第一篇:圆的教学设计
《圆的认识》教学设计
在上《圆的认识》前,我想起两年前在曲靖听过江苏名师张齐华老师的《圆的认识》,张老师的那节课,对我启发很大。我在备课时借鉴了江苏名师张齐华老师的《圆的认识》的教学思想,但在教学设计上,有了一些创新,上完本节课,自我感觉效果还不错。比如开课时,张老师借助大自然中美妙的水纹、向日葵、光环、电磁波以及人类社会、生活、文化、艺术领域中美轮美奂的圆的介入,激发学生的学习兴趣,而我却用小游戏蒙住眼睛,能否又快又准的摸到圆?并说说你又快又准摸到圆的诀窍,激发起学生的学习兴趣,直接点题,张老师是边教学画圆边穿插教学直径、半径、及同圆中圆的直径半径的关系和圆的直径半径的数量,而我是通过动手折一折圆、用彩笔画一画折痕、把圆纸片打开看一看折痕、再自学课本,配合课件,教学直径、半径、及同圆中圆的直径半径的关系及同圆中圆的直径半径的关系和圆的直径半径的数量,通过学生独立动手操作:在练习卡上画一个圆(挑选部分展示)问:同学们都是在练习卡画圆,可你们画的圆却在练习卡的不同位置,有的同学画的圆大,的同学画的圆小,有的画的甚至不够理想,这是为什么呢?根据学生回答概括:圆心确定圆的位置,半径决定圆的大小。并由学生的回答梳理画圆的步骤,其间通过谈话,从“没有规矩,不成方圆”到“没有规矩,也成方圆”,又到为什
么这么千百年来人们一直沿用“没有规矩,不成方圆”,是前人搞不懂没有规矩,也成方圆,还是这句话蕴含着什么哲理呢?进行哲理教育,最后,在学生有圆的形状表象、理解“
圆,一中同长也。”的基础上,播放课件,欣赏圆的美妙,使学生感悟:为什么人们特别青睐圆,感悟人们赋予圆的内涵。使学生知其然,更知其所以然。让枯燥无味的概念教学,呈现出一种感性与理性交融的美。
《圆的认识》教学设计
教学内容:义务教育课程标准实验教科书人教版六年级上册第56、57页的内容。
教学目标:
1、经历观察、操作活动,认识圆心、半径和直径,体会半径、直径的特征以及它们之间的关系。会用圆规按要求画圆。
2、在活动中发展观察能力、实践操作能力,学会应用所学知识解决简单的实际问题。
3、懂得哲理:“没有规矩不成方圆”
4、体验圆与人类生活的不解之缘,感受圆的美。教学设计:
一、触摸,感受圆是一种曲线图形。
1、卡片再认长方形、正方形、平行四边形、三角形、梯形,概括它们都是由线段围成的封闭图形。(课件再现目的:从实物形
状抽象出这些图形是由线段围成的封闭图形)
2、小游戏:将长方形、正方形、平行四边形、三角形、梯形及圆放到信封内,请两生上来,让其中一个蒙住另一个的眼睛,看被蒙住眼睛的同学能否又快又准的摸到圆?并说说你又快又准摸到圆的诀窍。
3、揭示:圆是是由曲线围成的封闭图形(课件再现:圆是由曲线围成的封闭图形。课件再现目的:化具体为抽象)
4、板书:圆的认识
二、操作认识圆的各部分名称。
1、直观认识:圆内、圆外、圆上。(课件演示。课件演示目的:化具体为抽象,为后面直径半径准确定义作必要的铺垫)
2、动手操作
(1)同学们拿出课前准备的圆,动手把圆对折,边折边把折痕用彩色笔画出来,在规定时间内,看谁折的次数多,画的折痕最多?
(2)观察发现:请同学打开手中对折的圆,说说你的发现(折痕都相交于一点,可以对折无数次,有无数条折痕„„)(3)自学直径、半径、认识圆心
结合刚才的动手操作及观察发现,自学数学课本第56页,认识直径、半径、圆心。(课件再现直径、半径、圆心。课件演示的目的:化具体为抽象,起到小结的作用)
(4)认识同圆、等圆中直径与半径的关系、直径与半径的的条
数。(课件展示:在同圆或等圆中:直径长度是半径的2倍,半径长度是直径的,同圆内,半径有无数条,长度都相等。同圆内,直径有无数条,长度都相等。课件演示的目的:帮助学生整理,起到小结的作用,节省时间)(5)民族自豪感教育
课件展示:我国古代战国时期的著作《墨经》一书对圆的定义是:“
圆,一中同长也。”,让学生结合刚才的学习,解释“
圆,一中同长也。”是做必要的补充,并自豪的告诉学生,我国古人对圆的这一认识,比西方早了一千多年呢,增强学生的民族自豪感教育。(课件展示的目的:古朴的画面,一段文字,让学生自己读更能体会历史的久远,比老师口述好,也方便提问什么是一中同长)
(6)这对性练习(课件展示目的:有针对性,节省时间)
三、教学圆规做圆,插入哲理教育
1、谈话引入圆规画圆
人们常说,“没有规矩,不成方圆”,意思是,没有圆规——画不成圆的(由于本节课将教学圆规画圆,学生受到思维定式的影响,往往不假思索,随口而出,没有圆规,是画不成圆的)为用圆规画圆 做好铺垫,同时为后续的哲理教育埋下伏笔(1)独立动手操作:在练习卡上画一个圆(挑选部分展示)(2)师:同学们都是在练习卡画圆:可圆却在练习卡的不同位置,有的同学画的圆大,的同学画的圆小,有的画的甚至不够理 12
想,这是为什么呢?
