第一篇:变电站综合自动化系统的研究
变电站综合自动化系统的研究
学生姓名:郑艳钊
课程名称:变电站综合自动化 所在院系:电气与信息学院 所学专业:电气工程及其自动化 所在班级:电气1404 学 号:A19140098
东北农业大学 2016年11月
摘 要
本次毕业论文通过对变电站自动化的概念和发展趋势,以及变电站综合自动化系统研究的意义和国内外现在发展的状况的论述,探讨了变电站综合自动化系统的功能,结构,保护配置,并且进一步讨论了微机保护硬件的结构和特点。通过对变电站综合自动化系统通信方面的研究,介绍了当前各种总线方式和最新的通信技术,将各种通信方式进行了详细的说明,并将他们的优缺点进行了详细的分析,比较了各种方式的性价比。并且对此前景进行了简介。最后将变电站综合自动化系统的继电保护和综自设备的设置进行了详细的介绍。
变电站是电力系统中不可缺少的重要环节,它担负着电能转换和电能重新分配的繁重任务,对电网的安全和经济运行起着举足轻重的作用。为了提高变电站安全稳定运行水平,降低运行维护成本,提高经济效益,向用户提供高质量电能服务,变电站综合自动化技术开始兴起并得到广泛应用。
变电站综合自动化是将变电站的二次设备应用计算机技术和现代通信技术,经过功能组合和优化设计,对变电站实施自动监视、测量、控制和协调,以及与调度通信等综合性的自动化系统。实现变电站综合自动化,可提高电网的安全、经济运行水平,减少基建投资,并为推广变电站无人值班提供了手段。计算机技术、信息技术和网络技术的迅速发展,带动了变电站综合自动化技术的进步。近年来,随着数字化电气量测系统、智能电气设备以及相关通信技术的发展,变电站综合自动化系统正朝着数字化方向迈进。
关键词:变电站综合自动化,微机保护,继电保护,系统配置,实时数据
一、变电站综合自动化系统的基本功能体现在下变电站综合自动化系统的主要功能 述6个子系统的功能中: 1监控子系统;2继电保护子系统;3电压、无功综合控制子系统;4电力系统的低频减负荷控制子系统;5备用电源自投控制子系统;6通信子系统。
二、传统变电站自动化系统 1.系统结构
目前国内外变电站综合自动化系统的结构,从设计思想分类有以下三种: 集中式
采用不同档次的计算机,扩展其外围接口电路,集中采集变电站的模拟量、开关量和数字量等信息,集中进行处理运算,分别完成微机监控、微机保护和一些自动控制等功能。其特点是:对计算机性能要求较高,可扩性、可维护性差,适用于中、小型变电站。
分布式
按变电站被监控对象或系统功能划分,多个CPU并行工作,各CPU之间采用网络技术或串行方式实现数据通信。分布式系统扩展和维护方便,局部故障不影响其他模块正常运行。该模式在安装上可以集中组屏或分屏组屏。
分散分布式
间隔层中各数据采集、控制单元和保护单元就地分散安装在开关柜上或其他设备附近,各个单元之间相互独立,仅通过通信网互联,并同变电站级测控主单元通信。能在间隔层完成的功能不依赖于通信网,如保护功能。通信网通常是光纤或双绞线,最大限度地压缩 二次设备和二次电缆,节省了工程建设投资。安装既可以分散安装于各间隔,也可以在控制室中集中组屏或分层组屏,还可以一部分在控制室中,另一部分分散在开关柜上。
2.存在的问题
变电站综合自动化系统取得了良好的应用效果参1,但也有不足之处,主要体现在:1一次和二次之间的信息交互还是延续传统的电缆接线模式,成本高,施工、维护不便;2二次的数据采集部分大量重复,浪费资源;3信息标准化不够,信息共享度低,多套系统并存,设备之间、设备与系统之间互联互通困难,形成信息孤岛,信息难以被综合应用;4发生事故时,会出现大量的事件告警信息,缺乏有效的过滤机制,干扰值班运行人员对故障的正确判断。
三、数字化变电站 数字化变电站是变电站自动化发展的下一个阶段,《国家电网公司“十一五”科技发展规划》已明确提出在“十一五”期间要研究数字化变电站并建设示范站,且目前已有数字化变电站建成并投入运行,如福州会展变110千伏数字化变电站。
1.数字化变电站的概念
数字化变电站指信息采集、传输、处理、输出过程完全数字化的变电站,基本特征为设备智能化、通信网络化、运行管理自动化等。
数字化变电站有以下主要特点: 一次设备智能化
采用数字输出的电子式互感器、智能开关等智能一次设备。一次设备和二次设备间用光纤传输数字编码信息的方式交换采样值、状态量、控制命令等信息。
二次设备网络化
二次设备间用通信网络交换模拟量、开关量和控制命令等信息,取消控制电缆。运行管理系统自动化
应包括自动故障分析系统、设备健康状态监测系统和程序化控制系统等自动化系统,提升自动化水平,减少运行维护的难度和工作量。
2.数字化变电站的主要技术特征 数据采集数字化
数字化变电站的主要标志是采用数字化电气量测系统采集电流、电压等电气量,实现了一、二次系统在电气上的有效隔离,增大了电气量的动态测量范围并提高了测量精度,从而为实现常规变电站装置冗余向信息冗余的转变以及信息集成化应用提供了基础。
系统分层分布化
变电站自动化系统的发展经历了从集中式向分布式的转变,第二代分层分布式变电站自动化系统大多采用成熟的网络通信技术和开放式互连规约,能够更完整地记录设备信息并显著地提高系统的响应速度。数字化变电站自动化系统的结构在物理上可分为两类,即智能化的一次设备和网络化的二次设备;在逻辑结构上根据IEC61850通信标准定义,可分为“过程层”、“间隔层”、“站控层”三个层次。各层次内部及层次之间采用高速网络通信。
信息交互网络化与信息应用集成化
数字化变电站采用低功率、数字化的新型互感器代替常规互感器,将高电压、大电流直接变换为数字信号。站内设备之间通过高速网络进行信息交互,二次设备不出现功能重复的I/O接口,常规的功能装置变成了逻辑的功能模块,以实现数据及资源共享。目前国际上已确定IEC61850为变电站自动化通信标准。
此外,数字化变电站对原来分散的二次系统装置进行了信息集成及功能优化处理,因此可以有效地避免常规变电站的监视、控制、保护、故障录波、量测与计量等装置存在的硬件配置重复、信息不共享及投资成本大等问题的发生。
设备操作智能化 新型高压断路器二次系统是采用微机、电力电子技术和新型传感器建立起来的,断路器系统的智能性由微机控制的二次系统、IED和相应的智能软件来实现,保护和控制命令可以通过光纤网络到达非常规变电站的二次回路系统,从而实现与断路器操作机构的数字化接口。
设备检修状态化
在数字化变电站中,可以有效地获取电网运行状态数据以及各种IED装置的故障和动作信息,实现对操作及信号回路状态的有效监视。数字化变电站中几乎不再存在未被监视的功能单元,设备状态特征量的采集没有盲区。设备检修策略可以从常规变电站设备的“定期检修”变成“状态检修”,从而大大提高系统的可用性。
LPCT的测量原理和检验仪的外型
如前所述,LPCT实际上是一种具有低功率输出特性的电磁式电流互感器,在IEC标准中,它被列为电子式电流互感器的一种实现形式,代表着电磁式电流互感器的一个发展方向,具有广阔的应用前景。由于LPCT的输出一般是直接提供给电子电路,所以二次负载比较小;其铁心一般采用微晶合金等高导磁性材料,在较小的铁心截面下,就能够满足测量准确度的要求。
电子式电流互感器校验仪的测试外型如图1所示。电流传感头由LPCT构成,高准确度电流互感器为0.1级,其二次输出信号作为标准信号与电子式电流互感器输出信号进行对比。
系统结构紧凑化和建模标准化
数字化电气量测系统具有体积小、重量轻等特点,可以将其集成在智能开关设备系统中,按变电站机电一体化设计理念进行功能优化组合和设备布置。在高压和超高压变电站中,保护装置、测控装置、故障录波及其他自动装置的I/O单元作为一次智能设备的一部分,实现了IED的近过程化设计;在中低压变电站可将保护及监控装置小型化、紧凑化并完整地安装在开关柜上。
IEC61850确立了电力系统的建模标准,为变电站自动化系统定义了统一、标准的信息模型和信息交换模型,其意义主要体现在实现智能设备的互操作性、实现变电站的信息共享和简化系统的维护、配置和工程实施等方面。
3.IEC61850标准
