第一篇:吴正宪讲座有感
《关于数学核心素养培养》有感
9月25日有幸聆听小学数学专家吴正宪老师的讲座,通过吴正宪老师3个小时的演讲,我看到她创造了孩子喜爱的课堂。我幸福地目睹了大师的风采——她被誉为“爱与美的旋律”,她就是数学天堂的使者!她是爱,是暖,是希望,她是人间的四月天!她是人间的四月天,希望点亮了孩子们的心田,温暖润泽了老师们的心房。她就是人间的四月天。
通过吴正宪老师的言传身教,我学习到吴正宪老师的教学理念,“走进学生心中,读懂学生需求,站在学生的角度看数学,按照学生的认知规律和心理需求来设计、组织教学。”
通过吴正宪老师的教学实例分析,通过吴正宪老师的细心讲解,我从吴老师身上学到了一位小学数学专家的教育理念及心得。总结出来用三个字概括,就是:爱、勤、创。
爱——做好教育工作的核心。作为一个教师,只有真心地爱教育事业,爱学生,才能与学生在课堂上碰撞智慧,交汇心灵,感悟灵魂。因为“爱是教育最美的语言”,只有充满爱的教育才是“心心相印的真教育”。
勤——做好教育工作的基础。吴老师告诉我们要做到三个“勤”:勤于学习;勤于思考;勤于笔耕。教育者应该是一个终身学习者,在实践中学习,在学习中不断成长,不断反思。同时,面对动态变化的教材、学生、课堂,教育者又应该是一个思考者,让自己保持着一种动态的变化,在变化中积累成长智慧。最后,教育者还应该善于记录下自己在教学上的所思所想,点滴的体会都是智慧的积累。只有善于耕耘,教育之路上才能铺砌成功的砖块。
创——做好教育工作的目标。吴老师用自己的课堂实践着什么是创造。她说过“课堂是师生情感共鸣、思维共振、智慧共生的舞台,做‘传授知识、启迪智慧、完善人格’三位一体的立体教师,创造孩子们喜欢的课堂,做孩子们喜欢的老师,是我一直的追求。”我们也应该向吴老师学习,用智慧启迪智慧、用创造唤起创造、用心灵感染心灵,让学生在实践中体验,在体验中思考,在思考中创造。
第二篇:吴正宪讲座
让学生喜欢数学—— 解读吴正宪的教育理念讲座稿
讲座时间: 2015年5月12日下午
主讲人: 额尔登花
老师们:大家好,我今天讲座的内容是《让学生喜欢数学—— 解读吴正宪的教育理念》。提起吴正宪老师,大家应该非常熟悉了吧!是的,吴正宪老师是当今小学数学界的创新者,是全国所有数学教师的引领者,人们常常这样描述吴正宪老师:
用心去拥抱事业;用爱去拥抱生活;用情去绘画风采。
我们知道,凡是上过吴老师课的孩子们和听过吴老师课的老师们都常常被她高尚的师德、优秀的人格以及独具魅力的教学艺术所深深地感染着。因为吴正宪老师是在用心、用情、用爱与孩子们交流,她赢得了孩子们的喜爱、尊重和信任。老师们,想知道吴老师是如何让自己的学生喜欢上数学课的吗?那就让我们再一次的解读吴老师的教育理念和她创造的鲜活的课堂教学案例吧!但愿我的讲座能给老师们有所思考有所收获有所感悟!
下面,我想从四个方面来和老师们交流交流,吴老师是怎样让学生喜欢数学的:
(一)有趣的数学
学生如果对数学发生兴趣,他就会酷爱数学的学习,就可以持久地集中注意力,保持清晰的感知,激发丰富的想象力和创造思维,产生愉悦的情绪体验,形成“爱学——会学——学会”这样一个良性循环。萌发学生学习数学的兴趣,激发学生学习数学的求知欲望,调动学生学习数学的积极性,让学生满怀信心地参加学习探索数学的活动中。吴老师是这样做的: 1.有趣的开始
吴老师认为,第一印象太重要了,它往往会深深而长久地留在记忆里,不可磨灭、难以抗拒。所以接新班吴老师都把“如何让学生喜欢我的数学课”作为首先思考的问题,独具匠心地上好新接班的第一课,使师生彼此留下美好的第一印象,让孩子们从上第一节课开始就是感到数学是有趣的。2.有趣的探索
“数学是有趣的”这种感受不仅是在学习数学的开始,更重要的是在学习探索数学知识的整个过程中。苏霍姆林斯基曾说:“兴趣并不在于认识一眼就能看到的东西,而在于认识深藏的奥秘。”让学生感受到数学知识的有趣,就要在学生面前揭示出一种新东西,激发他们的惊奇感,让同学们感受到数学真的有趣。例如学习三角形分类,吴老师设计了“猜一猜”的活动,激发学生的兴趣。“下面的三角形各露出了一个角,你能猜出它们各是什么三角形吗?”学生甲试探性地回答:“只露出一个直角,它是直角三角形。”当从口袋中取出三角形纸片时,同学们不约而同地喊了一声:“耶,猜对了!”学生乙站起来:“只露出一个钝角,它一定是钝角三角形。”“又猜对啦!”同学们沸腾起来。学生丙以此类推,胸有成竹地说:“只露出一个锐角,它一定是锐角三角形。”“肯定吗?”吴老师追问了一句,同学们陷入沉思。“不一定。”有人忍耐不住,喊出来。当吴老师把只露出一个锐角的直角三角形纸片高高举起的时候,再也没有人喊是锐角三角形了。在“猜一猜”活动中,同学们学会了观察,学会了思考,有趣的数学在孩子们积极主动的探索中显得更有味道。3.有趣的数学多着呢
生活中处处有数学,数学中有趣的事情太多了。吴老师热情地牵起孩子们的手到无边无际的数学海洋里寻秘探宝,让孩子们感到数学不再枯燥乏味,而是丰富多彩。
吴老师曾经绘声绘色地向同学们介绍过曹冲称象的故事,同学们听得入了神,吴老师马上把话锋一转:“从曹冲称象的故事中你知道了什么?”同学们热烈地议论开了:
学生甲:听了曹冲称象的故事,我懂得当遇到困难时要积极想办法来解决。学生乙:曹冲真聪明,我知道了石头可以代替大象。
学生丙:我爸爸曾经考过我一道题,一只小狗等于两只小猫的重量,一只小猫等于三只小鸡的重量,问一只小狗等于几只小鸡的重量?当时我没有解答出来。今天听了曹冲称象的故事,我会解答了。不就是把猫换成鸡吗!