根据学生回答概括:圆心确定圆的位置,半径决定圆的大小。(板书)
(3)刚才同学们谈的正是我们画圆时要注意的地方。还想再画一个吗?能不能想个办法,使我们全班同学画的圆一样大?—— 画一个半径为2厘米圆,标出圆心与半径。根据学生回答概括画圆的步骤。课件展示:
1、定圆心
2、定半径(即圆规两脚间的距离)
3、旋转一周(课件展示目的:小结、省时、可指导学生规范画圆)(4)按要求画圆
2、哲理教育:同学们,真的如刚才所说:没有圆规,是画不出圆的吗?一石激起千层浪,画圆的方法将出现很多种:利用瓶盖、口杯、绳子„„来画圆,那你能不能把“没有规矩,不成方圆”换个说法呢?(生:没有规矩,也成方圆。)为什么这么千百年来人们一直沿用“没有规矩,不成方圆”,是前人搞不懂没有规矩,也成方圆,还是这句话蕴含着什么哲理呢?结合学生的发言,师做必要的补充(没有规矩,不成方圆“没有规矩,不成方圆”是人们比较熟悉的一句贤文,出自《孟子·离娄上》:“不以规矩,不能成方圆。”它的本意就是没有圆规和曲尺(就是矩)就没办法画出圆和方这两种图案。规就是圆规,矩就是“曲
尺”,后来引申为行为举止的标准和规则。这句贤文旨在教育人们,做人要遵纪守法。只有这样才能让社会、个人更好地发展与进步。)
四、知识拓展
圆在大自然中随处可见,在生活中无处不在,圆的形状、圆的一中同长„„让人们更青睐圆,赋予圆更多的内涵,有了圆,我们的世界变得更加美妙,让我们一起走近圆,欣赏圆。(播放课件)
(课件中的图片,有大自然的天然生成、有实物、有孩子的想象画,有人们对圆的利用设计、有中秋月圆的美好祝愿„„这种在对圆的认识基础上欣赏圆的美妙,是感性与理性的呈现)。
五、练习(见课件,目的是对本节课所学知识的补充和提升,可视课堂所剩时间决定,具有很大的灵活性。)附教学反思:
关注学生数学思考的提升、数学思维方式的培养,关注数学精神品质的有机渗透,只有让知识的学习伴随着丰富的数学思考,让方法的渗透伴随着理性精神的培育,这样的数学课堂才是真正具有文化意蕴的,圆的从表面上看是枯燥无味的,然而却有着一种隐蔽的、深邃的美,一种感性与理性交融的美。数学美是数学科学本质力量的感性与理性的呈现,是一种人的本质力量通
过人的数学思维结构的呈现,是一种真实意义上的美,是一种彰显人文精神的科学美。
从蒙住眼睛,能否又快又准的摸到圆?并说说你又快又准摸到圆的诀窍。马上激发起学生的学习兴趣,到动手折折、剪剪、拼拼,议议,让孩子在体验的过程中去经历想象,带着感性的认识,再自学课本上的知识点,实现感性与理性相结合,具体与抽象相结合,充分体现了学生学习的主体能动性,从学生在练习卡上任意画一个圆展示的过程中,师生的问答,再到谈“没有规矩,不成方圆”到“没有规矩,也成方圆”,又到为什么这么千百年来人们一直沿用“没有规矩,不成方圆”,是前人搞不懂没有规矩,也成方圆,还是这句话蕴含着什么哲理呢?无时不体现着参与,在一个个问题的探究中,意味着心态的开放,个性的张显,教学过程变成了一种分享理解的过程。
从我国古人对圆的认识“
圆,一中同长也。”,比西方早一千多年的民族自豪感的教育,再到对圆的认识基础上欣赏圆的美妙,是一种真实意义上的美,是一种彰显人文精神的科学美。这节课让学生的形象思维、抽象思维和直觉思维有机融合在一起,很好地促进了学生思维能力的发展。
第二篇:圆 教学设计
《圆的认识》教学设计
教学内容:
设计说明:
圆的认识”是义务教育课程标准实验教科书小学数学六年级上册55——58页的内容,它是在学生已经初步认识了长方形、正方形、平行四边形、三角形、梯形等平面图形和初步认识圆的基础上进行学习的。对于学生来说,虽然已经初步认识过圆,但对于建立正确的圆的概念以及掌握圆的特征来说还是比较困难的。学生由认识平面上的直线图形到认识平面上的曲线图形,无论是内容本身,还是研究问题的方法,都是认识发展的又一次飞跃。
本课的教学设计注重从学生已有的生活经验和知识背景出发,结合具体情境和操作活动激活已经存在于学生头脑中的经验,促使学生逐步归纳内化,上升到数学层面来认识圆,体会到圆的本质特征。教学目标:
1、结合生活实际,通过观察、操作等活动认识圆,理解圆心、半径、直径的意义,掌握圆的特征,理解同圆里(或等圆)半径与直径的关系。
2、会用圆规画圆,培养学生的操作能力。
3、结合具体的情境,体验数学与生活密切联系,能用圆的知识来解释生活中的简单现象。
4、通过观察、操作、想象等活动,培养学生自主探究的意识,进一步发展学生的空间观念。
教学重点:在探索中发现圆的特征。
教学难点:理解同圆里(或等圆)半径与直径的关系,并掌握圆的正确画法。教学材料:生——圆规、直尺、剪刀、、A4纸、圆形物体。(提前让学生回去玩圆规,试着画圆)
师——教学用的圆规一把、直尺一把、课件、“研究记录单”、白纸一些。事先画好一个圆在黑板上,并将大圆规“定长”。教学过程
一、寻宝中创造“圆”
师(很神秘):小明参加头脑奥林匹克的寻宝活动,得到这样一张纸条——“宝物距离你左脚3米。”
(稍顿)你手头的白纸上有一个红点,这个红点就代表小明的左脚,想一想,宝物可能在哪呢?用1厘米表示1米,请在纸上表示出你的想法。(学生独立思考、在纸上画着……)
师:刚才我看了一圈,同学们都在纸上表示出了自己的想法。(课件演示)宝物可能在这——
师:找到这个点的同学,请举手。(几乎全班举手。)还可能在其它位置吗?(学生们纷纷表示还有其它可能,课件依次出示2个点、3个点、4个点、8个点、16个点、32个点,直到连成一个圆。)师(笑着):这是什么?(板书:①是什么?)
生(有的惊讶、有的惊喜):圆!
师:刚才想到圆了的同学请举手!(十几位同学举手。)开始没想到的同学,现在认同了吗?那宝物的位置可能在哪呢? 生(高兴地):宝物的位置在这个圆上。
师:谁能说一说这是怎样的一个圆? 生1:这是一个有宝物的圆!
(全班同学善意的笑了。)生2:宝物就在小明周围!
师(点头):说得真好,周围这个词用得没错!(又像是自言自语地)周围的范围可大了……
同学们,想解决这个问题吗?现在我们一块来自学课本,相信大家学习完以后,一定会用我们学习的知识来解决这个问题的。同学们,加油吧。
二、探究活动
(一)自学小提示
1、(1)自学教材,把你认为重点的句子用线画下来,学到了什么,在小组内交流。
(2)在你的圆形纸片上画出圆心、半径和直径,并用字母表示出来。
(3)自学完成后,你能用一句话来描述宝物在哪吗?
2、小组汇报
(1)自学的收获
(2)学生上台画出圆的半径,直径,小练习
(3)描述宝物所在的地方
刚才同学们说宝物就在小明周围!说得真好,周围这个词用得没错!(又像是自言自语地)周围的范围可大了……生(迫切地):宝物在距离左脚3米的位置。(全班同学鼓掌。)
师:是啊,他强调了左脚。通过刚才的学习,谁知道这个左脚也就是圆的什么? 生(争先恐后地):圆心!圆心!师:没错,叫圆心。(板书:圆心。)也就是以左脚为圆心。他刚才强调了,距离左脚3米,这个距离3米,知道叫什么名称吗? 生:直径!半径!师:(板书:半径 直径。)直径还是半径?
生(绝大部分):半径!师:现在,用上“圆心”、“半径”,谁能清楚地说一说这个宝物可能在哪?生:以他左脚为圆心,半径3米的圆内。师:在圆内还是在圆上?生(纷纷纠正道):在圆上!
