第一篇:张齐华加法交换律试课稿
加法交换律试课稿
开始:上课,同学们好!请坐。
一、利用故事,提出猜想
师:喜欢听故事吗?那就给大家讲一个“朝三暮四”的故事吧。听„
出示故事内容:宋国有一个养猕猴的老人,他很喜欢猕猴,养了一大群猕猴,他能理解猕猴们的心意,猕猴们也能够了解那个人的心思。那位老人因此减少了他全家的口粮,来满足猕猴们的欲望。但是不久,家里缺乏食物了,他想要限制猕猴们吃橡粟的数量,但又怕猕猴们生气不听从自己,就先骗猕猴们:“我给你们的橡树果实,早上三颗,晚上四颗,这样够吗?”众多猕猴一听很生气,都跳了起来。过了一会儿,他又说:“我给你们的橡树果实,早上四颗,晚上三颗,这样足够吗?”猕猴们听后都很开心地趴下,都很高兴对那老人服服帖帖的了。
师:听完故事,想说些什么?是啊!不管怎么吃,对于老人来说,每天给的都是7颗橡树果实,也就是说„教师板书:3+4=4+3 师:观察这一等式,你有什么发现?你说,你说,噢„ 出示:交换两个加数的位置和不变。师:老师的发现和他很相似,但略有不同。教师出示:交换3和4的位置和不变。
师:比较我们俩给出的结论,你想说些什么?你来吧!哦,你还想说。
二、验证猜想,得出结论
师:的确,仅凭一个特例就得出“交换两个加数的位置和不变”这样的结论,似乎草率了点。但我们不妨把这一结论当作一个猜想(教师将生1结论中的“。”改为“?”)。既然是猜想,那就得——板书:验证 师:你觉得该怎么验证?用怎样的例子?该举多少个呢?你说,你来,你还有想法,说。
师:根据大家的意见,我觉得是不是可以这样,我们每人都来举三、四个例子,全班合起来那就多了。同时大家也留意一下,看能不能找到“交换加数位置和发生变化”的情况,如果有及时告诉大家行吗?好,开始吧,有结果了。
师:刚才我发现有些同学是这样举例的——(板书:4+5=5+4)有些同学是这样举例的——(板书:4+5=5+4)9 9 师:你觉得谁的例子更有说服力。你来,你说。
师:说的多好啊!举例可不能乱举,我们举例的目的就是为了验证交换加数的位置和不变这一猜想,因此我们必须要算出它们的和才行。
师:好,现在谁来说说,你都举了哪些例子。
出示贴:①7+8=8+7,2+9=9+2,4+7=7+4。②5+4=4+5,30+15=15+30,200+500=500+200 15 15 11 11 11 11 9 9 45 45 700 700(重要的例子要板书)师:比较而言,你更喜欢谁的例子?为什么?你来
师:是的,第二位。因为第二位同学举的例子中既有一位数,也有二位数和三位数,范围要大些。师:如果这样的话,那你们觉得下面这位同学的举例,又给了你哪些新的启发? 教师出示投影:0+8=8+0,6+21=21+6,1/9+4/9=4/9+1/9。8 8 27 27 5/9 5/9 师:你说,你来。你们很会思考,没错,因为我们不只是要说明“交换两个整数的位置和不变”,而是要说明,交换任意两个加数的位置和不变。所以第三位同学举例更全面。
师:看来,举例验证猜想,还有不少的学问。现在,有了这么多例子,能得出“交换两个加数的位置和不变”这个结论了吗?(学生均认同)
师:都同意,那有没有谁举例时发现了不成立的例子?没有,这样看来,我们的举例能验证刚才的猜想吗?(教师重新将“?”改成“。”,并补充成为:“在加法中,交换两个加数的位置和不变。”)师:大声的把这个结论读一次。
师:现在,你还能用更简单的方式把这个结论表示出来吗?试试看。你是怎么表示的?你呢?我把他们的表示方法写下来。
板书:a+b=b+a □+○=○+□„
师:回顾刚才的学习,除了得到这一结论外,你还有其它收获吗?你说,你还想说,师:刚才从“朝三暮四”的故事中,得出“3+4=4+3”,进而形成猜想。随后,又通过举例,验证了猜想,得到了这一结论。(板书:猜想——验证——结论)该给这一结论起什么名称呢? 师:嗯,这个名字不错。板书:加法交换律
师:仔细观察在这一规律中,什么变了,什么没变?(板书:变 不变)师:原来,“变”和“不变”有时也能这样巧妙地结合在一起。师:结论,是终点还是新的起点?
师:从个别特例中形成猜想,并举例验证,是一种获取结论的方法。但有时从已有的结论中通过适当变换、联想,同样可以形成新的猜想,进面形成新的结论。
比如:“在加法中,交换两个数的位置和不变”那么
① 在减法中,交换两个数的位置差不变?是不是也成立呢? ② 在乘法中,交换两个数的位置积不变?
③ 在除法中,交换两个数的位置商不变?是不是也成立呢?
师:这几个猜想由同学们自己回家验证。
三、应用结论
师:刚才我们学习了加法的交换律,下面就来考考大家。
1、出示:书本第31页的第二题:想一想,我们在哪里见到过加法交换律
师:什么时候见过,还记得吗?是的,在验算加法的时候就碰见过,这就是加法交换律的一个很重要的用处。
2、计算下面各题,并用加法交换律验算:38+456 307+348 123+2847
四、总结
师:学到这,让我们来回顾一下,这节课我们是怎样学习的„我们先通过故事提出了猜想,接着用举例子的方法对猜想进行验证,得出这个猜想是正确的,像这样提出猜想,举例验证,在得出结论,是我们学习数学的一种好方法。
师:那么通过今天的学习,你有哪些收获?你说,你说。师:看来,大家都是很会学习的孩子。结束:这节课就上到这儿,下课,同学们再见!
新课的导入(故事导入,复习导入准备小黑板,)
新课的展开(问题的设置抓住重难点,教师的衔接语,教师的语气变化,请学生回答的用语,对学生的评价)
证明课模式:提出猜想,证明猜想(正反),得出结论,梳理回顾,运用结论
计算课模式:尝试计算,交流反馈(算理算法落实),小结回顾(注意的地方),实践运用 新课的结尾 师:那么通过今天的学习,你有哪些收获?你说,你说。
师:看来,大家都是很会学习的孩子。结束:这节课就上到这儿,下课,同学们再见!
第二篇:张齐华《交换律》课堂实录与评析(范文)
张齐华 《加法交换律》课堂实录
师:喜欢听故事吗? 生:喜欢。
师:那就给大家讲一个“朝三暮四”的故事吧。听完故事,想说些什么?(结合生发言板书:3+4=4+3)
师:观察这一等式,你有什么发现?
生1:我发现,交换两个加数的位置和不变。(教师板书这句话)师:其他同学呢?(见没有补充)老师的发现和他很相似,但略有不同。(教师出示:交换3和4的位置和不变)比较我们俩给出的结论,你想说些什么?
生2:我觉得您(老师)给出的结论只代表了一个特例,但他(生1)给出的结论能代表许多情况。
生3:我也同意他(生2)的观点,但我觉得单就黑板上的这一个式子,就得出“交换两个加数的位置和不变”好像不太好。万一其它两个数相加的时候,交换它们的位置和不等呢!我还是觉得您的观点更准确、更科学一些。
师:的确,仅凭一个特例就得出“交换两个加数的位置和不变”这样的结论,似乎草率了点。但我们不妨把这一结论当作一个猜想(教师将生1结论中的“。”改为“?”)。既然是猜想,那么我们还得——
生:验证。师:怎么验证呢?
