第一篇:课程标准解读之一吴正宪关于小学数学图形与几何讲座
课程标准解读之一:吴正宪关于小学数学图形与几何讲座
【课程简介】
小学数学图形与几何课标解读及教学思考,主要介绍《数学课程标准》关于“图形与几何”内容的规定,包括核心概念、内容主线、具体要求。本模块主要包括以下四个话题:
1.如何在观察、操作中“认识图形” 抽象出图形特征,发展空间观念?
2.如何以“图形的测量”为载体,渗透度量意识,体会测量的意义,认识度量单位及其实际意义,了解掌握测量的基本方法,并在具体问题中进行恰当的估测?从而发展学生的空间观念与推理能力?
3.如何通过“图形的运动”探索发现,体会研究图形性质的不同方法,发展学生几何直观能力和空间观念,提高学生研究图形性质的兴趣?
4.如何通过学习“确定图形位置”的方法,发展学生的空间观念和推理能力? 【学习要求】
1.请老师们认真观看视频,明确下列观点:(1)了解数据“几何直观”、“空间观念”的内涵,在教学中如何发展学生的“几何直观”和“空间观念”;
(2)图形与几何的内容变化及主线分析;(3)图形与几何学习的教学策略。
2.结合自己的教学实践完成下面两项作业:(1)线段、射线和直线的认识中,直线概念建立是儿童学习的难点,为什么?怎么突破?(2)选择 1 个对您启发最大的内容,做一次教学实践(教学设计、教学案例、学生调研等)。
2011 版课标终于要公布了,新课标 修订后有哪些变化。这一讲主要讲“图形与几何”这个领域的变化。
新课标在图形与几何领域有几个核心概念。主要有 空间观念、几何直观、推理能力 等。空间观念主要是指根据物体特征抽象出几何图形,根据几何图形想象出所描述的实际物体;想象出物体的方位和相互之间的位置关系;描述图形的运动和变化;依据语言的描述画出图形等。
更直观的理解如下图:
几何直观主要是指利用图形的描述和分析问题,借助几何直观可以把复杂的数学问题,变得简明形象,有助于探索解决问题的思路,预测结果,探索思路预测结果。案例:《打电话》 如果你是老师,有件紧急的事情要通知给同学,用打电话的方式,每分钟通知 1 人,给你 3 分钟的时间,能使多少人收到通知?大胆的猜测一下。
下面是学生借助图形研究的例子。这些学生都能够利用线段、点以图形的形式,来描述打电话来通知这件事情,设计方案。
通过这个数图就把这个复杂的数量关系,很简明很直观的呈现出来,而且从这个图本身,就能发现一些规律,就是一分钟通知一个人,第二次通知的新的人数,就是第一次的两倍,否则你算是算不出来,看图就看出来了。
通过线段、点,以及图形,把通知过程很简捷的表现出来,把它们之间的关系,揭示得非常清楚,这就属于典型的几何直观,就是图形直观。推理能力的发展应贯穿于整个数学学习过程中。推理是数学的基本思维方式,也是人们学习和生活中经常使用的思维方式。推理一般包括合情推理和演绎推理,合情推理是从已有的事实出发,凭借经验和直觉,通过归纳和类比等推断某些结果;演绎推理是从已有的事实(包括定义、公理、定理等)和确定的规则(包括运算的定义、法则、顺序等)出发,按照逻辑推理的法则证明和计算。在解决问题的过程中,两种推理功能不同,相辅相成:合情推理用于探索思路,发现结论;演绎推理用于证明结论。
通过对一线教师的访谈,查阅资料,把老师们的困惑集中起来,归结为四个大话题。讨论话题:
1.如何在观察、操作中“认识图形” 抽象出图形特征,发展空间观念?
2.如何以“图形的测量”为载体,渗透度量意识,体会测量的意义,认识度量单位及其实际意义,了解掌握测量的基本方法,并在具体问题中进行恰当的估测?从而发展学生的空间观念与推理能力?
3.如何通过“图形的运动”探索发现,体会研究图形性质的不同方法,发展学生几何直观能力和空间观念,提高学生研究图形性质的兴趣?
4.如何通过学习“确定图形位置”的方法,发展学生的空间观念和推理能力? 话题
一、图形的认识——抽象图形特征,发展空间观念
问题
一、新的课程标准在图形的认识方面有哪些变化?有哪些新的要求呢? 这次新课标修订后图形的认识部分都包括哪些内容?有什么新的变化? 课标修订前后立体图形的认识部分内容的对比:
修订前 修订后 第一 学段
(1)通过实物和模型辨认长方体、正方体、圆柱和球等 立体图形。
(2)辨认从正面、侧面、上面观察到的简单物体的形状。[参见例 1 ]
(3)辨认长方形、正方形、三角形、平行四边形、圆等简单图形。
(4)通过观察、操作,能用自己的语言描述 长方形、正方形的特征。
(5)会用长方形、正方形、三角形、平行四边形或圆拼图。
(6)结合生活情境认识角,会辨认直角、锐角和钝角。
(7)能对简单几何体和图形进行分类。
1.能通过实物和模型辨认长方体、正方体、圆柱和球等 几何体。
2.能根据具体事物、照片或直观图辨认从不同角度观察到的简单物体(参见例 11)。3.能辨认长方形、正方形、三角形、平行四边形、圆等简单图形。4.通过观察、操作,初步认识 长方形、正方形的特征。5.会用长方形、正方形、三角形、平行四边形或圆拼图。6.结合生活情境认识角,了解直角、锐角和钝角。7.能对简单几何体和图形进行分类(参见例 20)。第二 学段
(1)了解两点确定一条直线和两条相交直线确定一个点。(2)能区分直线、线段和射线。
(3)体会两点间所有连线中线段最短,知道两点间的距离。
(4)知道周角、平角的概念及周角、平角、钝角、直角、锐角之间的大小关系。
(5)结合生活情境了解平面上两条直线的平行和相交(包括垂直)关系。(6)通过观察、操作,认识平行四边形、梯形和圆,会用圆规画圆。
(7)认识三角形,通过观察、操作,了解三角形两边之和大于第三边、三角形内角和是 180 °。
(8)认识等腰三角形、等边三角形、直角三角形、锐角三角形、钝角三角形。
(9)通过观察、操作,认识长方体、正方体、圆柱和圆锥,认识长方体、正方体和圆柱的 展开图。