IEC61850是国际电工委员会TC57工作组制定的《变电站通信网络和系统》系列标准,是基于网络通信平台的变电站自动化系统唯一的国际标准,也将成为电力系统从调度中心到变电站、变电站内、配电自动化无缝连接的通信标准,还可望成为通用网络通信平台的工业控制通信标准。
与传统的通信协议体系相比,在技术上IEC61850有如下突出特点:1使用面向对象建模技术;2使用分布、分层体系;3使用抽象通信服务接口、特殊通信服务映射SCSM技术;4使用MMS技术;5具有互操作性;6具有面向未来的、开放的体系结构。
变电站自动化系统在我国的应用已经取得了非常显著的效果,对提高电网的安全经济运行水平起到了重要的作用。目前随着新技术的不断发展,数字化变电站正在兴起。与传统变电站相比,数字化变电站具有以下优势:减少二次接线,提升测量精度,提高信号传输的可靠性,避免电缆带来的电磁兼容、传输过电压和两点接地等问题,解决设备间的互操作问题,变电站的各种功能可共享统一的信息平台,避免设备重复,自动化运行和管理水平进一步提高。数字化变电站是变电站自动化技术的发展方向。系统结构
变电站综合自动化系统应该从变电站的整体情况出发,同意考虑保护、监测、控制、远动、VQC和五防功能,在变电站自动化系统的管理上,采取分层管理的模式,即各保护功能单元由保护管理机直接管理。一台保护管理机可以管理多个单元模块,它们间可以采用双绞线用RS-485接口连接,也可以通过现场总线连接。而模拟量和开关量的输入/输出单元,由数采控制机负责管理。正常运行时,保护管理机监视各保护单元的工作情况,如果某一保护动作信息或保护单元本身工作不正常,立即报告监控机,再送往调度中心。调度中心或监控机也可通过保护管理机下达修改保护定值等命令。数采控制机则将各数采单元所采集的数据和开关状态送监控机,并由监控机送往调度中心。数采控制机接受由调度中心或监控机下达的命令。总之,保护管理机和数采控制机可明显地减轻控制机的负担,协助控制机承担对单元层的管理。
1.系统各部分功能
变电站综合自动化系统是应用较为成熟的、先进的分布式系统结构,按间隔配置测控单元。将保护功能和测控功能按对象进行设计,集保护/测控功能于一体,保护、测控既相互独立,又相互融合,保护、测控借助于计算机网络与变电站层计算机监控系统交换数据,减少大量二次接线,增加功能,节省了投资,提高了系统可靠性。
即变电站综合自动化监控系统采用分层分布式结构,系统分为三层:间隔层、单元层、监控管理层,其中单元层和管理层均属于站控层。系统各层之间是相互独立,主站层故障时,通过前端通信层控制间隔层,监控管理层和前端通信主站层全部故障时不会影响间隔层继电保护系统的政策运行。
2.间隔层单元功能
在变电站综合自动化系统中,主要根据一次设备间隔来划分间隔层的装置。在低压系统中,间隔层单元采用的是集测控保护于一体的微机型测控保护装置;而在高压系统中,保护和测控功能是独立设置,即分别采用测控监视单元与保护单元对系统进行监控与保护。
1)模拟量采集与输出
在变电站综合自动化系统中,间隔层单元采集的模拟量主要为交流电压、交流电流、有功功率以及无功功率等,一般通过间隔或元件的电流互感器、电压互感器的二次回路采样,以实现对间隔或元件的交流模拟量的测量。个别直流模拟量或温度量,一般通过传感器或变送器变为标准信号或传送给间隔层单元,或选择独立的直流系统监控装置。
2)状态量采集
变电站中的状态量信息主要包括传统概念的遥信信息和自动化系统设备运行状态信息等。在变电站综合自动化系统中,不仅要采集表征电网当前拓扑的开关位置等遥信信息,还要将反映测量、保护、监控等系统工作状态的信息进行采集、监视。间隔层中断路器、隔离开团和接地开关等一次设备的位置状态信号,在高压系统中一般采用双位置信号方式输入,在低压系统中,除了断路器的位置信号外,隔离开关和接地开关位置信号可以用单位置触点来采集。所谓双位置信号方式,是指利用间隔层装置中的两个状态输入点来采集一次设备的辅助接点的状态。双位置信号方式较为单位置信号方式可以大大提高状态信号的正确性,防止错误判断的发生。即用2位比特而不是1位比特来表征一个开关的开合状态,这时00,01,10,11的4种组合中只有2种正确的位置状态,而其余2种是不确定状态,不用0,1两种状态表示开合增加了码元的抗干扰性,从而提高了状态信号传输处理过程中的可靠性。
此外,在间隔层中海有断路器手车位置、电机储能、高压开关的异常告警信号、变压器瓦斯告警信号、保护状态和自动装置的动作信号、交直流屏的告警信号等一般都是单位置信号。
3)保护控制功能
在变电站综合自动化系统中,间隔层的设备要独立实现对被控对象的保护功能,在系统发生故障时能迅速起动并发出正确的控制命令。如切断断路器等。同时,间隔层在控制方面,还要实现对断路器、隔离开关、接地开关、变压器分接头调节、消弧线圈接头调节及保护复归、保护压板投退等的控制。其中对于断路器、变压器接头调节等是用双命令控制,而对于保护复归、保护投退、接地试跳等是通过单命令控制实现。双命令控制对象,是指被控对象一个完整控制过程(合闸、分闸过程)需要两个命令才能实现。而单命令控制则是指被控对象的控制过程只要一个命令就能完成。
4)通信功能
在变电站综合自动化系统中,间隔层单元要为实现与主控单元的通信设立与主控单元通信的接口,为了调试工作的方便进行设立用于参数上装、下装和信息读取的调试接口,为了系统时钟一致而设立对时接口,外此还有与其他间隔层单元通信的通信接口等。这些接口一般是设在间隔单元的前面板或后面板上,分为一般有工业以太网接口、RS232/485/422串行接口、现场总线接口等。在本系统中,间隔层与主控单元之间的连接方式是总线型,因此通信采用WorldFIP总线接口。而且为了提高控制系统可靠性,主控单元采用双机冗余结构。
5)防误联锁功能
为了提高变电站运行的安全可靠性,要求间隔层单元具有防误联锁功能。这种防误联锁功能主要表现在两个方面:一是本间隔内各元件之间的防误联锁功能,二是间隔之间的防误联锁功能。对于间隔层装置来讲,主要是通过其中的可编程逻辑控制功能来实现防误联锁功能。根据间隔中一次元件的防误联锁条件,间隔层单元一方面通过获取本间隔的断路器、隔离开关、接地开关等信号,实现
本间隔自身隔离开关、接地开关、断路器各元件之间的防误联锁要求,另一方面通过网络得到所需的其他间隔的防误联锁信息,利用本间隔中间隔单元的可编程逻辑控制功能来实现间隔之间防误联锁的要求。
6)人机界面功能
为了方便调试和实现参数显示、查询、修改在间隔层单元的前面板上还应用有LCD显示屏和按键。用于实现对间隔单的运行参数,如电流、电压、功率等进行显示,对通信参数如装置地址、通信规约、波特率等进行设置,对间隔内元件参数和继电保护整定值进行显示和修改,对遥信状态进行显示和查询,对异常现象进行显示报警等功能。
(1)人机联系的桥梁,包括CRT显示器、鼠标和键盘。变电站采用微机监控系统后,无论是有人值班还是无人值班,最大的特点之一是操作人员或调度人员只要面对CRT显示器的屏幕通过鼠标或键盘,就可以对全站的运行情况和运行参数一目了然,可对全站的断路器和隔离开关等进行分、合操作,彻底改变了传统的依靠指针式仪表和依靠模拟屏或操作屏等手段的监视、操作方式。
(2)CRT屏幕显示的内容。作为变电站人机联系的主要桥梁和手段的CRT显示器,不仅可以取代常规的仪器、仪表,而且可以实现许多常规仪表无法完成的功能。它可以显示的内容,归纳起来有以下几个方面:
①显示采集和计算的实时运行参数。②显示实时主接线图。③顺序记录显示。④值班历史记录。
⑤保护定值和自控装置的设定值显示。⑥故障记录,设备运行状况显示等。
(3)输入数据。变电站投入运行后,随着运行方式的变化,保护定值、越限值等需要修改,甚至由于负荷的增长,需要更换原有的设备,例如更换TA变化。因此在人机联系中,必须有输入数据、调整运行参数的功能。
3.变电站层单元功能
变电站层的有关自动化设备一般安装于控制室,而间隔层的设备最好安装于靠近现场设备,以减少控制电缆长度。变电层主要用于完成变电站内的间隔层的各种测控单元或测控保护单元以及各种职能电子装置与站控层的后台系统之间 的信息交换,起着通信控制器的作用。
1)实现和管理与间隔层的各种测控、保护和智能电子装置之间的通信。
2)实现和管理与变电站自动化系统中的后台系统和远方调度控制中心之间的通信。3)通过GPS实现对时功能,统一系统时间。4)实现对系统中各装置和设备的痛惜状态的监测。
