第一篇:变电站综合自动化系统教案
第七章
变电站综合自动化系统
第一节
变电站综合自动化系统概述
1)因此,变电站综合自动化是自动化技术、计算机技术和通信技术等高科技在变电站领域的综合应用。
2)只有通过变电站自动化系统才能向电力系统的调度中心提供完整和可靠的信息,调度中心才能了解和掌握电力系统实时的运行状态。同时,调度中心对电力系统要下发各种远方控制命令,这些命令只有通过变电站的自动化装置才能最终完成。也可以说没有一个完整、先进、可靠的基础自动化就不可能实现一个高水平的电网调度自动化。
3)变电站综合自动化系统是将变电站的二次设备(包括测量仪表、信号系统、继电保护、自动装置和远动装置)等经过功能的组合和优化设计。
4)微机保护代替常规的继电保护屏,改变了常规继电保护装置不能与外界通信的缺陷。
5)变电站综合自动化系统可以采集到比较齐全的数据和信息,利用计算机的高速计算能力和逻辑判断功能,可方便的监视和控制变电站内各种设备的运行,取代了常规的测量和监视仪表、常规控制屏、中央信号系统和远动屏。6)变电站综合自动化系统具有功能自动化、结构微机化、操作监视屏幕化、运行管理智能化等特征。
-160-
7)它的应用为变电所无人值班提供了强有力的现场数据采集和监控支持。8)其主要功能为:①对变电所所管辖的配电网实行监视和自动操作,如通过投切配电网中的联络开关和分段开关,切除故障或者调整功率分布。②在系统频率下降时,切除负荷,或在电压变动时自动投切电容器或者调节变压器的分接头,调节系统的电压和无功,提高供电质量。③通过对负荷的直接控制来调节负荷曲线和保持电能的供需平衡。
9)传统变电站自动化系统和变电站综合自动化系统的优越性体现:
1、传统的变电站大多数采用常规设备。尤其是二次设备中的继电保护和自动装置、远动装置等,采用了电磁式或是晶体管形式,因此结构复杂、可靠性不高,本身没有故障自检功能,因此不能满足现代电力系统高可靠性的要求。
2、调节电压。电能质量逐渐的引起人们的关注,但是传统的变电站,大多数都不具备调节电压的手段,至于谐波污染造成的危害,还没有引起足够重视,更没有采取足够的措施,且缺乏科学的电能质量考核办法,不能满足目前发展的电力市场需求。
3、占地面积。传统的变电站和和二次设备大多采用电磁式和晶体管式,体积大、笨重,因此主控制室、继电保护室占地面积大,增大了征地投资。实现变电站综合自动化就会减少占地面积,对国家目前和长远利益是很有意义的。
4、“四遥”信息。传统的变电站不能满足向调度中心及时提供运行参数的要求,于是就不能适应电力系统快速计算和实时控制的要求。综合自动化系统能够和上级的调度中心实现信息共享,可以将现场的“四遥”信息及时准确地传递到
-161-
调度中心。因此,可以提高电力系统的运行和管理水平。
第二节
变电站综合自动化系统的基本功能
变电站综合自动化系统是多专业性的综合技术,它以微型计算机为基础,实现了电站传统的继电保护、控制方式、测量手段、通信和管理模式的全面技术改造。国际大电网会议WG34.03工作组在研究变电站时,分析了变电站自动化需完成的功能大概有63种,归纳起来可以分为以下几个功能组:①控制、监视功能;②自动控制功能;③测量表计功能;④继电保护功能;⑥与继电保护有关功能;⑥接口功能;⑦系统功能。
结合这五个不同的功能组,我们将系统自动化的基本功能体现在下面的五个子系统中。
一、监控子功能
变电站的监控子功能可以分为以下两个部分。
上位机的监视和控制功能以及下位机的监视和控制功能。下位机的监控功能主要包括电能量、母线电压和电流U、I和开关量的采集、故障录波等功能。上位机主要包含有人机界面和人机对话的功能,通信联络功能。
(一)数据采集
变电站的数据包括:模拟量、开关量和电能量
(1)模拟量的采集。变电站需采集的模拟量有:各段母线的电压、线路电压、电流有功功率、无功功率,主变压器电流、有功功率和无功功率,电容器的-162-
电流、无功功率,馈线电流、电压、功率以及频率、相位、功率因数等。此外,模拟量还有主变压器的油温,直流电源电压、站用变压器电压等。
(2)开关量的采集。变电站的开关量有:断路器的状态、隔离开关状态、有载调压变压器分接头的位置、同期检测状态。继电保护动作信号、运行告警信号等这些信号都以开关量的形式,通过光电隔离电路输入到计算机。对于断路器的状态,我们通常采用中断输入方式和快速扫描方式,以保证对断路器变位的采样分辨率能在5ms之内。对于给定开关状态和分接头位置等开关信号,可以用定期查询的方式读取。
(3)电能计量。电能计量即指对电能量(包括有功电能和无功电能)的采集。对电能的采集可以采用不同的方式。一种就是根据数据采集系统采集的各种不同的数据通过软件的方法进行不同的计算,得出有功电能和无功电能。这种方法不需要进行硬件的投资,但是作为实际的电能计费的方式,还不为大家所接受。另外的方法就是采用微机型电能计量仪表。这种仪表采用单片机和集成电路构成,通过采样数据进行有功电能和无功电能的计算。因为这种装置是专门为电能计算设计的,因此,可以保证计量的准确度。这种微机型的电能计量仪表是今后电能计量的发展方向。
(二)事件顺序记录(SOE)
事件顺序记录SOE(Sequence of Events)包括断路器合闸记录、保护动作顺序记录。微机保护或监控系统采集环节必须有足够的内存,能存放足够数量或足够厂时间的时间顺序记录,确保当后台监控系统或远方几种控制主站通信中断
-163-
时,不会丢失事件的信息,并记录事件发生的时间(应该精确到毫秒级)。
(三)故障记录、故障录波和测距
(1)故障录波与测距。110KV及以上的重要输电线路距离厂、发生故障的影响大。必须尽快查找故障点,以缩短修复时间,尽快恢复供电,减小损失。设置故障录波和各种测距是解决此问题的最好途径。变电站的故障录波和测距可采用两种方法实现,一是由微机保护装置兼作故障记录和测距,在将记录和测距结果送监控机存储和打印输出或是直接送调度主站,这种方法可节约投资,减小硬件投资,但故障记录的数量有限;另外的方法就是采用专门的微机故障录波器,并且故障录波器应具有串行通信功能,可以与监视系统通信。
(2)故障记录。35 KV、10 KV、6 KV的配电线路很少专门设置故障录波器,为了分析故障的方便,可以设置简单故障记录功能。
故障记录功能是记录继电保护动作前后与故障有关的电流量和母线电压,故障记录量的选择可以按照以下的原则:
对于大量中、低压变电站,没有配备专门的故障录波装置,而10KV出线数量大、故障率高,在监控系统中设置了故障记录功能,对分析和掌握情况、判断保护动作是否正确很有益处。
(四)操作控制功能
无论是无人值班还是少人值班变电站,操作人员都可以通过CRT屏幕对断路器和隔离开关(如果允许电动操作的话)进行分、合操作,对变压器分接头开关位置进行调节控制,对电容器进行投切控制,同时要能接受遥控操作命令,进行-164-
远方操作;为防止计算机系统故障时无法操作被控设备,在设计时,应保留人工直接跳闸、合闸的手段。
断路器应该有闭锁功能,操作闭锁应包括以下内容:(1)断路器操作时,应闭锁自动重合闸装置。
(2)当地进行操作和远方控制操作要互相闭锁,保证只有一处操作,以免相互干扰。
(3)根据实时信息,自动实现断路器与隔离开关间的闭锁操作。
(4)无论当地操作或远方操作,都应有防误操作的闭锁措施,即要收到反校验信号,才执行下一项;必须有对象校核、操作性质校核和命令执行三步,以保证操作的正确性。
(五)安全监视功能
监控系统在运行过程中,对采集的电流、电压、主变压器温度、频率等量,要不断进行越限监视,如果发现越限,立刻发出告警信号,同时记录和显示越限时间和越限值,另外,还要监视保护装置是否失电,自动控制装置工作是否正常等。
(六)人机联系功能
(1)CRT显示器、鼠标和键盘。变电站采用微机监控之后,无论是有人值班还是无人值班的变电站,最大的特点之一是操作人员或调度员只要面对CRT显示器的屏幕,通过操作鼠标和键盘,就可对全站的运行工况和运行参数一目了然,可对全站的断路器和隔离开关等进行分、合操作,彻底改变了传统依靠指针式仪
-165-
表和依靠模拟屏或操作屏手段的操作方式。
变电站中的这种显示是和变电站综合自动化系统的具体功能紧密相连的。CRT的显示内容是变电站中前台机监视、控制和测量等具体功能的人性化体现。在这些可以显示的内容中,包括现场采集的各种数据和经过后台计算机计算得到的数据:U、I、P、Q、cos、有功电能、无功电能以及主变压器温度T、系统频率f等,都可以在计算机的屏幕上实时显示。同时,在潮流等运行参数的显示画面上,应显示出日期和时间。对变电站主接线图中的断路器和隔离开关的位置要与实际状态相适应。进行对断路器或隔离开关的操作时,在CRT的显示上,对要操作的对象应有明显的标记(如闪烁、颜色改变等措施)。各项操作都有汉字提示。