(10)能辨认 从不同方位看到的物体的形状和相对位置。[参见例 1 ] 1.结合实例了解线段、射线和直线。
2.体会两点间所有连线中线段最短,知道两点间的距离。
3.知道平角与周角,了解周角、平角、钝角、直角、锐角之间的大小关系。4.结合生活情境了解平面上两条直线的平行和相交(包括垂直)关系。
5.通过观察、操作,认识平行四边形、梯形和圆,知道扇形,会用圆规画圆。6.认识三角形,通过观察、操作,了解三角形两边之和大于第三边、三角形内角和是 180°。7.认识等腰三角形、等边三角形、直角三角形、锐角三角形、钝角三角形。
8.能辨认从不同方向(前面、侧面、上面)看到的物体的形状图(参见例 32)。
9.通过观察、操作,认识长方体、正方体、圆柱和圆锥,认识长方体、正方体和圆柱的展开图。
从这个表中可以看到,课表修订前后在图形的认识部分只有一些细小的变化,图形与几何这一模块原称空间与图形,变“空间与图形”为“图形与几何”;重提几何直观、推理能力、运算能力、逻辑思维能力,用词更加规范,体现了课标的严肃。
< 标准 > 的”图形与几何”第一、二学段仍分为四部分,具体表示有所变动,(1)图形的认识,(2)测量,(3)图形的运动(修改稿:图形与变换),(4)图形与位置。图形的运动”强调了图形的运动是研究图形性质的一种有效方法。运动也是一种基本的数学思想。第二学段的内容标准删除“两点确定一条直线”和“两条直线确定一个点”。
“图形与几何”领域,将几何学习的视野拓宽到学生生活的空间,强调空间和图形知识的现实背景,从第一学段开始使学生接触丰富的几何世界。新《标准》突出用观察、描述、制作、从不同的角度观察物体、认识方向、制作模型等活动,发展学生的空间观念和图形设计与推理(合情推理与演绎推理)的能力。
新《标准》在第二学段还增加了知道扇形这一内容。扇形的认识,《大纲》(修订版)教材作为选学内容,《数学课程标准》中没有认识扇形的要求。
认识扇形在《课标修改稿》中确实没有做要求,但在 “ 统计与概率 ” 部分却明确提出了通过实例认识扇形统计图的内容标准,考虑到知识的系统性、逻辑性和连贯性,以及学生认识扇形统计图的需要,《课标修订稿》在认识圆的基础上,增加了初步认识扇形。简单说对图形认识的要求主要包括两个方面: 一是对图形自身特征的认识。
二是对图形各元素之间、图形与图形之间关系的认识。
在三个学段中,认识同一个或同一类图形的要求有明显的层次性:从 “ 辨认 ” 到 “ 初步认识 ”,再从 “ 认识 ” 到 “ 探索并证明 ”。例如,对于长方体、正方体、圆柱和球等几何体,第一学段要求 “ 辨认 ” ;第二学段要求 “ 认识 ” ;第三学段要求了解其中一些几何体的侧面展开图。
又如,对于平行四边形,第一学段要求 “ 辨认 ” ;第二学段要求 “ 认识 ” ;第三学段要求 “ 探索并证明平行四边形的性质定理、判定定理 ”。再如,三角形内角和的例子: 关于 “ 视图 ”,第一学段要求 “ 能根据具体事物、照片或直观图辨认从不同角度观察到的简单物体 ” ;第二学段要求 “ 能辨认从不同方向(前面、侧面、上面)看到的物体的形状图 ” ;第三学段要求 “ 会画直棱柱、圆柱、圆锥、球的主视图、左视图、俯视图,能判断简单物体的视图,会根据视图描述简单的几何体 ”。这种要求的层次性,既体现了从整体到局部的认识过程;也符合学生的认知特点,逐渐深入、循序渐进。
对图形的各元素之间、图形与图形之间的关系的认识,主要包括大小、位置、形状之间关系的认识。第一学段的 “ 了解直角、锐角和钝角 ” ;第二学段的 “ 体会两点间所有连线中线段最短 ” ; “ 了解周角、平角、钝角、直角、锐角之间的大小关系 ” ; “ 了解 三角形两边之和大 于第三边 ” ;第三学段的 “ 会比较线段的长短 ”,“ 能比较角的大小 ” 等,都是对图形大小关系的研究。点与直线的位置关系、直线与直线的位置关系、点与圆的位置关系、直线与圆的位置关系等,是义务教育阶段几种主要的图形位置关系;轴对称、中心对称、平移也反映了图形与图形之间的位置关系。
图形的全等、相似都是研究研究图形之间关系的课程内容,全等研究的是图形的形状、大小关系;图形的相似研究的是图形的形状之间的关系;而图形的位似则还涉及到了图形的位置关系。
在儿童的不同学段上,形象思维的发展是有层次的,荷兰范.希尔夫妇对学生几何思维水平的研究说明了从直观辨认到探索特征是儿童的对图形的形象思维规律。他们将学生的图形认知水平主要分为五级:水平1 :直观化;水平2 :描述 / 分析;水平3 :抽象 / 关联;水平4 :演绎 / 形式化推理;水平5 :严密 / 元数学。一二三水平在小学体现,四五水平是在中学体现的。这和我们课标的要求也是一致。图形认识的教学先明确两点:
一是这部分内容属于图形认识的哪个水平,前后继知识各是什么;
二是多数学生现在的形象思维处于一个什么阶段,要通过你的教学达到什么阶段。
问题
二、小学阶段对于 “ 图形的认识 ” 这一内容,教材是遵循怎样一个编排体系的? 第一,现在的教材,在图形的认识当中,是先讲立体,再讲平面,再回到立体。从历史发展过程上看,实际上我们中国小学的传统教材,最初是按点、线、面、体的逻辑关系讲的。到了上个世纪 90 年代以后,义务大纲出现就发生变化了,先讲立体以后再讲平面,然后又回到立体。为什么当时要改?因为当时很多老师都反映,高年级孩子,对几何立体图形,本身的识图的能力比较低,认识起来比较困难。这部分是个难点,分阶段安排可以分散难点。第二,实际上一个人是生活在三维空间当中,一个婴儿从出生落地,他所有接触的东西,看到的东西,实际上都是体,他的奶瓶,他玩的积木都是体,住的大大楼里,所有东西都是体,在这个过程中儿童积累了很多立体的物体,因此所有的几何体,都具有直观的实物的模型的。那在这种情况之下,低年级孩子,刚开始初步的认识立体图形是有可能的。