变电站层通过控制设备实现运行监视空能,所谓运行监视,主要是指对变电站的运行工况和设备状态进行自动监视,即对变电站各种状态量变位情况的监视和各种模拟量的数值监视。
通过状态量变位监视,可监视变电站各种断路器、隔离开关、接地开关、变压器分接头的位置和动作情况、继电保护和自动装置的动作情况以及它们的动作顺序等。
模拟量的监视分为正常的测量和超过限定值的报警、事故模拟量变化的追忆等。当变电站有非正常状态发生和设备异常时 监控系统能及时在当地或远方发出事故音响或语音报警,并在 CRT 显示器上自动推出报警画面,为运行人员提供分析处理事故的信息,同时可将事故信息进行打印记录和存储。越限报警的各个参数,有一个允许运行时间限额,为此除越限报警外还应向上级调度(控制)人员提供当前极限远行时间,即允许运行时间减去越限运行的累计时间。异常状态报警的是:非正常操作时,断路器变位信号、保护故障动作信号、监控和保护设备异常状态信号以及数据采集的状态量中其他报警和异常信号。
报警方式主要有:自动推出画面、报警、音响提示(语音或可变频率音响)、闪光报警 信息操作提示,如控制操作超时等。
4.变电站电压无功控制的基本原理
变电站电压无功控制是保证电压质量和无功平衡、提高供电网可靠性和经济性的重要措施之一。
随着电网规模的不断扩大和超高压远距离输电系统的发展,一方面系统消耗的无功功率日益增多。另一方面无功补偿容量相对不足,导致一些配电网低谷时电压过高,而在高峰时期电压水平过低的状况,严重威胁着电网安全运行和用户 的正常生产生活。
从发电机和高压输电线供给的无功功率往往满足不了负荷的需要,因为从建设电网考虑,主要是以电网投资和运行费用最小为目标对无功电源的位置和容量进行优化,实现无功电源的合理规划与配置,即减少发、供电设备的设计容量,减少投资,以就地无功补偿减少无功功率在电网中的流动。在电网建成后,以无
功功率交换最少为目标对电网运行方式进行优化控制,所以在电网中要设置一些无功补偿装置来补充无功功率。以保证用户对无功功率的需要。
变电站电压无功控制的基本原理就是通过对变电站的电压、无功等运行数据的测最、分析,根据电网实际运行状态,动态地控制变压器分接头位置和电容/电抗器的投切,实现电压和无功的闭环控制,使得电压维持在合格范围内,提高电压合格率,无功动态补偿,降低无功损耗,最终实现提高经济效益的最终目标。
计算机监控系统进行电压无功控制的主要步骤如下:
第一步:采集电力系统实时运行参数,包括有功、无功、电流、电压,以及各种开关、设备的运行状态,如果系统运行未发生异常情况。则进行下列步骤。
第二步:进行电压调节分析。对于电压调节,其主要的判断依据是人为整定的正常电压的范围(限值),超出这个范围.即认为电压越限不合格:
电压越上限,可能原因有以下两种:1)容性无功多,低压侧无功补偿过多,系统输送无功过少,变压器电压损耗过小;2)分接头低,系统与负荷之间的电器距离太近。
电压下限,可能原因有以下两种:1)容性无功少,低压侧无功补偿过少,系统输送无功过多,变压器电压损耗过大;2)分接头,系统与负荷之间的电气距离太远。
第三步:进行无功补偿判断,其主要的判断依据同样是人为整定的无功范围(限值),超出这个整定值范围,意味着系统无功过多或过少:
无功越上限,说明系统送的无功过多,可能原因有以下两种:1)容性无功少,低压侧无功补偿过少;2)分接头高,系统向低压侧无功输送无功过多。无功越下限。说明系统送的无功过少.可能原因有以下两种:1)容性无功多,低压侧无功补偿过多;2)分接头低,系统向低压侧无功输送无功过少。
第四步:进行策略选择。在前两步分析判断基础,按照事先确定的策略模型,选择一个最优方案进行实施。并重新进入第一步骤。
计算机监控系统的自动控制,既可以降低人员的劳动强度,又可以更实时、更科学地控制电压及达到无功平衡。
速将备用电源或备用设备或其他正常工作的电源自动投入工作,使原来工作电源被断开的用户能迅速恢复供电的一种自动控制装置。备用电源自动投入是保证电力系统连续可靠供电的重要措施,是变电站综合自动化系统的基本功能之一。
备用电源自动投入装置的基本特点:
(1)工作电源确实断开后,备用电源才投入。工作电源失压后,无论其他
进线断路器是否跳开,即使已测定其他进线电流为零,但还是要先断开该断路器,并确定是已跳开后,才能投入备用电源。这时为了防止设备电源投入到故障元件上。例如工作电源故障保护柜动。但在其他地方被后备保护切除,备用自动投入装置动作后合于故障的工作电源。
(2)备用电源自动投入切除工作电源断路器必须经过延时。经延时切除工作电源进线断路器是为了躲过工作母线引出线故障造成的母线电压下降。延时时限应大于最长的外部故障切除时间。在有的情况下,可不经延时直接跳开工作电源进线断路器。加速合上备用电源。例如工作母线进线侧的断路器跳开,进线侧无重合闸功能时;手动合上备用电源时也不经过延时直接跳开工作电源进线断路器。
(3)手动跳开工作电源时,备用自动投入装置不需要动作。工作电源进线断路器的合后触点(指微机保护的操作回路输出的KKJ合后触点)作为备用自
动投入装置的输入开关量,在就地或遥控跳断路器时,其合后KKJ触点断开,备用自动投入装置自动化退出。
(4)有闭锁备用自动投入装置的功能。每套备用自动投入装置均设置有闭锁备用电源自动投入的逻辑回路,以防止备用电源投入到故障的元件上,造成事故扩大的严重后果。
(5)备用电源不满足有压条件,备用电源自动投入装置不动作。
(6)工作母线失压时还需要检查工作电源无流,启动备自动投入,以防止TV二次侧三相断线造成误投。
(7)备用电源自动投入装置只允许动作一次。微机型备用电源自动投入装置可以通过逻辑判断来实现只动作一次的要求,但为了便于理解,在阐述备用电源自动投入装置逻辑程序时广泛用电容器“充电”条件满足;延时启动的时间应理解为“充电”时间到后就完成了全部准备工作;当备用电源自动投入装置动作后或任何一个闭锁及推出备用电源自动投入电源条件存在时,立即瞬时完成“放电”。“放电”就是模拟闭锁备用电源自动投入装置,放电后就不会发生备用电源自动投入装置第二次动作。这种“充放电”的逻辑模拟与微机自动重合闸的逻辑程序相类似。
5.继电保护功能
变电站综合自动化系统中的微机继电保护主要包括输电线路保护、电力变压器保护、母线保护、电容器保护、小电流接地系统自动选线、自动重合闸。由于继电保护的特殊重要性,综合自动化系统绝不能降低继电保护的可靠性。因此要求:
1)系统的继电保护按被保护的电力设备单元(间隔)分别独立设置,直接由相关的电流互感器和电压互感器输入电气量,然后由触点输出,直接操作相应断路器的跳闸线圈。2)保护装置设有通信接口,供接入站内通信网,在保护动作后向变电站层的微机设备提供报告等,但继电保护功能完全不依赖通信网。
3)为避免不必要的硬件重复,以提高整个系统的可靠性和降低造价,特别是对35KV及以下设备,可以配给保护装置其他一些功能,但应以不因此降低保护装置可靠性为前提。
4)除保护装置外,其他一些重要控制设备,例如备用电源自动投入装置、控制 电容器投切和变压器分接头有载切换的无功电压控制装置等,也不依赖通信网,而设备专用的装置放在相应间隔屏上。
继电保护是变电站综合自动系统的关键环节 其最重要的功能就是要有独立的、完整的继电保护功能,在此基础上还必须具备下列附加功能:
(1)继电保护的通信功能及信息量。综合自动化系统中的继电保护对监控系统而言是相对独立的,因此,继电保护应具有与监控系统通信的功能。继电保护能主动上传保护动作时间、动作性质、动作值及动作名称,并按控制命令上传当前的保护定值和修改定值的返校信息。
(2)具有与系统统一时钟对时的功能。时间的精确和统一在电网运行中显得十分重要,尤其是当继电保护动作时,只有借助精确统一时间才能根据各套继电保护动作的先后顺序正确分析电网发生事故的原因。因此,1991 年 7 月原能源部在颁布《电力调度系统计算机网络规划大纲>》中,已明确建议在同一电网内采用统一的对时方式,以便准确记录发生故障和保护动作时间。
(3)存储各种保护整定值功能。
