(公开课)二元一次方程组和它的解教案范文

时间:2019-05-12 23:01:10下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《(公开课)二元一次方程组和它的解教案范文》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《(公开课)二元一次方程组和它的解教案范文》。

第一篇:(公开课)二元一次方程组和它的解教案范文

7.1 二元一次方程组和它的解

授课者:周培红

授课时间:2016年3月8日

地点:初一(4)班

知识技能目标

1.理解二元一次方程、二元一次方程组和它的解的含义; 2.会检验一对数是不是某个二元一次方程组的解.过程性目标

1.在运用数据比较分析、作出推断的过程中,提高学生参与数学活动,乐于接触社会环境中数学信息的兴趣.2.为学生创设学数学、用数学的情境,让学生体验用数学知识解决实际问题的方法.

教学过程设计

一、创设情境

问题的提出:某中学初一年级组织了“我们学姚明”篮球赛.初一年(14)班在第一轮比赛中共赛9场, 得17分.比赛规定胜一场得3分,平一场得1分, 负一场得0分.勇士队在这一轮中只负了2场, 那么这个队胜了几场? 又平了几场呢?

二、探索归纳

问 能否用我们已经学过的知识来解决这个问题? 答 可以用一元一次方程来求解.设初一年(14)班胜了x场, 因为它共赛了9场, 并且负了2场, 所以它平了(9-x-2)场.根据得分规则和它的得分, 我们可以列出一元一次方程: 3x(9x2)17.解这个方程可得x5.所以初一年(14)班胜了5场,平了2场.由上面解答可知, 这个问题可以用一元一次方程来求解, 而我们很自然地会提出这样一个问题: 既然要求胜的场数和负的场数,这其中有两个未知数,那么能不能同时设出这两个未知数呢? 师生共同探讨: 不妨就设初一年(14)班胜了x场, 负了y场.在下表的空格中填入数字或式子.根据填表的结果可知: xy7 ① 和 3xy17 ②

引导学生观察方程①、②的特点, 并与一元一次方程作比较, 可知: 这两个方程都含有两个未知数, 并且未知数的次数都是1.我们把上面这样的方程, 即把含有两个未知数, 并且未知数的次数是1的方程叫做二元一次方程(linear equation with two unknowns).由题意可知两个未知数必须同时满足①、②这两个方程.因此, 把两个方程xy7合在一起,并写成3xy17方程组.①②.把两个二元一次方程用一个大括号“{”合在一起, 就组成了一个二元一次注意 方程组中的各方程中, 同一个字母必须代表同一个量.问: 什么是方程的解? 答: 能使方程左、右两边的值相等的未知数的值叫做方程的解.由问题的解法1我们已得到答案, 勇士队胜了5场,平了2场, 即x5,y2.x5与y2既满足方程①, 又满足方程②, 我们就说

xy7x5与y2是二元一次方程组3xy17x5的解, 并记作.y2一般地, 使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值, 叫做二元一次方程组的解.注意:(1)未知数的值必须同时满足两个方程时, 才是方程组的解.若取x4, y3时, 它们能满足方程①, 但不满足方程②, 所以它们不是方程组的解.(2)二元一次方程组的解是一对数, 而不是一个数, 所以必须把x5与y2合起来, 才是方程组的解.三、实践应用

例1 已知下面三对数值: x0x2x

1.y4,y3,y5(1)哪几对是方程2xy7的解?(2)哪几对是方程xy4的解?