所以一是有必要,二是有可能,再加上儿童的空间观念的形成,必然是有一个长期的反复的积累的过程,不能一次到位。所以当时的义务大纲就打破了传统的一步到位,先讲立体图形,要求直观认识,然后中间一段是平面图形,最后再讲立体图形。现在教材也一样,先讲立体,后讲平面,再回到立体,但这两次讲立体层次不同,第一次要求辨认,到第二学段要求是认识。也就是现在教材是 “ 体-形-体 ” 的混合螺旋编排结构 问题
三、怎样通过图形的认识教学,培养学生的空间观念? 第一、通过对实物的观察与操作认识图形
第一学段要求 “ 能通过实物和模型辨认长方体、正方体、圆柱和球等几何体 ”、“ 通过观察、操作,初步认识长方形、正方形的特征 ” ;第二学段要求 “ 结合实例了解线段、射线和直线 ”、“ 结合生活情境了解平面上两条直线的平行和相交(包括垂直)关系 ” 等,这些要求的共同特点是通过观察与操作认识图形,直观地、整体地认识立体图形和平面图形。从对实物的观察与操作过程中来认识图形的特征和性质,既符合学生认识事物的规律,也符合数学课程的目标要求。这样的过程有助于学生发展能力,初步体会数学的思想方法,发展积极的情感与态度。
人们生活在三维的空间中,常见的楼房、积木、各种包装盒、皮球 … 都给我们以长方体、正方体、圆柱体、球体等直观形象。基于这样的生活经验,学生可以从认识立体图形开始,“ 通过实物和模型等辨认长方体、正方体、圆柱和球等几何体 ”。“ 辨认 ” 是认识的低级阶段,但与以往的经验有所不同,它要经历从实物到几何图形的抽象过程。
从不同的角度观察长方体、正方体、圆柱体、球的表面,抽象出长方形、正方形、圆等平面图形。像这样从具体到抽象,从实物到图形,从整体到局部的安排,揭示了立体图形与平面图形的关系,也符合学生的认知特点。
第二学段要求 “ 结合实例了解线段、射线和直线 ”、“ 结合生活情境了解平面上两条直线的平行和相交(包括垂直)关系 ”。射线和直线涉及到了无限的概念,与长方体、正方体、长方形、正方形等相比,在现实中没有 “ 直线 ” 的实物原型,这就需要学生进行抽象与想象。认识线段要容易一些,因为现实生活中有 “ 线段 ” 的实物原型。类似的,学生理解两条直线平行的位置关系也比较困难,可以利用两根铁轨作为实物原型来描述,两根铁轨不相交以及它们之间的距离处处相等的事实,都揭示了平行线的本质,但铁轨无法总是笔直的延伸,所以在从实物到几何图形的抽象过程中还需要想象,这有助于学生发展抽象能力和空间观念。
第二、基于图形的想象和图形之间的转换,发展空间观念
新教材内容编排上增加了 “ 视图和投影、展开与折叠 ” 等内容。
视图和投影,过去小学没有,现在小学数学几何和图形当中,增加了观察物体,这部分在课标上有两个要求。
第一个学段的要求是根据具体事物照片或直观图,辨认从不同角度观察到的简单物体的形状,这是辨认。很多教材里面是这样,有的是拿个实物,有的是拿熊猫玩具等,让孩子们从各种角度去看,看的时候,孩子们就发现,不同角度看到的熊猫不一样。
第二个学段的要求能辨认从不同方向,方向是从前面、侧面或者上面来观察,从不同方向看到物体的形状图,这个形状图实际上就是一个平面图,就是从水平方向对物体所做的一个投影,也就是拍照。
例如:拍照的结果,虽然不是真正意义上的视图,但是它的确实现了,把三维空间向二维空间的一个转化的过程,这是过去小学没有的,现在有了,这两个阶段的目标要达到,就为第三学段的正式的视图和投影打下比较好的基础。“折叠”和“展开”,过去教材也有,长方体、正方体、圆柱体的展开图。但是这个做法现在要加强,而且在进行折叠和展开当中,操作过程,必须要通过儿童的想象,这个过程本有什么实际意义呢?这是让孩子们认识到,立体图形的结构和展开图之间的这种对应关系。怎么让他来认识这个对应关系呢? 例如,“正方体展开图”课例。
通过课例可以看到,孩子可以折一折,通过操作找到结果;也可以不折,先想一想,我们提倡先想象,再动手验证,这样有利于发展学生的空间想象力,促进空间观念的形成。
让学生操作的时候,它不是一个简单的操作,首先得想象一下,可能会是什么样子,然后再通过操作,去验证自己的想法,而这个过程,学生参与这个想象,包括动手操作,包括把这个过程表现出来,是非常重要的。
让学生的这种想象也好,操作也好,实际上进一步理解,我们讲三维和两维之间的这样一种关系,就是你讲的对应关系,是经历了下面过程。
“ 认识长方体、正方体和圆柱的展开图 ”,体现了三维图形与二维图形之间相互转换的具体要求,目标是在图形转换中引导学生观察、抽象、想象,发展空间观念。教学中应注重展开与折叠的操作过程,通过想象实现图形之间的转换,让学生记忆展开图的数量或类型的做法是不可取的。
认识图形过程中大量的操作性活动,有利于学生积累数学活动经验,发展学生空间观念教学中应当予以充分的重视。
第二篇:吴正宪讲座
让学生喜欢数学—— 解读吴正宪的教育理念讲座稿
讲座时间: 2015年5月12日下午
主讲人: 额尔登花
老师们:大家好,我今天讲座的内容是《让学生喜欢数学—— 解读吴正宪的教育理念》。提起吴正宪老师,大家应该非常熟悉了吧!是的,吴正宪老师是当今小学数学界的创新者,是全国所有数学教师的引领者,人们常常这样描述吴正宪老师:
用心去拥抱事业;用爱去拥抱生活;用情去绘画风采。
我们知道,凡是上过吴老师课的孩子们和听过吴老师课的老师们都常常被她高尚的师德、优秀的人格以及独具魅力的教学艺术所深深地感染着。因为吴正宪老师是在用心、用情、用爱与孩子们交流,她赢得了孩子们的喜爱、尊重和信任。老师们,想知道吴老师是如何让自己的学生喜欢上数学课的吗?那就让我们再一次的解读吴老师的教育理念和她创造的鲜活的课堂教学案例吧!但愿我的讲座能给老师们有所思考有所收获有所感悟!