另外,变电站投入运行之后,随着送电量的改变,保护整定值、越限值等都需要修改,甚至由于负荷的增加,都需要更换原有的设备,例如更换TA的变化。因此在人机联系中,应该有良好的人机界面,以供变电站的操作人员对变电站的设备进行参数设定。
特别需要强调的是,针对无人值班变电站必须设置有必要的人机联系功能,在操作人员进行设备巡视和检修时,可以通过液晶显示器和七段显示器或者CRT显示器和便携式机到站内进行操作。
(七)后台数据统计和打印功能
监控系统除了完成上述的各项功能外,数据处理和记录也是很重要的环节。历史数据的形成和存储是数据处理的主要内容。此外,为满足继电保护专业和变-166-
电站管理的需要,必须进行一些数据统计,其内容包括:主变和输电线路有功和无功功率每天的最大和最小值以及相应的时间;母线电压每天记录的最高值和最低值以及相应的时间;计算受配电电能平衡率;统计断路器动作次数;断路器切除故障电流和跳闸次数的累积时间;控制操作和修改整定值记录等。
对数据的记录之后,就可以通过系统的打印机进行数据打印,以供变电站管理和历史存档。对于无人职守的系统变电站,可以不配备打印机,不设当地打印功能,各变电站的运行报表集中在控制中心打印输出。
二、微机保护子系统
为保证电力系统运行的安全可靠,微机保护通常独立于监控系统,专门负责系统运行过程中的故障检测和处理,故要求微机保护具有安全、可靠、准确、快速等性能。低压配电所的继电保护比较简单,有主变瓦斯/差动保护、电流速断保护、低压闭锁过电压过电流保护等。在低压配电所中通常被设置为一个独立的单元。微机保护在我国已经投入运行10多年的历史,并且越来越受到继电保护人员和运行人员的普遍欢迎。对微机保护的原理和功能实现不作介绍。
三、无功/电压控制功能
变电站综合自动化系统能够必须具有保证安全可靠供电和提高电能质量的自动控制功能。电压和频率是电能质量的重要指标,因此电压、无功综合控制也是变电站综合自动化的一个重要组成部分。造成电压下降的主要原因是系统中的无功功率不足和无功功率分布不合理。所以,在变电站内,应该接有有载调压变压器和控制无功分布的电容器。
-167-
变电站内的有载调压变压器和无功补偿装置虽然都能对系统的无功和电压起到调节作用,但是,两种调节方式的作用是不相同的。有载调压变压器可以载带有负荷的情况下,切换分接头位置,从而改变变压器的变比,起到调节电压和降低损耗的作用。控制无功补偿电容器的投切,可以改变网络中无功功率的分布,改变功率因数,减少网络损耗和电压损耗,改善用户的电压质量。在系统的无功功率严重不足的情况下,单纯的调节有载调压变压器的抽头,使电网的电压水平较高,反而使得该地区的无功功率不足,导致恶性循环。因此,在系统无功缺乏的情况下,必须调节系统的无功功率。总之,在进行无功和电压的控制时,必须将调分接头和电容器的投切两者结合起来,进行合理的调控。才能起到改变电压水平,又降低网络损耗的效果。
电力系统中,电压和无功的调控对电网的输电能力、安全稳定运行水平和降低电能损耗有着极大影响。因此,要对电压和无功功率进行综合调控,保证实现电力部门和用户在内的总体运行技术指标和经济指标达到最佳。其具体的调控目标是:
1、维持供电电压在规定的范围内。
2、保持电力系统稳定和适当的无功平衡。
3、保证在电压合格的前提下使电能损耗最小。
四、低频减载功能
电力系统的频率是电能质量最重要的指标之一。在系统正常运行时必须维持电网的频率在50Hz±(0.1~0.2)Hz的范围内。系统频率不论是偏大还是偏小,-168-
对大量的用电设备和系统设备都是十分不利的。因此,在变电站内部,装设低频减载系统。低频减载系统的主要任务是,在系统发生故障,有功功率严重缺额时,需要切除部分负荷时,应尽可能作到有次序、有计划的切除负荷,并保证所切除的负荷数量必须合适,以尽量减少切除负荷后所造成的经济损失。
目前,较为常用的两种方法是:
(1)采用专门的低频减载装置实现。这种低频减载装置的控制方式在前面的章节里面已经做过介绍。采用不同的低频减载轮来实现低频减载功能。
(2)把低频减载的负荷控制分散装设在每回线路的保护装置中。现在微机保护几乎都是面向对象设置的,每回线路都有一套自己的保护设备。在线路保护装置中,增加一个测量频率的环节,就可以实现低频减载的控制功能了。其对每回线路轮次的安排原则同上所述。只要将第n 轮动作的频率和延时定值事前在某回路的保护装置中安排好,则该回路便属于第 n 轮切除的负荷。
五、备用电源自投控制
随着国民经济的迅猛发展,科学技术的不断提高及家用电器迅速走向千家万户,用户对供电质量和供电可靠性的要求日益提高。备用电源自投是保证配电系统连续可靠供电的重要措施。因此,备用电源自投已经成为变电站综合自动化系统的基本功能之一。
备用电源自投装置的任务是,当电力系统故障或者因为其他的原因使工作电源被断开后,能迅速将备用电源或备用设备自动投入工作,使原来的工作电源被断开的用户能迅速恢复供电的一种自动控制装置。
-169-
一般来讲,变电站的备用电源自投有两种形式:明备用和暗备用。
第三节
变电站的基本结构
一、变电站综合自动化系统的基本要求
为了达到变电站综合自动化的总目标,自动化系统应该满足以下要求:(1)变电站综合自动化系统应能全面代替常规的二次设备。综合自动化系统应集变电站的继电保护、测量、监视、运行控制和通信于一个分级分布式的系统中,此系统由微机保护子系统、测量子系统、各种控制子系统组成。这些系统能代替常规的机电保护、仪表、中央信号、模拟屏、控制屏和运行控制装置。
(2)变电站微机保护的软件和硬件设置既要和监控系统相对独立,又要相互协调。微机保护是综合自动化系统中较为重要的环节,因此软件和硬件的配置要相对独立,即在系统运行中,继电保护的动作、行为仅和保护装置有关,不依赖监控系统的其他环节,保证综合自动化系统中,任何其他的环节故障只是影响局部功能的实现,不影响保护子系统的正常工作。但和监控系统要保持紧密的通信联系。
(3)微机保护装置应具有串行接口或现场总线接口,向计算机监控系统或RTU提供保护动作信息或保护定值等信息。
(4)变电站综合自动化系统的功能和配置,应该满足无人值班变电站的要求。系统中无人值班变电站的实施和推广是一个必然的趋势,是电网调度管理的发展方向。传统的四遥装置不能满足现代化电网调度、管理的要求。因此,变电-170-
站综合自动化系统不管从硬件或软件方面考虑,都必须具备和上级调度通信的能力,必须具有RTU的全部功能,以满足和促进变电站无人值班的实施。
(5)要有可靠、先进的通信网络和合理的通信协议。
(6)必须保证综合自动化系统具有较高的可靠性和较强的抗干扰能力。在考虑总体结构时,要主、次分明,对关键的环节,要有一定的冗余。综合自动化系统的各个子系统要相对独立,一旦系统中某个部分出现故障,应尽量缩小故障影响的范围并能尽量尽快修复故障。为此,各子系统应具有独立的故障诊断、自修复功能,任何一个部分发生了故障,应通知监控主机发出告警信号,并能迅速将自诊断信息发送到监控中心。
(7)系统的可扩展性和适应性要好。在对技术落后的老变电站进行技术改造时,变电站自动化设备应能根据变电站不同的要求,组成不同规模和不同技术等级的系统。
(8)系统的标准化程度和开放性要好。研究新的产品时,应尽量符合国家或部颁标准,使系统的开放性能好,也便于系统以后升级。
(9)必须充分利用好数字通信的优势,实现数据共享。数据共享应该是自动化系统发展的趋势,只有实现数据共享,才能简化自动化系统的结构,减少设备的重复,降低造价。
(10)变电站综合自动化系统是一项技术密集、涉及面广、综合性很强的基础自动化工程。系统的研究和开发,必须统一规划、协调工作。各个方面要相互配合,避免各自为战。避免不必要的重复和相互干扰。
-171-
二、综合自动化系统的体系结构
变电站综合自动化系统是和计算机技术、集成电路技术、网络通信技术密切相关的。随着这些技术的不断发展,综合自动化系统的体系结构也在不断的发生变化,功能和特性也在不断的提高。从变电站综合自动化的发展过程来看,它的体系结构经历了集中式、分布集中式、分散与集中相集合的方式和分散式等不同的发展类型和阶段。其中分层分散式的结构是今后的发展方向。它具有明显的优点。而且光电传感器和先进的光纤通信技术的出现,为分散式的综合自动化系统提供了有力的技术支持。
显示器各保护装置打印机键盘调度中心监控主机通信控制器输出接口模入接口开入接口输出接口A/D模块输入接口主变压器TVTA线路TVTA断路器分合状态保护出口模拟量输入断开继路关电器状保和态护隔输出口继电器信输入离入息图7-1 集中式结构的综合自动化系统框图
1、集中式系统结构(如图7-1所示)
集中式的变电站综合自动化系统是和当时计算机技术发展水平密切相关的。出现在70年代中、后期。在集中结构中,将自动化系统中的数据采集(包括模拟量和状态量)、继电保护和各种对变电站自动化设备的控制功能通过一定的接-172-
