形与长方形之间的联系,推导出了平行四边形面积的计算公式,今天这节课,我们继续用转化的数学思想来探索三角形的面积怎样计算。
[设计意图]抓住新旧知识的生长点进行复习,检验学生对已有知识的掌握情况和转化思想的理解情况,建立起新旧知识的联系,为学习新知做好铺垫。
2、第一次操作实践
师:好,那怎样把三角形转化成我们所学过的图形呢?请同学们拿出学具袋里的各种三角形,两人一组想一想,拼一拼。(教师巡回指导)
3、交流反馈
师:我这也有两个直角三角形,可是拼不成,为什么?你有什么发现? 生:要用完全相同的三角形来拼。师:对,要用两个完全相同的三角形来拼。师:同学们都拼好了,谁来说说你是怎样拼的? 师:你拼时怎么知道是两个完全相同的三角形呢? 生:把两个三角形重合就知道了。生:我用两个完全相同的锐角三角形拼成了一个平行四边形。生:我用两个完全相同的钝角三角形也拼成了一个平行四边形。生:我用两个直角三角形拼成了一个平行四边形。
(学生汇报并且交流拼法,明确用两个完全一样的三角形能拼成一个平行四边形。)
师:看看这几种拼法它们有什么共同点呢?认真观察,同桌互相说说。
4、第二次操作实践
师:说的真好,刚才同学们把两个形状完全一样的三角形通过拼组,转化成了平行四边形,也就把三角形面积的计算和我们刚学过的平行四过形面积计算联系起来了,下面我们再次合作,根据你们转化的图形,找到它们之间的联系,推导出三角形面积的计算公式。(生讨论交流)
[设计意图]放手让学生自己通过前面的拼摆操作,探索三角形与拼成的长方形,平行四边形或正方形之间的内在联系,能够使学生更好地理解三角形面积公式的推导过程。师:谁来说说你是怎样推导的? 生汇报
师板书:三角形的面积=底×高÷2 师:你们的发现太棒了!下面请同学再仔细观察所拼成的平行四边形的底与三角形的底,所拼成的平行四边形的高与三角形的高看看有什么发现?
师:我们把这种相等的关系叫等底等高。师:那么三角形的底乘以三角形的高求出的是什么? 生:与三角形等底等高的平行四边形的面积。师:为什么除以2呢?
生:因为三角形的面积是与它等底等高的平行四边形面积的一半,所以要除以2。
师:大家同意吗?无论什么样的三角形,它的面积都可以转化成平行四边形的面积来计算,所以我们得到:三角形的面积公式=底×高÷2 师:谁能用字母表示三角形的面积公式 师板书s=ah÷2(生齐读)
三、运用公式,解决问题
(1)师:利用三角形面积公式,我们可以方便地解决一些实际问题了!老师这里有一条红领巾,求它的面积,你需要知道什么条件?你能估测一下这条底边有多长吗?(100厘米)
师:(出示课件)它的高是33厘米,你能计算出它的面积吗? 在练习本上算一算
〔设计意图〕在解决实际问题中巩固新知,培养学生学数学、用数学的思想,感受数学的价值。
(2)我们经常见到类似标志的标志牌,你知道这个标志牌的面积吗?谁口算一下。
3×4÷2=6(平方分米)2.5×4.8÷2=6(平方分米)
师:都是这样做的吗?为什么不用2.5分米? 如果这条底边是4.8分米还可以怎样列式。(2.5×4.8÷2)师:通过这道题的解答,你明白了什么?
〔设计意图〕通过解决实际生活,提升学生思考能力,培养学生认真观察的能力。
(3)你认识下面的这些道路交通警示标志吗? 向右急转弯注意危险减速慢行注意行人
师:我们学校的上下两个路口在放学时经常交通混乱,为了改变这种状况,交警队准备用铁皮制作四块这样警示牌,你能算出需要多少铁皮吗? 学生试算
〔设计意图〕这道练习的设计,既巩固了数学知识又自然地渗透了安全教育。
(4)小精灵也给大家带来了问题,请大家看屏幕 师:你能画出和它们面积相等的三角形吗? 学生打开书,在书中画一画。
师:你画出了几个面积相等的三角形?如果给你足够的时间你能画出多少个这样的三角形? 生:无数个
师:通过画这样的三角形,你发现了什么? 生:三角形的面积与底和高有关,与形状无关。
[设计意图]让学生通过思考、讨论、揭示“等底等高的三角形,它们的面积相等”这一规律。
四、总结收获
这节课我们运用转化的思想,通过拼摆把三角形转化成与它等底等高的平行四边形,推导出三角形面积公式,大家还有不明白的地方吗?实际上我们还可以运用剪拼或折叠的方法来推导三角形面积公式,课下同学们可以动手试一试。
师:同学们,这节课你最大的收获是什么? 生:我学会了三角形的面积怎样计算。
生:我学会了用转化的方法推导三角形的面积计算公式。师:下节课我们继续运用转化的思想探究梯形面积的计算方法。[设计意图]通过反思和总结,能使学生建构的知识框架更加清晰、明了,使学生不仅掌握了知识,而且也掌握了学习方法。教师活动预设学生活动设计意图
导入:先以红领巾导入,再复习旧知,平行四边形的面积公式推导过程。各抒己见激起学习兴趣,新知以旧带新。
教学过程:课件演示各类两个相同的三角形拼图。动手摆一摆、拼一拼。让学生成为学习的主人,动手去探究发现。再课件演示验证、加深认识。
七、教学评价设计