下面,我想从四个方面来和老师们交流交流,吴老师是怎样让学生喜欢数学的:
(一)有趣的数学
学生如果对数学发生兴趣,他就会酷爱数学的学习,就可以持久地集中注意力,保持清晰的感知,激发丰富的想象力和创造思维,产生愉悦的情绪体验,形成“爱学——会学——学会”这样一个良性循环。萌发学生学习数学的兴趣,激发学生学习数学的求知欲望,调动学生学习数学的积极性,让学生满怀信心地参加学习探索数学的活动中。吴老师是这样做的: 1.有趣的开始
吴老师认为,第一印象太重要了,它往往会深深而长久地留在记忆里,不可磨灭、难以抗拒。所以接新班吴老师都把“如何让学生喜欢我的数学课”作为首先思考的问题,独具匠心地上好新接班的第一课,使师生彼此留下美好的第一印象,让孩子们从上第一节课开始就是感到数学是有趣的。2.有趣的探索
“数学是有趣的”这种感受不仅是在学习数学的开始,更重要的是在学习探索数学知识的整个过程中。苏霍姆林斯基曾说:“兴趣并不在于认识一眼就能看到的东西,而在于认识深藏的奥秘。”让学生感受到数学知识的有趣,就要在学生面前揭示出一种新东西,激发他们的惊奇感,让同学们感受到数学真的有趣。例如学习三角形分类,吴老师设计了“猜一猜”的活动,激发学生的兴趣。“下面的三角形各露出了一个角,你能猜出它们各是什么三角形吗?”学生甲试探性地回答:“只露出一个直角,它是直角三角形。”当从口袋中取出三角形纸片时,同学们不约而同地喊了一声:“耶,猜对了!”学生乙站起来:“只露出一个钝角,它一定是钝角三角形。”“又猜对啦!”同学们沸腾起来。学生丙以此类推,胸有成竹地说:“只露出一个锐角,它一定是锐角三角形。”“肯定吗?”吴老师追问了一句,同学们陷入沉思。“不一定。”有人忍耐不住,喊出来。当吴老师把只露出一个锐角的直角三角形纸片高高举起的时候,再也没有人喊是锐角三角形了。在“猜一猜”活动中,同学们学会了观察,学会了思考,有趣的数学在孩子们积极主动的探索中显得更有味道。3.有趣的数学多着呢
生活中处处有数学,数学中有趣的事情太多了。吴老师热情地牵起孩子们的手到无边无际的数学海洋里寻秘探宝,让孩子们感到数学不再枯燥乏味,而是丰富多彩。
吴老师曾经绘声绘色地向同学们介绍过曹冲称象的故事,同学们听得入了神,吴老师马上把话锋一转:“从曹冲称象的故事中你知道了什么?”同学们热烈地议论开了:
学生甲:听了曹冲称象的故事,我懂得当遇到困难时要积极想办法来解决。学生乙:曹冲真聪明,我知道了石头可以代替大象。
学生丙:我爸爸曾经考过我一道题,一只小狗等于两只小猫的重量,一只小猫等于三只小鸡的重量,问一只小狗等于几只小鸡的重量?当时我没有解答出来。今天听了曹冲称象的故事,我会解答了。不就是把猫换成鸡吗!
显然这位同学已产生了联想。曹冲称象等量代换的数学模型,已在孩子们头脑中初步建立起来。吴老师就地取材,顺手把这道题板书在黑板上: 1只小狗=2 只小猫 1只小猫=3只小鸡 1只小狗=()只小鸡
同学们叽叽喳喳地议论开了:一只小猫换三只小鸡,两只小猫可以换六只小鸡,一只小狗就等于六只小鸡的重量。这不是跟用石头代替大象的道理一样吗。曹冲称象的故事带给同学们的影响是深刻的,它向同学们展示了一幅有趣的生活画面,使学生感受到生活中处处有数学,数学问题解决中处处闪烁着智慧的光芒。古代趣事,信手拈来,既有味道,又启迪孩子们的智慧。在数学的长河中,吴老师精心采摘一朵朵趣事小花,奉献给孩子们,和他们一起欣赏。五彩缤纷的数学乐园深深地吸引着同学们。数学的趣事多着哪!正是这种无形的学习动力,促使孩子们兴趣盎然地去发现,去探索。(二)奇妙的数学
吴老师让学生喜欢数学的第二个法宝就是让学生觉得数学是奇妙的!亚里斯多德曾经说过:“思维自疑问和惊奇开始”。如果学生对所学知识常常发生疑问和感到惊奇,对数学时时有一种奇妙的感觉,还能不喜欢数学吗?教学中,吴老师利用孩子们好奇心强的心理特征,有意识地制造一些悬念,提供补充一些有趣的素材,和孩子们一起领略数学的神奇,使之更加喜爱数学。
例如,学习三角形内角和是180°的知识时,吴老师创设了这样的情境。请同学们事先准备好各种不同的三角形,并分别测量出每个内角的角度,标在图中。上课开始,第一个教学活动就是“考考老师”。学生报出三角形其中两个内角的度数,请老师猜一猜第三个角是多少度。每次问题的抛出,吴老师都对答如流,准确无误。同学们惊奇了,疑问由此产生:“我们从家带来的三角形纸片,大的、小的、直角的、锐角的,老师又没有见到,她为什么猜得这样准确呢?”同学们带着疑问走进数学知识的发现和探索中,通过亲自动手实践发现规律。有的把三个角撕下来,重新拼在一起。如:有的用折纸的方法:有的用测量后再计算的方法:同学们通过观察、操作、计算等不同的方法,得出了三角形内角和是180°。有了这个结论,学生们很快揭穿了“老师总能猜对”的秘密。接下来又是一次神奇的感受,“根据三角形内角和是180°,你能推导出四边形、五边形、六边形„„一百边形的内角和是多少度吗?”
同学们终于发现了多边形内角和等于180°×(边数-2)的规律,在发现规律的过程中感受到了数学的神奇。
老师们,好奇之心,人皆有之。无论大人或孩子都会对一些神奇的东西发生兴趣。尤其是小孩子对一些奇妙的东西就更喜欢接触和研究。爱迪生曾说过:“凡是新的不平常的东西都能在想象中引起一种乐趣,因为这种东西使心灵感到一种愉快的惊奇,满足它的好奇心,使之得到他原来不曾有过的一种观念。”因此,我认为好奇心、奇妙感在学生进行探索中占有十分重要的地位。奇妙感、好奇心在学习的过程中会自然地转化为强烈的求知欲望,是孩子们学习和探索的内动力,吴老师非常明白这一点,也做到了这一点!