生1:我觉得可以再举一些这样的例子? 师:怎样的例子,能否具体说说?
生1:比如再列一些加法算式,然后交换加数的位置,看看和是不是跟原来一样。(学生普遍认可)
师:那你们觉得需要举多少个这样的例子呢? 生2:
五、六个吧。生3:至少要十个以上。
生4:我觉得应该举无数个例子才行。不然,永远没有说服力。万一你没有举到的例子中,正好有一个加法算式,交换他们的位置和变了呢?(有人点头赞同)
生5:我反对!举无数个例子,那得举到什么时候才好?如果每次验证都需要这样的话,那我们永远都别想得到结论!
师:我个人赞同你(生5)的观点,但觉得他(生4)的想法也有一定道理。综合两人的观点,我觉得是不是可以这样,我们每人都来举三、四个例子,全班合起来那就多了。同时大家也留心一下,看能不能找到“交换加数位置和发生变化”的情况,如果有及时告诉大家行吗?(学生赞同,随后在作业纸上尝试举例。)
师:正式交流前,老师想给大家展示同学们在刚才举例过程中出现的两种不同的情况。
(教师展示:1.先写出12+23和23+12,计算后,再在两个算式之间添上“=”。2.不计算,直接从左往右依次写下“12+23=23+12”。)
师:比较两种举例的情况,想说些什么?
生6:我觉得第二种情况根本不能算举例。他连算都没算,就直接将等号写上去了。这叫不负责任。(生笑)
生7:我觉得举例的目的就是为了看看交换两个加数的位置和到底等不等,但这位同学只是照样子写了一个等式而已,至于两边是不是相等,他想都没想。这样举例是不对的,不能验证我们的猜想。(大家对生
6、生7的发言表示赞同。)
师:哪些同学是这样举例的,能举手示意一下吗?
师:明白问题出在哪儿了吗?(生点头)为了验证猜想,举例可不能乱举。这样,再给你们几位一次补救的机会,迅速看看你们写出的算式,左右两边是不是真的相等。
师:其余同学,你们举了哪些例子,又有怎样的发现?
生8:我举了三个例子,7+8=8+7,2+9=9+2,4+7=7+4。从这些例子来看,交换两个加数的位置和不变。生9:我也举了三个例子,5+4=4+5,30+15=15+30,200+500=500+200。我也觉得,交换两个加数的位置和不变。
(注:事实上,选生
8、生9进行交流,是教师有意而为之。)
师:两位同学举的例子略有不同,一个全是一位数加一位数,另一个则有一位数加一位数、二位数加两位数、三位数加三位数。比较而言,你更欣赏谁?
生10:我更欣赏第一位同学,他举的例子很简单,一看就明白。生11:我不同意。如果举得例子都是一位数加一位数,那么我们最多只能说,交换两个一位数的位置和不变。至于加数是两位数、三位数、四位数等等,就不知道了。我更喜欢第二位同学的。
生12:我也更喜欢第二位同学的,她举的例子更全面。我觉得,举例就应该这样,要考虑到方方面面。(多数学生表示赞同。)
师:如果这样的话,那你们觉得下面这位同学的举例,又给了你哪些新的启迪?
教师出示作业纸:0+8=8+0,6+21=21+6,1/9+4/9=4/9+1/9。生:我们在举例时,都没考虑到0的问题,但他考虑到了。
生:他还举到了分数的例子,让我明白了,不但交换两个整数的位置和不变,交换两个分数的位置和也不变。
师:没错,因为我们不只是要说明“交换两个整数的位置和不变”,而是要说明,交换——
生:任意两个加数的位置和不变。
师:看来,举例验证猜想,还有不少的学问。现在,有了这么多例子,能得出“交换两个加数的位置和不变”这个结论了吗?(学生均认同)有没有谁举例时发现了反面的例子,也就是交换两个加数位置和变了?这样看来,我们能验证刚才的猜想吗?
生:能。
(教师重新将“?”改成“。”,并补充成为:“在加法中,交换两个加数的位置和不变。”)师:回顾刚才的学习,除了得到这一结论外,你还有其它收获吗? 生:我发现,只举
一、两个例子,是没法验证某个猜想的,应该多举一些例子才行。
生:举的例子尽可能不要雷同,最好能把各种情况都举到。
师:从“朝三暮四”的寓言中,我们得出“3+4=4+3”,进而形成猜想。随后,又通过举例,验证了猜想,得到了这一规律。该给这一规律起什么名称呢?(学生交流后,教师揭示“加法交换律”,并板书。)
师:在这一规律中,变化的是两个加数的――(板书:变)生:位置。师:但不变的是――
生:它们的和。(板书:不变)
师:原来,“变”和“不变”有时也能这样巧妙地结合在一起。结论,是终点还是新的起点?
师:从个别特例中形成猜想,并举例验证,是一种获取结论的方法。但有时,从已有的结论中通过适当变换、联想,同样可以形成新的猜想,进而形成新的结论。比如(教师指读刚才的结论,加法的“加”字予以重音),“在加法中,交换两个加数的位置和不变。”那么,在——
生1:减法中,交换两个数的位置,差会不会也不变呢?(学生中随即有人作出回应,“不可能,差肯定会变。”)
师:不急于发表意见。这是他(生1)通过联想给出的猜想。(板书:“猜想一:减法中,交换两个数的位置差不变?”)生2:同样,乘法中,交换两个乘数的位置积会不会也不变?(板书:“猜想二:乘法中,交换两个数的位置积不变?”)生3:除法中,交换两个数的位置商会不变吗?
(教师板书:“猜想三:除法中,交换两个数的位置商不变?”)师:通过联想,同学们由“加法”拓展到了减法、乘法和除法,这是一种很有价值的思考。除此以外,还能通过其它变换,形成不一样的新猜想吗?
生4:我在想,如果把加法交换律中“两个加数”换成“三个加数”、“四个加数”或更多个加数,不知道和还会不会不变?
师:这是一个与众不同的、全新的猜想!如果猜想成立,它将大大丰富我们对“加法交换律”的认识。(教师板书“猜想四:在加法中,交换几个加数的位置和不变?”)现在,同学们又有了不少新的猜想。这些猜想对吗?又该如何去验证呢?选择你最感兴趣的一个,用合适的方法试着进行验证。
(学生选择猜想,举例验证。教师参与,适当时给予必要的指导。然后全班交流。)
师:哪些同学选择了“猜想一”,又是怎样验证的?
生5:我举了两个例子,结果发现8-6=2,但6-8却不够减;3/5-1/5=2/5,但1/5-3/5却不够减。所以我认为,减法中交换两个数的位置差会变的,也就是减法中没有交换律。
师:根据他举的例子,你们觉得他得出的结论有道理吗? 生:有。
师:但老师举的例子中,交换两数位置,差明明没变嘛。你看,3-3=0,交换两数的位置后,3-3还是得0;还有,14-14=14-14,100-100=100-100,这样的例子多着呢。
生6:我反对,老师您举的例子都很特殊,如果被减数和减数不一样,那就不行了。
生7:我还有补充,我只举了一个例子,2-1≠1-2,我就没有继续往下再举例。
师:哪又是为什么呢?