纵观本节课教学,教师在设计教学环节时注意了学生已有知识基础和经验背景,按照学生的认知规律组织教学,先复习了平行四边形面积的推导过程,然后让学生探究三角形面积的计算方法,教师根据学生已有的知识以旧引新,衔接自如。
“自主探究,合作交流,亲身实践”是《数学课程标准》大力倡导的学习方式,这种学习方式使学生真正成了学习的主人。本节课教师在设计时改变了教师讲知识,学生用知识的教学摸式,把学习的主动权给了学生,使学生的主体地位落实,使学生学得积极主动让学生通过动手实践,自主探究,推导出三角形面积计算方法,这是本节课的一个亮点。
教学难点分散解决,让学生学得轻松。新课伊始,教师就设计了让学生在做实验中体会两个“完全一样”的三角形才能拼成一个平行四边形,为三角形面积公式的推导做了极好的铺垫。课中学生通过观察、分析对比、讨论等方法推导出了三角形的面积公式,课的结尾部分设计了一组有坡度的练习,这就使三角形的面积公式得以充分地运用,并在运用中体现公式的应用价值,从而呈现了数学知识的形成与应用过程。
充分体现了“动手做数学的”的理念是这节课的又一亮点。本节课处处都充满了“做”。建构主义认为小学生学习应该是一个主动建构知识的过程,小学生的数学知识不应该完全被动地吸收课本知识,而应让他们在丰富生动的思维活动中“做数学”,本节课通过学生动手操作、实践、探索两个环节,时时处处体现了学生在“做数学”。使学生在一个轻松和谐民主的氛围中探索出了三角形面积的计算公式,获得了成功的喜悦,增加学好数学的自信,不仅培养了学生的动手操作能力,还培养了学生解决问题多样化的意识。
八、板书设计 三角形的面积
三角形的面积是与它等底等高的平行四边形的面积的一半。三角形的面积=底×高÷2 例2 S=ah÷2 =100×33÷2 =1650(cm2)
九、实践反思
《三角形的面积》这节课,我是按提出问题、寻找思路、实验探究的步骤,以小组合作交流学习为主的形式进行教学。下面就本节课谈谈我的想法与做法:
一、本节课的导入,红领巾是同学们非常熟悉的事物,关于它的面积是多少,大家一定很想知道,我本着生活中产生数学,又作用于数学的理念。所以我以求一条红领巾的面积是多少来导入新课,这样会比较自然。
二、为了落实学目标,让学生在拼摆过程中发现两个完全一样的三角形可以拼成一个平行四边形,我预设了两种情况:一种是学生没有说出两个完全一样的三角形拼成一个平行四边形,一种是学生直接归纳出两个完全一样:三角形可以拼成一个平行四边形,结合这两种情况,我采取了不同的教学方法,如果是第一种情况我就会拿出两个不一样的三角形问学生:这两个三角形能拼成一个平行四边形吗?学生回答不能,我进一步追问:为什么?这样强调了必须是两个完全一样的三角形才能拼成一个平行四边形,突破了重难点,为下面的学习奠定了基础。
在推导三角形面积公式的过程中,在试讲时发现学生对三角形的底、高与平行四边形的底、高之间的关系理解不透,因此教学时,我把这个内容作为教学的难点,我力争运用准确,简炼的语言去引导学生发现、表达、同桌互相说,使学生对于三角形面积公式的推导过程不但理解还能准确地运用语言表达出来。在练习的设计上主要明确三角形的底与高必须相对应,三角形的面积与底和高有关。
三、本节课我不但注重数学知识的学习,还关注数学思想方法的渗透。在本节课自始至终从引入到探究,直到运用环节始终贯穿对数学思想的渗透。
四、在本节课中,我认为还存在许多不足
1、老师的语言不够严密,应加强理论方面学习和自身素质的提高。
2、评价语言不及时、不到位,不能调动学生的积极性。
3、对学生的问题有包办代替现象,在以后的教学中应进一步改进。
【教学内容】西师版五年级上册第五单元第82~83页内容
【教学目标】:
1、探索并掌握三角形的面积公式,能正确计算三角形的面积,并能应用公式解决简单的实际问题。
2、使学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,发展学生的空间观念和初步的推理能力。
3、让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣。
【教学重点】:探索并掌握三角形的面积公式,能正确计算三角形的面积。
【教学难点】:理解三角形面积公式的推导过程。
【教学准备】:每小组各两个完全一样的直角三角形、锐角三角形、钝角三角形,每小组各一个长方形、正方形和平行四边形的纸模型;一条红领巾;多媒体课件。
【教学过程】:
一、动手操作,发现规律
1、师:同学们,我们来玩一个游戏好吗?(好)。请大家拿出信封内的长方形、正方形和平行四边形,听好了,既然是游戏当然就有游戏规则,请想一想,如何在每个图形上折一次,使折痕两边的形状、大小完全一样,先思考或讨论有几种折法,再开始折,并用彩色笔画出折痕。
2、小组学生代表上台汇报操作结果。
3、师根据汇报有选择地在黑板上贴出以下四种折法:
4、让学生观察后提问。
师:这三个图形分别折成了两个形状、大小完全一样的什么图形?
