第一篇:六年级数学 《正比例》教学设计
《正比例》教学设计
范桥镇中心小学 李晓云
教学内容:北师大版小学数学六年级下册第41页《正比例》
教学目标:
1、通过实例,认识正比例。
2、能根据正比例的意义,判断两个相互关联的量是不是成正比例。
3、能利用正比例的知识,解决一些简单的实际问题,感受正比例关系在生活中的广泛应用。
教学重难点:
重点:判断两个相关联的量是否成正比例。
难点:理解成正比例的量的变化规律。
教学准备: 电子课本、多媒体课件、表格纸
教学过程:
一、创设情境,引入新课 1.谈话导入。2.板书课题。
二、新课教学
(一)情境一:
1、观察表格,分别把正方形的周长与边长,面积与边长的变化情况填入表格中。请根据你的观察,把数据填在表中。
2、填完表以后思考:正方形的周长与边长,面积与边长的变化是否有关系?它们的变化分别有怎样的规律?规律相同吗?说说从表格中发现了什么?
3、引导小结:
(1)正方形的周长随着边长的变化而变化。
(2)正方形的周长总是边长的4倍,也就是比值是4不变。(3)正方形的面积也随着边长的变化而变化。(4)正方形的面积和边长的比值在变,并不固定。
(二)情境二:
一辆汽车行驶的速度为90千米/小时,行驶的路程与时间见表格。
1、请把表格填写完整。
2、根据表格,你能发现什么规律?
3、引导小结:
(1)路程随着时间的变化而变化。
(2)路程与时间的比值(也就是速度)是一定的。
(三)1、总结规律,形成概念。
请同学们思考,说说以上两个例子有什么共同的特点。指名回答,共同订正。
师小结:1.两个相关联的量,一个量随着另一个量的变化而变化;2.两个量对应的数的比值(也就是商)一定。
2、出示正比例定义,齐读三遍。
指名同学找出定义中的关键信息。
板书成正比例的两个条件:1.两个相关联的量,一个量随着另一个量的变化而变化。2.两个量对应的数的比值(也就是商)一定。
(四)想一想:
情境一中正方形的周长与边长成正比例吗?面积与边长呢?为什么?
师小结:(1)正方形的周长随边长的变化而变化,并且周长与边长的比值都是4,所以正方形的周长与边长成正比例。请同学也试着说一说。(2)正方形的面积虽然也随边长的变化而变化,但面积与边长的比值是一个变化的值,所以正方形的面积和边长不成正比例。
(五)运用新知,练习巩固 书本第42页“试一试”。
学生独立思考后同桌间交流想法,指名回答,老师订正。
(六)同桌合作,共同探究。
两位同学分别举一个成正比例和一个不成正比例的例子,与同桌交流。
(七)课堂小结,知识巧记
(八)聆听童谣,完成作业 板书设计:
正比例
1.两个相关联的量,一个量随着另一个量的变化而变化。2.两个量对应的数的比值(也就是商)一定。
教学反思:
第二篇:六年级数学下册《正比例》教学设计
六年级数学下册 《正比例》教学设计
教学目标
1.利用正比例解决一些简单的生活问题,感受正比例关系在生活中的广泛应用。
2.能根据正比例的意义,判断两个相关联的量是不是成正比例。
3.结合丰富的事例,认识正比例。教学重点
1.结合丰富的事例,认识正比例。
2.能根据正比例的意义,判断两个相关联的量是不是成正比例。教学难点
能根据正比例的意义,判断两个相关联的量是不是成正比例。教学过程
活动一:在情境中感受两种相关联的量之间的变化规律。
(一)情境一
1.观察图,分别把正方形的周长与边长,面积与边长的变化情况填入表格中。请根据你的观察,把数据填在表中。
2.填完表以后思考:正方形的周长与边长,面积与边长的变化是否有关系?它们的变化分别有怎样的规律?规律相同吗?
说说从数据中发现了什么?