2xy7(3)哪几对是方程组 的解?

xy4分析 根据二元一次方程(组)的解的定义, 把每对数值中的x,y的值代入方程(组)来检验它们是否满足方程(组).x2x1解(1) 是方程2xy7的解.y3,y5x0x1(2) 是方程xy4的解.y4,y5x12xy7(3)是方程组 的解.y5xy4例2 根据下列语句, 列出二元一次方程:(1)甲数减去乙数的差是5;

11(2)甲数的与乙数的的和是13.32分析 要列出方程, 首先要设出适当的未知数来代表相应的对象.解 设甲数为x, 乙数为y.(1)xy5.(2)xy13.例3 某校现有校舍20000m2, 计划拆除部分旧校舍, 改建新校舍, 使校舍总面积增加30% ,同时使建造新校舍的面积为被拆除的旧校舍面积的4倍.若设应拆除旧校舍xm2 , 建造新校舍ym2, 请你根据题意列一个方程组.分析 由建造新校舍的面积为被拆除的旧校舍面积的4倍, 我们马上可得出方程y4x.拆除部分旧校舍, 改建新校舍后,校舍总面积仍增加30%, 其增加量应当对应到新校舍面积与拆除的旧校舍面积的差值, 所以我们可列出另一方程yx2000030%.解 设应拆除旧校舍xm2 , 建造新校舍ym2,根据题意列出方程组

yx2000030% .y4x

四、交流反思

师生共同回顾, 并总结归纳.(1)什么是二元一次方程?(含有两个未知数, 并且未知数的次数是1的方程叫做二元一次方程.)(2)什么是二元一次方程组?(把两个二元一次方程合在一起, 就组成了一个二元一次方程组.)(3)什么是二元一次方程组的解?(使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值, 叫做二元一次方程组的解.)

五、检测反馈

1.根据下列语句, 分别设适当的未知数, 列出二元一次方程或方程组: 1(1)甲数的比乙数的2倍少7:_____________________________;

33(2)摩托车的时速是货车的倍,它们的速度之和是200千米/时:________;

2(3)某种时装的价格是某种皮装的价格的1.4倍, 5件皮装比3件时装贵700元:______________________________.x8x0x102.已知下面的三对数值:  ,  , .y10y6y11(1)哪几对数值是方程xy6左、右两边的值相等?

21xy6(2)哪几对数值是方程组2的解?

2x3y11xy53.(1)已知满足二元一次方程组  的x的值是x1, 求方程组

2x3y20的解;

5x2y41(2)已知满足二元一次方程组 的y的值是y,求方程组的23x2y4解.

第二篇:《解二元一次方程组》教案

教案格式样例(一节课)

教师 XXX

学科/班级 XXXX 单元(可以不写)

授课日期

课题

消元——二元一次方程组解法

一、教学目标

(一)知识与技能目标

1.能说出二元一次方程、二元一次方程组和二元一次方程组的解的概念; 2.会将一个二元一次方程写成用含一个未知数的代数式表示另一个未知数的形式;

3.会检验一对数值是不是某个二元一次方程组的解。

(二)过程与方法目标

1.提高对实际问题观察、分析、归纳、猜想,养成良好的思维习惯;

2.通过将二元一次方程与二元一次方程(组)有关知识的对比学习,渗透类比的思想方法; 3.通过多个相似例题的练习,提高自身观察、归纳、猜想的能力。

(三)情感与价值观目标

1.解决生活实际问题,感受加减消元法的应用价值,激发学生的学习兴趣。

2.通过对比观察、研究探讨解决问题的方法,培养学生合作交流意识与探究精神。

二、教学重点和难点(教材分析、学情分析)

(一)教材分析:本节的内容就是用几种消元法解二元一次方程组,在此之前已学习了解二元一次方程组的概念和已经学习了二元一次方程组的解的概念,本节是对二元一次方程组的解法的进一步探究。

(二)学情分析:七年级的学生,知识上已经学过了一元一次方程的解法,掌握根据实际问题列出相关的方程和方程组,能力上他们已经具备了一定的探索能力,也初步养成了合作交流的习惯,但独立分析问题的能力和灵活应用的能力还有待提高。

三、准备导入新课(时间:5分钟)

提问同学二元一次方程组的定义。随后叫同学举几个二元一次方程的例子。例1.小亮和小樱练习赛跑。如果小亮让小樱先跑10米,那么小亮跑5秒就追上小莹;如果小亮让小樱先跑4秒,那么小亮跑4秒就追上小樱。问两人每秒各跑多少米? 然后我们设小亮的速度为x,小樱的速度为y,根据题意我们很容易5y5x10得出下面一个方程组

4y4x4x

现在同学们开始从x=1,y=1依次代入上面的式子,看看当x,y分别等于什么的时候这两个方程组成立了,比比哪位同学先找到。大家是不是很快得出x=2,y=1的时候就能够成立了。

2yx10那么同学们肯定会想如果x,y的值太大了还要一个个试吗,比如①

yx53我们该怎么办呢?