生:这三个图形分别折成了两个形状,大小完全一样的三角形。师:如果我们知道长方形长为30厘米,宽为20厘米,它的面积是多少?每个三角形的面积是多少?你是怎样求出来的?
生1:长方形的面积是30×20=600(平方厘米)
每个三角形的面积是600÷2=300(平方厘米)
师:如果我们知道正方形边长为30厘米,它的面积是多少?每个三角形的面积又是多少呢?为什么?
生2:正方形的面积是30×30=900(平方厘米)
每个三角形的面积是900÷2=450(平方厘米)师:如果我们知道平行四边形的底为40厘米,高为20厘米,它的面积是多少?每个三角形的面积呢?为什么?
生3:平行四边形的面积是40×20=800(平方厘米)每个三角形的面积是800÷2=400(平方厘米)
【设计意图】:通过动手操作,即做到复习旧知,又让学生初步理解三角形的面积与平行四边形之间的联系,为新知的探索做好铺垫。
5、引出课题。
师:看来今天我们班的同学很乐意表现自己,老师真为你们而高兴。如果我们从桌子上任意取一个三角形,(师拿起任意一个三角形模型)这个三角形的面积怎样求呢?这就是我们今天要学习研究的内容。
【设计意图】:从不会计算的面积图形中揭示课题,激发学生的探究兴趣。
6、板书课题:三角形的面积
二、探索三角形面积计算公式
1、玩游戏,小组内交流问题。
师:刚才同学们玩了一次折一折的游戏,想不想再继续玩?(想)好,现在我们再来玩一个。请听好要求:拿出信封里面的学具,从中找出两个形状、大小完全一样的三角形拼一拼,看你能发现了什么?同时在拼时要思考以下几个问题:
(课件出示以下问题)
A、两个完全一样的三角形能拼出什么图形? B、拼成图形的面积你会算吗?
C、拼成的图形与原来每一个三角形有什么联系?(学生在小组里动手拼一拼,并相互交流以上问题)
【设计意图】:给学生留出足够的空间,发挥学生的主观能动性和合作精神自主探索三角形的面积的公式。
2、学生代表上台演示汇报(2名学生,1人汇报,1人演示)(生1边演示)
生2边汇报: 我们用2个完全一样的锐角三角形拼成了一个平行四边形,拼成的平行四边形的面积=底×高,每一个锐角三角形的面积是这个平行四边形面积的一半,所以一个三角形的面积=底×高÷2。
师:哦!原来是这样!同学们,你们明白了吗?请把掌声送给刚才这两位小老师。
师:刚才这个小组是用两个完全一样的锐角三角形来拼组的。你们还有其他新的发现吗?
(点用直角三角形拼组的小组代表汇报)(学生汇报的过程略)师:汇报得真好!还有吗?
(点用直角三角形拼组的小组代表汇报)(学生汇报的过程略)
(注明:每一种拼组学生汇报后都贴在黑板上。在老师小结时,故意把其中的一个三角形拿掉,并用画虚线表示。)
【设计意图】:让各组学生口头表达自己小组推导过程,锻炼学生整理思维、理顺思路的能力和口头表达能力。
3、根据学生的汇报,老师小结。
师:看来不管是锐角三角形、直角三角形,还是钝角三角形,只要两个完全一样的三角形就能拼成一个平行四边形,大家都说其中一个三角形的面积是平行四边形面积的一半。
师追问:是不是任意一个三角形面积是任意一个平行四边形面积的一半?
(师任意拿起一个三角形和不等底等高的平行四边形的纸板,让学生对比进行引导)
生:不是。三角形的底和高必须与平行四边形的底和高相等时才对。同学们现在说的很有道理,我们再来回忆一下刚才大家拼图形的过程。
老师板书:
三角形的面积是这个等底等高的平行四边形面积的一半。(板书)师:看来,我们通过玩一玩,拼一拼,知道了怎样求一个三角形的面积了。那谁来说一说三角形的面积的计算公式是什么?
生:三角形的面积=底×高÷2(老师板书)
师追问:同学们,老师有点不明白,为什么写这个公式时用三角形的底乘高呢?“底×高”表示什么意思?为什么要“÷2”?
生:“底×高”表示用两个完全一样的三角形拼成的平行四边形的面积;因为一个三角形的面积是拼成的平行四边形面积的一半,所以要“÷2”。
(学生加深对三角形面积计算公式的理解后,让学生齐读公式)【设计意图】:通过小结追问,让学生更进一步对三角形的面积=底×高÷2的理解,为下一步解决实际问题做好充分的准备。
师:同学们,如果用a表示三角形的底,h表示三角形的高,s表示三角形的面积,三角形面积的字母公式是什么?