(4)当地显示与远处观察和授权修改保护整定值。对保护整定值的检查与修改要直观、方便、可靠。除了在各保护单元上要能显示和修改保护定值外,考虑到无人值班的要求,通过当地的监控系统和远方调度端,应能观察和修改保护定值。同时,为了加强对定值的管理,避免差错,修改定值要有校对密码措施,以及记录最后一个修改定值的密码。(5)设置保护管理机或通信控制机,负责对各保护单元的管理。保护管理机(或通信控制机)在自动化系统中起承上启下的作用。把保护子系统与监控系统联系起来,向下负责管理和监控保护子系统中各单元的工作状态,并下达由调度或监控系统发来的保护类型配置或整定值修改信息;如发现每一保护单元故障或工作异常,或有保护动作信息,应立刻上传给控制系统或上传至远方调度端。
(6)故障自诊断、自闭锁和自恢复功能。每个保护单元应有完善的故障自诊断功能,发现内部有故障,能自动报警,并能指明故障部位,以利于查找故障和缩短维修时间,对于关键部位故障,例如 A/D 转换器故障或存储器故障,则应自动闭锁保护出口。如果是软件受干扰,造成程序“出轨”的软故障,应有自启动功能,以提高保护装置的可靠性。
(7)自动重合闸功能。其功能和设置在输电线路保护内。110KV 及以下线
路一般采用三相一次重合闸,其同期检定方式重合闸延时时间应能整定。同期检定方式可选择不检定方式、检无压方式、检同期方式等。
结论
通过使用多种综自产品和多次现场服务,参考各种文献资料,对微机综合自动化系统的通讯略抒己见。随着自动化水平的提高,计算机技术、通讯技术等先进手段的应用已经成为电力发展的趋势。为了适应时代的发展,及时掌握电网和变电站的运行情况,提高变电站安全稳定运行的可靠性,以及采用先进的无人值班管理模式,减少人为误操作,对我们提出了高标准的要求。变电站自动化系统在我国的应用已经取得了非常显著的效果,对提高电网的安全经济运行水平起到了重要的作用。目前随着新技术的不断发展,数字化变电站正在兴起。与传统变电站相比,数字化变电站具有以下优势:减少二次接线,提升测量精度,提高信号传输的可靠性,避免电缆带来的电磁兼容、传输过电压和两点接地等问题,解决设备间的互操作问题,变电站的各种功能可共享统一的信息平台,避免设备重复,自动化运行和管理水平进一步提高。数字化变电站是变电站自动化技术的发展方向。
参考文献:
[1]黄益庄.变电站综合自动化技术[M].北京:中国电力出版社,2000.[2]杨凯.变电站自动化系统未来的发展方向[J].电力系统通信,2007,28(12):1-5.[3]高翔,张沛超.数字化变电站的主要特征和关键技术[J].电网技术, [4]汪秀丽.数字化变电站综述[J].水利电力科技,2007,33(2):7-15.[5]任雁铭,秦立军,杨奇逊.IEC 61850通信协议体系介绍和分析[J].电力系统自动化,2000,24(8):62-64.[6]丁书文,黄训诚,胡起宙.变电站综合自动化原理及应用[M].北京:中国电力出版社,2002.
第二篇:变电站综合自动化通信系统研究
新一代变电站通信系统研究综述
摘要:介绍了变电站自动化系统中通信网络的作用、通信网络的性能要求、网络的结构模式和网络通信体系及报文分类,主要探讨了分层式变电站自动化系统通信网络方案选择和设计过程中需要遵循的原则,给出了电压等级和复杂程度不同的变电站自动化系统通信网络的具体方案。
关键字:变电站自动化
;通信技术
;嵌入式以太网
0 引言
随着计算机技术和通信技术的发展,尤其是网络技术的应用,变电站自动化系统在通信技术的推动下发展成为典型的分层分布式结构。该结构一般分为 3层:变电站层、间隔层和过程层。其中, 过程层包含变电站内的生产过程设施, 如变压器、断路器及其辅助接点、电流和电压互感器等, 主要负责现场数据采集、提供 I /O 接口等;间隔层包含测量和控制单元, 负责该单元线路或变压器的参数测量和监控, 断路器的控制和连锁等。变电站层包含全站性的监控主机,通信及控制主机, 实现管理等功能的工程师站[1]。
变电站自动化系统的通信任务一方面是实现站内通信功能, 完成对全站一、二次设备和装置运行情况的数据信息采集和控制命令的传输;另一方面完成与上级调度或集控中心的通信, 向上传送变电站运行的实时信息, 接收和执行上级下达的控制命令。由于数据通信的重要性, 可靠的通信成为系统的技术核心, 加上变电站的特殊环境和系统要求, 对变电站自动化系统的通信提出了以下要求: 快速的实时响应, 即变电站自动化系统要求及时地传输现场的实时运行信息和操作控制信息, 在电力工业标准中对系统都有严格的实时性指标, 网络必须很好地保证数据通信的实时性;高可靠性和抗干扰性, 即变电站内通信环境恶劣, 干扰严重, 网络的故障和非正常工作会影响整个系统的运行。因此, 变电站自动化系统的通信系统必须保证很高的可靠性。
1.通信在变电站综合自动化系统中的作用
通信技术的发展使变电站自动化系统较以往控制模式产生了巨大的变化,由早期集中式微机控制系统发展为分层分布式的系统结构,从而达到:(1)实现变电站无人值班或少人值班。(2)不仅完成变电站遥控、遥调、遥信、遥测的功能,而且主站可以通过通道传送图像信号,实现遥视功能。(3)数据传输更快,实时性更强。(4)系统工作可靠性高,间隔层与变电站层只通过通信网连接,任一层设备故障,不影响其它设备正常运行。(5)灵活性高,网上增加或减少触点非常方便。
由于数据通信在变电站综合自动化系统内的重要性,经济可靠的数据通信成为系统的技术核心,而由于变电站的特殊环境和综合自动化系统的要求,使变电站综合自动化系统内的数据网络具有以下特点和要求:(1)快速的实时响应能力。变电站综合自动化系统的数据网络要及时地传输现场的实时运行信息和操作控制信息,在电力工业标准中对系统的数据传送都有严格的实时性指标,因此网络必须很好地保证数据通信的实时性。(2)很高的抗干扰性能及可靠性。变电站内通信环境恶劣,干扰严重,而电力系统通信网络的故障和非正常工作会影响整个变电站综合自动化系统的运行,因此,变电站综合自动化系统得通信子系统必须保证很高的可靠性[2]。
2.通信网络的性能要求及结构模式
变电站自动化系统通信网络是影响整个系统性能的重要因素。变电站自动化系统对内部信息数据传输的实时性、可靠性要求很高;另外,由于分期建设、设备改造、功能升级等原因,通信网络还必须具备很好的兼容性、开放性和灵活性。在1997年8月国际大电网会议上,WG34.03工作组提出了变电站站内通信网络传输的时间要求:(1)设备层和间隔层之间、间隔层内各设备之间、间隔层各间隔单元之间为100ms;(2)间隔层和变电站层之间为10000ms;(3)变电站层各设备之间、变电站和控制中心之间为1000ms;(4)各层之间的数据流峰值为:设备层和间隔层之间数据流大概为250 kb/s,取决于模拟量的采样速度,间隔层各单元之间数据流约为60 kb/s或130 kb/s,取决于是否采用分布母线保护;间隔层和变电站层之间及其他链路之间数据流大概在100 kb/s及以下。
长期以来变电站自动化的通信较多地采用串行总线,近年来现场总线在变电站自动化通信中的应用取得了巨大的成功。变电站自动化系统的通信网络结构一般是基于以太网/总线的分层的拓扑结构,通信技术主要有RS-422/485、CAN总线、LonWorks网、以太网等。随着计算机和通信技术的进步,系统网络化和体系开放性成为发展的趋势,以太网技术正被引入变电站自动化系统过程层的采集、测量单元和间隔层的保护、控制单元中,构成基于以太网的分层式变电站自动化通信网络系统,尤其是嵌入式以太网技术在电力系统中的应用越来越广泛[3]。
3.网络通信体系及报文分类
IEC TC57 按照变电站自动化系统所要完成的测量、控制和保护三大功能从逻辑上将系统分为3层,即变电站层、间隔层和过程层,并定义了9 种逻辑接口。如下图1 所示:④⑤用于过程层和间隔层之间通信,①③⑥⑨用于间隔层内部及与变电站层的通信,⑧是间隔层之间通信。对于该网络结构,决不是短期内就可以实现的,它需要电力一次、二次设备生产商共同努力才能实现。针对目前的情况,一次设备的智能化虽然已有学者开展研究,但还没有带网络接口的产品出现,所以建议采用两种渐进的方式,首先过程层仍采用硬线连接,而间隔和厂站采用以太网通信,另外可在一次设备和二次设备之间加入智能I/O 单元,来实现接口④⑤[4]。