所以这就需要我们学习二元一次方程组的解法.四、授新课(教学过程)(时间:20-25分钟)(回忆型提问、理解型提问、运用型提问、分析型提问、评价型提问、综合型提问)

(一)新知识导入

问 1.上面标号为①的二元一次方程组和一元一次方程有什么关系?(是不是可以把其中的一个二元一次方程看做一个一元一次方程)。【运用型提问】 可能的回答:

(1)不知道;可给与提示ⅰ在一元一次方程解法中,列方程时所用的等量关系是什么?ⅱ方程组中方程②所表示的等量关系是什么?ⅲ方程②与③的等量关系相同,那么它们的区别在哪里?(已学的知识点:多项式的变换)。(2)如果假设其中一个为指数是已知的话就变成了一元一次方程;告诉同学假设x=32,让同学来解答。

(3)可以把这个方程组改写成一个一元一次方程;让同学进行演示。讲解:我们不难发现上述的方程组的第一个方程可以改写为x=2y-10,同时第二个方程就可以改写为y+2y-10=53,运用一元一次方程的解法就能够得出y=21,然后把y的值代入得x=2*21-10,得到x=32;这样我们就得到了这个方程的解。

问2 怎样知道你运算的结果是否正确呢?【分析型提问】

引导回忆起一元一次方程的解释怎么检验的.其方法是将求得的一对未知数的值分别代入原方程组里的每一个方程中,看看方程的左、右两边是否相等.检验可以口算,也可以在草稿纸上验算。

归纳:上面的解法,是把二元一次方程组中的一个方程的一个未知数用含有另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二

元一次方程组的解,我们把这种方法叫做代入消元法,简称代入法。

例2.用代入法解方程组

x-y3 3x-8y14问3.是把第一个式子代入第二个式子好还是第二个代入第一个式子好呢?为什么?【评价型提问】

让同学们都尝试一下这两个方法,然后叫几个同学回答这个问题。回答最大的可能是把第一个式子代入第二个式子,原因是这样计算比较方便 解得y=-1;

问4;现在把y的值代入那式子比较好? 【评价型提问】答:第一个 例 3 我们知道,可以用代入法解方程组

xy22 2xy40问5:这个方程组的两个方程中,y的系数有什么关系呢?利用这种关系同学们能够发现新的消元方法吗?【分析型提问】

答:y的系数都是1。第2问的回答可能:(1)无法回答;诱导学生用第一个式子减去第二个式,让学生回忆起知识点:相等的两个数减去同样相等的数得到的值依然相等。(2)用第一个式子减去第二个式子;引导学生具体演练。追问:可不可以用第二个减去第一个。

问6:联系上述方法,想一想下面一个方程组该怎么解比较方便。【综合型4x10y3.6提问】

15x10y8归纳:两个二元一次方程中同一未知数的系数相同或相反,把这两个方程的两边分别相加或相减,就能消去未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法。

问 7 :我们上两个方程组都是凑好的相反数或者相同的系数,那比如说2yx10这个方程能够用消元法解决呢?(探究型提问)yx53

(下次内容)问:有哪位同学来说说加减法消元解方程组的基本步骤是什么,主要的步骤是什么呢?【理解型提问】(1)先观察方程组中的两个未知数是否有相同或相反的未知数,然后选择加减法 ; 追问:那如果遇到系数不同的又要求用加减法解方程组呢?