口交给系统的主监控机来管理和完成,为了实现和调度中心的通信联系,还要有相应的通信控制器来负责主控计算机和调度中心的通信工作。在有人值班的变电站中,主控计算机为了实现人机对话和管理功能,还必须负责管理大量的外围设备,以满足人机对话和数据报表的打印功能。
这种集中式的变电站综合自动化系统具有结构紧凑、体积小、占地面积小,可以减少投资、实用等特点。但是,随着技术地不断发展和新的变电站自动化结构的出现,它的劣势也就愈加明显:
1)每台计算机的功能较为集中,如果一台计算机出现故障。影响面是很大的。必须采用双机或者是并联运行的结构来提高系统的稳定性
2)集中式结构,软件复杂,修改的工作量大,而且系统的软件调试工作麻烦。
3)组态不灵活,对不同结主接线和规模不同的变电站,其软、硬件都必须另行设计,适应性较差,不利于推广。
4)集中式保护和长期以来采用的一对一的常规保护相比,不直观,不符合运行和维护人员的习惯,调试和维护不方便,程序设计麻烦,仅适合于保护算法简单的场合。
-173-
打印机(可选)人机接口当地调试或监控主控机(或双机)调度所/控制操纵中心光缆或电缆电能管理机485总线智能电能表智能电能表TV状出TA态口信回TV状出TA态口信回保护管理机现场总线或其他总线线路开关柜1保护与监控单元线路开关柜n保护与监控单元主变压器保护屏监控单元TV状出TA态口信回高压线路保护屏监控单元TV状出TA态口信回电压无功控制屏备用电源自投装置号路号路号路号路图7-2 分散与集中相结合的变电站综合自动化系统结构框图
2、分层式分布变电站自动化系统
随着自动化系统的发展,到了90年代,出现了不同的变电站综合自动化模式,归纳起来,都属于分层分布式的结构。将实际的变电站的一次、二次设备分为三个不同的结构层次。
设备层主要指变电站内的变压器、断路器和隔离开关及其辅助触点,电流、电压互感器等一次设备。
单元层主要是按照断路器间隔划分的。单元层本身由各种不同的单元装置组成,这些独立的单元装置通过局域网或者是总线和主监控机进行通信。它具有测量、控制部件或继电保护单元。测量和控制部件负责该单元的测量、监视、断路-174-
器的操作控制和连锁及事件顺序记录等;保护部件负责该单元线路或变压器、电容器的保护、故障记录等。在这个层次中,还可能存在数据采集管理机和保护管理机,分别管理系统的数据采集和继电保护工作。所以说单元层本身是一个两级系统的结构。
变电站层包括全站性的监控主机、远动通信机等。变电站层设现场总线或是局域网,供各主机之间和监控主机之间的信息交换。
根据上面的变电站结构层次的划分,通常要采用按功能来分类的多CPU来实现。各种高压和低压线路的保护单元;电容器保护单元;主变压器保护单元;备用电源自投单元;低频减载控制单元;电压、无功综合补偿单元;数据采集单元;电能计量单元等。每个功能单元基本上由单独的一个CPU来完成,多采用单片机。
在系统的管理上面,数据采集管理机和保护管理机能完成系统赋予它们的任务,并且能协调监控机的工作。这样就可以大大的减轻监控机的负担。它们通过总线或是局域网和主控计算机进行通信。一旦各个管理机发生故障,就会向主控计算机发出告警信号。对于主控计算机,如果应用在无人值班的场合,主要负责与调度中心的通信,使变电站自动化系统具有RTU的功能,完成“四遥”的任务;在有人值班的场合,除了仍然负责和调度中心通信外,还要负责人机联系,使自动化系统通过监控计算机完成当地显示、制表打印等任务。
这种按照功能设计的分层分布式自动化结构,具有软件相对简单、调试相对方便、组态灵活、系统整体可靠性高等特点。但是,这种结构在安装的时候,需要的控制电缆相对较多,增加了电缆的投资。
-175-
3、分布分散式和集中式相结合的系统(如图7-2所示)
利用先进的局域网络技术和现场总线技术,就可以对变电站二次系统进行优化,使变电站综合自动化系统得到提高。一种发展趋势就是按照每个电网的元件为对象,集测量、保护、控制为一体,设计在同一个机箱内。例如,对于6~35Kv的配电线路,可以将这个一体化的保护、测量、控制单元分散安装在各个开关柜中,然后由监控主机通过光纤或电缆网络,对它们进行管理和交换信息,这就是分散式结构。而且对于高压线路的各种保护和变压器保护,仍然可以通过集中组屏安装在控制室内。这种将低压线路的保护和测控单元分散安装在控制室内,而高压线路保护和主变压器保护采用集中组屏的系统结构,称为分布和集中相结合的结构,这是当前综合自动化系统的主要结构。
分布分散式结构的优越性在于:
(1)简化了变电站内二次部分的配置,大大减小了控制室的面积。配电线路的保护和测控系统都是安装在各个开关柜当中,因此,主控室内就减少了常规控制屏、中央信号屏和站内模拟屏。减少了主控室的占用面积,也有利于实现无人值班。
(2)减小了施工和设备安装工程量。在开关柜中的保护和测控系统已经由厂家事先调整完毕,分布分散式系统的电缆敷设工程量小,因此施工和设备安装工程量就减小了。
(3)简化了变电站二次设备之间的互连线,节省了连接电缆。
(4)分层分散式结构将大量的实际工作分担到不同的单元去完成,因此可-176-
靠性高,组态灵活,检修方便。并且,各模块和主控计算机之间通过局域网或总线连接,抗干扰能力强,可靠性高。
(5)由于各个模块基本上是面向对象设计的,因此软件结构相对集中式的简单,并且调试方便,便于系统扩充。
第四节 变电站综合自动化系统的数据通信
变电站综合自动化系统实质上是由多台微机组成的分级分布式的控制系统,包括微机监控、微机保护、电能质量自动控制等多个子系统。在各个子系统中往往又由多个智能模块组成。例如:微机保护子系统中,有变压器保护、电容器保护和各种线路保护等。因此在综合自动化系统内部,必须通过内部数据通信,实现各子系统内部和各子系统间的信息交换和实现信息共享,以减少变电站二次设备的重复配置和简化二次设备的互连,既减少了重复投资,又提高了整体的安全性,这是常规的变电站的二次设备所不能实现的问题。
另一个方面,变电站是电能传输、交换、分配的重要环节,它集中了变压器、开关、无功补偿等昂贵设备。因此,对变电站综合自动化系统的可靠性、抗干扰能力、工作灵活和可扩展性要求很高,尤其是在无人值班变电站中,不仅要求综合自动化系统中所采集的测量信息和各断路器、隔离开关的状态信息等能传送给地区电网调度中心(简称地调)或县调或省调(为了叙述简单,下文将各级调度中心或集控站统称为控制中心)。综合自动化系统各环节的故障信息也要及时上报给控制中心。同时也要能接受和执行控制中心下达的各操作和调控命令。
-177-
因此,变电站综合自动化系统的数据通信,包括两方面的内容:一是综合自动化系统内内部各子系统或各种功能模块间的信息交换;另一个是变电站和控制中心间的通信。
一、综合自动化系统与控制中心的通信
综合自动化系统应具有与电力系统控制中心通信的功能,不另外设独立的远动装置,而由综合自动化系统的上位机(或称集中管理机)或通信控制机执行远动功能。把变电站所需测量的模拟量、电能量、状态信息和SOE等类信息传送到控制中心,这些信息是变电站和控制中心共用的,不必专门为送控制中心专门单独采集。
变电站不仅要向控制中心发送测量和监视信息,而且要从上级调度接受数据和控制命令,例如接收调度下达的开关操作命令,在线修改保护定值、召唤实时运行参数。从全系统范围内考虑电能质量、潮流和稳定的控制等,这些功能如果实现,将给电力系统带来很大效益,这也是变电站综合自动化的优越性和要求的目标。
二、变电站内的信息传输
在具有变电站层—单元层(间隔层)—现场层(设备层)的分层式自动化系统中,要传输的信息有如下几种。
(一)设备层和间隔层(单元层)间的信息交换
间隔层的设备有控制测量单元或继电保护单元,或两者都有。
设备层的高压断路器可能有智能传感器和执行器,可以自由地与单元层的装-178-
置交换信息。间隔层的设备大多需要从设备层的电压和电流互感器采集正常和事故情况下的电压值和电流值,采集设备的状态信息和故障诊断信息,这些信息包括:断路器和隔离开关位置、主变压器分头位置,变压器、互感器、避雷器的诊断信息和断路器的操作信息。
(二)单元层内部的信息交换
在一个单元层内部相关的功能模块间,即继电器保护和控制、监视、测量间的数据交换。这类信息有如测量数据、断路器状态、器件的运行状态、同步采样信息等。
(三)单元层间的通信
不同单元层间的数据交换有:主、后继电保护工作状态、互锁,相关保护动作闭锁电压无功综合控制装置信息。
(四)单元层和变电站层的通信
单元层和变电站层的通信内容很丰富,概括起来有以下三类:
(1)测量及状态信息。正常和事故情况下的测量值和计算值,断路器、隔离开关、主变压器分接头开关位置、各单元层运行状态、保护动作信息等。
(2)操作信息。断路器和隔离开关的分、合命令,主变压器分接头位置的调节,自动装置的投入和退出等。
(3)参数信息。微机保护和自动装置的整定值等。
(五)变电站层的内部通信
变电站层的内部通信,要根据各设备的任务和功能特点,传输所需的测量信
-179-
息、状态信息和操作命令等。
三、变电站综合自动化系统通信的特点和要求