变电站层①③⑥⑨⑧间隔层间隔层间隔层④⑤④⑤④⑤过程层过程层过程层
图1 基于以太网的变电站自动化系统结构
定义了7 种类型报文,即:快速报文、中速报文、低速报文、原始数据报文、文件传输报文、时间同步报文和具有访问控制的命令报文。通过分析和研究,笔者从时域的角度,把上述变电站自动化系统中7 种类型的报文分为3 种类型通信:周期性通信、随机性通信、突发性通信。(1)周期性通信原始数据报文属于周期性通信,主要是过程层通过接口④,周期性地向间隔层传递过程采样数据。根据设定采样频率的不同,传输一般要求在3ms 或10ms 内完成。(2)随机性通信低速报文、文件传输报文、时间同步报文和具有访问控制的命令报文属于随机性通信,这类通信一般符合负指数分布,传送报文的数据量大,但时间稍宽松。(3)突发性通信快速报文、中速报文属于突发性通信,报文数量少,但时限要求高。
4.通信控制器模式
通信控制器模式又称为4层模式,在这种模式中变电站自动化系统的通信网络共分为4个层次:过程层、间隔层、通信控制层、变电站层,如图2所示。在四层结构中,变电站层和通信控制层一般采用以太网通信,过程层和间隔层采用RS-422/485、CAN总线、LonWorks网。这种结构通过通信控制器可以快速实现站内网络通信,成本较低,早期应用非常广泛,目前仍在许多低压变电站和少量220 kV及以上高压变电站当中应用[5]。但是当间隔层设备较多时通信控制器就会成为影响系统性能的瓶颈,虽然可以通过双通信控制器来改善,仍然难以克服通信故障率增加、效率降低等问题。监控机1站控层监控机2 监控机m...远方调度以太网通信控制层值班通信控制器备用通信控制器RS232、RS485或现场总线间隔层智能电子装(IED)...智能电子装置(IED)过程层一次设备
图2通信控制器结构框图
4.1 嵌入式以太网在变电站自动化系统中的应用模式[6] 嵌入式以太网作为变电站自动化系统的内部通信网络, 有2 种应用模式:①每个智能电子装置(IED)配置1个嵌入式以太网接口,每个IED作为一个以太网节点直接连到以太网上;②几个IED通过RS485,MODBUS 或现场总线等方式连在一起,然后用嵌入式以太网接口作为一个以太网节点连到以太网上。从国外的应用情况来看, 这2种应用模式分别以GE 公司的GESA系统和GE-Harris 公司的PowerComm 系统为代表。在选择嵌入式以太网应用模式时, 本文主要考虑了如下因素:①超高压变电站系统的二次系统一般都是基于间隔(bay)设计的;②超高压变电站自动化系统内部通信网的可靠性要求很高, 要求可方便地构成双网结构;③成本问题;④产品向下兼容性问题。基于以上考虑, 本文提出了以太网与LonWork s现场总线相结合的方案。如图3所示。
变电站层后台机工程师站远方机10Mbit/s以太网监控网1 10Mbit/s以太网监控网210Mbit/s以太网录波网 间隔层测量单元1...测量单元n设备层装置11...1间隔层装置1n...装置n1...间隔层n装置nn 图3 以太网与LonWorks 网相结合的系统方案配置
以间隔为单元, 将站内通信网设计为2 层, 间隔以上用10Mbit/s嵌入式以太网构成站内通信的主干网络, 该网络负责后台机、远动机等PC 机和各间隔进行通信。在间隔内部用LonWorks现场总线把各保护装置连在一起。LonWorks网上的信息通过间隔层的测控单元上传到主干网上。测控单元是整个方案的核心和关键。测控单元完成两大功能: 通信功能和测控功能。这种方案实际上将嵌入式以太网与LonWorks现场总线技术相结合, 发挥了各自的优势。底层的各种保护设备可不做任何改动, 保持了产品的向下兼容性。
新型通信网络与CSC2000系统原有网络相比,具有以下一些优点:①网络带宽资源大大增加;②故障录波数据上传速度大大加快;③易于与PC机接口;④易于与广域网相连。
5.通信网络方案选择[7] 网络通信方案是构成变电站自动化系统至关重要的环节,由于变电站的特殊环境和自动化系统的要求,并且受到性能、价格、硬件、软件、用户策略等诸多因素的影响,其通信网络方案的选择很难一概而论,不同类型的变电站对自动化系统的通信网络有不同的要求,变电站自动化系统的网络通信方案选择和设计应遵循下列基本原则:通信网络具有合理的分层式结构;各层之间和层内选择适当的通信方式;高可靠性和快速实时响应能力;优良的电磁兼容性能。基于以上基本原则,给出电压等级和复杂程度不同的变电站自动化系统通信网络方案。
(1)低压变电站通信网络
对于35 kV变电站和110kV的终端变电站可采用RS-422/485的总线结构网络;若规模较大时则应考虑选择CAN总线、LonWorks网等现场总线网络。RS-422/485串口传输速率在1km内可达100kb/s,RS-422为全双工,RS-485为半双工,访问方式为主从问答式。RS-422/485网络的缺点是接点数目较少,不易实现多主冗余,通信有瓶颈问题,还有信号反射、中间节点问题。
(2)中压变电站通信网络
中型枢纽110kV变电站的多主冗余要求和节点数量增加使RS-422/485难以胜任。CAN总线、LonWorks网一般可以胜任。500 m时LonWorks网传输速率可达1 Mb/s,LonWorks网在监测网络节点异常时可使该节点自动脱网,媒介访问方式LonWorks网为载波监听多路访问/冲撞检测(CSMA/CD)方式,内部通信遵循Lon Talk协议,LonWorks网为无源网络,脉冲变压器隔离,抗电磁干扰能力很强,重要信息有优先级。CAN总线是是一种多主总线,通信介质可以是双绞线、同轴电缆或光纤,在小于40 m时通信速率可达l Mb/s。
CAN总线的一大特点是废除了传统的站地址编码,而对通信数据块进行编码。采用这种方法的优点可使网络的节点数在理论上不受限制,数据块的标识码可由11位或29位二进制数组成,数据段长度最多为8个字节,可满足工业领域中控制命令、工作状态及测试数据的一般要求,8字节不会占用总线时间过长,保证了数据通信的实时性。
(3)高压及超高压变电站通信网络
220kv及以上变电站节点数目多,站内分布成百上千个CPU,数据信息流大,对速率指标要求高(要求速率130kb/s),现场总线网络的实时性、带宽和时间同步指标会力不从心,应当考虑基于以太网的通信网络。以太网为总线式拓扑结构,采用CSMA/CD介质访问方式,物理层和链路层遵循IEEE802.3协议,应用层采用TCP/IP协议,传输速率高达10Mb/s,可容纳1024个节点,距离可达2.5km。
由以上分析可见,具体采用何种方案应当在遵循有关基本原则的基础上根据变电站的电压等级、具体情况、成本等因素综合考虑。
6.结论
在设计变电站自动化系统通信网络方案的过程中,应遵循变电站自动化系统通信网络设计的基本原则,结合实际情况选择适当的网络结构和通信技术,针对不同电压等级和复杂程度的变电站有着不同的解决方案。在本文中提到基于嵌入式以太网的变电站自动化通信网络。这也是未来发展的趋势,为了实现变电站自动化通信系统更好的开放性、鲁棒性和互操作性,对基于嵌入式以太网的变电站自动化通信网络的优先级和实时性等问题需要重点考虑。
7.文献资料
[1]王晨皓.现场总线技术及其在变电站自动化中的应用[J].河科学,2004,22(6):859-862.[2]李静,于文斌.以太网在变电站自动化系统通信中的应用[J].电力自动化设备,2006,7.[3]任雁铭,操丰梅,秦立军等.基于嵌入式以太网的变电站自动化系统通信网络[J].电力系统自动化,200l,25(17):36-38.
[4]孙军平,盛万兴等.新一代变电站自动化网络通信系统研究[J].中国电机工程学报,2003,3(23):16-19.[5]王海峰,丁杰.对变电站内若干网络通信问题的探讨[J].电网技术,2004,28(24):65-68,73.
[6]任雁铭,秦立军,杨奇逊.变电站自动化系统中内部通信网的研究[J].电网技术,2000, 24(5).[7]王飞,刘洪才,潘立冬.分层式结构变电站自动化通信系统研究综述[J].华北电力大学学报,2007,34(1):22-25.