生7:因为我觉得,只要有一个例子不符合猜想,那猜想就错了。师:同学们怎么理解他的观点。生8:(略。)生9:我突然发现,要想说明某个猜想是对的,我们必须举好多例子来证明,但要想说明某个猜想是错的,只要举出一个不符合的例子就可以了。
师:瞧,多深刻的认识!事实上,你们刚才所提到的符合猜想的例子,数学上我们就称作“正例”,至于不符合猜想的例子,数学上我们就称作――
生:反例。(有略。)
师:关于其它几个猜想,你们又有怎样的发现?
生10:我研究的是乘法。通过举例,我发现乘法中交换两数的位置积也不变。
师:能给大家说说你举的例子吗?
生10:5×4=4×5,0×100=100×0,18×12=12×18。(另有数名同学交流自己举的例子,都局限在整数范围内。)师:那你们都得出了怎样的结论?
生11:在乘法中,交换两数的位置积不变。
生12:我想补充。应该是,在整数乘法中,交换两数的位置积不变,这样说更保险一些。
师:你的思考很严密。在目前的学习范围内,我们暂且先得出这样的结论吧,等学完分数乘法、小数乘法后,再补充举些例子试试,到时候,我们再来完善这一结论,你们看行吗?(对猜想三、四的讨论略。)
随后,教师引导学生选择完成教材中的部分习题(略),从正、反两面巩固对加法、乘法交换律的理解,并借助实际问题,沟通“交换律”与以往算法多样化之间的联系。
怎样的收获更有价值?
师:通过今天的学习,你有哪些收获?
生:我明白了,加法和乘法中有交换律,但却没有减法交换律或除法交换律。生:我发现,有了猜想,还需要举许多例子来验证,这样得出的结论才准确。生:我还发现,只要能举出一个反例,那我们就能肯定猜想是错误的。生:举例验证时,例子应尽可能多,而且,应尽可能举一些特殊的例子,这样,得出的结论才更可靠。
师:只有一个例子,行吗?
生:不行,万一遇到特殊情况就不好了。
(作为补充,教师给学生介绍了如下故事:三位学者由伦敦去苏格兰参加会议,越过边境不久,发现了一只黑羊。“真有意思,”天文学家说:“苏格兰的羊都是黑的。”“不对吧。”物理学家说,“我们只能得出这样的结论:在苏格兰有一些羊是黑色的。”数学家马上接着说:“我觉得下面的结论可能更准确,那就是:在苏格兰,至少有一个地方,有至少一只羊,它是黑色的。”)
必要的拓展:让结论增殖!
师:在本课将结束时,依然有一些问题需要留给大家进一步思考。(教师出示:20-8-6○20-6-8;60÷2÷3○60÷3÷2)师:观察这两组算式,你发现什么变化了吗?
生:我发现,第一组算式中,两个减数交换了位置,第二组算式中,两个除数也交换了位置。
师:交换两个减数或除数,结果又会怎样?由此,你是否又可以形成新的猜想?利用本课所掌握的方法,你能通过进一步的举例验证猜想并得出结论吗?这些结论和我们今天得出的结论有冲突吗,又该如何去认识?
专家评析张齐华教学的《交换律》一课
曹一鸣 转贴:人民教育
一堂有价值的数学课,给予学生的影响应该是多元而立体的。有知识的丰厚、技能的纯熟,更有方法的领悟、思想的启迪、精神的熏陶。事实上,数学的确拥有这一切,而且,也可能传递这一切。然而,出于对知识与技能的盲目追逐,当今数学课堂忽视了本该拥有的文化气度和从容姿态。知识化、技巧化、功利化思想的不断弥散,让数学思想、方法和精神失却了可能生长的土壤,并逐渐为数学课堂所遗忘,这不能不说是当今众多数学课堂的悲哀。近年来,在观念层面的探讨不少,真正落实到课堂教学实践的却不多。可喜的是,在张老师的这一节课中,我们看到了另一种努力,以及由此而带来的变化。透过课堂,我们似乎触及到了数学更为丰厚的内涵,感受到数学教学可能呈现的更为开阔的景象。
对于“交换律”,一贯的教学思路是:结合具体情境,得出某一具有交换律特征的实例,由此引发猜想,并借助举例验证猜想、形成结论,进而在解释和应用的过程中进一步深化认识。本课,在宏观架构上并未作太大开拓。然而,在保持其整体架构的基础上,这一堂课在更多细节上所给予的突破却是十分显见。我们不妨重历课堂,去找寻这些细节,并探寻细节背后的意蕴所在。由“3+4=4+3”得出“交换两数的位置,和不变”的猜想,似乎再自然不过了。然而,教师略显突兀的介入,以“交换的位置,和不变”的细微变化,确又发人于深思。正如案例中所提及的,“一个例子究竟能说明什么”,是得出结论?还是仅仅是触发猜想和验证的一根引线?这里关乎知识的习得,更关乎方法的生成,关乎学生对于如何从事数学思考的思考。“验证猜想,需要怎样的例子”的探讨,更是折射出了张老师独特的教学智慧。曾经,在太多的课堂里,我们目睹这样的情形:学生举例三、四,教师引导学生匆匆过场,似乎也有观察、也有比较、也有提炼。然而,我们却很少琢磨:观察也好、提炼也罢,它究竟该建立在怎样的基石之上,再换言之,在“简洁”和“丰富”之间,谁才是“举例验证猜想”时应该遵循的规则。张老师的尝试与表达无疑是对传统教学的一种突破。“举例”不应只追求简约,例子的多元化、特殊性恰恰是结论准确和完整的前提。没有老师适时的点拨与引导,学生如何才能有此深度体验?无此体验,我们如何能说,学生已经历过程,并已感悟思想与方法?
触及我深思的问题还在于,是什么原因触发了这一节课将原来的“加法交换律”置换成了“交换律”?是内容的简单扩张?是教学结构的适度调整?随后的课堂,给了我清晰的答复。“加法结合律”只是一个触点,“减法中是否也会有交换律?”“乘法、除法中呢?”等新问题,则是原有触点中诞生的一个个新的生长点。统整到一起时,作为某一特定运算的“交换律知识”被弱化了,而“交换律”本身、“变与不变”的辩证关系、“猜想-实验-验证”的思考路线、由“此知”及“彼知”的数学联想等却一一获得突显,成为超越于知识之上的更高的数学课堂追求。这何尝不是一种有意义、有价值的探索?
课堂的结尾,我们依然看到了教师对传统保守思路的背叛。确定的、可靠的结论已经不再是这一堂课的终极追求,结论的可增殖性、结论的重新表达、问题的不断生成和卷入,仿佛成为了这堂课最后的价值取向。即便是颠覆原有的结论,也在所不惜。在这里,我们再一次看到了教师对于数学知识的“战略性”忽视,因为,教师心有大气象。
数学是什么,数学可以留下些什么,数学可以形成怎样的影响力?答案并不唯一。但我以为,数学可以在人的内心深处培植理性的种子,她可以让你拥有一颗数学的大脑,学会数学地思考,学会理性、审慎地看待问题、关注周遭、理解世界,这恰是这节课给予我们的最大启迪。而数学的文化特性,恰也在于此。阅读(2121)| 评论(0)
第三篇:名师张齐华《交换律》教学实录
名师张齐华《交换律》教学实录
关于问题导学学习笔记
教学过程:
一个例子,究竟能说明什么?