师:刚才董思纯很精彩的发言,把两个要素都说出来了,是不是只要说“以什么为圆心,以多长为半径”把这个圆就确定下来了?(同学们纷纷点头。)
三、探究活动
(二)同们觉得还有没有什么值得我们深入地去研究?
生:有(自信地)。
师:说得好,其实不说别的,就圆心、直径、半径,还蕴藏着许多丰富的规律呢,同学们想不想自己动手来研究研究?(想!)同学们手中都有圆片、直尺、圆规等等,这就是咱们的研究工具。待会儿就请同学们动手折一折、量一量、比一比、画一画,相信大家一定会有新的发现。小小的建议:研究过程中,别忘了把你们组的结论,哪怕是任何细小的发现都记录在学习纸上,到时候一起来交流。
(一)、通过动手,摸一摸,折一折,画一画。量一量,小组合作探究要求二:
1、圆与其它平面图形一样吗?
2、请同学们在圆纸片上画出半径,10秒钟,看能画出多少条?直径呢?
3、请同学们用直尺量一量画出的半径各是多少厘米?你发现了什么?直径呢?
4、还有关于圆的什么样的特征?
5、把你们组的发现填写到纸上,看哪一小组发现的最多!
(二)小组汇报
很多小组都向张老师推荐了他们刚才的研究发现,张老师从中选择了一部分。下面,就让我们一起来分享大家的发现吧!
生:我们小组发现圆有无数条半径。
师:能说说你们是怎么发现的吗?
生:我们组是通过折发现的。把一个圆先对折,再对折、对折,这样一直对折下去,展开后就会发现圆上有许许多多的半径。
生:我们组是通过画得出这一发现的。只要你不停地画,你会在圆里画出无数条半径。
生:我们组没有折,也没有画,而是直接想出来的。
师:噢?能具体说说吗?
生:因为连接圆心和圆上任意一点的线段叫做圆的半径,而圆上有无数个点(边讲边用手在圆片上指),所以这样的线段也有无数条,这不正好说明半径有无数条吗?
师:看来,各个小组用不同的方法,都得出了同样的发现。至少直径有无数条,还需不需要再说说理由了?
生:不需要了,因为道理是一样的。
师:关于半径或直径,还有哪些新发现?
生:我们小组还发现,所有的半径或直径长度都相等。
师:能说说你们的想法吗?
生:我们组是通过量发现的。先在圆里任意画出几条半径,再量一量,结果发现它们的长度都相等,直径也是这样。
生:我们组是折的。将一个圆连续对折,就会发现所有的半径都重合在一起,这就说明所有的半径都相等。直径长度相等,道理应该是一样的。
生:我认为,既然圆心在圆的正中间,那么圆心到圆上任意一点的距离应该都相等,而这同样也说明了半径处处都相等。
生:关于这一发现,我有一点补充。因为不同的圆,半径其实是不一样长的。所以应该加上“在同一圆内”,这一发现才准确。
师:大家觉得他的这一补充怎么样?
生:有道理。
师:看来,只有大家互相交流、相互补充,我们才能使自己的发现更加准确、更加完善。还有什么新的发现吗?
生:我们小组通过研究还发现,在同一个圆里,直径的长度是半径的两倍。
师:你们是怎么发现的?
生:我们是动手量出来的。
生:我们是动手折出来的。
生:我们还可以根据半径和直径的意义来想,既然叫“半径”,自然应该是直径长度的一半喽……
师:看来,大家的想象力还真丰富。
生:我们组还发现圆的大小和它的半径有关,半径越长,圆就越大,半径越短,圆就越小。
师:圆的大小和它的半径有关,那它的位置和什么有关呢?
生:应该和圆心有关,圆心定哪儿,圆的位置就在哪儿了。
生:我们组还发现,圆是世界上最美的图形。
师:能说说你们是怎样想的吗?
生:生活中,我们到处都能找到圆。如果没有了圆,我们生活的世界一定会缺乏生机
生:我们生活的世界需要圆,如果没有了圆,车子就没法自由的行驶……
师:当然,张老师相信,同学们手中一定还有更多精彩的发现,没来得及展示。没关系,那就请大家下课后将刚才的发现剪下来,贴到教室后面的数学角上,让全班同学一起来交流,一起来分享,好吗?
生:好。
四、动手画圆
1、每位同学画一个圆,比较一下,你们所画的圆大小一样吧?为什么,如果让每个小组的几位同学画的圆大小都一样,你们小组能做到吗?试一试,通过刚才的画圆,你们知道了什么?板书(半径决定圆的大小)
2、学生上台板演画圆(投影仪前)
3、总结画圆的方法。
定点,定长,旋转
五、生活中圆
看来,只要我们善于观察,善于联系,善于动手,我们还能获得更多有用的信息。现在让我们重新回到现实生活中来。平静的水面丢进石子,荡起的波纹为什么是一个个圆形?现在,你能从数学的角度简单解释这一现象了吗?
生:我觉得石子投下去的地方就是圆的圆心。
生:石子的力量向四周平均用力,就形成了一个个圆。
生:这里似乎包含着半径处处相等的道理呢。
师:瞧,简单的自然现象中,有时也蕴含着丰富的数学规律呢。至于其他一些现象中又为何会出现圆,当中的原因,就留待同学们课后进一步去调查、去研究了。
师:其实,又何止是大自然对圆情有独钟呢,在我们人类生活的每一个角落,圆都扮演着重要的角色,并成为美的使者和化身。让我们一起来欣赏――
师:西方数学、哲学史上历来有这么种说法,“上帝是按照数学原则创造这个世界的”。对此,我一直无从理解。而现在想来,石子入水后浑然天成的圆形波纹,阳光下肆意绽放的向日葵,天体运行时近似圆形的轨迹,甚至于遥远天际悬挂的那轮明月、朝阳……而所有这一切,给予我们的不正是一种微妙的启示吗?至于古老的东方,圆在我们身上遗留下的印痕又何尝不是深刻而广远的呢。太极图
有的说,中国人特别重视中秋、除夕佳节;有人说,中国古典文学喜欢以大团圆作结局;有人说,中国人在表达美好祝愿时最喜欢用上的词汇常常有“圆满”“美满”……而所有这些,难道就和我们今天认识的圆没有任何关联吗?那就让我们从现在起,从今天起,真正走进历史、走进文化、走进民俗、走进圆的美妙世界吧!