(一)、变电站通信网络的要求
由于数据通信在综合自动化系统的重要性,经济、可靠的数据通信成为系统的技术核心,而由于变电站的特殊环境和综合自动化系统的要求。使变电站综合自动化系统内的数据网络具有以下的特点和要求。
(1)快速和实时响应的能力。变电站综合自动化系统的数据网络要求及时地传输现场的实时运行信息和控制信息。在电力工业标准中对系统的数据传输都有严格的实时性指标,网络必须很好地保证数据通信的实时性。
(2)很高的可靠性。电力系统是连续运行的,数据通信网络也必须连续运行,通信网络的故障和非正常工作会影响整个变电站综合自动化系统的运行,设计不合理的系统,严重时甚至会造成设备和人身事故、造成很大的损失,因此变电站综合自动化系统的通信子系统必须保证很高的可靠性。
(3)优良的电磁兼容性能。变电站是一个具有强电磁干扰的环境,存在电源、雷击、跳闸等强电磁干扰,通信环境恶劣,数据通信网络必须注意采取相应地措施消除这些干扰的影响。
(4)分层式结构。这是由整个系统的分层式结构所决定的,也只有实现通信网络的分层,才能实现整个变电站综合自动化系统的分层分布式结构,系统的各层次又各自具有特殊的应用条件和性能要求,因此每一层都要有合适的网络系统。
-180-
(二)、信息传输响应速度的要求
不同类型和特性的信息要求传送的时间差异很大,具体内容如下:
(1)经常传送的监视信息。①为监视变电站运行状态,需要传输母线电压、电流、有功功率、无功功率、零序电压、频率等测量值,这类信息需要经常传送,响应时间需满足SCADA的要求,一般不宜大于1~2秒;②为计量用的信息,如有功电能量和无功电能量,这类信息传送的时间可以较长,传送的优先级可以较低;③为刷新变电站层的数据库,需定时采集断路器的状态信息,继电保护装置和自动装置投入和退出的工作状态信息,可以采用定时召唤方式,以刷新数据库;④为监视变电站的电气设备和安全运行所需的信息,例如变压器、避雷器等的状态监视信息,变电站保安、防火有关的运行信息。
(2)突发事件产生的信息。①系统发生事故的情况下,需要快速响应的信息,例如:事故时断路器的位置信号,这种信号要求传输时延小,优先级高;②正常操作时的状态变化信息(如断路器状态变化)要求立即传送,传输响应时间要小,自动装置和继电保护装置的投入和退出信息,要及时传送;③故障情况下,继电保护动作的状态信息和事件顺序记录,这些信息作为事故后分析事故之用,不需要立即传送。待事故处理完毕后在送即可;④事故发生时的故障录波,带时标的扰动记录的数据,这些数据量很大,传输时间长,也不必立即传送;⑤控制命令、升降命令、继电保护和自动设备的投入和退出命令。修改定值命令的传输不是固定的,传输的时间间隔比较长;⑥随着电子技术的发展,在高压电气设备内装设的智能传感器和智能执行器,高速地和自动化系统单元层的设备交换数
-181-
据,这些信息的传输速率取决于正常状态时对模拟量的采样速率,以及故障情况下快速传输的状态量。
(三)、各层次之间和每层内部传输信息时间的要求
(1)设备层和间隔层,1~100ms。(2)间隔层内各个模块间,1~100ms。(3)间隔层的各个间隔单元间,1~100ms。(4)间隔层和变电站层之间,1~1000ms。(5)变电站层的各个设备之间,≥1000ms。(6)变电站和控制中心间,≥1000ms。
第五节 现场总线在变电站综合自动化系统中的应用
一、概述
变电站数据通信可以采取并行通信或串行通信方式。并行通信方式除了需要数据线外还需要控制线和状态信号线,显然并行通信方式下需要的传输线路较多,成本高,因此常用在传输距离较短(通常小于10m),传输速率较快的场合。早期的变电站综合自动化系统,由于受到当时通信技术和网络技术等具体条件的限制,变电站内部通信大多采用并行通信,在综合自动化系统的结构上,多为集中组屏式。
串行通信方式是一位一位顺序传送。串行通信最大的优点是可以节约传输线路,特别是当位数较多的情况和远距离传输时,这个优点就更加明显,不仅节约-182-
了投资,还简化了接线。在变电站综合自动化系统的内部,各种自动装置之间,或继电保护装置与监控系统间,为了减小连接电缆,简化配线,常采用串行通信。
目前,在变电站综合自动化系统中,微机保护、微机监控和其他微机型的自控装置间的通信,大多通过RS-422/RS-485通信接口连接,实现监控系统与微机保护和自动装置间的相互交换数据和状态信息。这与变电站原来的二次系统相比,已有很大的优越性,可节省大量连接电缆,接线简单、可靠。
然而,在变电站综合自动化系统中。采用RS-422/RS-485通信接口,虽然可以实现多个节点(设备)的互连,但连接的数目一般不超过32个,在变电站规模较大时,不能满足综合自动化的要求;其次,采用RS-422/RS-485通信接口,其通信方式为查询方式,即由主计算机询问,保护单元或自控装置答,通信效率低,难以满足较高的实时性要求;再者,使用RS-422/RS-485通信接口,整个通信网上只能有一个主节点对通信进行管理和控制,其余皆为从节点,受节点管理和控制,这样主节点便成为系统的瓶颈,一旦主节点出现故障,整个系统的通信便无法进行;另外,对RS-422/RS-485通信接口的通信规约缺乏统一标准,使不同厂家生产的设备很难互连,给用户带来不便。
在变电站综合自动化系统中,也有采用计算机局域网的,比如Novell网,Ether网Token Ring网等。但这些局域网适用于一般做数据处理的计算机网络,其传输容量大,但实时性不高。
以上的种种问题不仅在电力系统中,在其他的工业控制领域也存在。基于上述原因,国际上在80年代就提出了现场总线,并制定了相应的标准。
-183-
并且出现了几种较为著名的现场总线技术。
根据国际现场总线基金会的定义,所谓现场总线是一种全数字的双响多站点通信系统。
现场总线是基于微机化的智能现场仪表,实现现场仪表与控制系统和控制室之间的一种全分散、全数字化的、智能、双向、多变量、多点、多站的通信网络。它按国际标准化组织ISO和开放系统互连OSI提供了网络服务,可靠性高、稳定性好、抗干扰能力强、通信速率快、造价低、维护成本低。
现场总线和一般的计算机局域网有些相似之处,但也有不少差别。局域网适合于一般数据处理的计算机网络,而现场总线是作为现场测控网络,要求方便地适应多个输入输出类型数据(突发性数据和周期性数据)的传输,要求通信的周期性、实时性、可确定性,并适应工业现场的恶劣环境。
现场总线除了具有局域网的优点外,最主要的是它满足了工业控制过程所要求的现场设备通信的要求,且提供了互换操作,使不同厂家和设备也可互连,并可统一组态,使所组成的系统的适应性更广泛。现场总线的开放性,使用户可方便地实现数据共享。
二、现场总线技术在变电站综合自动化系统中应用的优越性。
随着大规模集成电路技术和微型计算机技术的不断发展,变电站综合自动化系统从体系结构上面临着由原来面向功能往面向对象的方向发展。以往的变电站综合自动化系统是按照保护、监控、故障记录和其他的自动控制等功能分为若干个相对独立的子系统,每个子系统有自己的输入和输出设备,造成设施重复,联-184-
系复杂,这一方面是由于以前技术条件限制,另外一个方面也与各种功能发展过程中形成的管理体制和习惯有关。现在微机技术,尤其是单片机技术的发展,使人们认识到变电站综合自动化系统是按照其服务对象(一次设备)将保护、测量集成在一起,然后通过网络联系起来,可以使体积大大缩小,有很多优越性。
变电站的自动化设备采用面向对象的微机化产品后,应用现场总线是必然的趋势。
采用具有现场总线的自动化设备有以下几个方面的优越性。
(1)互操作性好。具有现场总线接口的设备不仅在硬件上标准化,而且在接口软件上也标准化。用户可优选不同厂家的产品集成为一个比较理想的自动化系统。
(2)现场总线的通信网络为开放式网络。以前,由于不同厂家生产的自动化设备通信协议不同,要实现不同设备间的互连比较困难。而现场总线为开放式的互连网络,所有技术和标准都是公开的,所有制造商必须遵守,使用户可以自由地组成不同制造商的通信网络,既可以与同层网络相连,也可以与不同层网络互连,因此现场总线给综合自动化系统带来了更大的适应性。
(3)成本降低。由于现场总线完全采用数字通信,其控制功能也可不下放到现场。由现场总线设备组成的自动化系统,减少了占地面积,简化了控制系统内部的连接,可节约大量的连接电缆,使成本大大降低。
(4)安装、维护、使用方便。使用现场总线接口技术,无需用很多控制电缆连接各控制单元,只需将各个设备挂接在总线上,这样就显著减少了连接电缆,-185-
使安装更方便,抗干扰能力更强。
(5)系统配置更灵活,可扩展性好。
正是因为现场总线有上述主要优点,因此今后变电站综合自动化设备采用现场总线是发展的方向。
-186-
第二篇:浅谈变电站综合自动化系统
浅谈变电站综合自动化系统
吴科续
(丰满发电厂,吉林
丰满
132108)