师:喜欢听故事吗?
生:喜欢。
师:那就给大家讲一个“朝三暮四”的故事吧。(故事略)听完故事,想说些什么吗?
结合学生发言,教师板书:3+4=4+3。
师:观察这一等式,你有什么发现?
生1:我发现,交换两个加数的位置和不变。
(教师板书这句话)
师:其他同学呢?(见没有补充)老师的发现和他很相似,但略有不同。(教师随即出示:交换3和4的位置和不变)比较我们俩给出的结论,你想说些什么?
生2:我觉得您(老师)给出的结论只代表了一个特例,但他(生1)给出的结论能代表许多情况。
生3:我也同意他(生2)的观点,但我觉得单就黑板上的这一个式子,就得出“交换两个加数的位置和不变”好像不太好。万一其它两个数相加的时候,交换它们的位置和不等呢!我还是觉得您的观点更准确、更科学一些。
师:的确,仅凭一个特例就得出“交换两个加数的位置和不变”这样的结论,似乎草率了点。但我们不妨把这一结论当作一个猜想(教师随即将生1给出的结论中的“。”改为“?”)。既然是猜想,那么我们还得——
生:验证。
验证猜想,需要怎样的例子?
师:怎么验证呢?
生1:我觉得可以再举一些这样的例子?
师:怎样的例子,能否具体说说?
生1:比如再列一些加法算式,然后交换加数的位置,看看和是不是跟原来一样。(学生普遍认可这一想法)
师:那你们觉得需要举多少个这样的例子呢?
生2:五、六个吧。
生3:至少要十个以上。
生4:我觉得应该举无数个例子才行。不然,你永远没有说服力。万一你没有举到的例子中,正好有一个加法算式,交换他们的位置和变了呢?(有人点头赞同)
生5:我反对!举无数个例子是不可能的,那得举到什么时候才好?如果每次验证都需要这样的话,那我们永远都别想得到结论!
师:我个人赞同你(生5)的观点,但觉得他(生4)的想法也有一定道理。综合两人的观点,我觉得是不是可以这样,我们每人都来举三、四个例子,全班合起来那就多了。同时大家也留心一下,看能不能找到“交换加数位置和发生变化”的情况,如果有及时告诉大家行吗?
学生一致赞同,随后在作业纸上尝试举例。
师:正式交流前,老师想给大家展示同学们在刚才举例过程中出现的两种不同的情况。
(教师展示如下两种情况:1.先写出12+23和23+12,计算后,再在两个算式之间添上“=”。2.不计算,直接从左往右依次写下“12+23=23+12”。)
师:比较两种举例的情况,想说些什么?
生6:我觉得第二种情况根本不能算举例。他连算都没算,就直接将等号写上去了。这叫不负责任。(生笑)
生7:我觉得举例的目的就是为了看看交换两个加数的位置和到底等不等,但这位同学只是照样子写了一个等式而已,至于两边是不是相等,他想都没想。这样举例是不对的,不能验证我们的猜想。
(大家对生6、生7的发言表示赞同。)
师:哪些同学是这样举例的,能举手示意一下吗?
(几位同学不好意思地举起了手。)
师:明白问题出在哪儿了吗?(生点头)为了验证猜想,举例可不能乱举。这样,再给你们几位一次补救的机会,迅速看看你们写出的算式,左右两边是不是真的相等。
师:其余同学,你们举了哪些例子,又有怎样的发现?
生8:我举了三个例子,7+8=8+7,2+9=9+2,4+7=7+4。从这些例子来看,交换两个加数的位置和不变。
生9:我也举了三个例子,5+4=4+5,30+15=15+30,200+500=500+200。我也觉得,交换两个加数的位置和不变。
(注:事实上,选生8、生9进行交流,是教师有意而为之。)
师:两位同学举的例子略有不同,一个全是一位数加一位数,另一个则有一位数加一位数、二位数加两位数、三位数加三位数。比较而言,你更欣赏谁?
生10:我更欣赏第一位同学,他举的例子很简单,一看就明白。
生11:我不同意。如果举得例子都是一位数加一位数,那么我们最多只能说,交换两个一位数的位置和不变。至于加数是两位数、三位数、四位数等等,就不知道了。我更喜欢第二位同学的。
生12:我也更喜欢第二位同学的,她举的例子更全面。我觉得,举例就应该这样,要考虑到方方面面。
(多数学生表示赞同。)
师:如果这样的话,那你们觉得下面这位同学的举例,又给了你哪些新的启迪?
教师出示作业纸:0+8=8+0,6+21=21+6,1/9+4/9=4/9+1/9。
生:我们在举例时,都没考虑到0的问题,但他考虑到了。
生:他还举到了分数的例子,让我明白了,不但交换两个整数的位置和不变,交换两个分数的位置和也不变。
师:没错,因为我们不只是要说明“交换两个整数的位置和不变”,而是要说明,交换——
生:任意两个加数的位置和不变。
师:看来,举例验证猜想,还有不少的学问。现在,有了这么多例子,能得出“交换两个加数的位置和不变”这个结论了吗?(学生均表示认同)有没有谁举例时发现了反面的例子,也就是交换两个加数位置和变了?(学生摇头)这样看来,我们能验证刚才的猜想吗?
生:能。
(教师重新将“?”改成“。”,并补充成为:“在加法中,交换两个加数的位置和不变。”)
师:回顾刚才的学习,除了得到这一结论外,你还有什么其它收获?
生:我发现,只举一、两个例子,是没法验证某个猜想的,应该多举一些例子才行。
生:举的例子尽可能不要雷同,最好能把各种情况都举到。
师:从“朝三暮四”的寓言中,我们得出“3+4=4+3”,进而形成猜想。随后,又通过举例,验证了猜想,得到了这一规律。该给这一规律起什么名称呢?
(学生交流后,教师揭示“加法交换律”,并板书。)
师:在这一规律中,变化的是两个加数的――(板书:变)
生:位置。
师:但不变的是――
生:它们的和。(板书:不变)
师:原来,“变”和“不变”有时也能这样巧妙地结合在一起。
结论,是终点还是新的起点?
师:从个别特例中形成猜想,并举例验证,是一种获取结论的方法。但有时,从已有的结论中通过适当变换、联想,同样可以形成新的猜想,进而形成新的结论。比如(教师指读刚才的结论,加法的“加”字予以重音),“在加法中,交换两个加数的位置和不变。”那么,在——
生1:(似有所悟)减法中,交换两个数的位置,差会不会也不变呢?
(学生中随即有人作出回应,“不可能,差肯定会变。”)
师:不急于发表意见。这是他(生1)通过联想给出的猜想。
(教师随即板书:“猜想一:减法中,交换两个数的位置差不变?”)
生2:同样,乘法中,交换两个乘数的位置积会不会也不变?
(教师板书:“猜想二:乘法中,交换两个数的位置积不变?”)
生3:除法中,交换两个数的位置商会不变吗?
(教师板书:“猜想三:除法中,交换两个数的位置商不变?”)
师:通过联想,同学们由“加法”拓展到了减法、乘法和除法,这是一种很有价值的思考。除此以外,还能通过其它变换,形成不一样的新猜想吗?
生4:我在想,如果把加法交换律中“两个加数”换成“三个加数”、“四个加数”或更多个加数,不知道和还会不会不变?