第三篇:变电站综合自动化系统研究
变电站综合自动化系统优化设计
刘欣宇
(开滦荆各庄矿业公司
河北唐山
063026)
摘要
随着计算机技术和网络技术的发展,变电站综合自动化技术也得到高速发展。变电站综合自动化技术实际上是利用计算机技术、现代通信技术,对变电站内的二次设备(包括继电保护、控制、测量、信号、故障滤波、自动装置及远动装置等)的功能进行重新组合、优化设计,对变电站全部设备的运行情况执行监视、测量、控制和协调的一种综合性的自动化系统。它的出现为变电站的小型化、智能化、扩大设备的监控范围、提高变电站安全可靠、优质和经济运行提供了现代化的手段和基础保证。它的运用取代了运行工作中的各种人工作业,从而提高了变电站的运行管理水平。
【关键词】
自动化
优化设计
智能化
第一章、绪
论
变电站综合自动化技术实际上是利用先进的计算机技术、现代电子技术、通信技术,对变电站内的二次设备(包括继电保护、控制、测量、信号、故障滤波、自动装置及远动装置等)的功能进行重新组合、优化设计,对变电站全部设备的运行情况执行监视、测量、控制和协调的一种综合性的自动化系统。通过变电站综合自动化系统内各设备间相互交换信息,数据共享,完成变电站运行监视和控制任务。变电站综合自动化替代了变电站常规二次设备,简化了变电站二次接线。1.1发展变电站综合自动化的必要性及意义
变电站作为整个电网中的一个节点,担负着电能传输、分配的监测、控制和管理的任务。变电站的继电保护、监控自动化系统是保证上述任务完成的基础,变电站自动化是电网自动系统的一个重要组成部分。另外,随着电网规模不断扩大,新增大量的发电厂和变电站,使得电网结构日趋复杂,这样就要求各级电网调度值班人员掌握、管理、控制的信息量也大量增长,电网故障处理和恢复却要求更为迅速和准确,发展变电站综合自动化已经是大事所趋,作为变电站自动化系统,它应确保实现以下要求;
(1)实时检测电网故障,尽快隔离故障部分。
(2)采集变电站运行实时信息,对变电站运行进行监视、计量和控制。
(3)采集一次设备运行状态数据,供维护一次设备参考。(4)实现当地后备控制和紧急控制。(5)确保通信要求。1.2变电站综合自动化系统状况
现有的变电站有三种形式:第一种是传统的变电站;第二种是部分实现微机管理、具有一定自动化水平的变电站;第三种是全面微机化的综合自动化变电站。我国是从20世纪60年代开始研制变电站自动化技术,到70年代初,先后研制出了电气集中控制装置和集保护、控制、信号为一体的装置。具有代表性的有:北京四方公司的CSC2000系列综合自动化系统、南京南瑞集团公司的BSJ—2200计算机监控系统、上海惠安PC2000变电站自动化监控系统、南京南瑞继电保护电气有限公司的RCS—9000系列综合自动化系统等。
目前变电站综合自动化技术在我国的应用范围,由电力系统的主干网、城市供电网、农村供电网扩展到企业供电网;其电压等级,由当初的35—110KV变电站,向上扩展到200—500KV变电站,向下延伸到10KV乃至0.4KV配电网络,几乎覆盖到全部供电网络。其技术涉及到自动控制、远动、通信、继电保护、测量、计量、在线监测、信号及控制等二次系统。
第二章、变电站自动化系统设计概述
自1987年我国自行设计、制造的第一个变电站综合自动化系统投入运行以来,变电站综合自动化技术已得到了突飞猛进的发展,结构体系也不断完善,技术日趋成熟。2.1变电站综合自动化的体系结构
变电站综合自动化采用自动控制和计算机技术实现变电站二次 系统的部分或全部功能。为达到这一目的,满足电网运行对变电站的要求,变电站综合自动化系统体系结构如图1所示。
调度控制中心变电站主计算机系统通信控制管理直流电源数据采集系统与控制电气计算自动装置继电保护辅助设施系统电量和非电量检测开关量信号采集操作控制线路保护主变和电容器保护母线保护图1 变电站综合自动化体系结构图
“数据采集和控制”、“继电保护”、“直流电源系统”三大块构成变电站自动化基础。“通信控制管理”是桥梁,联系变电站内部各部分之间、变电站与调度控制中心之间使其相互交换数据。“变电站主计算机系统”对整个综合自动化系统进行协调、管理和控制,并向运行人员提供变电站运行的各种数据、接线图、表格等画面,使运行人员可远方控制断路器分、合闸操作。“通信控制管理”连接系统各部分,负责数据和命令传递,并对这一过程进行协调、管理和控制。2.2变电站综合自动化的结构模式
变电站综合自动化系统的结构模式主要有集中式、集中分布式和分散分布式三种。本次优化设计采用的是分布分散式结构。分布分散式结构系统从逻辑上将变电站自动化系统划分为两层,即变电站层和间隔层。
该系统的主要特点是按照变电站的元件,断路器间隔进行设计。将变电站一个断路器间隔所需要的全部数据采集、保护和控制等功能集中由一个或几个智能化的测控单元完成。测控单元可直接放在断路器柜上或安装在断路器间隔附近,相互之间用光缆或特殊通信电缆连接。这种系统代表了现代变电站自动化技术发展的趋势,大幅度地减少了连接电缆,减少了电缆传送信息的电磁干扰,且具有很高的可靠性,比较好的实现了部分故障不相互影响,方便维护和扩展。分布分散式结构框图如图2所示。
打印机运行工作站以太网电网调度中心操作控制中心通信控制器现场总线保护测控单元1#保护测控单元公用信号单元保护测控单元1#保护测控单元图2 分布分散式系统框图分布分散式结构的主要优点有;
(1)间隔级控制单元的自动化、标准化使系统适用率较高。(2)包含间隔级功能的单元直接定位在变电站的间隔上。(3)逻辑连接到组态指示均可由软件控制。
(4)简化了变电站二次部分的配置,大大缩小了控制室的面积。(5)简化了变电站二次设备之间的连线,节省了大量连接电缆。(6)分布分散式结构可靠性高、组态灵活、检修方便。2.3变电站自动化系统设计所具有的功能
根据实际应用需要,本次所设计的变电站自动化系统具有以下主要功能:
一、监控子系统的功能
监控子系统取代了常规的测量系统,取代针式仪表;改变常规的操作机构和模拟盘,取代常规的告警、报警、中央信号、光字牌等;取代常规的运动装置等等。监控子系统功能有: 1.数据采集
数据采集有两种。一种是变电站原始数据采集。原始数据直接来自一次设备,如:电压互感器、电流互感器的电压和电流信号、变压器温度以及断路器的辅助接点、一次设备状态信号。变电站原始数据包括模拟量和开关量。另一种是变电站自动化系统内部数据交换或采集,典型的如:电能量数据、直流母线电压信号、保护信号等。
2.数据库的建立与维护
监控子系统建立实时数据库,存储并不断更新来自I/O单元及通信接口的全部实时数据;建立历史数据库,存储并定期更新需要保存的历史数据和运行报表数据。3.顺序事件记录及事故追忆
顺序事件记录包括;断路器跳合闸记录,保护及自动装置的动作顺序记录,断路器、隔离开关、接地开关、变压器分接头等操 作顺序记录,模拟输入信号超出正常范围等。事故追忆功能,追忆范围为事故前1分钟到事故后2分钟的所有相关模拟量值,采样周期与实时系统采样周期一致。4.故障记录 5.操作控制功能
变电站运行人员可通过CRT屏幕对断路器、允许远方电动操作操作的隔离开关和接地开关进行分、合操作;对变压器及站用变压器分接头位置进行调节控制;对补偿装置进行投、切控制,为了防止计算机系统故障时无法操作被控设备,在设计时,保留人工直接跳、合闸方式,即操作控制有手动和自动两种控制方式。6.安全监视功能
监控系统在运行过程中,对采集的电流、电压、主变压器温度、频率等量要不断进行超限监视,如发现超限,立刻发出告警,同时记录和显示越限时间和越限值,另外,还监视保护装置是否失电,自控装置是否正常。7.人机联系功能
(1)CRT显示器、鼠标和键盘是人机联系的桥梁。(2)CRT显示画面,实时显示各种技术数据。
(3)输入数据,指输入电流互感器和电压互感器变比、保护定值和越限报警定值、自动控制装置的设定值、运行人员密码等。
8.打印功能 9.在线计算及制表功能 10.运行管理功能
运行管理功能包括:运行操作指导、事故记录检索、在线设备管理、操作票开列、模拟操作、运行记录及交接班记录等。
二、微机保护系统功能