生:s=ah÷2(板书)
4、介绍P85页的数学知识。
师:同学们,你们知道吗?今天我们一起动手推导出来的三角形的面积计算公式,很早以前,我们的祖先就已经发现了,请看屏幕。(多媒体出示P85页的数学知识)
师:同学们,我国古代数学家固然伟大。但是,老师觉得你们更了不起!他们年纪很大了才发现的,而咱们年纪轻轻的不也找到三角形面积的计算方法了吗?来,把热烈的掌声送给咱们自己!(响起掌声)好,接下来我们是不是更有信心继续展示自我?(是)
【设计意图】:通过数学知识的介绍,渗透爱国主义思想教育,同时增强学生利用知识解决实际问题的信心。
三、学以致用,解决问题。
师:同学们,我们已经推导出了三角形面积计算公式,现在我们就用三角形的面积计算公式解决一些实际问题,好吗?(好)
1、计算生活中的三角形的面积(1)计算红领巾的面积
师:老师这里有一条红领巾,(举起实物)如果想求它的面积有多少?需要知道什么条件?
生:需要三角形的底和高。(课件出示例2)红领巾的底是100cm,高33cm,它的面积是多少平方厘米? 师:请同学们算一算。(学生练习后讲评订正)(2)计算三角形标志牌的面积
师:我们经常见到类似以下标志的标志牌(课件出示,注明:“4.8分米”是边提问边出示),你知道这个标志牌的面积吗?谁口算一下。
生:3×4÷2=6(平方分米)
师:都是这样做的吗?为什么不用3×2.5÷2呢? 生:因为2.5分米不是3分米对应的高。
师:如果与2.5分米对应的底边是4.8分米(课件出示)还可以怎样列式?
生:2.5×4.8÷2
师:通过这道题的解答,你明白了什么?
生:我们要计算三角形的面积时必须找准相对应的底和高,才利用三角形面积的计算公式来计算。
(3)认识道路交通警示标志。师:请看屏幕。(多媒体出示)师:你们认识这些交通警告标志吗?(学生回答后,老师边小结,课件边出示板书)
向右急转弯 注意危险 减速慢行 注意行人 师:同学们,我们学校门口到人民路口这段路,在放学时经常出现交通混乱,为了改变这种状况,交警大队准备用铁皮制作其中两块这样警示牌,你能算出需要多少铁皮吗?(课件同时出示标有底是9分米,高7.8分米的数据的图形)
(学生练习后讲评订正,订正时主要关注”用简便方法解答”的小结。)
(4)画面积相等的三角形。
师:看到同学们这么积极,小精灵也给大家带来了问题,请大家看屏幕(课件出示)
师:上图中哪两个三角形的面积相等?你还能画出和它们面积相等的三角形吗?
(学生打开书87页,在书中画一画,完成第6题)
师:你画出了几个面积相等的三角形?如果给你足够的时间你能画出多少个这样的三角形?
生:无数个
师:通过画这样的三角形,你发现了什么? 生:三角形的面积与底和高有关,与形状无关。
【设计意图】:通过分层次的解决实际问题的练习,既巩固了学生对三角形面积计算公式的理解应用,又使学生感受到三角形面积公式的变形应用,同时对学生进行交通安全教育。〕
四、课堂小结
师:本节课你学到了什么新知识?你觉得计算三角形面积时应注意什么?
(学生汇报略)÷2 五:布置作业:
课本P86--87页第2、4、5题
六、板书设计:(略)
第四篇:《探索活动(二)三角形面积》教学设计
《探索活动
(二)三角形面积》教学设计
教学目标:
1、使学生通过动手操作推导出三角形面积公式,理解,掌握三角形面积计算公式,能正确运用面积公式进行三角形面积计算。
2、使学生进一步体会转化方法的价值。
教学重点:三角形面积公式的概括;利用分割与旋转进行图形转化。教学难点:三角形面积公式的概括;利用分割与旋转进行图形转化。教具准备:学具类 三个三角形(两个完全相同,一个不同),一个平行四边形,剪刀。教具类:课件,与学具相应的教具。教学过程设计:
一、温故知新,提出问题
1、课件出示一个长方形和一个平行四边形。
(1)提问:你们认识这两个图行吗?说说你对它们的了解。(学生畅所欲言)
师:那么怎样可以求出它们的面积?需要什么样的条件?
(2)师:同学们说的真好,原来这个长方形是实验小学的花坛,为了美化校园。
今年他们想把这两个花坛平均分成两份,一份种玫瑰花,一份种牡丹花。你们能帮忙想想办法吗?
师:同学们的办法可真多呀,实验小学最终决定把花坛平均分成两个三角形,你们能帮忙算出每个三角形的面积吗?(课件出示所需的数据)生列式:8×4÷2=16(C㎡)
4×6÷2=12(C㎡)师:这样计算的理由是什么呢?