(三)有用的数学
如果一个人对数学有一种需要感,感受到数学在生活中很有用,很有价值,他就会喜欢数学。吴老师在课堂上也深深的让学生体会到数学的用处,让学生从内心爱上了数学。数学很有用,吴老师不是靠说教,而是引导孩子们亲身体验。例如,吴老师在教学“三角形具有稳定性”的这一内容时,她没有照本宣科,而是很自然地从生活实际进入,引起了孩子们极大的学习兴趣和探索热情。上课开始,吴老师将一把快散架的椅子摆在了同学们面前,说:“有件事情想让同学们帮忙,这把椅子摇晃了,需要加固一个,这根木条钉在哪里比较合适呢?”同学们热闹起来,有的说将木条横着钉,有的说将木条竖着钉,有的说能不能将木条斜着钉。出现了三种不同的情况。吴老师微笑着说:“感谢同学们想了这么多好办法。到底把木条钉在什么位置就能使这把即将散架的椅子加固起来呢?带着这个问题,咱们共同来研究三角形的知识,你们一定会有一个惊喜的发现。”教师说话不多,却为新知识的学习做好了心理准备和知识准备,同学们带着疑问走进了数学知识的探索中。一个同学上来了,没能把这个用木条钉成的三角架拉动;又有一个同学上来了,三角形木架仍然无动于衷;最后上来的是一个身高体重的“大力士”,居然也没能把这个小小的三角架拉动,三角形的稳定性就在活动中被孩子们发现了。这时,几位同学几乎是同时惊喜地喊了出来:“老师,那根木条要斜着钉在椅子上才会稳固!”接下来,同学们列举了大量的生活事例来说明三角形稳定性,如三角架子搭成的屋顶,输送高压电线路的铁塔架结构,还有一座座新建成的斜拉桥,上面一根根钢筋组合而成的也都是三角形的。„„三角形的稳定性在生产生活中发挥着神奇的作用。
“数学很有用”是被千百年来人们的生活实践所证实了的,这是数学的魅力所在,但又不是每个学生都能感受到的,这就需要教师去创设生活的情境,有意识地捕捉数学信息,采撷生活实例,去沟通数学与生活的联系。吴老师就是常用学生所熟悉的生活事例引入新课,创设生动活泼的学习情境。学生在熟悉的学习情境中,把自己与数学融为一体,常常在不知不觉中把握了知识的内涵,并且在生活实践中自觉地应用数学知识,取得了很好的学习效果。(四)简单数学
吴老师认为,让学生喜欢数学最重要的是让学生先得听懂数学,觉得数学很简单,一点也不难,这样才能学会数学。学生也的确如此,学生只有听懂了数学,才能学会数学,才可能喜欢学数学。
吴老师在教学中关注每一个孩子的发展,让每一个孩子都抬起头来走路,不让任何一个孩子扮演“失败的角色”。尤其是对学习有困难的孩子,吴老师更付出了加倍的爱,帮助他们扬起自信的风帆,使他们感受成功,从而树立起“我能学好数学”的信心。吴老师常坐下来和学习有困难的孩子一起寻找分析“听不懂、学不会”的原因。让他们在听懂了、学会了的感受中觉得数学简简单单,从而萌
发对数学知识的喜爱。吴老师始终认为,只有听懂了,学会了,才有可能喜欢数学。
吴老师就是这样让孩子喜欢上数学的。在吴老师的课堂上,数学是简单的,有趣的,有用的,奇妙的。所以,无论是怎样的一个孩子,只要是在吴老师的课堂上,都会不知不觉的爱上数学。
老师们,我们喜欢吴老师,我们感悟吴老师,我们走进吴老师,我们学习吴老师。让我们也在吴老师的引导与感染下,和我们的孩子们一起走进有趣的、奇妙的数学乐园吧!
第三篇:吴正宪讲座整理稿
吴正宪讲座整理稿
(2012-06-28 20:59:18)
转载▼ 标签:
杂谈
思考:为什么同样的40分种,同样的教学内容,同样年级的学生,由于经历了不同的学习过程,数学教育的效果就不同呢?
以小学六年级数学“圆的周长”一课为例,例谈两种不同的教学过程带给我们的思考。课例片断
(一)教师要求每一位学生用课前准备好的大小不等的圆,分别测量它的直径和周长(滚动、绳绕),再计算出该圆周长与直径的比值,并提出看谁测量得准,既∏=3、14
一组4位学生的“实践”活动 生1:早已知道结果,不再操作 生2:翻看着数学书
生3:认认真真测量着、计算着 生4:东张西望,不时进行着“破坏” 汇报开始:
学生踊跃举手并发言
生1:有幸被成为第一位发言者,比值是3、12 老师高兴地表扬了他:很好,你很认真 并将“
3、12”板书在黑板上
[这是位非常聪明的学生,其实他早就知道“老师不就想要一个3、14吗?”为了不引起老师的怀疑,他选择了离标准答案很接近的“
3、12”] 这时,其他同学也分别汇报:“
3、15”、“
3、17”、“
3、11”„„
老师很高兴地把这些数据一一写在黑板上,学生窃喜“我榜上有名!” [学生的心理学比教师强多了,但是这些数据怎么得来的呢?老师并没有考察了 生4被老师点名发言,他不知如何是好,吱吱唔唔,学生2窃语“你说3、14”生4毫无底气地照说“
3、14”
教师却喜出望外给了他赞扬,非常正确,太好了,你做得最认真,并用红笔把“
3、14重重地写在黑板的正中央
[没有按要求操作的学生,却得到了老师的最高奖赏]
此时,教师终于提出了本节课中最有价值的一个问题“还有不同意见的吗?”
生3:老师,我计算的比值是2、98„„
教师打断了他的话,表情是僵硬的,怎么会是2、98呢?你先坐下,再认真量一量,再仔细算一算,面向大家,提醒同学们做事一定要认真![学生的学习现实就这样在不经意中被扭曲了]
老师慷慨地表扬了同学们在今天数学课堂上走了一番当年科学家探索发现数学知识的道理,并出示祖冲之画像,配乐诵读,进行爱民族,爱科学的教育。
听了这个教学片断的介绍,此时此刻的您在想些什么?