研究报告单
自己动手折一折、量一量、比一比、画一画,把你们的发现写下来:
半径的特征:
直径的特征:
半径与直径之间的关系:
你能用数学的角度解释一下为什么车轮要做成圆的?车轴应装在哪里? 这是利用圆心到圆上任意一点的距离都相等的特性,车轴放在圆心的位置,车轮滚动时车轴保持平稳状态,使行进的车辆也保持平稳状态。
第三篇:圆教学设计
《圆的认识》教学设计
学习目标:
1.认识圆,知道圆各部分的名称;掌握圆的特征,理解直径和半径的相互关系;初步学会用圆规画圆。
2.通过小组学习,动手操作等活动,体验小组合作学习、分享学习成果的乐趣。
3.感受圆在生活中的广泛应用,体验数学与生活的密切联系。学习重点:探索出圆各部分的名称、特征及关系,学会用圆规画圆的方法。
学习难点:通过动手操作体会圆的特征及画法。
学具准备:圆形纸片、圆形物体、直尺、圆规、线、剪刀等。学习过程:
【纵横生活 设疑激趣】
图图是个爱动脑筋的孩子,今天他坐车去上学,他发现汽车的轮子都是圆形的,他想为什么轮子都要做成圆形,而不做成正方形、长方形或三角形呢?生活中还有哪些物体也是圆形的?
【动手实践 自主探究】
活动一:探究圆各部分的名称与特征 1.画一画:你能想办法在纸上画一个圆吗? 说一说你是怎么画的?
2.剪一剪:把你画的圆剪下来? 圆与我们过去认识的长方形、正方形、三角形等平面图形有什么不一样?(圆是由曲线围成的平面图形)
3.折一折:先把圆对折打开,换个方向,再对折,再打开……这样反复折几次。
仔细观察:折过若干次后,你发现了什么?(结合书理解)在动手实验与合作交流中得出圆心、半径、直径的概念:在圆内出现了许多折痕,它们都相交于一点,这一点就是(),圆心一般用字母()表示。连接圆心和圆上任意一点的线段叫做(),半径一般用字母()表示。通过圆心并且两端都在圆上的线段叫做()。直径一般用字母()表示。
4.找一找:在同一个圆里,有多少条半径、多少条直径? 在同一个圆里,半径有()条,直径有()。
5.量一量:自己用尺子量一量同一个圆里的几条半径和几条直径,看一看,你有什么发现?
在同一个圆里,半径有()条,所有的半径都(),直径有()条,所有的直径都(),半径是直径的(),直径是半径的()。
活动二:探究圆的画法
1.想一想,画一画:怎样才能画出任意大小的圆?圆的位置和大小和谁有关?
看看书上的理解是不是和你想的一样,试用圆规画一个半径是2CM的圆。
2.思考:图图想在操场上画一个圆做游戏,没有那么大的圆规怎么办?
【巩固提高 内化新知】
1.用圆规画一个半径是3cm的圆,并用字母O、r、d标出它的圆心、半径和直径。
2.用圆规画圆,如果半径是4cm,圆规两脚之间的距离取()cm,如果要画直径是10cm的圆,圆规两脚之间的距离取()cm。
【解惑释疑 应用拓展】
思考:车轮为什么是圆形的?车轴应装在什么位置? 板书设计: 圆 圆心:o 直径:d 半径:r 达 标 测 评
一、填空
1.圆中心的一点叫做(),用字母()表示。2.通过(),并且两端都在圆上的(),叫做圆的直径。用字母()表示。
3.从()到()任意一点的线段叫半径。用字母()表示。4.圆是平面上的一种()图形。将一张圆形纸片至少对折()次可以得到这个圆的圆心。
5.在同一圆所有的线段中,()最长。
6.在同一个圆里,所有的半径(),所有的()也都相等,直径等于半径的()。
7.在同一个圆里,半径是5厘米,直径是()厘米。8.画圆时,圆规两脚间的距离是圆的()。
9.()确定圆的位置,()确定圆的大小。10.在一个直径是8分米的圆里,半径是()厘米。
11.用圆规画一个直径20厘米的圆,圆规两脚步间的距离是()厘米。
二、判断
1.所有的半径长度都相等,所有的直径长度都相等。()2.直径是半径长度的2倍。()
3.两个圆的直径相等,它们的半径也一定相等。()4.半径是射线,直径是线段。()
5.经过一个点可以画无数个圆。()6.两端都在圆上的线段就是直径。()
7.画一个直径是4厘米的圆,圆规两脚应叉开4厘米。()
8.在画圆时,把圆规的两脚张开6厘米,这个圆的直径是12厘米。()9.半径能决定圆的大小,圆心能决定圆的位置。()
第四篇:圆教学设计
圆
目标认知 学习要点
1.了解圆的有关概念,理解垂径定理并灵活运用垂径定理及圆的概念解决一些实际问题.
2.了解圆心角的概念,掌握在同圆或等圆中,三组量:两个圆心角、两条弦、两条弧,只要有一组量相等,就可以推出其它两组量对应相等,及其它们在解题中的应用.
3.了解圆周角的概念,理解圆周角定理及其推论,熟练掌握圆周角的定理及其推理的灵活运用. 重点
1.垂径定理及其运用.
2.在同圆或等圆中,相等的圆心角所对的弧相等,•所对弦也相等及其两个推论和它们的应用.
3.圆周角的定理、圆周角的定理的推导及运用它们解题. 难点
1.探索并证明垂径定理及利用垂径定理解决一些实际问题.
2.探索定理和推论及其应用.
3.运用数学分类思想证明圆周角的定理.
一、知识要点梳理 知识点
一、圆的定义
1.定义1:
如图,在一个平面内,线段OA绕它固定的一个端点O旋转一圈,另一个端点A随之旋转所形成的图形叫做圆(circle),固定的端点O叫做圆心(center of a circle),线段OA叫做半径(radius).以点O为圆心的圆,记作“⊙O”,读作“圆O”.
要点诠释:
(1)圆心确定圆的位置,半径确定圆的大小;确定一个圆应先确定圆心,再确定半径,二者缺一不可;
(2)圆是一条封闭曲线.2.定义2:
圆心为O,半径为r的圆是平面内到定点O的距离等于定长r的点的集合.要点诠释:
(1)定点为圆心,定长为半径;
(2)圆指的是圆周,而不是圆平面;
(3)强调“在一个平面内”是非常必要的,事实上,在空间中,到定点的距离等于定长的点的集合是球
面,一个闭合的曲面.知识点
二、与圆有关的概念 1.弦
弦:连结圆上任意两点的线段叫做弦(chord).直径:经过圆心的弦叫做直径(diameter).要点诠释:
直径是圆中通过圆心的特殊弦,也是圆中最长的弦,即直径是弦,但弦不一定是直径.为什么直径是圆中最长的弦?如图,AB是⊙O的直径,CD是⊙O中任意一条弦,求证:AB≥CD.证明:连结OC、OD
∵AB=AO+OB=CO+OD≥CD(当且仅当CD过圆心O时,取“=”号)
∴直径AB是⊙O中最长的弦.2.弧
弧:圆上任意两点间的部分叫做圆弧,简称弧(arc).以A、B为端点的弧记作,读作“圆弧AB”或“弧AB”.半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆(semi-circle).优弧:大于半圆的弧叫做优弧.劣弧:小于半圆的弧叫做劣弧.要点诠释:
(1)半圆是弧,而弧不一定是半圆.(2)无特殊说明时,弧指的是劣弧.3.同心圆与等圆
圆心相同,半径不等的两个圆叫做同心圆.圆心不同,半径相等的两个圆叫做等圆.同圆或等圆的半径相等.4.等弧
在同圆或等圆中,能够完全重合的弧叫做等弧.要点诠释:
等弧成立的前提条件是在同圆或等圆中,不能忽视.知识点
三、圆的对称性 1.圆是轴对称图形
圆是轴对称图形,任何一条直径所在直线都是它的对称轴.或者说,经过圆心的任何一条直线都是圆的对称轴.2.圆是中心对称图形
圆是旋转对称图形,无论绕圆心旋转多少度,它都能和自身重合,对称中心就是圆心,因此,圆又是中心对称图形.要点诠释:
(1)圆有无数条对称轴;
(2)因为直径是弦,弦又是线段,而对称轴是直线,所以不能说“圆的对称轴是直径”,而应该说“圆 的对称轴是直径所在的直线”.知识点
四、垂直于弦的直径
1.垂径定理:
垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.2.推论:
平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.要点诠释:
(1)垂径定理是由两个条件推出两个结论,即
(2)这里的直径也可以是半径,也可以是过圆心的直线或线段.知识点
五、弧、弦、圆心角的关系
1.圆心角定义
如图所示,∠AOB的顶点在圆心,像这样顶点在圆心的角叫做圆心角(central angle).