摘 要:本文简要介绍了变电站综合自动化系统的重要性和发展趋势,提出了变电站综合自动化基本概念,并对系统结构、通讯方式和能实现的基本功能及变电站自动化的发展前景进行分析。
关键词:变电站综合 自动化系统 结构 功能
1.前言
电网是一个不可分割的整体,对整个电网的一、二次设备信息进行综合利用,对保证电网安全稳定运行具有重大的意义。变电站综合自动化是一项提高变电站安全、可靠稳定运行水平,降低运行维护成本,提高经济效益,向用户提供高质量电能服务的一项措施。随着自动化技术、通信技术、计算机和网络技术等高科技的飞速发展,一方面综合自动化系统取代或更新传统的变电站二次系统,已经成为必然趋势。另一方面,保护本身也需要自检查、故障录波、事件记录、运行监视和控制管理等更强健的功能。发展和完善变电站综合自动化系统,是电力系统发展的新的趋势。2.系统结构
目前从国内、外变电站综合自动化的开展情况而言,大致存在以下几种结构:2.1分布式系统结构
按变电站被监控对象或系统功能分布的多台计算机单功能设备,将它们连接到能共享资源的网络上实现分布式处理。系统结构的最大特点是将变电站自动化系统的功能分散给多台计算机来完成。分布式模式一般按功能设计,采用主从CPU系统工作方式,多CPU系统提高了处理并行多发事件的能力,解决了CPU运算处理的瓶颈问题。各功能模块(通常是多个CPU)之间采用网络技术或串行方式实现数据通信,选用具有优先级的网络系统较好地解决了数据传输的瓶颈问题,提高了系统的实时性。分布式结构方便系统扩展和维护,局部故障不影响其他模块正常运行。该模式在安装上可以形成集中组屏或分层组屏两种系统组态结构,较多地使用于中、低压变电站。分布式变电站综合自动化系统自问世以来,显示出强大的生命力。目前,还存在在抗电磁干扰、信息传输途径及可靠性保证上的问题等。
2.2集中式系统结构
集中式一般采用功能较强的计算机并扩展其I/O接口,集中采集变电站的模拟量和数量等信息,集中进行计算和处理,分别完成微机监控、微机保护和自动控制等功能。由前置机完成数据输入输出、保护、控制及监测等功能,后台机完成数据处理、显示、打印及远方通讯等功能。目前国内许多的厂家尚属于这种结构方式,这种结构有以下不足:
(1)前置管理机任务繁重、引线多,降低了整个系统的可靠性,若前置机故障,将失去当地及远方的所有信息及功能。
(2)软件复杂,修改工作量大,系统调试烦琐。
(3)组态不灵活,对不同主接线或规模不同的变电站,软、硬件都必须另行设计,工作量大并且扩展一些自动化需求的功能较难。2.3分层分布式结构
按变电站的控制层次和对象设置全站控制级——变电站层(站级测控单元)和就地单元控制级——间隔层(间隔单元)的二层式分布控制系统结构。也可分为三层,即变电站层、通信层和间隔层。
这种结构相比集中式处理的系统具有以下明显的优点:
(1)可靠性提高,任一部分设备故障只影响局部,即将“危险”分散,当站级系统或网络故障,只影响到监控部分,而最重要的保护、控制功能在段级仍可继续运行;段级的任一智能单元损坏不应导致全站的通信中断,比如长期霸占全站的通信网络。
(2)可扩展性和开放性较高,利于工程的设计及应用。
(3)站内二次设备所需的电缆大大减少,节约投资也简化了调试维护。3.常见通讯方式
目前国内常采用以太网通讯方式,在以太网出现之前,无论RS-232C、EIA-422/485都无法避免通信系统繁琐、通讯速度缓慢的缺陷。现场总线的应用部分地缓解了便电站自动化系统对通信的需求,但在系统容量较大时依然显得捉襟见肘,以太网的应用,使通讯问题迎刃而解。常见的通讯方式有:
(1)双以太网、双监控机模式,主要是用于220-500kV变,在实现上可以是双控机+双服务器方式,支撑光/电以太网。
(2)单以太网,双/单监控机模式。
(3)双LON网,双监控机模式。
(4)单LON网,双/单监控机模式。4.变电站自动化系统应能实现的功能
4.1微机保护:是对站内所有的电气设备进行保护,包括线路保护,变压器保护,母线保护,电容器保护及备自投,低频减载等安全自动装置。各类保护应具有下列功能:
(1)故障记录。(2)存储多套定值。
(3)显示和当地修改定值。
(4)与监控系统通信。根据监控系统命令发送故障信息,动作序列,当前整定值及自诊断信号,接收监控系统选择或修改定值,校对时钟等命令,通信应采用标准规约。
4.2数据采集及处理功能
包括状态数据,模拟数据和脉冲数据
(1)状态量采集
状态量包括:断路器状态,隔离开关状态,变压器分接头信号及变电站一次设备告警信号、事故跳闸总信号、预告信号等。目前这些信号大部分采用光电隔离方式输入系统,也可通过通信方式获得。
(2)模拟量采集
常规变电站采集的典型模拟量包括:各段母线电压、线路电压,电流和有功、无功功率值。馈线电流,电压和有功、无功功率值。4.3事件记录和故障录波测距
事件记录应包含保护动作序列记录,开关跳合记录。变电站故障录波可根据需要采用两种方式实现,一是集中式配置专用故障录波器,并能与监控系统通信。另一种是分散型,即由微机保护装置兼作记录及测距计算,再将数字化的波型及测距结果送监控系统由监控系统存储和分析。
4.4控制和操作功能
操作人员可通过后台机屏幕对断路器,隔离开关,变压器分接头,电容器组投切进行远方操作。为了防止系统故障时无法操作被控设备,在系统设计时应保留人工直接跳合闸手段。
4.5系统的自诊断功能
系统内各插件应具有自诊断功能,并把数据送往后台机和远方调度中心。对装置本身实时自检功能,方便维护与维修,可对其各部分采用查询标准输入检测等方法实时检查,能快速发现装置内部的故障及缺陷,并给出提示,指出故障位置。
4.6数据处理和记录
历史数据的形成和存储是数据处理的主要内容,它包括上一级调度中心,变电管理和保护专业要求的数据,主要有:
(1)断路器动作次数。
(2)断路器切除故障时截断容量和跳闸操作次数的累计数。
(3)输电线路的有功、无功,变压器的有功、无功、母线电压定时记录的最大,最小值及其时间。
(4)独立负荷有功、无功,每天的峰谷值及其时间。
(5)控制操作及修改整定值的记录。
根据需要,该功能可在变电站当地全部实现,也可在远动操作中心或调度中心实现。
4.7人机联系系统的自诊断功能
系统内各插件应具有自诊断功能,自诊、断信息也像被采集的数据一样周期性地送往后台机和远方调度中心或操作控制中心与远方控制中心的通信。
4.8本功能在常规远动“四遥”的基础上增加了远方修改整定保护定值、故障录波与测距信号的远传等,其信息量远大于传统的远动系统。还应具有同调度中心对时,统一时钟的功能和当地运行维护功能。
5.结束语
通过以上分析,可以看到变电所综合自动化对于实现电网调度自动化和现场运行管理现代化,提高电网的安全和经济运行水平起到了很大的促进作用,它将能大大加强电网一次、二次系统的效能和可靠性,对保证电网安全稳定运行具有重大的意义。随着技术的进步和硬件软件环境的改善,它的优越性必将进一步体现出来。■ 参考文献
1.杨奇逊.变电站综合自动化技术发展趋势.电力系统自动化,1995。
2.王海猷,贺仁睦.变电站综合自动化监控主站的系统资源平衡.电网技术,1999。
2008.05.08 吴科续(1978-),男,工程师,从事水轮发电机组值班员工作。邮 编:132108 通讯地址:吉林市丰满发电厂发电部 联系电话:*** 工作电话:0432-4604511
第三篇:浅析变电站综合自动化系统
浅析整流供电综自动化系统
周玉杰
(鸿骏铝电公司动力一分厂,内蒙古 霍林郭勒市 029200)摘要:本文简要介绍了变电站综合自动化系统的重要性和发展趋势,提出了变电站综合自动化基本概念,并对系统结构、通讯方式和能实现的基本功能及变电站自动化的发展前景进行分析 关键词:变电站综合 自动化系统 结构 功能
1.概述
近几年全国电解铝行业发展讯速,生产规模不断扩大,从整个铝冶炼行业的安全生产特点来看,整流供电综合自动化系统越来越受到重视。变电站综合自动化是一项提高变电站安全、可靠稳定运行水平,降低运行维护成本,提高经济效益,向电解提供高质量电能服务的一项措施。随着自动化技术、通信技术、计算机和网络技术等高科技的飞速发展,一方面综合自动化系统取代或更新传统的变电站二次系统,已经成为必然趋势。另一方面,保护本身也需要自检查、故障录波、事件记录、运行监视和控制管理等更强健的功能。发展和完善供电整流综合自动化系统是今后整流供电发展的新的趋势。
2.系统结构
目前从国内整流供电综合自动化的开展情况而言,大致存在以下几种结构:
2.1分布式系统结构
按变电站被监控对象或系统功能分布的多台计算机单功能设备,将它们连接到能共享资源的网络上实现分布式处理。系统结构的最大特点是将变电站自动化系统的功能分散给多台计算机来完成。分布式模式一般按功能设计,采用主从CPU系统工作方式,多CPU系统提高了处理并行多发事件的能力,解决了CPU运算处理的瓶颈问题。各功能模块(通常是多个CPU)之间采用网络技术或串行方式实现数据通信,选用具有优先级的网络系统较好地解决了数据传输的瓶颈问题,提高了系统的实时性。分布式结构方便系统扩展和维护,局部故障不影响其他模块正常运行。该模式在安装上可以形成集中组屏或分层组屏两种系统组态结构,较多地使用于中、低压变电站。分布式变电站综合自动化系统自问世以来,显示出强大的生命力。