课例片断
(二)说明:该教师首先进行课前调研,80%以上的学生已对圆周率有所了解,知道了“∏=3、14”更有接近40%学生已知道圆周长公式。
在这样的现状下,学生对测量圆的周长不会真正感到“兴趣”和“需要”,测量活动的目的,不仅仅是实验的结果,而实际测量这一操作活动又是学生经历人类对圆周率探索过程所必须的。因此,这位教师安排了如下“操作实践”活动。
思考:
1、怎样让学生用科学的研究态度和方法去科学地解决问题。
2、在揭示数学文化的时候是怎样的一种态度? 课堂实录: 提出问题
师:实验的次数为什么要测3次?
生1:防止有一次出现实验误差,有两交出现误差。生2:每次实验不一定保证都那么准确的,做一次实验来确认一下。师:多次实验希望能获得更准确的数据。
生3:做3次实验以后可以求平均值,这样更精确。另外,3次实验还可以用不同的方法。
师:实验打算分工合作,还是交换? 生齐:合作„„
师:都是为了数据尽可能精确,根据你们小组拿到实验对象的实际情况,选择你们刚才所说的可行方法。学生开始实验 学生交流汇报
师:选择你们组认为最精确的,操作最成功的一组数据。
生1:杯口的周长是232毫米,杯口的直径,我们测了两次,一次是70毫米。师:周长是232这一次直径是多少?(师将数据汇总填入表格中)生2:我们的周长是217.5毫米。师:“5”是怎么来的? 生2:大概估出来的。师:好!精益求精。
生3:我们测量两次,取了平均数,周长是209,直径是64.25,64.25是平均数。
生4:平均数是86.5,直径是24.5 探究
师:观察一下,这是我们亲手实验找到的数据,发现了什么?有什么想法? 生1:周长永远是直径是3倍多一些 师:是这样吗?
生2:我们组的数据都不准确,不知道是多少?而且这个尺子也不够精确。师:就是说,这些数据你认为都是汪准确的,那么不准确的原因是什么? 生3:我可以推断尺子也不标准。
师:尺子不标准,或者是测量的方法,都有可能造成误差,还有吗?
生4:我们用肉眼看尺子有时会和实际不一样,实际是24.5,测量出来可能是23.几 师:小数点后面的一位是估计出来的。
生5:还有一点,因为我们不是专业人士,我们的实验可能会一些错误造成误差。
师:你这个错误是指操作上的失误,但是这个方法还是可能用的,还有吗? 生6:我觉得这个圆形,剪的也有误差。
师:可能是会有一些不太圆,是吗?包括我们的纸杯,稍微捏一捏可能就有变化。
种种的误差会带来诸多的误差,你认为这种误差可以怎样避免,可能通过实验或测量的方法把这种误差统统都避免掉吗? 生齐:不能!
师:但它又是属于正常的,还是不正常的,看看计算结果。
(师直接用电脑算出计算结果)拖动一下,好了,快不快?这就是电脑的优势。当然,它是根据我们人的指令来进行的。但就是算得快。
观察结果,现在你们有什么感觉?(显示数据)生齐:第7个数据比较准。
师:要我说,都已经相当准了,根据你的实验,周长和直径应该是3倍多的关系是吗?比值是3点多,你们的测量已经非常精确了,已经很不容易,很了不起了,这么简单的工具,简单的实验方法,不好的实验条件,桌面也很滑,能测出这么准确的数据已经很不容易了。
但是,我们能否根据我们的实验结果来断定,我们已经找到了圆的周长与直径的关系了? 生齐:不能。师:为什么?
生1:因为我们的数据有误差。师:对。这是我们已经预想到了。生2:测量方法也有误差。
师:这种误差又不可能避免,那怎么办?如果我们得不到精确的周长的长度,那也就意味着我们永远也无法用测量实验的方法得到圆的周长的长度,那么怎么办?那我们怎么得到圆的周长也直径的关系?
中国的一位古人曾经说过(出示课件)割之弥细,所失弥少,割止又割,以至于不可割,则面合作,而无所失矣!(已经没有什么区别了?)
出示正多边形
师:提出这个思想的人是我国魏晋时期的数学家刘幑,他正是用了这样一种全新的割圆思想,将圆的周长与直径的比值计算得更精确,这种方法被称作割圆术。
后来,我们的另一位著名的数学家也就是你们熟悉的祖冲之,继承并发扬了刘幑的思想,经过艰苦卓绝的计算,将圆的周长与直径的比值第一次精确到了3.1415926—3.1415927之间。这是人类第一次将这个数据算得如此精确,这个数据保持了一千多年无人超越,就是根据割圆思想,你们刚才想到了很了不起。
当然,再后来经过无数中外的数学家研究得出
课件出示:圆的周长与直径之比是一上固定数,是一个无限不循环的小数。对圆周率∏探索,人类经历了几千年的时间,今天,我们用一节课来感受和体验,感受这个人类共有的材富,实际上正如你们查找的资料一样,小数点的后面是无穷无尽,人类对真理和完美的追求是永无止境的。
两个教学片断分析:
看了教学片断
(二)可能会引起我们新的思考,两个教学片断让我们心中感到沉甸甸的。作为数学教育工作者,我们强烈地感到了一种责任——数学教育给予学生的该是什么?(一通则百通)我们的一点思考;
1、追求数学教育的最高境界,让学生在“求真 求实”的数学教育中学会老实做人,踏实做事。
上述案例,没有痕迹,却直接指向学生的心理体验,直接指向学生的情感、态度、价值观 案例
(一)中的学生
1、学生4非常清楚,他们的回答没有依托自己的实践和探索,却得到了老师的赞赏,学生3的回答是经过自己老老实实、认认真真操作和计算得出的结论,却遭到了教师“不公平”的待遇。
于是一种观念悄然产生“投机取巧有利可图,老实人必定吃亏”。不难想像,不宪政在课堂中一次次以历这样的体验,反复的经验必定会逐渐形成一种价值观。
没有痕迹,到潜移默化地使学生对“实事求是、诚实守信”的“有痕迹”的教育发生动摇,而我们习惯的这种有痕迹的教育与学生所经历的深刻的心理体验相比,却是那样的苍白无力。(写在我们的心里。教育的智慧不可复制)一个表情,一个手势都表明一种思想; 尊重学生已有的知识经验,知识基础; 三维目标的落实是一个艰苦的过程; 有机的三维目标就是最大的教学艺术„„
案例
(二)该教师没有像第一位教师那样提出“看谁测量得准”而是提出“实际测量的结果是多少就说多少。”该教师没有像第一位教师那样对待不可避免的误差,而是宽容地接纳误差,客观地正视误差,实事求是的教育就是这样润物无声地浸润在师生真诚的交流中。
学生在其中也初步体验了数学探究的真谛——求真、求实!(脱离了求真求实,教学艺术从哪里来?)