(ⅰ不知道,则开始讲解解法;ⅱ换算成相同的系数;让学生口述解答过程)(2)

x-y3不知道;让学生坐下,然后举出具体例子,开始讲解(3)先观察方

3x-8y14程组中的两个未知数是否有相同或相反的未知数,有的话直接用,没有的话就转换出相同的系数,在进行计算;让学生口述解答过程。总结:

(二)总结 方案一: 1.问:比较加减法和代入法各有什么特点?

同学的一般无法准确的概括出具体特点,所以举出具体的例子给学生进行判断用哪个方法更合适。

2.练习:请说出下列各方程组应先消哪个元,用哪一种方法简便,为什么?

3.能力提升题

axby2x1时,小张正确的解是,小李由于看错了方程组中的C,得到方cx3y5y2x3程的解为,试求a,b,c的值。

y1

方案二: 1.带领同学一起回顾一下代入消元法的主要思想和一般步骤 主要思想:二元一次方程一元一次方程。代入法的一般步骤:

(1)变形:选择其中一个方程,那他变形为用一个未知数的代数表示另一个未知数的形式;(2)代入求解:把变形后的方程代入到另一个方程中,消元后求出未知数的值;(3)回代求解:把求得值的未知数代入到变形方程中,求出另一个未知数的值;(4)写节:用xa的形式写出方程的解。

yb2、借鉴上述代入法的思想和步骤让同学讨论加减法的主要思想和步骤。主要思想:二元一次方程一元一次方程。

①利用等式的基本性质,将原方程组中某个未知数的系数化成相等或相反数的形式; ②再利用等式的基本性质将变形后的两个方程相加或相减,消去一个未知数,得到一个一元一次方程(一定要将方程的两边都乘以同一个数,切忌只乘以一边,然后若未知数系数相等则用减法,若未知数系数互为相反数,则用加法); ③解这个一元一次方程,求出未知数的值;

④将求得的未知数的值代入原方程组中的任何一个方程中,求出另一个未知数的值; ⑤用“{”联立两个未知数的值,就是方程组的解;

⑥最后检验求得的结果是否正确(代入原方程组中进行检验,方程是否满足左边=右边)。

3、布置课后作业。

第三篇:解二元一次方程组教案

解二元一次方程组——代入消元法(1)

教学目标

1、知识与技能目标

(1)会用代入法解二元一次方程组

(2)初步体会解二元一次方程组的基本思想“消元”。

(3)通过对方程组中的未知数特点的观察和分析,明确解二元一次方程组的主要思路是“消元”,从而促成由未知向已知转化,培养学生观察能力和体会化归思想:

(4)通过用代入消元法解二元一次方程组的训练,及选用合理、简捷的方法解方程组,培养学生的运算能力。

2、情感目标:

通过对比观察、研究探讨解决问题的方法,培养学生合作交流意识与探究精神。教学重点、难点

重点:用代入消元法解二元一次方程组。

难点:探索如何用代入消元法将“二元”转化为“一元”的过程。

教学过程

一、旧知复习

问题1:下列方程是二元一次方程吗?

(1)x3y7

(2)2y20(3)2x3

5(4)3xy9

问题2:你能把上面的二元一次方程改写成用x表示y(或用y表示x)的形式吗?

问题3:把(1)(2)两个方程合在一起是二元一次方程组吗?那由(3)(4)组成的呢?

x3y72x35(1){2y20

(2){3xy9

二、情境引入

老师周末和朋友一起去逛街,我们各买了1双相同的鞋,两人一共消费了600元,我的朋友买了鞋之后又去买了2件T恤,此次购物老师的朋友一共花了500元,你能帮老师计算一下鞋和T恤的价格分别是多少吗?

请说一说你的方法 还有不同的办法吗?

三、技能试炼

你有办法求出这两个方程组的解吗?

x3y72x35{(2){3xy9

2y20

这两个方程组你解出来了吗?

谁能给大家说一说解上面两个方程组的方法和思路呢?