2.2集中式系统结构
集中式一般采用功能较强的计算机并扩展其I/O接口,集中采集变电站的模拟量和数量等信息,集中进行计算和处理,分别完成微机监控、微机保护和自动控制等功能。由前置机完成数据输入输出、保护、控制及监测等功能,后台机完成数据处理、显示、打印及远方通讯等功能。目前国内许多的厂家尚属于这种结构方式,这种结构有以下不足:
(1)前置管理机任务繁重、引线多,降低了整个系统的可靠性,若前置机故障,将失去当地及远方的所有信息及功能。
(2)软件复杂,修改工作量大,系统调试烦琐。
(3)组态不灵活,对不同主接线或规模不同的变电站,软、硬件都必须另行设计,工作量大并且扩展一些自动化需求的功能较难。
2.3分层分布式结构
按变电站的控制层次和对象设置全站控制级——变电站层(站级测控单元)、就地单元控制级——间隔层(间隔单元)的二层式分布控制系统结构。也可分为三层,即站控层、通信层和间隔层。
这种结构相比集中式处理的系统具有以下明显的优点:
2.3.1可靠性提高,任一部分设备故障只影响局部,即将“危险”分散,当站级系统或网络故障,只影响到监控部分,而最重要的保护、控制功能在段级仍可继续运行;段级的任一智能单元损坏不应导致全站的通信中断,比如长期霸占全站的通信网络。
2.3.2可扩展性和开放性较高,利于工程的设计及应用。
2.3.3站内二次设备所需的电缆大大减少,节约投资也简化了调试维护。目前全国各大铝厂供电系统均采用分层分布式结构,下面就这种方式展开讨论。
3.电解铝供电综自系统结构方式 3.1 系统结构
3.1.1变电站自动化系统由站控层、网络层和间隔层三部分组成,并用分层、分布、开放式网络系统实现连接。站控层设备及网络发生故障而停运时,不能影响间隔层的正常运行。
3.1.2 站控层由计算机网络连接的系统主机及操作员站和各工作站等设备构成,提供站内运行的人机联系界面,实现管理控制间隔层设备等功能,形成全站监控、管理中心,并可与调度中心和集控站通信。站控层的设备可集中或分散布置。3.1.3网络层是站控层与间隔层联络的中枢,间隔层的信息通过网络层最后到达站控层,实现信息的收集功能;站控层的遥控和遥调指令通过网络层到达间隔,实现控制功能。随着通讯技术的快速发展,测控和保护装置对外通信接口基本都能实现双以太网口通讯,网络层架构按双网配置,主备网之间可以实现无扰动切换。由于网络层设备的发展,又赋予了网络层设备新的功能,既通讯协议的解析,这种设计理念正逐步在铝电解供电综自系统中得到应用,也是未来发展的趋势。由于间隔层设备的厂家较多,通讯规约没有一个统一的标准,整个通讯规约的解析主要由站控层来完成,这就增加了站控层设备的负荷,结果导致整个综自系统的反应速度提不上来。底层的协议由网络层具有高性能、高效率的硬件芯片来完成,大大提高的协议解析的速度和效率,同时又减轻了站控层设备的负担。3.1.4间隔层由测控单元、间隔层网络和各种网络、通信接口设备等构成,完成面向单元设备的监测控制等功能。间隔层设备按相对集中方式分散下放到各个继保小室。系统结构的分布性必须满足系统中任一装置故障或退出都不应影响系统的正常运行
3.2 网络结构
3.2.1 网络拓扑结构采用总线型、环形、星型方式。
站控层设备采用基于TCP/IP或UDP/IP协议的以太网方式组网,并具有良好的开放性,能满足与电力系统专用网络连接及容量扩充等要求。每一继保小室可设一子网,合理的控制整个网络的流量,防止网络风暴的产生。
3.2.2 站控层和间隔层均采用双重化监控网络,网络设备按双重化配置,双网按热备用方式运行。
3.2.3 具备合理网络架构和信息处理机制,能够保证在正常运行状态及事故状态下均不会出现因为网络负荷过重而导致系统死机或严重影响系统运行速度的情况。
3.3站控层设备及其功能
站控层设备包括主机、操作员工作站、远动通讯装置、故障及信息系统子站、微机五防系统、GPS对时系统以及其它智能接口。
3.3.1主机
具有主处理器及服务器的功能,为站控层数据收集、处理、存储及发送的中心,管理和显示有关的运行信息,供运行人员对变电站的运行情况进行监视和控制,间隔层设备工作方式的选择,实现各种工况下的操作闭锁逻辑等。大都采用两台主机互为热备用工作方式。
3.3.2操作员工作站
是站内自动化系统的主要人机界面,用于图形及报表显示、事件记录及报警状态显示和查询,设备状态和参数的查询,操作指导,操作控制命令的解释和下达等。通过操作员站,运行值班人员能够实现全站设备的运行监视和操作控制。可以配置两台操作员站,操作员站间应能实现相互监视操作的功能。
3.3.3故障及信息系统子站
能在正常和电网故障时,采集、处理各种所需信息,并充分利用这些信息,为继电保护运行、管理服务,为分析、处理电网故障提供支持。工作站大都具备多路数据转发的能力,能够通过网络通道向多个调度中心进行数据转发,通信规约应符合当地电网继电保护故障信息系统通信与接口规范。支持根据调度中心命令对相应装置进行查询和远程维护,包括远程配置、可视化数据库维护、参数的上传下载、设备运行状态监视等。故障及信息系统子站双机配置,采用互为热备用工作方式,双机都能独立执行各项功能。当一台工作站故障时,系统实现双机无缝自动切换,由另一台工作站执行全部功能,并保证切换时数据不丢失,并同时向各级调度和操作员站发送切换报警信息。
3.3.4远动通讯装置
满足直采直送要求,收集全站测控装置、保护装置等设备的数据,将信息通过双通道(专线或网络通道)上传至上一级调度中心,调度中心下发的遥控命令向变电站间隔层设备转发。
远动通信装置双机配置,采用互为热备用工作方式,双机都能独立执行各项功能。当一台通信装置故障时,系统实现双机无缝自动切换,由另一台通信装置执行全部功能,并同时向各级调度和主机发送切换报警信息。也可采用双主机工作方式。
3.2.5微机五防系统
微机五防系统主要包含五防主机、五防软件、电脑钥匙、充电通信控制器、编码锁具等,实现面向全站设备的综合操作闭锁功能。微机五防系统应与变电站自动化系统一体化配置,五防软件应是变电站自动化系统后台软件的一个有机组成部分,独立配置一台微机五防工作站。
3.2.6 GPS对时系统
为故障录波装置、微机保护装置、测控装置和站控层设备等提供统一时间基准的系统。
4.结束语
随着计算技术、网络技术、通讯技术、视频技术的发展,整流供电综合自动化系统将赋予更强大的功能,其将为电解安全平稳供电发挥越来越重要的作用。
参考文献
1.胡建斌.《霍煤鸿骏铝电公司二期铝合金项目综自系统技术协议》,2007年02月。作者简介 周玉杰、1970、山东济宁、中级程序员、大学、供电技术及其自动化、主要从事变压站综合自动化及远动工作、E-mail:hlh_zhouyj@126.com、电话:(0475)7959106
第四篇:浅析变电站综合自动化系统
浅析变电站综合自动化系统 开封供电公司 齐明亮
摘 要:本文简要介绍了变电站综合自动化系统的重要性和发展趋势,提出了变电站综合自动化基本概念,并对系统结构、通讯方式和能实现的基本功能及变电站自动化的发展前景进行分析
关键词:变电站综合 自动化系统 结构 功能
一、概述
电网是一个不可分割的整体,对整个电网的一、二次设备信息进行综合利用,对保证电网安全稳定运行具有重大的意义。变电站综合自动化是一项提高变电站安全、可靠稳定运行水平,降低运行维护成本,提高经济效益,向用户提供高质量电能服务的一项措施。随着自动化技术、通信技术、计算机和网络技术等高科技的飞速发展,一方面综合自动化系统取代或更新传统的变电站二次系统,已经成为必然趋势。另一方面,保护本身也需要自检查、故障录波、事件记录、运行监视和控制管理等更强健的功能。发展和完善变电站综合自动化系统,是电力系统发展的新的趋势。
二、系统结构
目前从国内、外变电站综合自动化的开展情况而言,大致存在以下几种结构:
1.分布式系统结构
按变电站被监控对象或系统功能分布的多台计算机单功能设备,将它们连接到能共享资源的网络上实现分布式处理。系统结构的最大特点是将变电站自动化系统的功能分散给多台计算机来完成。分布式模式一般按功能设计,采用主从CPU系统工作方式,多CPU系统提高了处理并行多发事件的能力,解决了CPU运算处理的瓶颈问题。各功能模块(通常是多个CPU)之间采用网络技术或串行方式实现数据通信,选用具有优先级的网络系统较好地解决了数据传输的瓶颈问题,提高了系统的实时性。分布式结构方便系统扩展和维护,局部故障不影响其他模块正常运行。该模式在安装上可以形成集中组屏或分层组屏两种系统组态结构,较多地使用于中、低压变电站。分布式变电站综合自动化系统自问世以来,显示出强大的生命力。目前,还存在在抗电磁干扰、信息传输途径及可靠性保证上的问题等。