2、追求数学探索的科学精神,在探索数学知识的过程中,培养学生科学的研究方法和态度,培养学生的创新思维。
案例
(一)的教师只要求学生测量一次就急于得出“3.14”的结论,并用结果是否接近标准答案作为衡量学生探究是否“认真”的唯一标准。这就使探究活动徒具形式而缺乏了它的本质属性。这样的教学活动不仅失去了探究的科学性,也禁锢了学生的创新思维。
案例
(二)该教师为学生创设了宽松的探究环境,学生亲历了三次以上的操作实践、探索。在交流中发现数学规律,这种严谨求实的探究过程闪烁着理性科学的光辉。在这个过程中,学生获得的情感、态度、价值观,比单纯获取圆周率的知识更重要!它无疑为学生科学探究态度的形成打与了重要基础。
3、追求数学教育的文化品味,丰富学生的数学涵养,提升了学生的认识水平。
案例
(一)教师在揭示圆周率时,像例行公事一样,推出了学生早已熟悉的“祖冲之”进行着爱民族爱祖国的教育,试图让学生产生自豪感。
案例
(二)教师勇敢地提出“科学地研究这个带数的第一人是阿基米德。数形结合地介绍了刘幑的“割圆术”,接着谈到祖冲之是站在前人的肩膀上才有了将∏值精确到小数点后7位的辉煌成就。他特别补充到,更有后来的许许多多中外数学家呕心沥血,甚至付出一生艰苦演算、证明,才使人类终于认识到圆周率是一个无限不循环小数。
在此过程中,学生亲历多边形逼近圆的过程,体会着割圆术所闪烁的化曲为直,极阴等丰富的数学思想内涵。
与此同时,学生还体会到人类对真理和完美的追求正象圆周率的小数无穷无尽一样,也是永无止境的,学生的心灵受到触动,强烈地感受数学的文化价值。
学生探究失败了怎么办?
教师是数学学科德育中的重要人物!教好数学基础的教师 教出数学味道的教师 教出数学品味的教师 教出数学境界的教师 教出人文精神的教师
第四篇:吴正宪与小学数学
《吴正宪与小学数学》读后感
我怀着崇敬之情读完《吴正宪与小学数学》。吴正宪,一位不仅能给予学生智慧,还能给予学生力量的立体教师。她对学生、对教育的爱,让我感动;她为这份爱所付出的艰辛,让我敬佩;她在教育之路上收获的快乐与幸福,让我憧憬。
一、因为爱,她走上科研路。
1954年出生的她,在那个特殊岁月没能实现儿时的大学梦想。年仅16岁的她踏上了讲台。打小不甘平庸的她,全身心投入教学中。可是,当她面对表情变得越来越麻木、目光越来越呆滞的学生时,她开始拷问自己:难道要永远在这条没有阳光、没有笑容的路上走下去吗?出于良知与责任,她走上了教改之路„„。读完她的成长之路,我非常惭愧。比照过去的自己,除了勤恳地工作,对学生是“恨铁不成钢,爱你没商量。”我有关注过学生的喜忧吗?以考试成绩衡量工作的优劣得失,已成为我们的一种习惯——直到新课程的出现。面对孩子的痛苦,吴老师的自责与痛心,都缘于她对孩子的深爱。寻找快乐课堂、“一切为了孩子的发展”是她的初衷,今天写进了的数学新课程标准,是指导数学课堂实践的教学理念.二、爱,让她上下求索而无怨无悔、她拜师学习以求课堂教学的高境界。每天早上天未亮,她先把女儿送到幼儿园,再去听第一位师傅马芯兰老师的一节数学课,然后回到自己所在学校上两节数学课。其中的路途比较远,可谓东西两边跑,可她心甘情愿。边听课边思考,学习与反思相结合,让她认识到教改并非只是教学方法的改革,而是更多地融入教育者的教育思想、灵魂和对学生浓浓的爱。与第二位师傅一起策划设计小学数学教改蓝图。经历了教材重组,教学实践,成果汇报总结等阶段。其中最让我肃然起敬的是她在教学实践过程中,整理了《小题库》、《难题辨析》、《思维训练》、《趣味数学》、《教海拾贝》等笔记。为了充实自己,她阅读了学科以外的很多书籍,如《中国通史》、《唐诗三百首》、《教育心理学》„„。随着她的教改深入,她的工作愈发地忙碌,可是她总能做到年年有目标,月月有计划,周周有安排。她把教育教学工作当作一项事业,为之奋斗而无怨无悔;她把教育教学工作当作一门科学,不断探索而乐此不疲;她把教育教学工作当作一种艺术,追求美好的境界和神奇的效果。
三、爱心羽化智慧。
在听了张梅玲老师的《心理学与小学数学教学改革》的系列讲座后,吴老师对教育及教育对象的爱从此充满智慧:
她对寂寞的课堂形成的原因有了顿悟——忽视了师生情感交流。
她把“让学生喜欢我”、“让学生喜欢数学”、“让学生学会学数学”作为数学教学的终极目标。
她利用、并创造机会建立民主、平等、友好、和谐的师生关系:下雪了,学生在数学课堂上表现出对冰雪世界的向往,她平息批评指责的冲动。课后,她和孩子们一起走进冰雪世界尽情地玩耍,学生对她说:“老师,我们真的很喜欢您。”;她坚信成功亦是成功之母,制造给孩子重新跃起的机会,在体验成功后露出了自信的笑脸。她新接一个五年级的班级,用一个暑假的时间打造开学的第一课,以“你知道阿基米德检验金冠的故事吗?、认识我吗——伟大的0、别小看它——小数点、车轮为什么制成圆的?1+2+3+„„+99+100=?”等等许多有趣的问题,粘住学生的心,让他们喜欢数学。生动的故事,扣人心弦的比赛,人人参与的游戏,象一个个美丽的陷井,使孩子们不由自主地陷入数学的思考中。为了她所爱的事业,她可谓使浑尽浑身解数,这些高招,闪烁着智慧的光芒。
四、汗水绘出精彩。
思想理论的成熟用苦练与积累浇灌。勤于笔耕的她继续记录着《教学有感》、《值得回味的课》„„她的教改文章,实验报告、学术论文渐渐地出现在全国多家教学刊物上。著书有《吴正宪数学教例与教法》、《吴正宪创造了孩子们喜欢的数学课堂》、《我与小学数学》等。荣获“首都基础教育名家”等多个含金量很高的称号。面对先天不足的吴老师所取得的成绩,我想起这几年常用于鼓励教师的一句话:写十年教案,不如写三年教学随笔的收获大。确实啊,这是提升理论水平,积累经验的最好办法。