2.定理:
在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.
3.推论:
在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦也相等.
在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧也相等.
要点诠释:
(1)一个角要是圆心角,必须具备顶点在圆心这一特征.(2)注意定理中不能忽视“同圆或等圆”这一前提.知识点
六、圆周角 1.圆周角定义:
像图中∠AEB、∠ADB、∠ACB这样的角,它们的顶点在圆上,并且两边都与圆相交的角叫做圆周角.
2.圆周角定理:
在同圆或等圆中,同弧等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
3.圆周角定理的推论:
半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.
要点诠释:
(1)圆周角必须满足两个条件:①顶点在圆上;②角的两边都和圆相交.(2)圆周角定理成立的前提条件是在同圆或等圆中.二、规律方法指导
圆是平面几何知识中接触到的唯一的曲线形,因此它在研究问题的方法上与直线形有很大的不同,所以在学习这部分知识时要注意这个问题.另外,这一章的概念和定理较多,学习时要注意阶段性的小结,巩固每一阶段的知识.由于本章要经常用到前面学过的许多知识,综合性较强,所以要不怕困难,才能学好本章.经典例题透析
类型
一、圆及有关概念
1.判断题(对的打√,错的打×,并说明理由)
(1)半圆是弧,但弧不一定是半圆;
(2)弦是直径;
(3)长度相等的两段弧是等弧;
(4)直径是圆中最长的弦.思路点拨:(1)因为半圆是弧的一种,弧可分为劣弧、半圆、优弧三种,故正确;(2)直径是弦,但弦不一定都是直径,只有过圆心的弦才是直径,故错;(3)只有在同圆或等圆中,长度相等的两段弧才是等弧,故错;(4)直径是圆中最长的弦,正确.答案:(1)√(2)×(3)×(4)√.举一反三
【变式1】下列说法错误的是()4
A.半圆是弧
B.圆中最长的弦是直径
C.半径不是弦
D.两条半径组成一条直径
思路点拨:弧有三类,分别是优弧、半圆、劣弧,所以半圆是弧,A正确;直径是弦,并且是最长的弦,B正确;半径的一个端点为圆心,另一个端点在圆上,不符合弦的定义,所以不是弦,C正确;两条半径只有在同一直线上时,才能组成一条直径,否则不是,故D错误.答案:D.类型
二、垂径定理及应用
2.已知,点P是半径为5的⊙O内一点,且OP=3,在过点P的所有的⊙O的弦中,弦长为整数的弦的条数为()
A.2
B.3
C.4D.5
思路点拨:在一个圆中,过一点的最长弦是经过这一点的直径,最短的弦是经过这一点与直径垂直的弦.知道这些,就可以利用垂径定理来确定过点P的弦长的取值范围.解:作图,过点P作直径AB,过点P作弦
则OC=5,CD=2PC
由勾股定理,得
∴CD=2PC=8,又AB=10
∴过点P的弦长的取值范围是
,连接OC
弦长的整数解为8,9,10,根据圆的对称性,弦长为9的弦有两条,所以弦长为整数的弦共4条.答案:C.总结升华:本题中很多条件是“隐性”出现的,或者称之为“隐含条件”.我们在解题时,要善于挖掘隐含条件,识别隐含条件的不同表达方式,将其转化为容易理解的题目,化难为易,这也体现了转化思想在解题中的具体应用.3.已知:⊙O的半径为10cm,弦AB∥CD,AB=12cm,CD=16cm,求AB、CD间的距离.思路点拨:⊙O中,两平行弦AB、CD间的距离就是它们的公垂线段的长度,若分别作弦AB、CD的弦心距,则可用弦心距的长表示这两条平行弦AB、CD间的距离.解:(1)如图,当⊙O的圆心O位于AB、CD之间时,作OM⊥AB于点M,并延长
MO,交CD于N点.分别连结AO、CO.又∵AB∥CD
∴ON⊥CD,即ON为弦CD的弦心距.∵AB=12cm,CD=16cm,AO=OC=10cm
=8+6
=14(cm)
(2)如图所示,当⊙O的圆心O不在两平行弦AB、CD之间(即弦AB、CD在圆
心O的同侧)时
同理可证:MN=OM-ON=8-6=2(cm)
∴⊙O中,平行线AB、CD间的距离是14cm或2cm.总结升华:解这类问题时,要依平行线与圆心间的位置关系,分类讨论,千万别丢解.4.如图,一条公路的转弯处是一段圆弧(即图中,点O是的圆心,•其中CD=600m,E为上一点,且OE⊥CD,垂足为F,EF=90m,求这段弯路的半径.
思路点拨:本题是垂径定理的应用.解:如图,连接OC
设弯路的半径为R,则OF=(R-90)m
∵OE⊥CD
∴CF=CD=×600=300(m)
根据勾股定理,得:OC2=CF2+OF即R2=3002+(R-90)2 解得R=545
∴这段弯路的半径为545m.
总结升华:构造直角三角形,利用垂径定理、勾股定理,解题过程中使用了列方程的方法,这种用代数方法解决几何问题即几何代数解的数学思想方法一定要掌握.
举一反三
【变式1】有一石拱桥的桥拱是圆弧形,如图所示,正常水位下水面宽AB=60m,水面到拱顶距离CD=18m,当洪水泛滥时,水面距拱顶不超过3m时拱桥就有危险,现在水面宽MN=32m时是否需要采取紧急措施?请说明理由.
思路点拨:要求当洪水到来时,水面宽MN=32m,是否需要采取紧急措施,要求出DE的长,因此要先求半径R.