四、例题解析:

你能想出办法求出这个方程组吗? xy22{

2x3y60解:由①,得

(1)

(2)

学生自己分析求解,教师规范解题格式

x22y

把③代入②,得

2(22y)3y60 解这个方程,得

y16

把y16代入③,得

(提出问题:把y的值带入到①或②中可以求出x的解吗?)

x6 所以这个方程组的解是

{x6y16

在上面求解过程中我们把其中的一个方程经过改写变形带入到另一个方程中去,使的未知数消去一个,把二元一次方程转化成了一元一次方程,我们把这种方法称为“代入消元法”。

2、试用代入法解下面的方程组

{2x3y0 3x2y1学生讨论交流,合作完成

归纳:通过例题你能说说用代入法解二元一次方程组的步骤有那些吗?

(1)(改写)在方程组中选一个系数简单的方程,将这个方程中的一个未知数用含另一个未知数的式子表示。(2)(代入)将变形后的式子代入另一个方程,消去一个未知数。

(3)(解方程)解一元一次方程。

(4)(带入求解)代入变形式求出另一个未知数的解。

(5)书写方程组的解。

五、随堂练习用代入法解下列方程组

(1){y32x3x2y8

(2){2x3y92x3y3

六、课时小结

1、怎样使用代入消元法?

2、用代入法解方程组要经历哪些步骤?

六、课后作业习题8.2 1、2

第四篇:代入法解二元一次方程组教案

《代入法解二元一次方程组》教案

教学目标

1.使学生会用代入消元法解二元一次方程组;

2.理解代入消元法的基本思想体现的“化未知为已知”,“变陌生为熟悉”的化归思想方法;

3.在本节课的教学过程中,逐步渗透朴素的辩证唯物主义思想. 教学重点和难点

重点:用代入法解二元一次方程组. 难点:代入消元法的基本思想. 课堂教学过程设计

一、从学生原有的认知结构提出问题

1.谁能造一个二元一次方程组?为什么你造的方程组是二元一次方程组?

2.谁能知道上述方程组(指学生提出的方程组)的解是什么?什么叫二元一次方程组的解?

3.上节课我们提出了鸡兔同笼问题:(投影)一个农民有若干只鸡和兔子,它们共有50个头和140只脚,问鸡和兔子各有多少? 设农民有x只鸡,y只兔,则得到二元一次方程组

对于列出的这个二元一次方程组,我们如何求出它的解呢?(学生思考)教师引导并提出问题:若设有x只鸡,则兔子就有(50-x)只,依题意,得 2x+4(50-x)= 140 从而可解得,x=30,50-x=20,使问题得解.

问题:从上面一元一次方程解法过程中,你能得出二元一次方程组

串问题,进一步引导学生找出它的解法)(1)在一元一次方程解法中,列方程时所用的等量关系是什么?(2)该等量关系中,鸡数与兔子数的表达式分别含有几个未知数?(3)前述方程组中方程②所表示的等量关系与用一元一次方程表示的等量关系是否相同?

(4)能否由方程组中的方程②求解该问题呢?

(5)怎样使方程②中含有的两个未知数变为只含有一个未知数呢?(以上问题,要求学生独立思考,想出消元的方法)结合学生的回答,教师作出讲解.

由方程①可得y=50-x③,即兔子数y用鸡数x的代数式50-x表示,由于方程②中的y与方程①中的y都表示兔子的只数,故可以把方程②中的y用(50-x)来代换,即把方程③代入方程②中,得 2x+4(50-x)=140,解得 x=30.

将x=30代入方程③,得y=20.

即鸡有30只,兔有20只.

本节课,我们来学习二元一次方程组的解法.

二、讲授新课 例1 解方程组

分析:若此方程组有解,则这两个方程中同一个未知数就应取相同的值.因此,方程②中的y就可用方程①中的表示y的代数式来代替. 解:把①代入②,得

3x+2(1-x)=5,3x+2-2x=5,所以

x=3. 把x=3代入①,得y=-2.