师:这是一个与众不同的、全新的猜想!如果猜想成立,它将大大丰富我们对“加法交换律”的认识。(教师板书“猜想四:在加法中,交换几个加数的位置和不变?”)现在,同学们又有了不少新的猜想。这些猜想对吗?又该如何去验证呢?选择你最感兴趣的一个,用合适的方法试着进行验证。
(学生选择猜想,举例验证。教师参与,适当时给予必要的指导。然后全班交流。)
师:哪些同学选择了“猜想一”,又是怎样验证的?
生5:我举了两个例子,结果发现8-6=2,但6-8却不够减;3/5-1/5=2/5,但1/5-3/5却不够减。所以我认为,减法中交换两个数的位置差会变的,也就是减法中没有交换律。
师:根据他举的例子,你们觉得他得出的结论有道理吗?
生:有。
师:但老师举的例子中,交换两数位置,差明明没变嘛。你看,3-3=0,交换两数的位置后,3-3还是得0;还有,14-14=14-14,100-100=100-100,这样的例子多着呢。
生6:我反对,老师您举的例子都很特殊,如果被减数和减数不一样,那就不行了。
生7:我还有补充,我只举了一个例子,2-1≠1-2,我就没有继续往下再举例。师:哪又是为什么呢?
生7:因为我觉得,只要有一个例子不符合猜想,那猜想肯就错了。
师:同学们怎么理解他的观点。
生8:(略。)
生9:我突然发现,要想说明某个猜想是对的,我们必须举好多例子来证明,但要想说明某个猜想是错的,只要举出一个不符合的例子就可以了。
师:瞧,多深刻的认识!事实上,你们刚才所提到的符合猜想的例子,数学上我们就称作“正例”,至于不符合猜想的例子,数学上我们就称作――
生:反例。
(有略。)
师:关于其它几个猜想,你们又有怎样的发现?
生10:我研究的是乘法。通过举例,我发现乘法中交换两数的位置积也不变。
师:能给大家说说你举的例子吗?
生10:5×4=4×5,0×100=100×0,18×12=12×18。
(另有数名同学交流自己举的例子,都局限在整数范围内。)
师:那你们都得出了怎样的结论?
生11:在乘法中,交换两数的位置积不变。
生12:我想补充。应该是,在整数乘法中,交换两数的位置积不变,这样说更保险一些。
师:你的思考很严密。在目前的学习范围内,我们暂且先得出这样的结论吧,等学完分数乘法、小数乘法后,再补充举些例子试试,到时候,我们再来完善这一结论,你们看行吗?
(对猜想三、四的讨论略。)
随后,教师引导学生选择完成教材中的部分习题(略),从正、反两面巩固对加法、乘法交换律的理解,并借助实际问题,沟通“交换律”与以往算法多样化之间的联系。
怎样的收获更有价值?
师:通过今天的学习,你有哪些收获?
生:我明白了,加法和乘法中有交换律,但却没有减法交换律或除法交换律。
生:我发现,有了猜想,还需要举许多例子来验证,这样得出的结论才准确。
生:我还发现,只要能举出一个反例,那我们就能肯定猜想是错误的。
生:举例验证时,例子应尽可能多,而且,应尽可能举一些特殊的例子,这样,得出的结论才更可靠。
师:只有一个例子,行吗?
生:不行,万一遇到特殊情况就不好了。
(作为补充,教师给学生介绍了如下故事:三位学者由伦敦去苏格兰参加会议,越过边境不久,发现了一只黑羊。“真有意思,”天文学家说:“苏格兰的羊都是黑的。”“不对吧。”物理学家说,“我们只能得出这样的结论:在苏格兰有一些羊是黑色的。”数学家马上接着说:“我觉得下面的结论可能更准确,那就是:在苏格兰,至少有一个地方,有至少一只羊,它是黑色的。”)
必要的拓展:让结论增殖!
师:在本课即将结束的时候,依然有一些问题需要留给大家进一步展开思考。
(教师出示如下算式:20-8-6○20-6-8
;
60÷2÷3○60÷3÷2)
师:观察这两组算式,你发现什么变化了吗?
生:我发现,第一组算式中,两个减数交换了位置,第二组算式中,两个除数也交换了位置。
师:交换两个减数或除数,结果又会怎样?由此,你是否又可以形成新的猜想?利用本课所掌握的方法,你能通过进一步的举例验证猜想并得出结论吗?这些结论和我们今天得出的结论有冲突吗,又该如何去认识?
第四篇:加法交换律说课
“ 加 法 交 换 律 ”说 课 稿
中宁九小 苏娟
一、教材说明 1.教学内容
“加法交换律”是人教版《义务教育课程标准实验教课书数学》四年级下 册第 27 —28 页的内容。书本中,主题图呈现的是李叔叔骑车去旅游,今天上午骑了 40 千 米,下 午 骑 了 56 千 米。问 : 今 天 一 共 骑 了 多 少 千 米 ? 可 列 出 40+56=96(千米)或 56+40=96(千米)两个算式,引导学生观察两个 算式得数相等,可以用“=”连接,然后再举出一些这样的例子,进而发现加 法交换律,再用字母表示加法交换律。我个人认为这道题目过于单一,提出的加法问题比较有限,所以我将题目做了改动,该为:李叔叔准备去自助旅游,在旅游前他读了这本书《中国自助游》。第一天他读了这本书的28页,第二天看了这本书的35页,第三天看了这本书的12页。然后让学生自由提出加法问题,教师板演算式,并写出两边计算的得数,让学生很容易就会发现,同一个问题可以列出不同的算式,而两道算式的得数不变,让学生初步感受:交换两个加数的位置,和不变的性质。
2.加法交换律在数学学习中的作用 《课程标准》指出:数学中,研究数地运算,在给出运算的定义后,最主 要的基础工作就是研究该运算的性质。在运算的各种性质中,最基本的几条 性质,就是“运算定律”,可见,运算定律在数学中的地位和作用,是“数学大厦的基石”,而“加法交换律”可能更是基石中的基石。加法交换律的内容比较简单,学生在以前的学习过程中都有过浅显的认知基 础,只是没有明确的概括,本节课的教学很大程度上是要将学生以前比较零 散的感性认识经过整理、明晰后上升为理性认识,因此,学生学起来比较容易。
二、说教学目标
1.在探索交换律的过程中,初步感受到交换律的用途。
2.在探索交换律的过程中,明白“个例——猜想——举例验证——得出结论”这一数学思维过程,发展学生的分析、比较、抽象、概括能力,培养学生的符号感。
3.在数学活动中获得成功的体验,进一步增强对数学学习的兴趣和信心,初步形成用举例验证结论的数学思维方法,形成独立思考和探究问题的意识和习惯。
三、教学重点
通过猜想、举例验证,最后得出加法和乘法交换律,能利用交换律解决问题。教学难点: 教学难点: 对“个例——猜想——举例验证——得出结论”这一数学思维方法的理解和 运用。
四、说教法与学法
主要采用“个例——猜想——举例验证——得出结论”这一数学思维方法 进行教学,学生用猜想—验证进行学习
五、说设计意图