3.小结:正方形的周长和面积都随边长的增加而增加,在变化过程中,正方形的周长与边长的比值一定都是4。正方形的面积一边长的比是边长,是一个不确定的值。
说说你发现的规律。
(二)情境二
1.一种汽车行驶的速度为90千米/小时。汽车行驶的时间和路程如下:
2.请把下表填写完整。
3.从表中你发现了什么规律?
说说你发现的规律:路程与时间的比值(速度)相同。
(三)情境三
1.一些人买一种苹果,购买苹果的质量和应付的钱数如下。
2.把表填写完整。
3.从表中发现了什么规律?
应付的钱数与质量的比值(也就是单价)相同。
4.说说以上两个例子有什么共同的特点。
小结:路程随时间的变化而变化,在变化过程中路程与时间的比值相同;应付的钱数随购买苹果的质量的变化而变化,在变化过程中应付的钱数与质量的比值相同。
5.正比例关系:
(1)时间增加,所走的路程也相应增加,而且路程与时间的比值(速度)相同。那么我们说路程和时间成正比例。
(2)购买苹果应付的钱数与质量有什么关系?
6.观察思考成正比例的量有什么特征?
一个量随另一个量的变化而变化,在变化过程中这两个量的比值相同。
(四)想一想
1.正方形的周长与边长成正比例吗?面积与边长呢?为什么?
师小结:
(1)正方形的周长随边长的变化而变化,并且周长与边长的比值都是4,所以正方形的周长与边长成正比例。
请你也试着说一说。
(2)正方形的面积虽然也随边长的变化而变化,但面积与边长的比值是一个变化的值,所以正方形的面积和边长不成正比例。
请生用自己的语言说一说。
2.小明和爸爸的年龄变化情况如下:
(1)把表填写完整。
(2)父子的年龄成正比例吗?为什么?
(3)爸爸的年龄=小明的年龄+26。虽然小明岁数增加,爸爸岁数也增加,但是小明岁数与爸爸岁数的比值随着时间发生变化,不是一个确定的值,所以父子的年龄不成正比例。
与同桌交流,再集体汇报。
在老师的小结中感受并总结正比例关系的特征。
活动二:练一练。
1.判断下面各题中的两个量,是否成正比例,并说明理由。
(1)每袋大米的质量一定,大米的总质量和袋数。
(2)一个人的身高和年龄。
(3)宽不变,长方形的周长与长。
2.根据下表中平行四边形的面积与高相对应的数值,判断当底是6厘米的时候,它们是是成正比例,并说明理由。
平行四边形的面积随高的变化而变化,即平行四边形的面积与高的比值不变,所以平行四边形的面积与高成正比例。(也可以用公式进行说明)
3.买邮票的枚数与应付的钱数成正比例吗?填写表格。先填写表格,再说明理由。
应付的钱数随购买的枚数的变化而变化,而且比值不变。所以应付的钱数与买邮票的枚数成正比例。板书设计:
正比例
成正比例的量:
(1)存在着两个变量,它们的变化存在着关系。(2)这两个变量所对应的数的比值保持不变。
第三篇:六年级数学下册《正比例》教学设计
六年级数学下册《正比例》教学设计
教学目标:、知识与技能:经历正比例意义的建构过程,通过具体问题认识成正比例的量,能找出生活中成正比例量的实例,能正确判断成正比例的量。
2、过程与方法:通过观察、比较、分析、归纳等数学活动,发现正比例量的特征,并尝试抽象概括正比例的意义。提高分析比较、归纳概括、判断推理能力,同时渗透初步的函数思想。
3、情感态度价值观:在主动参与数学活动的过程中,感受数学思考过程的条理性和数学结论的确定性,并乐于与人交流。
教学重、难点:
能根据正比例的意义判断两个相关联的量是不是成正比例。
教学过程:
一、复习导入
.引导回顾。师:什么是相关联的量?请举例说明。
2.导入新。师:两个相关联的量之间肯定存在着某种关系,我们今天要学习的正比例就是表示两个相关联的量之间的关系的,这种关系是怎样的呢?让我们一起进入今天的学习。
(设计意图:通过回顾旧知,进一步理解相关联的量,为在新情境中探究两个相关联的量之间的变化规律作铺垫。)
二、探究新知
.借助图表,进一步感知相关联的量。
出示教材41页例题。
小组合作探究,交流下面的问题:
上面是正方形周长与边长、面积与边长之间的变化情况,把表格填写完整,并说说你分别发现了什么。
同桌合作填表。
仔细观察表格,讨论:正方形的周长是怎样随着边长的变化而变化的?正方形的面积是怎样随着边长的变化而变化的?