(本题应以教师讲解为主,并板书,同时教师在最后应提醒学生,与解一元一次方程一样,要判断运算的结果是否正确,需检验.其方法是将所求得的一对未知数的值分别代入原方程组里的每一个方程中,看看方程的左、右两边是否相等.检验可以口算,也可以在草稿纸上验算)教师讲解完例1后,结合板书,就本题解法及步骤提出以下问题: 1.方程①代入哪一个方程?其目的是什么? 2.为什么能代入?

3.只求出一个未知数的值,方程组解完了吗?

4.把已求出的未知数的值,代入哪个方程来求另一个未知数的值较简便? 在学生回答完上述问题的基础上,教师指出:这种通过代入消去一个未知数,使二元方程转化为一元方程,从而方程组得以求解的方法叫做代入消元法,简称代入法. 例2 解方程组

分析:例1是用y=1-x直接代入②的.例2的两个方程都不具备这样的条件(即用含有一个未知数的代数式表示另一个未知数),所以不能直接代入.为此,我们需要想办法创造条件,把一个方程变形为用含x的代数式表示y(或含y的代数式表示x).那么选用哪个方程变形较简便呢?通过观察,发现方程②中x的系数为1,因此,可先将方程②变形,用含有y的代数式表示x,再代入方程①求解. 解:由②,得x=8-3y,③

把③代入①,得(问:能否代入②中?)

2(8-3y)+5y=-21,-y=-37,所以

y=37.

(问:本题解完了吗?把y=37代入哪个方程求x较简单?)把y=37代入③,得

x= 8-3×37,所以

x=-103.

(本题可由一名学生口述,教师板书完成)

三、课堂练习(投影)用代入法解下列方程组:

四、师生共同小结

在与学生共同回顾了本节课所学内容的基础上,教师着重指出,因为方程组在有解的前提下,两个方程中同一个未知数所表示的是同一个数值,故可以用它的等量代换,即使“代入”成为可能.而代入的目的就是为了消元,使二元方程转化为一元方程,从而使问题最终得到解决.

五、作业

用代入法解下列方程组:

5.x+3y=3x+2y=7.

第五篇:用加减法解二元一次方程组教案

用加减法解二元一次方程组

裴庄联区 裴庄初中 聂晓萍

一、教学目标

1、知识目标:使学生掌握用加减法解二元一次方程组的步骤,能运用加减法解二元一次方程组

2、能力培养:根据方程的不同特点,进一步体会解二元一次方程组的基本思想——消元;培养学生分析问题、解决问题的能力,训练学生的运算技巧。

3、情感态度与价值观:树立消元的思想,化“二元”为“一元”,体会化归思想。

二、学法引导

观察各未知数前面系数的特征,只要将相同未知数前的系数化为绝对值相等的值后就可以利用加减消元法进行消元,同时在运算过程中注意归纳解题的技巧和解题的方法

三、教学重点、难点

重点:使学生学会用加减法解二元一次方程组

难点:如何用加减法“消元”化“二元”为“一元”

四、教学过程

(一)明确目标

本节课通过复习代入法,从而引入另一种消元的方法——加减法解二元一次方程。

(二)整体感知

加减法解二元一次方程组的关键在于将相同字母的系数化为绝对值相等的值,即可用加减法消元。故在教学中应反复教会学生观察并抓住解题的特征及方法从而方便解题。

(三)教学过程

1、创设情境,复习导入

(1)用代入法解二元一次方程组的基本思想是什么?(2)解下列方程组,并验证所得结果是否正确。

3x5y21 2x5y11学生活动:口答第(1)小题,在学案上完成第(2)题。并让学生展示各种解法。

2、合作探究,交流展示

针对上面不同的解法,思考下面的问题:

(1)上面的几种解法中,哪一种更简单一些?(2)上面的几种解法中,都包含了什么思想? 我们通过刚才的学习,我相信大家都有了自己的认识,那么请同学们自己完成下面的例1 2x5y7例1:解方程组