本册教材的安排是先让学生初步感受加法的运算律的存在,再举例验证乘法的运算律,最后得出结论。这样安排的好处是:一是由易到难,便于教学;二是可以提高教学效率。加法交换律的教学方法和学习活动都可以迁移到乘法交换律;交换律的内容比较简单,引导学生自主探索学习,有利于引起学生探索的兴趣。这样安排不仅更好的利用了教法、学法的迁移,而且本节课所掌握 的研究方法为解决下节课的难点提供了帮助。
六、说教具准备:
课件
七、说教学过程:
“加 法 交 换 律”教学设计
1.创境激趣
课件出示主题图,学生观察:(展示课件)李叔叔准备去自助旅游,在旅游前他读了这本书《中国自助游》。第一天他读了这本书的28页,第二天看了这本书的35页,第三天看了这本书的12页。
图上有哪些信息?可以提出什么问题?引出两个加法算式。2.自主探究
(1)学生独立解答问题,指名演板。(2)汇报交流(3)观察上面等式,你们发现了什么(课件出示这两种算法)(4)归纳得出:“交换两个加数的位置,和不变”。(5)举例验证结论。(6)老师说明这就是加法交换律。同桌互相叙述。(7)用字母表示。用自己喜欢的方式表示出加法交换律。【设计意图:学生用喜欢的方法表示规律,有的学生用字母,有的学生用图 形,有的学生用字,有的学生用标点符号„„这样一方面有利于培养学生的符号 感,方便学生记忆,另一方面提高了知识的抽象概括程度,为以后正式教学用字 母表示数打下了初步基础。】(8)想一想:以前在哪里用过加法交换律? 3.反馈矫正
通过学习,除了得出这一结论外,还有什么收获? 这一结论是怎么得来的?(板书 个例——猜想——举例验证——得出结论): 【设计意图:因为已经是四年级的学生了,对简单的数学规律能有所发现,所以让学生自己观察等式的特点,并从中发现问题,可以培养学生的发散性思 维,并培养学生的问题意识。同时,也符合新课程“创造性使用教材”的理念。把 数据改小,便于学生计算、发现,突出本节课的重点之一:发现加法交换律。教 师
是教学的组织者和引导者,而不仅仅是解题指导者。本环节的设计,层层递进,紧密围绕并运用好问题情境,师生之间积极互动,教师引导学生自己去发现规 律,最后还归纳出了研究方法,让学生有一种成就感。】 4.拓展创新(课件出示)
(1)28 页做一做(2)31 页 1 题
【设计意图 :几个层次的练习,为学生提供了具有价值的学习内容,开放 学生的思维空间,提高思维含量,学生在观察辨析中比较,在思考对比中升华,促进学生灵活地理解和掌握知识。】 5.总结激励
今天学习了什么?你学会了什么?
【设计意图 :及时总结、巩固所学知识,重视学法总结。使学生在自己的 整理总结中再次巩固了本节课的重难点。同时为学生以后的学习作好了铺垫】 6.作业
页第 1 题
八、说教后反思
加法交换律教学反思
在教学加法交换律时我采用了情境导入—探究新知—反馈练习三个教学环节,情境导入环节利用课本上李叔叔骑车旅行的情景导入,得出已知条件和问题;探究新知环节,让学生先独立完成,集体交流时发现算式结果相同,用等号连接,得出56+28=28+56,然后又让学生仿照举例,最后引导学生得出规律;反馈练习环节学生的积极性很高,本节课的教学非常顺利,轻松完成教学任务。但我觉得本节课的知识太少,能不能把加法交换律和乘法交换律合并成一节课讲解呢,在以后教学本节课时我准备在“交换律”这节课进行以下几个方面尝试。
(1)改进材料的呈现方式。教材只是提供了教学的基本内容、基本思路,教师应在尊重教材的基础上,根据学生的实际对教材内容进行有目的的选择、补充和调整。另外在材料呈现的顺序上,改变了教材编排的顺序:先教学加法交换律和加法结合律,然后教学乘法交换律交换律和结合律,而是同时呈现,同时研究。因为当学生在已有认知结构中提取与新知相关的有效信息时,不可能像教材编排的有先后顺序之分,而是同时反映,充分做到了尊重学生的认知规律。
(2)找到生活的原型。加法交换律和乘法交换律的实质是交换位置,结果不变,这种数学思想在生活中到处存在。本节课我首先引导学生用辨证的眼光观察身边的现象,渗透变与不变的辩证唯物主义的观点;然后采撷生活数学的实例:同桌两位同学交换位置,结果不变。引导学生产生疑问:这种交换位置结果不变的现象在我们的数学知识中有没有呢?你能举出一个或几个例子
来说明吗?这样利用捕捉到的“生活现象”引入新知,使学生对数学有一种亲近感,感到数学与生活同在,并不神秘,同时也激起了学生大胆探索的兴趣。
(3)找准教学的起点。对学生学习起点的正确估计是设计适合每个学生自立学习的教学过程的基本点,它直接影响新知识的学习程度。加法交换律和乘法交换律是人教版小学数学第八册第三单元的内容,先教学加法交换律和结合律,然后是交换律和结合律的应用,接着乘法交换律和乘法结合律,乘法分配律。而在过去的学习中,学生对加法和乘法交换律已有大量的感性认识,并能运用交换加数(因数)的位置来验算加法(乘法),所以这节课的重点应放在引导学生发现并用数学语言表述数学规律和总结怎样获得规律的方法上,使学生的认识由感性上升到理性。
第五篇:华加法交换律 教学设计
华加法交换律 教学设计
加法交换律 教学设计
张齐华
教学内容:
义务教育课程标准实验教科书数学(苏教版)四年级上册“交换律”。
教学目标:
1.认识并能运用加法交换律和乘法交换律。
2.经历“形成猜想、举例验证”的完整、真实的过程,感悟数学研究的一般方法。
教学过程:
一、引发猜想。
1.介绍“朝三暮四”的故事,引导学生得出等式“3+4=4+3”。
2.引导学生由等式“3+4=4+3”引发猜想:是否任意两数相加,交换位置,和都不变?
二、举例验证。
1.交流:有了猜想,我们还得验证。你打算怎么验证?
2.学生举例验证,教师巡视指导。
3.教师呈现学生中通常出现的两种不同的举例方法,引导学生思考:你赞成哪一种,为什
么?
4.学生交流所举例子,教师选择部分例子写在黑板上。
5.教师根据实际情况,呈现某学生研究这一猜想时给出的部分例子,引导学生观察这些例子,并通过比较,体会这些例子对于验证这一猜想的作用。
6.小结举例验证的方法,揭示“加法交换律”。
三、类比拓展。
1.引导学生由加法类比到减法、乘法和除法,并自觉形成关于减法、乘法和除法中是否有
交换律的三个新猜想。
2.学生选择部分猜想,举例进行研究。教师参与,适时给予指导。
3.交流:哪一猜想是正确的,你们是怎么举例验证得出结论的?教师板书若干例子,进而
得出结论。
4.探讨:减法和除法中有交换律吗?学生交流后,引导思考:为什么只要举一个反例就能
推翻猜想?
5.沟通与拓展。
四、直观论证。
1.深究:为什么两数相加,交换他们的位置,和会不变呢?两数相乘,交换他们的位置,积又为何不变呢?