微机保护系统功能是变电站综合自动化系统的最基本、最重要的功能,它包括变电站的主要设备和输电线路的全套保护:高压输电线路保护和后备保护;变压器的主保护、后备保护;母线保护;低压配电线路保护;无功补偿装置保护;所用变压器保护等。
各保护单元,除具备独立、完整的保护功能外,还具有以下附加功能:
1.具有事件记录功能。2.具有与系统对时功能。3.具有存储多种保护定值功能。4.具备就地人机接口功能。5.具备通信功能。6.具备故障自诊断功能。
7.具有满足保护装置的快速性、选择性和灵活性要求。
第三章、变电站自动化系统设计方案
本设计采用RCS—9600系列分布变电站综合自动化系统,此系统是南瑞继保电气有限公司为适应变电站综合自动化的需要,在总结多年从事变电站综合自动化系统开发、研究经验的基础上,运用新 技术、新规约推出的新一代集保护、测控功能于一体的新型变电站自动化系统。实用于高压和超高压等级变电站,满足35—500KV各种电压等级变电站综合自动化需要。3.1 RCS—9600系统构成
RCS—9600综合自动化系统整体分三层,即变电站层、通信层、间隔层,硬件主要由保护测控单元、通信控制单元和后台监控系统组成。其系统结构图如图
3、图4所示
工作站1#打印机1#工作站2#打印机2#以太网通信控制器调度通信现场总线硬件对时通信控制器保护测控单元电流、电压开关信保护测控单元电流、电压开关信保护测控单元电流、电压开关信保护测控单元电流、电压开关信图3 RCS—9600系统结构图1
计算机监控系统打印机五防工作站以太网电网调度中心操作控制中心通信控制器保护测控单元1#保护测控单元公用单元保护测控单元1#保护测控单元图4 9600系统结构图23.2 RCS—9600后台监控系统一、硬件部分
系统结构采用双机配置,其中两个工作站用于变电站实时监控,相互备用。主计算机系统通过两台通信控制器与变电站内的保护、测量相连接,实现变电站数据采集和控制,两台通信控制器互为备用,任一台出现故障,可自动切换,接替故障设备工作。图
3、图4两种配置软硬件平台完全一样。用户可随着变电站规模的扩大,逐步发展扩充原有系统。保护测控单元是硬件的主要部分,保护单元主要有交流插件、CPU插件、继电器出口回路、显示面板和电源及开入插件等模块构成。RCS—9600系列保护测控单元硬件典型结构如图5所示。
通信接口液晶显示面板交流插件板板出口继电器板交流电压 输入交流电流 输入控制电源手动操作去跳合闸线圈电源与开入板直流电源空接点信号输入
图5 保护测控单元硬件结构框图
二、软件部分
软件部分包括WingdowsNT/2000操作系统、数据库、画面编辑和应用软件等几个部分,如图6所示。
数据库生成器前置实时数据库计算数据库 保 护 操作票历史数据库事件库事故追忆库滤波数据库 画 面 画面库报表曲线报警事件事故追忆滤波画面编辑器
图6 监空控系统软件结构图
软件平台为WingdowsNT/2000操作系统,提供数据库ANSI标准SQL接口,适用工业标准的TCP/IP网络构成分布网络结构,采用面向对 象的VC++语言编程,系统具有广泛的实用性和可移植性。三.保护测控单元装置
RCS—9600系列保护测控单元主要有:电源自投保护测控单元、变压器保护测控单元、线路保护测控单元、公用信号测控单元、通信控制单元等组成,完全可以满足整个电网系统的各类保护需要。电源自投保护装置适用于图
7、图8两种连接方式,假定两台主变压器分列运行或一台运行一台备用。
(1)若正常运行时,一台主变压器带两段母线并列运行,另一台备用,采用进线(变压器)备自投;若正常运行时,两段母线分列运行,每台主变压器各带一段母线,两段母线互为备用,采用分段备自投。
(2)若正常运行时,一条进线带两段母线并列运行,采用进线备自投;若正常运行时,两段母线分列运行,每条进线带一段母线,两段母线互为备用,采用分段备自投。
号主变号主变
图7 备自投接线方式1
号进线号进线
图8备自投接线方式2 以上是电源自投保护测控单元控制原理,其他保护单元在此不做详细叙述。
第四章、结 束 语
随着计算机技术、电子技术和网络技术的发展,变电站综合自动化技术将得到更快的发展。未来的变电站自动化系统也将更完善成熟,逐步实现变电站的小型化、智能化、无人职守化、提高变电站安全可靠、优质和经济运行;提高变电站的运行管理水平,更好的服务于社会经济建设。
参考文献
【1】王远章、徐继民等,《变电站综合自动化现场技术与运行维护》.第一版.北京.中国电力出版社、2004.9 【2】郑文波、阳宪惠等,《现场总线技术综述》第一版.北京.机械与电子出版社.1997 【3】胡穗延.《全矿井综合自动化控制系统》,第一版、北京、清华大学出版社、1998 【4】祝龙记、王汝琳等,《变电站分布式智能控制系统》.第一版.北京.工矿自动化.2003 【5】张全元.《工厂供电》.第一版.北京.机械与电子出版社.2003
作者简介:姓名:刘欣宇,性别:男,29岁,荆各庄矿业公司机运队机电副队长,电气助理工程师。
第四篇:变电站综合自动化技术
第一章
1、变电站综合自动化:是将变电站的二次设备经过功能的组合和优化设计,利用先进的计算机技术、现代电子技术、通信技术和信号处理技术,实现对全变电站的主要设备和输、配电线路的自动监视、测量、自动控制和微机保护,以及与调度通信等综合性的自动化功能。
2、传统变电站的缺点:
(1)安全性、可靠性不能满足现代电力系统高可靠性的要求。(2)供电质量缺乏科学的保证。(3)占地面积大,增加了征地投资。
(4)不适应电力系统快速计算和实时控制的要求。
(5)维护工作量大,设备可靠性差,不利于提高运行管理水平和自动化水平。
3、变电站自动化技术的发展过程。[P5内详] 第二章
4、二次设备的组成部分:继电保护、自动装置、测量仪表、操作控制屏和中央信号屏以及远动装置。
5、变电站综合自动化的优越性:
(1)变电站综合自动化系统利用当代计算机的技术和通信技术,提供了先进技术的设备,改变了传统的二次设备模式,信息共享,简化了系统,减少了连接电缆,减少占地面积,降低造价,改变了变电站的面貌。(2)提高了自动化水平,减轻了值班员的操作量,减少了维修工作量。(3)随着电网复杂程度的增加,各级调度中心要求各变电站能提供更多的信息,以便及时掌握电网及变电站的运行情况。(4)提高变电站的可控性,要求更多地采用远方集中控制、操作、反事故措施等。(5)采用无人值班管理模式,提高劳动生产率,减少人为误报操作的可能。(6)全面提高运行的可靠性和经济性。
6、变电站的数据包括:模拟量、开关量和电能量。
7、直流采样:即将交流电压、电流等信号经变送器转换为适合于A/D转换器输入电平的直流信号。交流采样:指输入给A/D转换器的是与变电站的电压、电流成比例关系的交流电压信号。
8、并联、串联有源电力滤波器的不同点及示意图。[P17内详]
9、电力系统的电压、无功综合控制的方式:集中控制、分散控制和关联分散控制。[P27内详]
10、电力系统频率偏移的原因:电力系统的频率与发电机的转速有着严格的对应关系,而发电机的转速是由作用在机组转轴上的转矩决定的,原动机输入的功率如果在扣除了励磁损耗和各种机械损耗后能与发电机输出的电磁功率保持平衡,则发电机的转速将保持不变,电力系统所有发电机输出的有功功率的总和,在任何时刻都将等于此系统包括各种用电设备所需的有功功率和网络的有功损耗的总和。但由于有功负荷经常变化,其任何变动都将立刻引起发电机输出电磁功率的变化,而原动机输入功率由于调节系统的滞后,不能立即随负荷波动而作相应的变化,此时发电机转轴上的转矩平衡被打破,发电机的转速将发生变化,系统的频率随之发生偏移。
11、电力系统频率降低的危害:
(1)系统的频率下降,使发电厂的厂用机械出力大为下降,结果必然影响发电设备的正常工作,使发电机的有功出力减少,导致系统频率的进一步降低。
(2)系统频率降低,励磁机的转速也相应降低,当励磁电流一定时,励磁机发出的无功功率就会减少。(3)系统频率长期处于49.5Hz或49Hz以下时,会降低各用户的生产率。
12、明备用和暗备用的原理和图。[P33内详] 系统正常运行时,备用电源不工作的称明备用。系统正常运行时,备用电源也投入运行的,称为暗备用。