课堂教学的风采凸显出她无限的人格魅力。
《小括号的认识》:学生用——12×(3+4)的办法解决了——李师傅上午工作4小时,下午工作3小时,平均每小时做12个零件,李师傅一天一共做了多少个零件?(要求列综合算式解答)这样的数学问题后,很多学生都接受了小括号。不料,学生小维向吴老师发起挑战“我认为小括号没什么了不起的,没有它的存在,照样可以解决实际问题。”边说边在黑板上写下算式:12×3+12×4,吴老师肯定了他的做法,同时试图说服他接受小括号,小维说,“反正我不喜欢小括号。”面对偶发事件,吴老师沉思片刻,她看到讲台上摆放了许多学生为灾区捐献的图书,计上心来,说,王红同学积极支援灾区,他有92本课外读物,自己留下32本后把剩下的书送给了5个小朋友,平均每个小朋友得到几本?请试列综合算式解答。故意让小维上前板演,小维边写边不好意思地说:“我在算式中画了一个小括号,表示先求92与32的差,最后再除以5。吴老师不温不火地将了一军:“这个小括号有什么了不起,不写它不是也可以解决问题吗?”小维急了,这个小括号非写不可,不然就得先算32÷5这步了,不符合题目的要求。旁边的同学说,你现在是不是和我们大家一样喜欢上小括号了,小维不好意思地说了一句,“小括号挺好的。”这个细节的精彩处理,使“白开水变成了茅台。”而茅台的芳洌,来源于她对学生的尊重,得益于她平时教学的积累,凸显她高超的教学机智之魅力。
为让学生在体验中认识“同圆半径相等这个特性”。吴老师对学生说,请同学们坐上不同车轮的汽车,好好体验一下。屏幕上出现了不同形状车轮的汽车在行驶,车轴心运动的轨迹清晰地显示在同学们的眼前:(有方轮、椭圆、圆,路线有一高一低的折线,一高一低的弧线,还有直线)随着不同形状的车轮的滚动,孩子们各自寻找着自己的感觉,身体随着摆动,如身临其境一般。最后,学生们感受到只有坐在圆形车轮的车上才会平稳,因为同圆的半径都相等。此时,她是快乐与哲理的使者。
学习了分数应用题,吴老师向孩子们介绍了“丢番图墓碑之谜——神奇的碑文”。大意是:过路的人啊,这儿埋葬着丢番图,请计算下列数目便可知道他的一生经历了多少个寒暑。他的一生的1/6是幸福的童年,1/12是无忧无虑的少年。再过1/7,他建立幸福的家庭。5年后儿子出生,不料儿子先其父4年而终,年龄不过父亲享年的一半,晚年丧子人可怜,悲痛之中度过风烛残年。请你算一算,丢番图活到多少岁,才和死神见面?还有曹冲称象的故事,既出现在策略学习的课堂上,又出现在估算的课堂中。她博学的魅力,让古今中外名人趣事为她所用,同时数学也为此蒙上神秘面纱,教育充满诗情。
“判断一又三分之一是不是最简分数。”、“把一个圆分成两份,每一份一定是它的二分之一吗?”等象这样每每意见分歧的时候,吴老师大多采用反方与正方两大阵营展开辨论的办法,让学生在唇枪舌剑中把理辨明,教学的难点也就突破了。她仿佛是课堂中一只无形的手,把学生推到主角的位置。在阅读课堂实录文本时,我冥思苦想,也无法知道她这种活力课堂是怎样炼成的。后来,看了《相遇问题》的教学视频,那是前年她去边远山区送教时的一节示范课。面对山里的孩子,她在课堂中完全充当合作者的角色,以学生的姿态参与提问,她这样做是向学生传递着学习数学的方法——“弄清为什么这样做”永远“比怎样做”更重要。我终于明白,要想让课堂充满活力,教师首先要有耐心,要等待,要宽容。说到底还是教育思想在起作用——课堂上,你想让你的学生学什么,你就会组织怎样的数学课堂学习。吴正宪老师把“让学生养成学习的好习惯”作为她数学课堂的教学目标,于是有了精彩辨论、仔细倾听和彼此接纳。此时,她是课堂这个舞台搭台布景的高手。
合上书本,我痴痴地想,我要是能成为她的学生,那才叫一种享受„„嗯,目前的现实是,我如何才能让我的学生喜欢我、让我的学生喜欢数学、会学数学?好好努力吧,我对自己说。
第五篇:吴正宪与小学数学
《吴正宪与小学数学》 我的成长之路
一、傻孩子,长大了
二、父亲给了我什么
三、生活的磨难是成长的加速器
四、“残渣余孽”也到过中南海
五、“站起来”的感悟
六、只争朝夕,用心实践,努力创新
七、永远的角色我的教育观
一、作为一名数学教师,我对数学教育的认识
二、作为一名教师,我对教育的认识
四、数学主题阅读的设计
――学生自学斐波那契数列案例
五、常规教学中应用设计――基本不等式的教学
六、引发学生创造的教学设计点滴社会反响
一、搏击中,你的天空最美
二、给你数学的美丽天空
――记北京大学附中数学特级教师张思明 《中国教育报》记者
三、数学可亲育人无痕
三、作为一名成长中的教师,我对青年教师成长的认识――记北大附中教师张思明《中国教育报》
四、从数学建模到课题学习
――激发学生走向创造的想法和做法
五、尊重是前提,“四性”是要素,学科是特色――我做教育的感悟
六、用心做教育
――我想对自己和大家说的话走进课堂
一、课堂中的数学应用与建模――磁带问题的案例与说明
二、结合立体几何数学应用
――“电视塔问题”课堂实录摘要
三、课堂内的数学实验
――粮食堆的测量问题课堂实录摘要
四、教学生创造教学生应用――张思明老师教学风格浅析五、一位中学教育家的教育生活
――记北京大学附属中学教师张思明 《中小学管理》杂志记者
六、责任和动力
――在“张思明教育思想研讨会”上的发言 北京大学硕士研究生七、一点见识
――在“张思明教育思想研讨会”上的发言首都师范大学
八、教学回归生活,让学生得到真正发展
――对张思明教育教学艺术的理性剖析 北京师范大学教育学院