比较:正方形的周长与边长的变化规律和正方形的面积与边长的变化规律有什么异同?
2.结合具体情境,理解正比例的意义。
出示教材41页下面例题。
一辆汽车以90千米/时的速度行驶,行驶的路程与时间如下。把下表填写完整,你从表中发现了什么?
把表格填写完整。
汇报填表的结果及依据。
观察表格,汇报发现。
师:观察路程与时间这两个量,你发现了什么规律?
小结。像这样,路程和时间两个量,时间变化,所行驶的路程也随着变化,而且路程与时间的比值一定,我们就说路程和时间成正比例。它们的关系叫作正比例关系。
如果用x和表示相关联的量,用表示它们的比值,正比例关系可以表示为=。
3.判断成正比例的量的关键。
师:生活中还有哪些成正比例的量?
师:成正比例的量必须具备哪些条?判断两个量是否成正比例的关键是什么?
三、巩固提高
.解决教材41页的问题。
引导讨论:正方形的周长与边长、面积与边长成正比例吗?学生自由交流后汇报,教师引导学生说明原因。
2.判断。
圆的周长和圆的半径成正比例。
圆的面积和圆半径的平方成正比例。
一辆卡车每次运货的吨数一定,运的总吨数与运的次数成正比例。总路程一定,已行的路程和剩下的路程成正比例。
出勤率一定,出勤人数与应出勤人数成正比例。
三角形的底一定,它的面积和高成正比例。
(设计意图:通过分析正方形的周长与边长、面积与边长是否成正比例,加深学生对正比例意义的理解。同时,使学生在比较中思考成正比例的量的显著特征:一个量变化,另一个量也随着变化,在变化过程中这两个量的比值相同。再辅以大量的判断题检验学习效果。)
四、堂总结
通过本节的学习,你有什么收获?成正比例的量有什么特征?你还有哪些疑问?
五、布置作业教材43页“练一练”第1-3题。
第四篇:苏教版六年级下册数学《正比例》教学设计
《正比例》教学设计
教学内容:认识成正比例的量,六年级数学下册教材第56页的例
1、第57页的“试一试”和“练一练”,完成练习十的第1~3题。
教学目标:
1.使学生经历从具体实例中认识成正比例的量的过程,初步理解正比例的意义,学会根据正比例的意义判断两种相关联的量是不是成正比例。
2.使学生在认识成正比例的量的过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步培养观察能力和发现规律的能力。
3.使学生进一步体会数学与日常生活的密切联系,增强从生活现象中探索数学知识和规律的意识。
教学过程:
一、谈话引入
我们已经了解了一些数量之间的关系,谁来说说你知道哪些常见的数量关系?
引导回顾:(1)速度 时间 路程(2)单价 数量 总价(3)工作效率 工作时间 工作量
引入:这些是我们已经学过的一些常见数量关系,每组数量之间是有联系的。今天,我们就来研究和认识这种变化规律。
二、互动新授 出示例1。
1.探究时间与路程两个量之间的关系。提问:
仔细观察这张表格,它为我们提供了哪些数学信息?(学生自由发言)
引导:表格中的路程和时间有关系吗?说说是怎样的关系? 可先让同桌相互说一说,再组织全班交流。
通过交流,使学生初步感知两种量的变化情况。预设:
(1)行驶的路程随着时间的变化而变化。
(2)行驶的时间越长,行驶路程越多;行驶的时间越短,行驶路程越少。
小结:路程和时间是两种相关联的量,时间变化,路程也随
着变化。
2.分析时间与路程这两个量的比值。
提问:表格中时间越长,路程越多;时间越短,路程越少。现在我们就来探究时间与路程之间有没有什么关系?