生:因为每个三角形的面积是原来图形面积的一半。
师:同学们,刚才我们在求三角形面积的时候是利用原来的图形面积的一半求出来的,那如果只有一个三角形,怎样才能求出这个三角形的面积呢?今天这节课我们一起来学习三角形的面积。板书课题:三角形的面积(设计意图:让学生复习长方形和平行四边形面积,然后根据三角形面积和它对应的平行四边形和长方形的面积的关系,求出三角形的面积,也为下面学生自主探索三角形的面积计算埋下伏笔)师出示一张三角形彩纸,求它得面积。
2、教师利用课件出示教材25页主题图。
教师引导审题:什么形状,给了什么条件,要求什么问题。学生观察后口述。
(设计意图:在实际问题中使学生认识三角形面积计算的必要性,激发学生学习的内驱力,为学生积极参与到探究过程中做好心理上的准备)
3、教师提问:你认为今天我们应该重点研究什么?学生口述,教师板书:三角形面积 教师谈话:今天这节课我们将通过“动手操作、观察对比”推导出三角形面积的计算公式。(设计意图:学生在教师的指导下自我提出学习的内容,教师明确出示所采用的方法和学习的目标,使学生思维定向)
二、观察对比,设想转化
1、教师提问:你能用什么办法得到三角形面积呢?学生思考口述。预计学生可能提出以下两种方案:
(1)数方格的办法(2)将三角形转化为已经学过的图形(平行四边形)
2、教师再出示一个平行四边形(如右图),引导学生与三角形进行观察对比,思考:“怎样将三角形转化为平行四边形”,学生独立思考,分组交流,口述自己的或小组的意见。(设计意图:将三角形与平行四边形进行对比,思考,交流转化的预想,其目的都是培养学生有目的,有计划的进行探究活动,减少探究活动的盲目性和随意性,养成良好的思维习惯,发展学生空间想象的能力)
三、动手操作,体验转化
1、教师谈话:下面同学们可以按照自己的想法利用自己手中的学具进行转化,并思考问题:(教师利用课件出示思考题)
在转化过程中的三角形和平行四边形有什么关系? 教师引导学生分析思考的含义。
2、学生按照自己的想法动手实践,根据思考题思考,在小组内交流,教师巡视,并作适当点拨。
3、学生汇报探究的成果。预计有以下几种情况:
(1)拼:①用两个完全相同的三角形拼成一个平行四边形。教师提问:这两个三角形有什么关系?完全相同是什么意思?如果不完全相同的两个三角形呢?
完全相同——形状、面积都相等(板书)
小结:当三角形和平型四边形等低等高时,三角形的面积是平行四边形面积的一半。(板书)②通过割补把一个三角形拼成平行四边形。
教师提问:为什么选择两条边的中点连接进行分割?(原因:平行四边形的对边相等)
小结:当三角形和平行四边形等底等积时,三角形的高是平行四边形高的2倍。教师利用电脑演示揭示实质:当三角形和平行四边形等底等高时,三角形的面积是平行四边形面积的一半。(板书)
4、教师提问:通过刚才一系列的活动,我们得到了一个怎样的结论? 学生思考,口述。
总结:当三角形和平行四边形等底等高时,三角形的面积是平行四边形面积的一半。(或:三角形面积是与它等底等高的平行四边形面积的一半)
(设计意图:通过动手、交流、汇报、归纳等教学活动,使学生在活动中“做”数学,体验知识形成的过程和自主获取新知的过程,积累数学实验的经验,发展分析、归纳等思维能力、空间想象能力、以及利用数学语言与他人交流的能力)
四、建立公式,实践应用
1、归纳公式。
教师谈话:请同学们打开教材25页,学生阅读教材。教师谈话:根据刚才得出的结论,请大家思考三角形面积应该怎样计算呢?在小组里说一说你的想法,然后把结论填在教材上。
三角形面积=
如果用S表示三角形的面积,用a和h分别表示三角形的底和高,那么三角形的面积公式可以写成:
S=
学生思考,交流,填写,口述,教师板书: 三角形面积=底×高÷2;S=ah÷2
2、剖析公式:教师提问:①计算三角形面积必须知道什么条件?②底乘高等到的是什么?③为什么除以2?