2.借助集合图和点子图,直观地帮助学生深入理解加法和乘法交换律,并渗透朴素的证明
思想。
五、沟通联系。
1.沟通加法交换律、乘法交换律与以往所学数学内容之间的联系。2.重新审视以往用“交换两个加数或乘数的位置,再算一遍”的方法验算加法和乘法的合理
性,深化对交换律的理解。
六、应用提升。
依次完成几道填空题,并相机引导学生用含有字母的式子表示出加法和乘法的交换律,体验
数学语言的简洁。
七、小结延伸。
加法的交换律和结合律
教学内容:
四年级上册P56-57例题,完成P58的“想想做做”。
教学目标:
1、使学生经历探索加法交换律和结合律的过程,理解并掌握加法交换律和结合律,初步感知加法运算律的价值,发展应用意识。
2、使学生在学习用符号、字母表示自己发现的运算律的过程中,初步发展符号感,初步培养归纳、推理的能力,逐步提高抽象思维能力。
3、使学生在数学活动中获得成功的体验,进一步增强对数学学习的兴趣和信心,初步形成独立思考和探究问题的意识和习惯。
教学过程:
一、情境引入:
(1)同学们你们喜欢体育活动吧?谁来说说你最喜欢哪项体育活动?(2)(出示图),仔细观察这幅图,你从图上知道哪些信息?(3)根据这些信息,你能提出哪些用加法计算的问题? A、参加跳绳的有多少人? B、参加活动的女生有多少人? C、参加活动的一共有多少人?
二、探索加法交换律:
1、(1)要求参加跳绳的有多少人,应该怎样列式计算? 指名回答,教师板书:28+17=45(人)还可怎么列式?板书:17+28=45(人)(2)观察算式有什么相同点?不同在哪里?
我们可以用怎样的方法连接这两道算式?(等号)板书:28+17=17+28(3)同样解决第二个问题,得到等式:板书:17+23=23+17(4)你能照样子说出一个这样的等式吗?试试看。
(5)观察每一组的两个算式都有什么共同的地方?有什么不同的地方(同桌交流)?(6)从这些例子中,你发现了什么规律?
(7)用自己喜欢的方法把它们的规律表示出来。可以用符号、字母、文字等表示。
(8)观察板演的等式,说说自己的想法。
小结:两个数相加,交换加数的位置和不变这一规律叫做加法的交换律(板书:加法交换律),在数学上,我们通常用字母表示:a+b=b+a
2、练习。(1)填空
96+35=35+□
204+□=57+204
(2)下面的等式符合加法交换律吗?为什么?
46+59=46+59
90+10=5+95(3)计算357+218,并用加法交换律进行验算。
三、探索加法结合律
1、要求 “参加活动的一共有多少人”会列式吗?(1)指名回答,板书:28+17+23 第一步先求什么?为了看得更清楚,我们可给28+17添上括号,表示参加跳绳的总人数:(28+17)+23,再求什么?结果是多少?
(2)还是这个式子28+17+23(板书)如果要先算参加活动的女生人数应该怎么办?教师添上括号:28+(17+23),添上括号后表示先求什么,再求什么?结果是多少?
(3)请同学们比较这两道算式:它们有什么相同点和不同点?
(4)这两道算式结果相同我们可把它写成怎样的等式?
板书:(28+17)+23=28+(17+23)
(5)算一算,下面的○里能填上等号吗?
(45+25)+13○45+(25+13)
(36+18)+22○36+(18+22)
3、归纳加法结合律:
(1)观察这三个等式,每组的两个算式有什么相同的地方?有什么不同的地方? 你从这些等式中能发现怎样的规律?和你的同桌交流一下。
(2)你能用字母a、b、c代表这三个加数把上面的规律表示出来吗?(独立写一写)板书:(a+b)+c=a+(b+c)
(3)小结:三个数连加,改变运算顺序,和不变。这就是加法结合律。(板书:加法 结合律)
4、练习:在□里填上合适的数。(45+36)+64=45+(□+□)560+(140+70)=(560+□)+□
四、巩固练习
1、“想想做做”1(以游戏的方式进行)
2、想想做做4。请每个同学选一组题独立完成。
反馈提问:每组两道题的得数相同哪种方法简便,为什么?
3、哪两片树叶上数的和是100?连一连
四、课堂总结
通过本节课的学习,你有什么收获?
五、布置作业 第58页第3题
“加法交换律和结合律”教案
[ 作者:蒋梅芳 转贴自:本站原创 点击数:535 更新时间:2007-11-22 文章录入:abc ]
(教学《交换律》●张齐华
一个例子,究竟能说明什么? 师:喜欢听故事吗?
生:喜欢。
师:那就给大家讲一个“朝三暮四”的故事吧。(故事略)听完故事,想说些什么吗?
结合学生发言,教师板书:3+4=4+3。
师:观察这一等式,你有什么发现?
生1:我发现,交换两个加数的位置和不变。
(教师板书这句话)师:其他同学呢?(见没有补充)老师的发现和他很相似,但略有不同。(教师随即出示:交换3和4的位置和不变)比较我们俩给出的结论,你想说些什么?
生2:我觉得您(老师)给出的结论只代表了一个特例,但他(生1)给出的结论能代表许多情况。
生3:我也同意他(生2)的观点,但我觉得单就黑板上的这一个式子,就得出“交换两个加数的位置和不变”好像不太好。万一其它两个数相加的时候,交换它们的位置和不等呢!我还是觉得您的观点更准确、更科学一些。
师:的确,仅凭一个特例就得出“交换两个加数的位置和不变”这样的结论,似乎草率了点。但我们不妨把这一结论当作一个猜想(教师随即将生1给出的结论中的“。”改为“?”)。既然是猜想,那么我们还得——
生:验证。
验证猜想,需要怎样的例子? 师:怎么验证呢?
生1:我觉得可以再举一些这样的例子?
师:怎样的例子,能否具体说说?
生1:比如再列一些加法算式,然后交换加数的位置,看看和是不是跟原来一样。(学生普遍认可这一想法)
师:那你们觉得需要举多少个这样的例子呢?
生2:
五、六个吧。
生3:至少要十个以上。
生4:我觉得应该举无数个例子才行。不然,你永远没有说服力。万一你没有举到的例子中,正好有一个加法算式,交换他们的位置和变了呢?(有人点头赞同)
生5:我反对!举无数个例子是不可能的,那得举到什么时候才好?如果每次验证都需要这样的话,那我们永远都别想得到结论!
师:我个人赞同你(生5)的观点,但觉得他(生4)的想法也有一定道理。综合两人的观点,我觉得是不是可以这样,我们每人都来举三、四个例子,全班合起来那就多了。同时大家也留心一下,看能不能找到“交换加数位置和发生变化”的情况,如果有及时告诉大家行吗?
学生一致赞同,随后在作业纸上尝试举例。
师:正式交流前,老师想给大家展示同学们在刚才举例过程中出现的两种不同的情况。
(教师展示如下两种情况:1.先写出12+23和23+12,计算后,再在两个算式之间添上“=”。2.不计算,直接从左往右依次写下“12+23=23+12”。)
师:比较两种举例的情况,想说些什么?
生6:我觉得第二种情况根本不能算举例。他连算都没算,就直接将等号写上去了。这叫不负责任。(生笑)
生7:我觉得举例的目的就是为了看看交换两个加数的位置和到底等不等,但这位同学只是照样子写了一个等式而已,至于两边是不是相等,他想都没想。这样举例是不对的,不能验证我们的猜想。
(大家对生
6、生7的发言表示赞同。)
师:哪些同学是这样举例的,能举手示意一下吗?
(几位同学不好意思地举起了手。)
师:明白问题出在哪儿了吗?(生点头)为了验证猜想,举例可不能乱举。这样,再给你们几位一次补救的机会,迅速看看你们写出的算式,左右两边是不是真的相等。
师:其余同学,你们举了哪些例子,又有怎样的发现?