2.集中式系统结构
集中式一般采用功能较强的计算机并扩展其I/O接口,集中采集变电站的模拟量和数量等信息,集中进行计算和处理,分别完成微机监控、微机保护和自动控制等功能。由前置机完成数据输入输出、保护、控制及监测等功能,后台机完成数据处理、显示、打印及远方通讯等功能。目前国内许多的厂家尚属于这种结构方式,这种结构有以下不足:
(1)前置管理机任务繁重、引线多,降低了整个系统的可靠性,若前置机故障,将失去当地及远方的所有信息及功能。
(2)软件复杂,修改工作量大,系统调试烦琐。(3)组态不灵活,对不同主接线或规模不同的变电站,软、硬件都必须另行设计,工作量大并且扩展一些自动化需求的功能较难。
3.分层分布式结构
按变电站的控制层次和对象设置全站控制级——变电站层(站级测控单元)和就地单元控制级——间隔层(间隔单元)的二层式分布控制系统结构。也可分为三层,即变电站层、通信层和间隔层。
这种结构相比集中式处理的系统具有以下明显的优点:
(1)可靠性提高,任一部分设备故障只影响局部,即将“危险”分散,当站级系统或网络故障,只影响到监控部分,而最重要的保护、控制功能在段级仍可继续运行;段级的任一智能单元损坏不应导致全站的通信中断,比如长期霸占全站的通信网络。
(2)可扩展性和开放性较高,利于工程的设计及应用。
(3)站内二次设备所需的电缆大大减少,节约投资也简化了调试维护。
三、常见通讯方式
目前国内常采用以太网通讯方式,在以太网出现之前,无论RS-232C、EIA-422/485都无法避免通信系统繁琐、通讯速度缓慢的缺陷。现场总线的应用部分地缓解了便电站自动化系统对通信的需求,但在系统容量较大时依然显得捉襟见肘,以太网的应用,使通讯问题迎刃而解。常见的通讯方式有: 1)双以太网、双监控机模式,主要是用于220-500kV变,在实现上可以是双控机+双服务器方式,支撑光/电以太网。2)单以太网,双/单监控机模式。3)双LON网,双监控机模式。4)单LON网,双/单监控机模式。
四、变电站自动化系统应能实现的功能
1.微机保护:是对站内所有的电气设备进行保护,包括线路保护,变压器保护,母线保护,电容器保护及备自投,低频减载等安全自动装置。各类保护应具有下列功能: 1)故障记录2)存储多套定值
3)显示和当地修改定值
4)与监控系统通信。根据监控系统命令发送故障信息,动作序列。当前整定值及自诊断信号。接收监控系统选择或修改定值,校对时钟等命令。通信应采用标准规约。
2.数据采集及处理功能
包括状态数据,模拟数据和脉冲数据
1)状态量采集
状态量包括:断路器状态,隔离开关状态,变压器分接头信号及变电站一次设备告警信号、事故跳闸总信号、预告信号等。目前这些信号大部分采用光电隔离方式输入系统,也可通过通信方式获得。
2)模拟量采集 常规变电站采集的典型模拟量包括:各段母线电压、线路电压,电流和有功、无功功率值。馈线电流,电压和有功、无功功率值。
3.事件记录和故障录波测距
事件记录应包含保护动作序列记录,开关跳合记录。
变电站故障录波可根据需要采用两种方式实现,一是集中式配置专用故障录波器,并能与监控系统通信。另一种是分散型,即由微机保护装置兼作记录及测距计算,再将数字化的波型及测距结果送监控系统由监控系统存储和分析。
4.控制和操作功能
操作人员可通过后台机屏幕对断路器,隔离开关,变压器分接头,电容器组投切进行远方操作。为了防止系统故障时无法操作被控设备,在系统设计时应保留人工直接跳合闸手段。
5.防误闭锁功能
6.系统的自诊断功能
系统内各插件应具有自诊断功能,并把数据送往后台机和远方调度中心。对装置本身实时自检功能,方便维护与维修,可对其各部分采用查询标准输入检测等方法实时检查,能快速发现装置内部的故障及缺陷,并给出提示,指出故障位置。7.数据处理和记录
历史数据的形成和存储是数据处理的主要内容,它包括上一级调度中心,变电管理和保护专业要求的数据,主要有: 1)断路器动作次数;
2)断路器切除故障时截断容量和跳闸操作次数的累计数;
3)输电线路的有功、无功,变压器的有功、无功、母线电压定时记录的最大,最小值及其时间;
4)独立负荷有功、无功,每天的峰谷值及其时间;
5)控制操作及修改整定值的记录。
根据需要,该功能可在变电站当地全部实现,也可在远动操作中心或调度中心实现。
8.人机联系系统的自诊断功能
系统内各插件应具有自诊断功能,自诊、断信息也像被采集的数据一样周期性地送往后台机和远方调度中心或操作控制中心与远方控制中心的通信。
9.本功能在常规远动“四遥”的基础上增加了远方修改整定保护定值、故障录波与测距信号的远传等,其信息量远大于传统的远动系统。还应具有同调度中心对时,统一时钟的功能和当地运行维护功能。
五、结语
通过以上分析,可以看到变电所综合自动化对于实现电网调度自动化和现场运行管理现代化,提高电网的安全和经济运行水平起到了很大的促进作用,它将能大大加强电网一次、二次系统的效能和可靠性,对保证电网安全稳定运行具有重大的意义。随着技术的进步和硬件软件环境的改善,它的优越性必将进一步体现出来。
第五篇:变电站综合自动化系统名词解释
变电站综合自动化系统名词解释
简介:遥信信息:指发电厂、变电站中主要的断路器和隔离开关的位置状态信号,重要继电保护与自动装置的动作信号,以及一些运行状态信号等。 关键字:变电站综合自动化系统 名词解释
系统 :通过执行规定功能来实现某一给定目标的一些相互关联单元的组合。
自动:在一个限定任务内自行动作(无需操作人员)。
自动化:采用自动装置改进设备以减少人的干预。
控制:在系统中,为某一特定目的而执行的操作。在变电站中控制包括:断路器、隔离开关的操作,变压器分接头的调节、保护定值修改,特殊控制。
监控:通过对系统或设备进行连续或定期的监测来核实功能是否被正确执行,并使它们的工作状况适应于变化的运行要求。
自动控制:无需人去直接或间接操作执行装置的控制方式。
自动控制装置:由一个或多个继电器或逻辑元件组合在一起,预定完成某项规定自动化功能的设备。
自动切换装置:在变电站中按照规定的程序预定起动操作断路器和或隔离开关的自动控制装置。
信息:人们根据表示数据所用的约定而赋于数据的意义。
信息容量:调度中心、主站或子站可处理的各种远动信息的总和。
状态信息:双态或多态运行设备所处状态的信息。
监视信息:将子站设备的状态或状变传送到主站的信息。
事件信息:有关运行设备状态变化的监视信息。
遥信信息:指发电厂、变电站中主要的断路器和隔离开关的位置状态信号,重要继电保护与自动装置的动作信号,以及一些运行状态信号等。
遥控信息:指通过远程指令遥控发电厂或变电站中的各级电压回路的断路器、投切补偿装置、调节主变压器分头、自动装置的投入和退出、发电机的开停等。
通信:在信息源和受信者之间交换信息。
串行通信:两台设备之间(或称点对点之间)通过单一通道串行传输信息的一种方式
并行通信:两台设备之间(或称点对点之间)通过多个通道并行传输信息的一种方式
光纤通信:在光导纤维中传送信息的一种有线通信方式。
告警:当发生某些不正常状态,需提醒人们注意而使用的信息。
总告警:全部单独告警汇总成的告警。
成组告警:若干单独告警汇总成的告警。
遥测:指运用通信技术传输所测变量之值。
遥信:指对状态信息的远程监视。
遥控:指具有两个确定状态的运行设备进行的远程操作。
遥调:指对具有不少于两个设定值的运行设备进行的远程操作。
遥视:指运用通信技术对远方的运行设备状态进行远程监视。
遥脉:指运用通信技术对远方的运行设备的脉冲量(如电能量)进行远程累计。
监视:用比较的方法对系统或其某一部分的运行进行观察。在综合自动统中通过彩色显示器(大屏幕)上调看主接线图、系统图、棒图、表格等,查看变电站运行实时数据、设备状态、事件记录等。
帧:指含有信息、控制和校验区,并附有帧定界符的比特序列。
报文:以一帧或多帧组成的信息传输单元。
远动:应用通信技术,完成遥测、遥信、遥控和遥调等功能的总称。
远动系统:对广阔地区的生产过程进行监视和控制的系统。
远程命令:应用通信技术,完成改变运行设备状态的命令。
远动网络:若干远动站通过传输链路,彼此进行通信联系的整体。
通道:在数据传输中,传输信号的单一通路或其一段频带。
远动控制中心:控制远动网络的所在地。
远方控制端:指设置在与无人值班变电站相关的调度机构或某中心变电站一个独立的集中控制中心的远方控制装置。
远方监控终端:指设置在被监控变电站内的远方监控装置,包括信息采集、处理、发 送,命令接受、输出和执行的设备。
主站,控制站:对子站实现远程监控的站。
子站,被控站:受主站监视和控制的站。
远方终端(RTU):指在微机远动装置构成的远动系统中,装在变电站内的远方数终端装置。在变电站综合自动化系统中指:由主站监控的子站,按规约完成远动数据采集、处理、发送、接收以及输出执行等功能的设备。