3、回归问题。
教师谈话:现在我们能求出这个三角形的面积了吗? 学生重新审题,独立完成,口述,教师板书:
4×3÷2=6(C㎡);它的面积< xmlnamespace prefix =“st1” ns =“urn:schemas-microsoft-com:office:smarttags” />6C㎡。
4、巩固练习:完成教材26页试一试。学生独立完成,板演,教师订正。
(设计意图:以教材为引领,完成自主探究的学习过程,经历数学建模)
教学反思 《探索活动
(二)三角形面积》这节课的内容是再平行四边形面积计算的基础上进行教学的,主要是引导学生通过三角形面积公式的推导去理解和掌握三角形面积计算公式,并能运用三角形的面积公式,计算相关图形的面积,解决实际问题。根据新课程新理念的要求,教学应该由原来教师单纯的教转变为引导学生学会学习。因此,在教学中我注重引导学生用自己动手操作,从操作中掌握方法,发现问题,解决问题。本节课中,我觉得比较满意的地方有以下几点:
1、导入新课,埋下伏笔。
在课的开始,我让学生回忆对平行四边形和长方形的了解,学生的积极性很高。再让学生把一个长方形和平行四边形的花坛平均分成了两个三角形,借助长方形和平行四边形的面积算出一个三角形的面积。学生很有兴趣的开动自己的小脑袋,想出了好办法。学生初步感到三角形的面积和长方形与平行四边形的面积有一定的联系。为下面的自主探索三角形的面积计算埋下伏笔。
2、自主探索,合作交流。
创设实践操作情境,营造自主探索的学习氛围,激发学生课堂探索的欲望。在教学中我力求突破传统教学的模式,充分体现以“学生发展为本”的教学理念,在获取新知的过程中大胆放手,让学生有足够的时间,在获取新知的过程中大胆放手,让学生有足够的时间,以小组为单位对三角形的面积进行探索和交流。小组谈论交流后,我请各小组代表到黑板前进行汇报并说说他们的想法。学生从不同的角度、不同的手段、不同的方法达到一个目的——发现并推导出三角形面积公式。在这个过程中,学生们表现出了浓厚的兴趣,个个都很积极、很投入地动手操作,极大调动了学生思维活动。学生真正成为了学习的主体,通过实践活动,学生亲自参与了面积公式的推导过程,真正做到“知其然,知其所以然”,而且思维能力、口头表达能力、空间感受能力、动手操作能力都得到锻炼和提高。
3、运用多媒体技术,激发学生学习兴趣。
在学生动手操作把两个完全一样的锐角三角形拼成一个平行四边形时,先让学生自己说说是怎样拼成的,然后用计算机动态演示拼的过程,“重合、旋转、平移”,使学生直观地感知平移和旋转的含义及其对图形的位置变化的影响,充分调动了学生的学习兴趣,进一步促进学生空间观念的发展。在帮助学生理解等底等高时,多媒体展示过程,让学生很轻松的理解了知识。在练习设计中,让学生观察、比较两个三角形的面积是否相等,然后把其中一个三角形的顶点在平行线上移动,使学生清楚的看出,等低等高的三角形形状不同,但是面积都相等,运用了多媒体技术能有效的化静态为动态,化抽象为具体,化难为易。
通过本节课也看到了一些需要努力的方向:
1、由于时间安排上前松后紧,导致后面的练习没有足够的时间进行指导和分析。
2、在公式推导的过程中,只让几位学生讲述了推导的过程,而把大部分学生的口述给忽略了,使得有一部分学生对公式的推导还不能很好地进行口述。
第五篇:探索活动三角形的面积教学设计二
探索活动
(二)《三角形的面积》教学设计
教学内容
探索活动
(二)《三角形的面积》教材第25页——26页
教学目标
知识目标:
①使学生经历、理解三角形面积公式的推导过程。
②能正确运用公式进行三角形面积计算,初步学会用转化的数学方法解决实际问题。
能力目标:
①通过动手操作、认真观察、比较、思考等方式,培养学生的空间想象能力、思维能力和较强的动手能力;②通过讨论及小组合作学习的方式,培养学生的分析综合、抽象概括能力和相互协作学习的能力。
德育目标:
①利用教材上的德育资料对学生进行爱国主义教育。②通过练习中的德育因素对学生进行交通安全教育。教学重点
理解三角形面积计算公式,正确计算三角形的面积 理
教学难点
理解三角形面积公式的推导过程。
课前准备
三个学习小组分别准备两个完全一样的三角形(一组准备直角三角形,二组准备锐角三角形,三组准备钝角三角形,四组任意)、直尺、剪刀。
教师准备多媒体课件一份、演示教具一套
教学进程
一 复习引入
1、出示课件
师:比一比,下面两个图形哪个面积大?
生:观察 比较 说说你是怎么比较的
师小结,比较两个图形的大小,可以用数格子、旋转、平移的方法。
2、回顾平形四边形面积公式的推导 师:谁能告诉老师平形四边形面积公式推导过程
师:在这个过程,我们运用了一个什么数学思想。
生:转化
师板书:转化
师:现在,我们已经掌握了几种图形的面积公式了呢?
生答后,师简要小结
3、设疑,引入新课
小明有一张彩纸(课件出示),他想知道这张纸 面积,前面我们已经掌握了长方形、正方形、平行四边形的面积计算方法,可这却是个三角形,怎么计算三角形的面积呢?大家想不想来探究一下这个问题?(生答)好,那今天,我们就来学习这个知识
师板书:三角形的面积
二、探究新知
1、知识猜想
师:学习之前,大家先猜一猜,三角形的面积可能跟什么有关? 生讨论、作答(可能和底、高有关)
2、动手实践
一组学生拿出直角三角形学具
二组拿出锐角三角形学具
三组拿出钝角三角形学具
剪一剪、拼一拼,你能发现什么?