解:不需要采取紧急措施
设OA=R,在Rt△AOC中,AC=30,OC=OD-CD=R-18
R2=302+(R-18)2,R2=900+R2-36R+324
解得R=34(m)
连接OM,设DE=x,在Rt△MOE中,ME=16
342=162+(34-x)
2x2-68x+256=0
解得x1=4,x2=64(不合题意,舍)
∴DE=4m大于3m
∴不需采取紧急措施.
类型
三、圆心角、弧、弦之间的关系及应用
5.如图,在⊙O中,求∠A的度数.思路点拨:在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦也相等.
解:
举一反三
【变式1】如图所示,中弦AB=CD,求证:AD=BC..思路点拨:AD和BC是同圆中两条相等的弦,要说明的AB、CD也是同圆中的两条相等的弦,可以考虑弧、弦、圆心角的关系,因为图中没有给出圆心角,所以可以先考虑弧.证法1:∵AB=CD,∴为优弧或同为劣弧)也相等)
∴
(在同圆中,相等的弦所对的弧(同
∴AD=BC(在同圆中,相等的弧所对的弦也相等)
证法2:如图,连接OA,OD,OB,OC,∵AB=CD,∴的圆心角相等)
(在同圆中,相等的弦所对
∴
∴AD=BC(在同圆中,相等的圆心角所对的弦也相等)
总结升华:在同圆或等圆中,两个圆心角、两条弦、两条弧中若有一组量相等,它们对应的其余各组量也相等,因此在圆中说明或证明弦、弧、圆心角的相等关系时可考虑利用弧、弦、圆心角的关系,只不过叙述时要注意一条弦和两条弧对应,不要认为相等的弦所对的弧一定相等.
类型
四、圆周角定理及应用
6.如图,AB是⊙O的直径,C、D、E都是⊙O上的点,则∠1+∠2=___________.思路点拨:如图,连接OE,则
答案:90°.举一反三
【变式1】如图,A、B、C、D是⊙O上的四点,且∠BCD=100°,求∠1(所对的圆心角)和∠BAD的大小.
思路点拨:要求圆心角∠BOD的大小,且知道圆周角∠BCD=100°,但两者不是同弧所对的角,不能直接利用同弧所对圆心角等于圆周角的2倍来实现求解.观察∠BCD它所对的弧是,而
所对的圆心角是∠2,所以可以解得∠2.又发现∠2和∠1的和是一个周角,所以可得∠1,而∠BAD=
解:∵∠BCD和∠2分别是
∠1.所对的圆周角和圆心角
∴∠2=2∠BCD=200°
又∵∠2+∠1=360°,∴∠1=160°
∵∠BAD和∠1分别是
所对的圆周角和圆心角
∴.
总结升华:圆心角和圆周角是借助它们所对的弧联系起来的,所以在圆中进行有关角的计算时,通常找到已知角所对弧,看看怎么样通过弧和未知角建立起联系.事实上由这个题我们可以总结出圆内接四边形对角互补.
7.如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到C,使AC=AB,BD与CD的大小有什么关系?为什么?
思路点拨:BD=CD,因为AB=AC,所以这个△ABC是等腰三角形,要证明D是BC的中点,只要连结AD证明AD是高或是∠BAC的平分线即可.
解:BD=CD
理由是:如图,连接AD
∵AB是⊙O的直径
∴∠ADB=90°即AD⊥BC
又∵AC=AB
∴BD=CD.举一反三
【变式1】如图所示,AB为⊙O的直径,动点P在⊙O的下半圆,定点Q在⊙O的上半圆,设∠POA=x°,∠PQB=y°,当P点在下半圆移动时,试求y与x之间的函数关系式.9
解:
解法1:如图所示,∵AB为⊙O的直径,∠AOP=x°
∴∠POB=180°-x°=(180-x)°
又
解法2:如图所示,连结AQ,则
又∵AB是⊙O的直径,∴∠AQB=90°
【变式2】已知,如图,⊙O上三点A、B、C,∠ACB=60°,AB=m,试求⊙O的直径长.解:如图所示,作⊙O的直径AC′,连结C′B
则∠AC′B=∠C=60°
又∵AC′是⊙O的直径,∴∠ABC′=90°
即⊙O的直径为
.学习成果测评 基础达标
一、选择题
1.下列三个命题:①圆既是轴对称图形又是中心对称图形;②垂直于弦的直径平分弦;③相等的圆心
角所对的弧相等.其中真命题的是()
A.①②
B.②③
C.①③
D.①②③
2.下列命题中,正确的个数是()
⑴直径是弦,但弦不一定是直径;
⑵半圆是弧,但弧不一定是半圆;
⑶半径相等的两个圆是等圆 ;
⑷一条弦把圆分成的两段弧中,至少有一段是优弧.A.1个
B.2个
C.3个
D.4个
3.如果两个圆心角相等,那么()
A.这两个圆心角所对的弦相等
B.这两个圆心角所对的弧相等
C.这两个圆心角所对的弦的弦心距相等
D.以上说法都不对
4.⊙O中,∠AOB=∠84°,则弦AB所对的圆周角的度数为()
A.42°
B.138°
C.69°
D.42°或138°
5.如图,已知A、B、C是⊙O上的三点,若∠ACB=44°.则∠AOB的度数为()
A.44°
B.46°
C.68°
D.88°
6.如图,如果AB为⊙O的直径,弦CD⊥AB,垂足为E,那么下列结论中,•错误的是()
A.CE=DE
B.C.∠BAC=∠BAD D.AC>AD
7.如图,⊙O的直径为10,圆心O到弦AB的距离OM的长为3,则弦AB的长是()A.4 B.6 C.7 D.8 8.如图,A、B、C三点在⊙O上,∠AOC=100°,则∠ABC等于()
A.140°
B.110°
C.120°
D.130°
9.如图,⊙O的直径CD垂直于弦EF,垂足为G,若∠EOD=40°,则∠DCF等于()
A.80°
B.50°
C.40°
D.20°
10.如图,⊙O的直径为10,弦AB的长为8,M是弦AB上的动点,则OM的长的取值范围()
A.3≤OM≤5
B.4≤OM≤5
C.3<OM<5
D.4<OM<5
二、填空题
1.如图,AB为⊙O直径,E是
中点,OE交BC于点D,BD=3,AB=10,则AC=_____.2.如图,⊙O中,若∠AOB的度数为56°,∠ACB=_________.3.如图,AB是⊙O的直径,CD是弦,∠BDC=25°,则∠BOC=________.4.如图,等边ΔABC的三个顶点在⊙O上,BD是直径,则∠BDC=________,∠ 12 ACD=________.若CD=10cm,则⊙O的半径长为________.5.如图所示,在⊙O中,AB是⊙O的直径,∠ACB的角平分线CD交⊙O于D,则∠ABD=______度.