让学生动手写出几组对应的路程和时间的比,并求出比值。学生观察比值,发现规律,汇报小结。引导学生回答:
通过计算,我们发现这些比值都是相等的,它们表示行驶的速度。
提问:谁能用一个式子来表示上面的规律呢? 学生回答,教师板书:路程÷时间=速度 3.揭示正比例的意义。
教师对两种量之间的关系作具体说明:例1中的路程和时间是两种相关联的量,时间变化,路程也随着变化。当路程和相对应时间的比的比值总是一定(也就是速度一定)时,行驶的路程和时间成正比例关系,行驶的路程和时间是成正比例的量。(板书:路程和时间成正比例)
4.正比例意义的应用 做第57页的“试一试”
(1)要求学生根据表中的已知条件先把表格填写完整。(2)根据表中的数据,依次讨论表格下面的四个问题,并仿照例1作适当的板书。
(3)让学生根据板书完整地说一说铅笔的总价和数量成什么关系?
5.用含有字母的式子表示正比例关系。
谈话:通过刚才的学习,我们知道了:路程和时间成正比例关系;那么总价和数量成正比例关系。如果用x和y表示两种相关联的量,用k表示它们的比值,正比例关系可以用怎样的式子来表示呢?
总价﹕数量=单价(一定)路程﹕时间=速度(一定)根据学生回答,板书:y﹕x=k(一定)
三、巩固练习
1.第57页的“练一练”第1题。
先让学生独立思考并作出判断,再要求说明判断理由。2.第57页的“练一练”第2题。
提问:题中的两种量是否相关联,小组内讨论本题数量之间的关系,并说说两种量是否成正比例关系,为什么?
学生小组讨论交流,然后全班交流。
3.练习十第1题。
先让学生独立进行判断,再指名说判断的理由。4.练习十第2题。
先让学生说说题目要求我们把已知的正方形按怎样的比放大,放大后正方形的边长各是几厘米,再让学生在图上画一画。
填好表格后,组织学生讨论,明确:只有当两种相关联的量的比值一定时,它们才能成正比例。
四、全课小结
这节课你学会了什么?通过这节课的学习,你还有哪些收获?
引导总结:两种相关联的量,当一个量随着另一个量的变化而变化,且它们的比值总是一定我们就说这两种量成正比例关系。在判断两种量是否成正比例时,我们一要看两种量是否相关联,二要看一个量是否随着另一个量的变化而变化,最后看比值是否一定。
五、课堂作业: 练习十第3题。
第五篇:2017六年级数学正比例的意义教学设计.doc
《正比例的意义》及教后反思
(共小周萍)
一、教学内容:苏教版 第十二册
书p39~41 例
1、例
2、例3,练一练
二、教学目标:
1、使学生理解正比例的意义,能够初步判断两种相关联的量是否成正比例。
2、通过观察、比较、归纳,提高学生综合概括推理的能力和语言表达能力。
3、推进新课程标准的数学生活化,生活数学化理念,把难理解的数学知识简单地呈现在学生面前,提高学习的信心和的兴趣。
三、教学重难点:正比例的意义
四、教具准备:多媒体课件
五、教学过程:
(一)、引入新课
1、小调查:大家来上学,哪些同学是走路来的?哪些同学是坐汽车来的?(生举手示意)
师:可能还有的同学是家长用自行车或电动车送来的,但不管大家是怎么来上学的,那么(1)、你们离开家,走得越远,距离共小就怎么样?为什么?(2)、你们走的越慢,到学校的时间就怎么样?为什么?(3)、陈昕彤家住在雨花新村,章成家住在宁南的仁恒翠竹园。他们每分钟走的米数相同,谁先到学校?为什么?(4)、李岩、吴铭分别帮助王老师去买1.6元一枝的红圆珠笔,李岩花了16元钱,吴铭花了8元钱。谁买圆珠笔的枝数多?为什么?
师:同学们讲的太好了!
(二)教学新课
师:象这样,已行的与未行的;速度与时间;路程与时间;数量与总价等等,一种量变化另一种量也随之变化。我们就把这两种量称之为“相关联的量”(贴小黑板)。还有疑问吗?