师巡回检查、指导
3、实践汇报
各组汇报实践结果
一组:我们是拿两个完全一样的三角形通过旋转、平移拼成了一个平形四边形或长方形(长方形也是特殊的平行四边形),这个平行四边形的面积是原三角形面积的2倍,可以通过平行四边形面积算出三角形的面积。
二组:两个完全一样的锐角三角形也可拼成一个平行四边形。
三组:两个完全一样的钝角三角形也可拼成一个平行四边形。
四组:用一个三角形,从他的高的中点处画一条底边的平行线,沿着平行线剪开成一个三角形和一个梯形,再旋转,也可以拼成一个平行四边形,而且这个平行四边形的面积就等于原三角形的面积。
各组就实践汇报展开讨论。
4、演示总结
师:同学们非常聪明,发现了这么多的方法,教师也想了几种方法,大家看一看和你们想的一样不一样? 出示课件(演示1两个完全一样的三角形拼成平行四边形)
师引导生观察
(1)、拼成的平行四边形和原三角形面积有什么关系?
生:平行四边形面积是三角形面积的2倍。
(2)、平行四边形的底和高与三角形的哪些部分有关? 生:平行四边形的高等于三角形的高;平行四边形的底等于三角形的底
师小结并板书
平等四边形的面积= 底 × 高 三角形的面积= 底 × 高 ÷ 2 出示课件(演示2一个三角形剪拼成平行四边形)师:观察平行四边形面积与原三角形面积有何关系? 生:相等
师:平行四边形的底和高与三角形底、高有什么关系?
生:平行四边形的底等于三角形的底
平行四边形的高等于三角形的高的一半
师小结并板书
平行四边形面积= 底 × 高
三角形面积= 底 × 高 ÷ 2 三角形的面积=底×高÷2
字母表示: S=ah÷2
5、师生一起回顾三角形面积公式的推导过程
6、基本练习
师:现在大家可以帮帮小明,算算哪张彩纸的面积了吗? 生:能
师:好那大家帮他算一算
生解答,师巡回检查
强调:
1、注意运用公式
2、注意面积单位
三、巩固检测
⒈利用学具摆一摆、说一说三角形面积推倒的过程,复述重要的结论。
2、出示课件
师:红领巾中是我们少先队员的标志,我们每个少先队员都要佩戴并热爱他,下面就是一面红领巾图,你能算一算做100面红领巾需要多少布料吗?
生板演 师讲解订正
四、回顾总结
师:学完这节课,你都有些什么收获呢?
生讨论、作答
师小结:这节课,我们运用能比的数学思想,通过旋转、平移、剪拼的方法把三角形能化成了已经学过的平行四边形,发现其中的联系,然后通过平行四边形面积公式推导出了三角形的面积公式。通过几道练习,同学们已基本掌握了面积公式的应用,收获了不少新知识,希望以后每节课同学们都能象今天这样满载而归。
板书设计
三角形的面积
平行四边形面积 = 底 × 高
转化
三角形面积= 底 × 高 ÷ 2
S= a×h÷2
《梯形的面积》教学设计
教学目标
1、在实际情境中,认识计算梯形面积的必要性。理解掌握梯形面积的计算公式。2、在自主探索的活动,运用知识迁移类比规律和“转化”的数学思想,引导学生通过小组合作探索推导出梯形的面积计算公式;并能正确地运用公式解答有关问题。
3、培养学生操作、观察能力以及利用已有知识和经验解决新问题的能力,培养创新意识,渗透“变”与“不变”的辩证唯物主义观点教育。
教学重点: 理解梯形面积的计算方法,正确计算梯形的面积。
教学难点: 梯形面积计算方法的推导过程。
教具、学具准备:
多媒体课件。
教学过程
一、创设情境,导入新课
我们班男同学最近在课间活动时最喜欢做打篮球,你们知道篮球场地有一处3秒钟限制区吗?这个区域是什么形的,你知道吗?出示这一图形。现在要求这一图形的面积是多少,你会求吗?
(上底:3.6米,下底:6米,高:5.8米)这节课我们要研究的梯形面积的计算方法。(板书课题。)
二.新课传授。
1、那么梯形的面积应当如何来求呢?这节课我要做一名忠实的听众,由你们自己动手,找到梯形面积的计算方法,然后小组中推荐出代表,讲给全班同学听,怎么样?下面就利用你们手中的学具分小组研究。
2、老师巡视。
3、两个同学到展台前讲解。一人展示的是两个任意梯形的推导方法,另一人展示的是直角梯形的推导方法。(师板书结论)
4、师:这两名同学的讲解真精彩!你们是不是也推导出了梯形面积的计算方法。你们真了不起!下面我们再一同来看看梯形面积计算方法的推导过程。
5、师边操作边讲解。(课件)
师:(任意两个梯形)有两个完全一样的梯形,把其中的一个梯形沿一个顶点顺时针旋转180º,再沿腰平移上去,这样就拼成了一个平行四边形。平行四边形的底就是梯形的上底与下底之和,平行四边形的高就是梯形的高,用梯形的上底与下底之和乘高就得到我们所拼成的平行四边形的面积,一个梯形的面积就是它所拼成的图形面积的一半,因此我们再除以2就得到了梯形的面积。
三、合作探究,发散验证
1、刚才我们再一次用转化的方法把两个完全一样的梯形拼成了学过的图形,推导出了梯形面积的计算公式,可是如果我们手中只有一个梯形,你们能不能自己动脑想出别的计算方法验证我们刚才的发现呢?小组讨论。
分组汇报。学生可能讨论出的计算方法有:(师适时配合课件演示)
(1)做对角线,把梯形分割成两个三角形。
(2)将梯形上底和下底对折,再沿折线剪开,将上面的梯形沿腰上的中点旋转180º,这样就拼成了一个平行四边形。
(3)沿梯形一腰中点和对角顶点对折,再沿折线剪开,将上面的一半沿腰上的中点旋转180º,这样就拼成了一个三角形。
2、总结:实际上利用一个梯形推导梯形面积的方法还有很多。不管采取何种剪拼方法都可以得出梯形的面积是“上底与下底的和乘高再除以2”。课下同学们可以继续去用不同的方法验证。
3、抽象概括
师:读面积公式,梯形的面积也可以用字母公式表示出来,梯形的面积用S表示,用a、b和h分别表示梯形的上、下底和高,那么梯形的面积公式是:S=(a+b)×h ÷2
4、追问:想一想,计算梯形的面积必须要知道哪些条件?