6.(山西)如图,在“世界杯”足球比赛中,甲带球向对方球门PQ进攻,当他带球冲到A点时,同样乙已经助攻冲到B点.有两种射门方式:第一种是甲直接射门;第二种是甲将球传给乙,由乙射门.仅从射门角度考虑,应选择________种射门方式.三、解答题
1.如图,AB为⊙O的直径,CD为弦,过C、D分别作CN⊥CD、DM•⊥CD,•分别交AB于N、M,请问图中的AN与BM是否相等,说明理由.2.如图,在⊙O中,C、D是直径AB上两点,且AC=BD,MC⊥AB,ND⊥AB,M、N•在⊙O上.(1)求证:=
;
成立吗?
(2)若C、D分别为OA、OB中点,则 13
3.如图,已知AB=AC,∠APC=60°
(1)求证:△ABC是等边三角形.(2)若BC=4cm,求⊙O的面积.能力提升
一、选择题
1.如图,在⊙O中,P是弦AB的中点,CD是过点P的直径,是()
A.AB⊥CD
B.∠AOB=4∠ACD
C.D.PO=PD
2.如图,⊙O中,如果=2,那么()
A.AB=AC
B.AB=2AC
C.AB<2AC D.AB>2AC
则下列结论中不正确的14
3.如图,∠
1、∠
2、∠
3、∠4的大小关系是()
A.∠4<∠1<∠2<∠3
B.∠4<∠1=∠3<∠2
C.∠4<∠1<∠3<<∠2
D.∠4<∠1<∠3=∠2 4.如图,AD是⊙O的直径,AC是弦,OB⊥AD,若OB=5,且∠CAD=30°,则BC等于()
A.3
B.3+
C.5-
D.5
二、填空题
1.P为⊙O内一点,OP=3cm,⊙O半径为5cm,则经过P点的最短弦长为________;最长弦长为_______.2.如图,OE、OF分别为⊙O的弦AB、CD的弦心距,如果OE=OF,那么_______(只需写一个正确的结论).3.如图,AB和DE是⊙O的直径,弦AC∥DE,若弦BE=3,则弦CE=________.4.半径为2a的⊙O中,弦AB的长为,则弦AB所对的圆周角的度数是________.5.如图,AB是⊙O的直径,C、D、E都是圆上的点,则∠1+∠2=_______.15
三、解答题
1.如图,⊙O直径AB和弦CD相交于点E,AE=2,EB=6,∠DEB=30°,求弦CD长.2.如图,∠AOB=90°,C、D是AE=BF=CD.三等分点,AB分别交OC、OD于点E、F,求证:
3.如图,⊙C经过坐标原点,且与两坐标轴分别交于点A与点B,点A的坐标为(0,4),M是圆上一点,∠BMO=120°.(1)求证:AB为⊙C直径.(2)求⊙C的半径及圆心C的坐标.综合探究
1.如图,直角坐标系中一条圆弧经过网格点A、B、C,其中,B点坐标为(4,4),则该圆弧所在圆的圆心坐标为___________.16
2.AB是⊙O的直径,AC、AD是⊙O的两弦,已知AB=16,AC=8,AD=DAC的度数.,求∠答案与解析 基础达标
一、选择题
1.A 2.C 3.D 4.D 5.D
6.D 7.D 8.D 9.D 10.A
二、填空题
1.8 2.28° 3.50° 4.60°,30°,10cm 5.45 6.第二
三、解答题
1.AN=BM 理由:过点O作OE⊥CD于点E,则CE=DE,且CN∥OE∥DM.∴ON=OM,∴OA-ON=OB-OM,∴AN=BM.2.(1)连结OM、ON,在Rt△OCM和Rt△ODN中OM=ON,∵OA=OB,AC=DB,∴OC=OD,∴Rt△OCM≌Rt△ODN,∴∠AOM=∠BON,∴
(2)
提示:同上,在Rt△OCM中,同理,.,3.(1)证明:∵∠ABC=∠APC=60°,又,∴∠ACB=∠ABC=60°,∴△ABC为等边三角形.(2)解:连结OC,过点O作OD⊥BC,垂足为D,在Rt△ODC中,DC=2,∠OCD=30°,设OD=x,则OC=2x,∴4x2-x2=4,∴OC=
⊙O的面积
能力提升
一、选择题
1.D 2.C 3.B 4.D
二、填空题
1.8cm,10cm 2.AB=CD 3.34.120°或60°
5.90°
三、解答题
1.过O作OF⊥CD于F,如右图所示
∵AE=2,EB=6,∴OE=2,∴OF=1,EF=,连结OD,∴CD=
2.在Rt△ODF中,42=12+DF2,DF=
2.连结AC、BD,∵C、D是
三等分点,∴AC=CD=DB,且∠AOC=×90°=30°,∵OA=OC,∴∠OAC=∠OCA=75°,又∠AEC=∠OAE+∠AOE=45°+30°=75°,∴AE=AC,同理可证BF=BD,∴AE=BF=CD.3.(1)⊙C经过坐标原点O,且A、B为⊙C与坐标轴的交点,有∠AOB=90°
∴AB为直径;
(2)∵∠BMO=120°,的比为1:2,∴它们所对的圆周角之比为∠BAO:∠BMO=1:2
∴∠BAO=60°,∴在Rt△ABO中,AB=2AO=8,∴⊙C的半径为4;
作
∴AE=OE,BF=OF
在Rt△ABO中,AO=4,OB=,垂足分别为点E、F 18
∴
∴圆心C的坐标为
.综合探究
1.(2,0)提示:如图,作线段AB、BC的垂直平分线,两条垂直平分线的交点即为圆心.2.(1)AC、AD在AB的同旁,如右图所示,作,垂足分别为点E、F
∵AB=16,AC=8,AD=8,∴
在Rt△AOE中,∴∠CAB=60°,同理可得∠DAB=30°,∴∠DAC=30°.(2)AC、AD在AB的异旁,同理可得:∠DAC=60°+30°=90°.19
第五篇:圆教学设计范文
圆_刘兴红_青州市庙子初级中学
圆教学设计教案背景:
1、面向学生: 中学
2、学科:数学
3、课时:1课时
4、学生课前准备:一根棉线、铅笔、利用百度搜索汽车的发展史
二、教学课题
九年级数学上册圆
三、教材分析
(一)、教材、学情分析:
学生在学习本节课之前,已通过折叠、对称、平移旋转等方式认识了许多图形的性质,积累了大量的空间与图形的经验.本节课是在学习了这些直线型图形的有关性质的基础上,引导学生深入的研究事物的本质属性而进一步来探索一种特殊的曲线──圆的有关性质.