生8:我举了三个例子,7+8=8+7,2+9=9+2,4+7=7+4。从这些例子来看,交换两个加数的位置和不变。
生9:我也举了三个例子,5+4=4+5,30+15=15+30,200+500=500+200。我也觉得,交换两个加数的位置和不变。
(注:事实上,选生
8、生9进行交流,是教师有意而为之。)
师:两位同学举的例子略有不同,一个全是一位数加一位数,另一个则有一位数加一位数、二位数加两位数、三位数加三位数。比较而言,你更欣赏谁?
生10:我更欣赏第一位同学,他举的例子很简单,一看就明白。
生11:我不同意。如果举得例子都是一位数加一位数,那么我们最多只能说,交换两个一位数的位置和不变。至于加数是两位数、三位数、四位数等等,就不知道了。我更喜欢第二位同学的。
生12:我也更喜欢第二位同学的,她举的例子更全面。我觉得,举例就应该这样,要考虑到方方面面。
(多数学生表示赞同。)
师:如果这样的话,那你们觉得下面这位同学的举例,又给了你哪些新的启迪?
教师出示作业纸:0+8=8+0,6+21=21+6,1/9+4/9=4/9+1/9。
生:我们在举例时,都没考虑到0的问题,但他考虑到了。
生:他还举到了分数的例子,让我明白了,不但交换两个整数的位置和不变,交换两个分数的位置和也不变。师:没错,因为我们不只是要说明“交换两个整数的位置和不变”,而是要说明,交换——
生:任意两个加数的位置和不变。
师:看来,举例验证猜想,还有不少的学问。现在,有了这么多例子,能得出“交换两个加数的位置和不变”这个结论了吗?(学生均表示认同)有没有谁举例时发现了反面的例子,也就是交换两个加数位置和变了?(学生摇头)这样看来,我们能验证刚才的猜想吗?
生:能。
(教师重新将“?”改成“。”,并补充成为:“在加法中,交换两个加数的位置和不变。”)
教学《交换律》●张齐华
一个例子,究竟能说明什么? 师:喜欢听故事吗?
生:喜欢。
师:那就给大家讲一个“朝三暮四”的故事吧。(故事略)听完故事,想说些什么吗?
结合学生发言,教师板书:3+4=4+3。
师:观察这一等式,你有什么发现?
生1:我发现,交换两个加数的位置和不变。
(教师板书这句话)
师:其他同学呢?(见没有补充)老师的发现和他很相似,但略有不同。(教师随即出示:交换3和4的位置和不变)比较我们俩给出的结论,你想说些什么?
生2:我觉得您(老师)给出的结论只代表了一个特例,但他(生1)给出的结论能代表许多情况。
生3:我也同意他(生2)的观点,但我觉得单就黑板上的这一个式子,就得出“交换两个加数的位置和不变”好像不太好。万一其它两个数相加的时候,交换它们的位置和不等呢!我还是觉得您的观点更准确、更科学一些。
师:的确,仅凭一个特例就得出“交换两个加数的位置和不变”这样的结论,似乎草率了点。但我们不妨把这一结论当作一个猜想(教师随即将生1给出的结论中的“。”改为“?”)。既然是猜想,那么我们还得——
生:验证。
验证猜想,需要怎样的例子? 师:怎么验证呢?
生1:我觉得可以再举一些这样的例子?
师:怎样的例子,能否具体说说?
生1:比如再列一些加法算式,然后交换加数的位置,看看和是不是跟原来一样。(学生普遍认可这一想法)
师:那你们觉得需要举多少个这样的例子呢?
生2:
五、六个吧。
生3:至少要十个以上。
生4:我觉得应该举无数个例子才行。不然,你永远没有说服力。万一你没有举到的例子中,正好有一个加法算式,交换他们的位置和变了呢?(有人点头赞同)
生5:我反对!举无数个例子是不可能的,那得举到什么时候才好?如果每次验证都需要这样的话,那我们永远都别想得到结论!
师:我个人赞同你(生5)的观点,但觉得他(生4)的想法也有一定道理。综合两人的观点,我觉得是不是可以这样,我们每人都来举三、四个例子,全班合起来那就多了。同时大家也留心一下,看能不能找到“交换加数位置和发生变化”的情况,如果有及时告诉大家行吗?
学生一致赞同,随后在作业纸上尝试举例。
师:正式交流前,老师想给大家展示同学们在刚才举例过程中出现的两种不同的情况。
(教师展示如下两种情况:1.先写出12+23和23+12,计算后,再在两个算式之间添上“=”。2.不计算,直接从左往右依次写下“12+23=23+12”。)
师:比较两种举例的情况,想说些什么?
生6:我觉得第二种情况根本不能算举例。他连算都没算,就直接将等号写上去了。这叫不负责任。(生笑)
生7:我觉得举例的目的就是为了看看交换两个加数的位置和到底等不等,但这位同学只是照样子写了一个等式而已,至于两边是不是相等,他想都没想。这样举例是不对的,不能验证我们的猜想。
(大家对生
6、生7的发言表示赞同。)
师:哪些同学是这样举例的,能举手示意一下吗?
(几位同学不好意思地举起了手。)
师:明白问题出在哪儿了吗?(生点头)为了验证猜想,举例可不能乱举。这样,再给你们几位一次补救的机会,迅速看看你们写出的算式,左右两边是不是真的相等。
师:其余同学,你们举了哪些例子,又有怎样的发现?
生8:我举了三个例子,7+8=8+7,2+9=9+2,4+7=7+4。从这些例子来看,交换两个加数的位置和不变。
生9:我也举了三个例子,5+4=4+5,30+15=15+30,200+500=500+200。我也觉得,交换两个加数的位置和不变。
(注:事实上,选生
8、生9进行交流,是教师有意而为之。)
师:两位同学举的例子略有不同,一个全是一位数加一位数,另一个则有一位数加一位数、二位数加两位数、三位数加三位数。比较而言,你更欣赏谁?
生10:我更欣赏第一位同学,他举的例子很简单,一看就明白。
生11:我不同意。如果举得例子都是一位数加一位数,那么我们最多只能说,交换两个一位数的位置和不变。至于加数是两位数、三位数、四位数等等,就不知道了。我更喜欢第二位同学的。
生12:我也更喜欢第二位同学的,她举的例子更全面。我觉得,举例就应该这样,要考虑到方方面面。
(多数学生表示赞同。)
师:如果这样的话,那你们觉得下面这位同学的举例,又给了你哪些新的启迪?
教师出示作业纸:0+8=8+0,6+21=21+6,1/9+4/9=4/9+1/9。
生:我们在举例时,都没考虑到0的问题,但他考虑到了。
生:他还举到了分数的例子,让我明白了,不但交换两个整数的位置和不变,交换两个分数的位置和也不变。
师:没错,因为我们不只是要说明“交换两个整数的位置和不变”,而是要说明,交换——
生:任意两个加数的位置和不变。
师:看来,举例验证猜想,还有不少的学问。现在,有了这么多例子,能得出“交换两个加数的位置和不变”这个结论了吗?(学生均表示认同)有没有谁举例时发现了反面的例子,也就是交换两个加数位置和变了?(学生摇头)这样看来,我们能验证刚才的猜想吗?
生:能。
(教师重新将“?”改成“。”,并补充成为:“在加法中,交换两个加数的位置和不变。”)