2、师:既然大家都明白,那我就要考考大家。(它们是相关联的量吗?)(1)小明买《扬子晚报》,数量与总价(2)王老师的体重和身高
(3)同样一台织布机,工作时间和工作总量(4)圆的直径和周长指名回答,说说理由
3、教学例1:早晨7:10,潘林锋同学走在上学的路上。(1)表中有哪两种量?它们是相关联的量吗?
(2)仔细观察,路程是怎样随着时间的变化而变化的?(电脑演示变化的过程)(3)相对应的路程和时间的比分别是多少?比值是多少?(生回答,师电脑出示)星期六,李岩同学帮助王老师买红圆珠笔。(5)请两生完整的回答
5、比较、归纳正比例的意义
6、加深对正比例意义的认识
(1)师:例1里有哪两种量?他们成正比例关系吗?为什么?(2)师:例2里两种量是不是成正比例?为什么?(3)师:看两种相关联的量是不是成正比例,关键看什么?
7、例
3、(1)家到学校的距离是一定的,已行的与未行的成正比例吗?为什么?
那么我们判断两个量能否成正比例时,你想提醒大家注意什么?
(2)每小时生产的零件个数一定,生产零件总数和时间成正比例吗?为什么?
那么我们判断两个量能否成正比例时,最重要的依据是什么?
(3)王老师的体重与身高成正比例吗?为什么?
遇到判断这样两种量能否成正比例的问题,只要看什么就可以一票否决了?(三)温故而知新:这堂课你有哪些收获?你对自己的表现满意吗?
六(3)班的总人数一定,满意的人数和比较满意的人数成正比例吗?为什么?
(四)提问时间:你还有什么关于正比例意义的问题要问吗?
(五)、考考你:(1)是不是所有相关联的两种量都能成正比例?
(2)是不是所有成正比例的两种量都是相关联的量?
(六)、课堂检测:
《正比例的意义》课后反思:
首先感谢区教研室和学校给我这次学习提高的机会,本节课的内容是苏教版第12册的正比例的意义,虽然是第二次用这个教材,但还不是预想的那般顺利。也许我们每一位老师都有过这样的经历:我们精心设计的一节课,原想着会很顺利地在课堂教学中予以实施,但事实却并不是这样,往往会因为学生的一些出乎意料的想法或问题,而使我们的教学偏离了预设的轨道,课上得并不那么顺利。比如,象正方形的周长、面积与其边长,原的面积与半径这些特例是否成正比例,我觉得这实际实际上就是教师如何有效处理动态生成的问题。
也听过关于正反比例的课,也阅读过几位有经验的老师写的教学设计方案。其中正反比例两个知识点在一节课进行的不少!对此我有自己的看法,单独教学正比例知识也好,还是正反比例合在一起教也好,都是为了把知识传授给学生,那么,我们就应该从学生的实际出发,进行教学设计。而对于我们班这样贫富差距比较大的状况,不能为了一小部分学优生,就在一节课同时教学两个比较抽象的知识。为此,我制作了这个课件。
当然,教学不应只是平实地传递和接受知识的过程,更多的是师生双方在课堂上互动对话、实践创造,随机生成与资源开发的过程。它是教师及时捕捉课堂上无法预见的教学因素,利用课堂上随机生成的资源展开再教学的过程。就正如赵老师前面提到的“课中也要备课”,动态生成才能真正体现学生的主体性和课堂的真实性,它追求课堂的真实、自然、和谐,再现师生“原汁原味”的教学生态情境,从而达到师生共识、共享、共进的教学高境界,实现师生生命价值的不断超越。
那么,怎样才能做到课堂上的精彩生成呢?从生成的内容看,有显性的知识、技能生成和隐性的情感、态度生成。因此,我认为:促进课堂生成的关键是教师课前的预设、教学的机智和学生的心理环境。对于我这个工作将近3年,使用苏教版教材也将近3年的年轻的老古董,有很多不到之处,恳请各位老师们批评指出。