学习本节课之前,学生在小学已经学习了圆的认识,容易找出日常生活中圆形的物体,已经掌握圆的画法及圆各部分的名称,特征,这为进一步学习圆的知识奠定了基础。通过前面的学习,学生的观察能力、动手能力已积累了一些活动经验,但对进一步探究认识事物的本质属性还是有一定的困难。
(二)教学目标
1、知识与能力:
(1)、知识目标:让学生在探索过程中深入认识圆,理解圆的本质属性。
(2)、能力目标:使学生了解弦,弧,半圆,优弧,劣弧,同心圆,等圆,等弧等与圆有关的概念,理解概念之间的区别和联系。
2、过程与方法
(1)积极引导学生从事观察、探究等活动,了解圆的概念,从感受圆在生活中大量存在到圆形及圆的形成过程,讲授与圆有关的概念
(2)在教学过程中,鼓励学生动手、动口、动脑,并进行同伴之间的交流
3、情感、态度与价值观:
经历探索圆及其相关结论的过程,发展学生的数学思考能力;通过积极引导,帮助学生有意识地积累活动经验,获得成功的体验;利用现实生活和数学中的素材,设计具有挑战性的情景,激发学生求知、探索的欲望,养成学生之间的合作的习惯。增强学生的民族自豪感。
(三)教学重难点: 重点:圆的有关概念
难点:理解定义圆所应该具备的两个条件
四、教学方法
教学策略:
1、创设情境,让学生感受数学来源于生活,又服务于生活。
2、创设和谐民主的师生关系。使学生在和谐的交往环境中拥有一个自由的空间和环境、发挥自己的主观能动性和创造性。
3、创设层层递进的教学环节,使学生易于把未知转化为已知,自觉的参与到新知识的学习中。教学准备:
多媒体网络教室(与Internet相连)、一些圆的图片
五、教学过程:
(一)、创设情境,引入新课
1、在小学,我们已经学过一些圆的知识。下面请欣赏日常生活中有关圆的图片 你能举例我们生活中还有那些物体是圆形的吗?
2、你是怎样画圆的?你能讲出形成圆的方法有多少种吗?
3、为什么行驶在路上的汽车的车轮都做成圆形的?
【百度搜索】汽车的发展史:http://wenku.baidu.com/view/309025c75fbfc77da269b17a.html
【设计意图】通过欣赏一些图片和了解汽车的发展史,引领学生进入这节课的学习当中,激发学生的求知欲和好奇心。
这节课我们一起研究:什么是圆?圆具有什么性质?与圆有关的有那些概念?
(二)探索新知
1、自主探索
(1)、学生用圆规画一个圆。(教师巡视)
(2)、你能用手中的一根棉线和铅笔试着画一个圆吗?(学生动手尝试,互相交流操作过程)
2、说一说
(1)观察上面两种画圆的过程,你能由此说出圆的形成过程吗? 学生仔细观察,小组讨论交流,得出结论:
圆的概念:在一个平面内,线段OA绕它固定的一个 端点O旋转一周,另一个端点A所形成的图形叫做圆.
固定的端点O叫做圆心线段OA叫做半径
以点O为圆心的圆,记作“⊙O”,读作“圆O”.(2)从画圆的过程可以看出:(圆具有的性质)
①圆上各点到定点(圆心O)的距离都等于定长(半径r);
②到定点的距离等于定长的点都在同一个圆上.
归纳:圆心为O、半径为r的圆可以看成是所有到定点O的距离等于定长r 的点的集合.
【设计意图】实践是检验真理的唯一标准,故通过让学生动手操作,在实践中发现圆的形成过程,从而加深对圆的性质的认识。(3)圆的两种定义:
动态:在一个平面内,线段OA绕它固定的一个端点O旋转一 周,另一个端点A所形成的图形叫做圆.
静态:圆心为O、半径为r的圆可以看成是所有到定点O的距 离等于定长r 的点组成的图形.
【设计意图】课本上没有给出圆的动静两种定义,补充这两种定义,意在使学生看问题要从它的动、静两方面去认识,从而也渗透一些哲学的思想(4)借助多媒体展示人类汽车发展史“运动与力”的视频
【百度视频】:http://
【设计意图】增强学生的课外知识,对Л有新的认识,激发学生学习数学的兴趣,同时培养学生的民族自豪感。
(三)学以致用
1.如何在操场上画一个半径是5m的圆?说出你的理由、你见过树木的年轮吗?从树木的年轮,可以很清楚的看出树木生长的年龄,如果一棵20年树龄的红杉树的树干直径是23cm,这棵红杉树的半径每年增加多少?.3、如图,请正确的方式表示出以点A为端点的优弧及劣弧.4、判断下列说法的正误:
(1)弦是直径;()(2)半圆是弧;()(3)过圆心的线段是直径;()(4)过圆心的直线是直径;()(5)半圆是最长的弧;()(6)直径是最长的弦;()
(7)圆心相同,半径相等的两个圆是同心圆;()(8)半径相等的两个圆是等圆.()
(四)课堂小结(学生归纳,老师点评)本节课应掌握:
1、圆的两种定义
2.车轮为什么是圆的呢?
3、与圆有关的概念
(五)布置作业
教材P88习题24.1的第6题
六、板书设计
1、圆的概念:
3、圆的两种定义
6、弧 圆心: 动态:
7、半圆与等圆 半径:
静态:
2、圆具有的性质
4、弦
5、直径
七、教学反思:
圆是在学生直观认识圆和已经比较系统的认识了平面上直线图形的基础上进行教学的,在教学中充分联系生活实际,让学生找出日常生活中圆形的物体,并通过观察、操作、讨论使学生认识圆的形状,掌握圆的画法及圆各部分的名称,特征。激发学生的求知欲和好奇心,从而使学生获取知识兴趣浓厚,积极主动。本节课的教学设计主要突出了以下几点:
(一)、从学生熟悉的情境出发,激发学生兴趣。我首先利用多媒体出示了一些圆的图片,然后让学生举例生活中哪些地方见到过圆形的物体。通过展示一些图片让同学们了解在自然现象,建筑物,运动领域都能找到圆的足迹。通过百度搜索汽车的发展史,激发了学生的好奇心,有进一步学习的欲望。
(二)、思维往往是从动手开始的,在教学中,重视学生动手、动脑,主动参与知识的形成过程。本节课在认识圆的各部分名称,理解圆的两个定义和特征时,注重给学生创设思维的空间,注意引导学生积极体验,安排了让学生自主探索、说一说等动手实践活动,使学生自己产生问题意识,自己去探究、尝试,总结,从而主动获取知识,收到了较好的教学效果。
(三)、注意使学生初步体验数学知识之间的联系,感受数学与现实生活的密切联系,培养初步的探索和解决问题的能力。从创设情境认识圆,到初步运用有关圆的知识解决实际问题,例如在操场上画一个半径是5m的圆,车轮为什么要做成圆形等都突出了这一思想。
不足的地方:
1、鼓励和表扬性语言比较少。
2、没能让学生充分表现自己。
3、本节在设计上,内容的深度和广度都不够。
八、教师个人介绍
省份:山东省 学校: 姓名:刘兴红 职称:中学二级教师
通讯地址:青州庙子初级中学 邮编:262503
个人简介:
刘兴红,女,1980年10月出生,中学二级教师,执教十三年以来,兢兢业业,任劳任怨,热爱学习,刻苦钻研,不断学习新的教学理念,矢志教学改革,求实创新,勇于拼搏,团结协作,无私奉献,凭着自己强烈的事业心和严谨的治学态度,为庙子初级中学的教育教学贡献自己微薄的力量。