四、应用公式,解决问题
1、求篮球场地3秒钟限制区的面积?
2、算出下面每个梯形的面积
3、计算下列梯形的面积,你发现了什么?(单位:cm)
4、先估算手中梯形的面积,再测量计算。
5、一个梯形的周长是52cm,两腰分别长12cm, 10cm,高8cm,求这个梯形的面积?
五、小结
这节课同学们有什么收获?
六、布置作业,拓展延伸。
求下列各图形的面积?
小明只记得梯形的面积公式了,忘记了求以上图形的公式,可是他却求出了所有的图形的面积,你知道他是怎样算的吗?这个问题留给同学们课后思考。
第三单元“分数”。
在学习本单元内容前,学生一初步理解了分数的意义,能认、读、写简单的分数,会进行简单的同分母分数的加减运算,能初步运用分数表示一些事物,解决一些简单的实际问题。本单元在此基础上引导学生进一步理解分数的意义,对分数进行再认识,学习分数与除法的关系、真分数、假分数、带分数、分数的基本性质、公因数、约分、公倍数、通分、分数的大小比较等知识。这些知识是进一步学习分数四则运算、运用分数解决实际问题的基础。
通过本单元的学习,学生将进一步理解分数的意义,能正确用分数描述图形中部分与整体的或简单的生活现象;认识真分数、假分数和带分数,理解分数与除法的关系,会进行分数的大小比较;能在1—100的自然数内,找出10以内两个自然数的公倍数和最小公倍数,找出两个自然数的公因数和最大公因数,会正确进行约分和通分;初步了解分数在实际生活中的应用,能运用分数知识解决一些简单的实际问题。
1、分数的认识
教学内容:分数的再认识
教学目标:
1、在具体的情境中,进一步认识分数,培养学生的数感,体会数学与生活的密切联系。
2、通过对分数意义的理解,结合具体的情境,体会整体与部分的关系,培养学生观察、分析、抽象、概括、类推的能力。
重点难点
重点:理解并掌握分数的意义
难点:单位“1”概念的扩展
教学过程
一、导入
四年级时,我们学习了分数的初步认识,今天,我们继续来研究分数的意义。
二、教学实施
1、实践活动
两个同学,每个拿出各自盒中乒乓球总数的三分之一,结果两个同学业拿出的个数不一样,为什么不一样呢?请同学们讨论。
汇报结果:第一个盒子里有15个乒乓球,第二个盒子里有9个乒乓球。
2、结论:因为总数不一样,也就是单位“1”不一样,所以每份的个数也就不同了,每一份就是分分数的分数单位。
3、课堂练习
①5/9里面的()个子1/9,再添上()个1/9就是1。
②8个1/9是()
2、分饼
教学内容:分饼
教学目标:
1、结合具体的情境,经历假分数与带分数的产生过程,理解真分数、假分数和带分数的意义。
2、正确读写假分数、带分数,了解假分数与带分数的关系。
3、培养学生的分析能力,会运用所学知识解决生活中的实际问题。
重点难点
重点:理解真分数、假分数和带分数的意义。
难点:假分数与带分数的关系。
一、导入
在唐僧师徒4人西天取经的路上,有一天,八戒化了3张饼回来,4人怎样平均分这三张饼呢?这下难坏了猪八戒。同学们,你有什么好方法来帮帮八戒吗?
二、教学实施
1、探索活动一:学生拿出图形纸片代表饼,剪一剪,拼一拼,画一画。
2、探索活动二:如果9张饼怎样分?
3、揭示概念
①分子比分母小的分数叫做真分数,真分数小于1。
②分子比分母大或分子和分母相等的分数叫做假分数,假分数大于或等于1。
③像2又4分之1,5又5分之1,6又4分之3„„„这样由整数和真分数组成的分数就是带分数,带分数大于1。
4、课堂练习
在括号里填上合适的分数
①8个5分之1是(),2又4分之3里有()个4分之1 ②4里面有()个8分之1,有()个16分之1。