馈线远方终端:安装在配电网馈线回路的柱上和开关柜等处,并具有遥信、遥测、遥控和故障电流检测(或利用故障指示器检测故障)等功能的远方终端,称为FTU;安装在配电网馈线回路的开闭所和配电所等处,具有遥信、遥测、遥控和故障电流检测(或利用故障指示器检测故障)等功能的远方终端,称为DTU。
配电变压器远方终端;用于配电变压器的各种运行参数的监视、测量的远方终端,称为TTU。
配电自动化系统远方终端:用于配电网中的各种馈线远方终端、配电变压器远方终端以及中压监控单元(配电自动化及管理系统子站)等设备的统称。
前置机:对进站或出站的数据,完成缓冲处理和通信控制功能的处理机。
后台机:对本站设备的数据进行采集及处理,完成监视、控制、操作、统计、报表、管理、打印、维护等功能的处理机。
调制:为了使信号便于传输、减少干扰和易于放大,使一种波形(载波)参数按另一种信号波形(调制波)变化的过程。
解调:从调制的载波信号中复原原调制信号的过程。
调制解调器:对远动设备所传送的信号进行调制和解调的设备。
数据终端设备:数据站的一种功能单元,它具有向计算机输入和接收计算机输出数据的能力;与数据通信线路连接的通信控制能力。
采样(电气传动的):在有限的时间间隔内(通常是相等的时间间隔)测量一个物理量的过程。
实时数据:指在线运行时实时记录和监视的物理量。
历史数据:指在线运行时按规定的间隔或时间点记录的物理量。在变电站中历史数据指按指定时间间隔或特殊要求保存下来的运行实时数据、各记录和报表、曲线等。
变电站运行实时参数:指为监测和控制变电站运行所需的各种实时数据。主要有:母线电压、系统周波;馈线电流、有功功率、无功功率、功率因数、电能量;主变压器电流、有功功率、无功功率、功率因数、电能量、温度;保护定值,直流电源电压;变电站设备运行状态等
变电站设备运行状态:指各馈线断路器、隔离开关的实际运行状态(合闸、分闸);
主变压器分头实际位置、主变压器状态,压力、气体继电器是否报警;保护运行状态;被监控变电站系统状态;监控系统运行状态。
事件记录:指记录变电站运行过程中计算机监测的各种越限、异常、报警、断路器变位、设备状态变化以及通过计算机系统执行的各种控制操作事件。事件记录主要包含事件名称、相关设备名称、事件发生时间及内容等。事件记录类型有:事件顺序记录:断路器信号变位记录;变位断路器编号、变位状态、变位时间。操作记录,断路器控制:操作时间、操作性质、操作人、监护人;保护定值修改:保护名称、修改时间、操作人、监护人;越限记录,越限起止时间、越限值;设备运行记录,设备名称、设备状态启停时间等。
事件顺序记录:事件顺序记录又称SOE,特指在电网发生事故时,以比较高的时间精度记录的下列一些数据:发生位置变化的各断路器的编号(包括变电站名)、变位时刻,变位时刻,动作保护名称,故障参数、保护动作时刻等。
报警:变电站运行参数越限,断路器变位或保护动作时,计算机将弹出窗口(登录窗或报警窗口)显示事件内容并进行报警,报警类型分为:不报警、普通报警、预告报警、事故报警等。
不报警:正常拉合闸或人工禁止报警,遥信画面闪烁,遥测数值变色。
普通报警:计算机发出一次音响,其它与“不报警”相同
预告报警:计算机发出N次音响,其它与“不报警”相同
事故报警:打印机启动打印,计算机持续音响直至人工解除,其它与“预告报警”相同
打印:将计算机中储存的信息打印成文档。打印可分为:报表打印、事件打印、人工打印等。
报表打印:日报表、月报表、年报表等,打印时间可设定。
事件打印:遥信变位、保护投退/复归、遥测越限/复归、设备启停。
人工打印:人工选择(召唤)报表、画面、各种记录打印、拷贝。
双机切换:含义是在双机(主副机)配置的情况下,当主机(值班机)发生故障时,副机也可在人工干预下转为主机,主机转为副机。多机配置情况与双机类似,当主机发生故障时,任一副机可在人工干预下转为主机。
通道监视及切换:通道监视是指计算机系统通过通信控制器,统计与变电站测控装置、保护或其他变电站自动化系统、电网调度自动化系统通信过程中接收数据错误和长时间无应答的情况。根据通道监视情况,系统可以告警或采取相应控制措施。如果通道配置有冗余,即某厂站有双通道的情况下,当一个通道故障时,系统可自动转到另一个通道上进行通信。
前景点(图元):前景点指的是可以在线运行时能发生变化的点,大部分的前景点都是和数据库里具体的点时对应的,即在线时随实时数据的变化而变化。
背景点(图元):背景点是在线运行时不会发生变化,只是代表一些特定的物理意义。
数值量:能反映数据断续变化的量,如断路器、隔离开关分/合,保护动作等。
模拟量:能反映数据连续变化的量,通常可以反映到的小数点后的变化。在线运时可反映的物理量有电压、电流、温度、功率、频率等。
模拟信号:以连续变量形式出现的信号。
数字信号:在数字和时间上均是断续的电信号。
脉冲量:反映累计变化的量,物理上对应的是有功、无功等。
操作点:操作点是系统里一个特殊功能的图元,它可以调画面、作遥控、按钮功能等。.
人工置数:改变前景点现有的数值但并不下发这个命令,做一个模拟操作用。
复选框和单选框:复选框是指在一组选择里可以同时选择几个命令,而单选框只能选用一个。单选框通常是小圆圈,复选框通常是小正方形。
配置文件:配置文件用来规定一些程序在启动时读入设定,给用户提供了一种修改程序设置的手段。
导航图:在线运行时,每一个图都有设置导航图的功能,若当前图太大,就可以通过缩小了的导航图来寻找位置。
事故追忆:对事件发生前后的运行情况进行记录。
间隔层:由智能I/O单元、控制单元、控制网络和保护等构成,面向单元设备的就地控制层。
站控层:由主机或/和操作员、工程师站、远动接口设备等构成,面向全变电站进行运行管理的中心控制层。
数据采集:将现场的各种电气量及状态信号转换成数字信号,并存入计算机系统。
数据采集与监控系统(SCADA):对广域生产过程进行数据采集、监视和控制的系统。
数据处理:对相关设备的各种数据进行系统化操作,用于支持系统完成监测、保护控制和记录等功能。
接口:指两个不同系统或实体间的界面或连接设备。由功能特征、通用的物理互联特征、信号特征和其他特征等定义。
规约:在通信网络中,为了通信双方能正确有效可靠的进行数据传输,在通信的发送和接收过程中有一系列的规定,以约束双方正确,协调的工作。
通信规约:启动和维持通信所必要的严格约定,即必须有一套信息传输信息格式和信息内容等约定。
链路:站与站之间的数据传输设施。
链路层:链路是开放系统互连参考模型的一个层次,借助链路规约执行并控制规定的传输服务功能。
协议转换器:.连接两个通信网络的智能电子装置。它能够按一种协议接收一个网络的信息,进行转换后,按第二个协议向另一个网络转发,或相反。
远方通信接口:经远方通信网络链路与远方控制中心相连的接口。
以太网:IEC TC57推荐使用的变电站通信网络,局域网的一种
IP:互联网协议,TCP/IP标准协议。IP定义了数据包,该数据包作为非连接数据包递交的基础。它包括控制和差错报文协议、提供与网络服务、ISO参考模型第三层等价的功能。
LAN局域网:一般限于一栋建筑物内或小型工业系统的一种通信网络。这里特指变电站区域内通信网。
同步传输:一种数据传输方式,代表每比特的信号出现时间与固定时基合拍。
异步传输:一种数据传输方式,每个字符或字符组可在任意时刻开始传输。
广播命令:向远动网络的部分或全部子站同时发出的命令。
地址:报文的部分,用以识别报文来源或报文目的地。
波特:数字信号的传输速率单位,等于每秒传输的状态或信号码元数。
电磁骚扰:使器件、设备或系统性能降低的任何电磁现象。
电磁干扰(EMI):由电磁骚扰所引起的设备、传输通道或系统性能的降低。
抗扰性:器件、设备或系统在电磁骚扰存在时,不降低性能运行的能力。
电磁兼容(EMC):设备或系统在其所处的电磁环境中正常工作,并要求不对该环境中其他设备造成不可承受的电磁骚扰的能力。
无人值班变电站:站内不设置固定运行、维护值班人员,运行监测、主要控制操作由远方控制端进行,设备采取定期巡视维护的变电站。
电气二次设备室:电气二次设备室是一个综合性房间,用于布置不宜设置在配电装置和主变压器现场的电气二次设备。如远动终端及相应设备、通信设备、交直流电源、不停电电源、继电保护、测控、计量和其他自动装置等。与控制室相比,主要差别是不适宜作为长期有人值班的监控场所。
继电小室:位于配电装置内或附近,安装继电保护、自动装置、变送器、电能计算及及录仪表、辅助继电器屏、就地控制层设备的独立小间。
工厂验收测试:包括用户认可的、使用特定应用的参数,特别制造的变电站自动化系统或变电站自动化系统部件的功能测试。
现场验收测试:现场验收测试是对变电站自动化系统的每一个数据、每个控制点、功能正确性进行验证。现场测试验收还包括对变电站自动化系统与其周围运行环境条件测试,使用最终参数对全部安装的设备的测试。现场验收为变电站自动化系统做运行准备。