2x3y1学生活动:独立完成上面题,几个同学板演,交流展示完后,教师点拔:在上面的解方程中,当方程组中的两个方程有一个未知数的系数相等或是互为相反数时,可以把方程的两边分别相减或相加来消去这个未知数,把“二元”化成“一元”,得到一个一元一次方程,进而求得方程组的解,像这种解二元一次方程组的方法,叫做加减消元法,简称“加减法。

如果方程组中没有一个未知数的系数是相等或是互为相反数的,我们应该怎样做?现在我们自己在导学案上完成例2,完成后同桌交流。

2x3y12例2:解方程组

3x4y17教师点拔:能否对方程组中的两个方程进行变形,把这两个方程的某个未知数的系数化为相等或互为相反数,进而求解。几个学生板演,由学生总结用加减法解二元一次方程组的基本步骤,教师在学生总结的基础上完善。

第一步:变形,使某个未知数的系数的绝对值相等

第二步:把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程

第三步:解这个一元一次方程 第四步:将求出的未知数的值代入原方程组的任意一个方程中,求出另一个未知数,从而得到方程组的解。

3、双基检测

用加减消元法解下列方程组

7x2y36x5y35x6y94s3t

59x2y196xy157x4y52st54、思维拓展

(1)如果5x3m-2n-2yn-m=0是二元一次方程,则m= ,n= xy134(2)解方程组 

yx1

325、畅谈收获

在这节课的学习中,你有哪些收获?存在着哪些疑惑?说出来与大家交流、分享。

(四)板书

用加减法解二元一次方程组

3x5y21解方程组  基本思路:消元

2x5y11 一般步骤:

2x5y72x3y12学生板演

 

2x3y13x4y17

下载(公开课)二元一次方程组和它的解教案范文word格式文档
下载(公开课)二元一次方程组和它的解教案范文.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    二元一次方程组教案

    二元一次方程组教案1 学习目标 :会运用代入消元法解二元一次方程组.学习重难点:1、会用代入法解二元一次方程组。2、灵活运用代入法的技巧.学习过程:一、基本概念1、二元一次......

    二元一次方程组教案

    二元一次方程(组) 一.二元一次方程的概念 含有两个未知数,并且两个未知数项的次数都是1的方程叫做二元一次方程. 判定一个方程是二元一次方程必须同时满足三个条件: 1.方程两边的代......

    二元一次方程组教案

    二元一次方程组教案 阜康市第四中学 方海艳 一、教学目标: 1.明确二元一次方程(组)的概念 2.正确掌握二元一次方程组的解法 3.运用二元一次方程组解决实际问题 4.进一步体会转......

    二元一次方程组教案范文大全

    二元一次方程组教学设计 石门寨学区初级中学 王利 教学目的: 1、使学生二元一次方程、的概念,会把二元一次方程化为用一个未知数的代数式表示另一个未知数的形式。 2、使学生......

    二元一次方程组教案

    二元一次方程组教案 二元一次方程组教案1 教学建议一、重点、难点分析本节的教学重点是使学生学会用代入法.教学难点在于灵活运用代入法,这要通过一定数量的练习来解决;另一个......

    二元一次方程组教案

    名师传方法.有效提分授课老师:李老师 考点一:判断二元一次方程 考点二:二元一次方程组的解的应用 若x、y互为相反数,且x+3y=4,,3x-2y=___________ 4x3yk方程组的解与x与y的值相等,则......

    二元一次方程组教案

    二元一次方程组 一、基本定义: 二元一次方程定义:一个含有两个未知数,并且未知数的都指数是1的整式方程,叫二元一次方程。二元一次方程组定义:两个结合在一起的共含有两个未知数......

    二元一次方程组教案

    《4.2二元一次方程组》教学设计 一、教学目标: 1.认知目标:1)了解二元一次方程组的概念。2)理解二元一次方程组的解的概念。 3)会用列表尝试的方法找二元一次方程组的解。 2.能力......