备用电源自投(BZT)的作用:备用电源自投装置是因为电力系统故障或其他原因使工作电源被断开后,能迅速将备用电源或备用设备或其他正常工作的电源自动投入工作,使原来工作电源被断开的用户能迅速恢复供电的一种自动控制装置。
13、变电站综合自动化系统的特点:(1)功能综合化
(2)分级分布式、微机化的系统结构(3)测量显示数字化(4)操作监视屏幕化(5)运行管理智能化 第三章
14、光电传感器的优越性:
(1)优良的绝缘性能,造价低、体积小、质量轻。(2)不含铁心,消除了磁饱和、铁磁谐振等问题。(3)动态范围大,测量精度高。(4)频率范围宽。(5)抗干扰能力强。第四章
15、输入/输出的传送方式:并行和串行传送方式。
16、CPU对输入/输出的控制方式:同步传送方式、查询传送方式、中断控制输入/输出方式和直接存储器访问方式(DMA)[P50内详]
17、DMA控制器必须具备的功能:
(1)能接受外设的请求,向CPU发出总线请求信号HOLD;
(2)当CPU发出总线请求认可信号HLDA后,接管对地址线、数据线和控制线的控制,进入DMA方式;(3)发出地址信息,能对存储器寻址及能修改地址指针;(4)能向存储器和外设发出读或写等控制信号;
(5)能控制传送的字节数及判断DMA传送是否结束;
(6)在DMA传送结束以后,能发出DMA结束信号,释放总线使CPU恢复正常工作状态。
18、光电耦合器工作原理及原理图。[P62内详] 第五章
19、D/A转换器的工作原理、关系式、权电阻输入网络。[P67内详] 20、绝对精度和相对精度。[P74内详] 第六章
21、交流采样法:是直接对经过装置内部小TA,小TV转换后形成的交流电压信号进行采样,保持和A/D转换,然后在软件中通过各种算法计算出所需电量。第七章
22、小波分析在变电站综合自动化中的应用前景。[P103内详] 第八章
23、变电站内的信息传输:
(1)设备层与间隔层(单元层)间信息交换(2)单元层内部的信息交换(3)单元层之间的通信
(4)单元层和变电站层的通信(5)变电站层的内部通信
24、变电站通信网络的要求:快速的实时响应能力,很高的可靠性,优良的电磁兼容性能,分层式结构。
25、数据通信的传输的方式:并行数据通信和串行数据传输。
26、数据通信系统的工作方式:单工通信,半双工通信和全双工通信。原理及图示[P119内详]
27、网络的拓扑结构:点对点结构、星型结构、总线结构和环形结构。
28、移频键控原理。[P131内详]
29、差错检测技术:就是采用有效编码方法对咬传输信息进行编码,并按约定的规则附上若干码元(称监督码),作为信息编码的一部分,传输到接收端,接收端则按约定的规则对所收到的码进行检验。30、几种常用的监督码构成方法:奇偶校验、纵向冗余校验和循环冗余校验CRC。第九章
31、电磁兼容意义:电气或电子设备或系统能够在规定的电磁环境下不因电磁干扰而降低工作性能,它们本身发射电磁量不影响其他的设备或系统正常工作,从而达到互不干扰,在共同的电磁环境下一起执行各自功能的共存状态。
32、电磁干扰的三要素:干扰源、传播途径和电磁敏感设备。
33、解决电磁干扰问题的方法:
(1)抑制干扰源产生的电磁干扰(滤波、屏蔽和接地);(2)切断干扰的传播途径;
(3)提高敏感设备抗电磁干扰的能力(降低对干扰的敏感度)。
34、干扰分类:
(1)差模干扰:是串联于信号源回路中的干扰,主要由长线路传输的互感耦合所致。(2)共模干扰:是由网络对地电位变化所引起的干扰,即对地干扰。
35、抑制干扰源影响的屏蔽措施:
(1)一次设备与自动化系统输入、输出的连接采用带有金属外皮的控制电缆,电缆的屏蔽层两端接地。(2)测量和微机保护或自控装置采用的各类中间互感器的一、二次绕组之间加设屏蔽层。(3)机箱或机柜的输入端子对地接一耐高压的小电容,可抑制外部高频干扰。(4)系统的机柜和机箱采用铁质材料。
第五篇:变电站综合自动化教学大纲
《变电站综合自动化》课程教学大纲
一、课程名称:变电站综合自动化
课程负责人:
二、学时与学分:
三、适用专业:重庆大学城市科技学院电气学院
四、课程教材:
五、参考教材:《变电站综合自动化》,国家电网公司人力资源部,中国电力出版社;第1版(2010年5月1日)。
《变电站综合自动化原理及运用》,丁书文,中国电力出版社;第2版(2010年7月1日)。
《变电站综合自动化原理与系统》,张惠钢,中国电力出版社;第1版(2004年1月1日)。
六、开课单位:电气信息学院电气专业
七、课程的性质、目的和任务
《变电站综合自动化》,是电气工程及其自动化专业面向应用的一门专业课,是电力系统继电保护及自动化方向与发电厂及电力系统方向的核心专业课程。本课程以“变电站综合自动化系统”为载体,学生通过该门课的学习,使学生较全面地了解变电站综合自动化系统的用途、结构、原理和性能,初步掌握变电站综合自动化系统基本知识和技能,具备变电站综合自动化系统的安装调试、运行及事故处理的能力。
八、课程的基本要求
1、了解变电站站综合自动化的含义。
2、掌握变电站实现综合自动化的基本功能。
3、了解变电站实现综合自动化系统的结构形式。
4、掌握变电站综合自动化信息的测量和采集种类和方式方法。
5、了解变电站综合自动化中的通信技术。
6、了解变电站综合自动化系统运用的新技术。
7、掌握变电站综合自动化系统的智能装置的。
8、掌握变电站综合自动化系统的运行、维护及调试。
9、了解提高综合自动化系统可靠性的措施。
10、熟悉变电站综合自动化的监控系统相关知识。
九、课程的主要内容
第一章 变电站综合自动化系统概述 1.1 综合自动化的基本概念 1.2 综合自动化的优越性
1.3 综合自动化系统的主要内容和基本功能 1.4 综合自动化系统的设计原则与要求
1.5 综合自动化系统的硬件结构(结构形式和配置)1.6 变电站综合自动化与无人值班变电站 1.7 变电站综合自动化技术的发展方向 第二章 变电站综合自动化信息的测量和采集 2.1 变电站综合自动化信息
2.2 变电站综合自动化信息的体系结构 2.3 变电站模拟量信息的变送器测量及采集 2.4 交流采样技术及其应用 2.5 变电站油温的采集 2.6 变电站状态信息的采集 2.7 变电站实时时钟的建立和应用 第三章 变电站综合自动化系统中的通信技术 3.1 数据通信基础 3.2 数据交换技术 3.3 计算机网络基础知识
3.4 网络体系结构及OSI基本参考模型 3.5 计算机局域网络 3.6 现场总线技术
第四章 变电站综合自动化系统中的新技术应用 4.1 VQC知识 4.2 程序化操作 4.3 IEC 61850简介
第五章 变电站运行的自动控制与调节(变电站综合自动化系统的智能装置)5.1 变电站低频减负荷控制 5.2 变电站电压和无功功率控制
5.3 变电站“五防”的基本概念及实现方法 5.4 同期知识
5.5 备用电源自动投入装置 5.6 变电站主设备的遥控 5.7 微机故障录波原 5.8 微机故障录波实例
第六章 变电站综合自动化系统的运行、维护及调试 6.1 综合自动化系统人机联系与操作 6.2 综合自动化系统运行与维护 6.3 综合自动化系统的调试
第七章 提高综合自动化系统可靠性的措施 7.1 综合自动化可靠性概述 7.2 干扰来源和干扰的影响 7.3 抗干扰措施
7.4 综合自动化系统的自动检测技术 第八章 变电站综合自动化的监控系统 8.1 综合自动化监控系统的基本功能 8.2 综合自动化监控系统的基本结构 8.3 综合自动化监控系统基本要求及特点 8.4 综合自动化监控系统界面及监控操作 8.5 综合自动化监控系统的附属部分
十、课程教学重点
1、变电站实现综合自动化的基本功能。
2、变电站综合自动化信息的测量和采集种类和方式方法。
3、变电站综合自动化系统运用的新技术。
4、变电站综合自动化系统的智能装置的。
5、变电站综合自动化系统的运行、维护及调试。
6、提高综合自动化系统可靠性的措施。
7、变电站综合自动化的监控系统。
十一、考核方式
笔试考试
总成绩=笔试考试(70%)+平时考评(30%)
十二、学时分配