显然这位同学已产生了联想。曹冲称象等量代换的数学模型,已在孩子们头脑中初步建立起来。吴老师就地取材,顺手把这道题板书在黑板上: 1只小狗=2 只小猫 1只小猫=3只小鸡 1只小狗=()只小鸡
同学们叽叽喳喳地议论开了:一只小猫换三只小鸡,两只小猫可以换六只小鸡,一只小狗就等于六只小鸡的重量。这不是跟用石头代替大象的道理一样吗。曹冲称象的故事带给同学们的影响是深刻的,它向同学们展示了一幅有趣的生活画面,使学生感受到生活中处处有数学,数学问题解决中处处闪烁着智慧的光芒。古代趣事,信手拈来,既有味道,又启迪孩子们的智慧。在数学的长河中,吴老师精心采摘一朵朵趣事小花,奉献给孩子们,和他们一起欣赏。五彩缤纷的数学乐园深深地吸引着同学们。数学的趣事多着哪!正是这种无形的学习动力,促使孩子们兴趣盎然地去发现,去探索。(二)奇妙的数学
吴老师让学生喜欢数学的第二个法宝就是让学生觉得数学是奇妙的!亚里斯多德曾经说过:“思维自疑问和惊奇开始”。如果学生对所学知识常常发生疑问和感到惊奇,对数学时时有一种奇妙的感觉,还能不喜欢数学吗?教学中,吴老师利用孩子们好奇心强的心理特征,有意识地制造一些悬念,提供补充一些有趣的素材,和孩子们一起领略数学的神奇,使之更加喜爱数学。
例如,学习三角形内角和是180°的知识时,吴老师创设了这样的情境。请同学们事先准备好各种不同的三角形,并分别测量出每个内角的角度,标在图中。上课开始,第一个教学活动就是“考考老师”。学生报出三角形其中两个内角的度数,请老师猜一猜第三个角是多少度。每次问题的抛出,吴老师都对答如流,准确无误。同学们惊奇了,疑问由此产生:“我们从家带来的三角形纸片,大的、小的、直角的、锐角的,老师又没有见到,她为什么猜得这样准确呢?”同学们带着疑问走进数学知识的发现和探索中,通过亲自动手实践发现规律。有的把三个角撕下来,重新拼在一起。如:有的用折纸的方法:有的用测量后再计算的方法:同学们通过观察、操作、计算等不同的方法,得出了三角形内角和是180°。有了这个结论,学生们很快揭穿了“老师总能猜对”的秘密。接下来又是一次神奇的感受,“根据三角形内角和是180°,你能推导出四边形、五边形、六边形„„一百边形的内角和是多少度吗?”
同学们终于发现了多边形内角和等于180°×(边数-2)的规律,在发现规律的过程中感受到了数学的神奇。
老师们,好奇之心,人皆有之。无论大人或孩子都会对一些神奇的东西发生兴趣。尤其是小孩子对一些奇妙的东西就更喜欢接触和研究。爱迪生曾说过:“凡是新的不平常的东西都能在想象中引起一种乐趣,因为这种东西使心灵感到一种愉快的惊奇,满足它的好奇心,使之得到他原来不曾有过的一种观念。”因此,我认为好奇心、奇妙感在学生进行探索中占有十分重要的地位。奇妙感、好奇心在学习的过程中会自然地转化为强烈的求知欲望,是孩子们学习和探索的内动力,吴老师非常明白这一点,也做到了这一点!
(三)有用的数学
如果一个人对数学有一种需要感,感受到数学在生活中很有用,很有价值,他就会喜欢数学。吴老师在课堂上也深深的让学生体会到数学的用处,让学生从内心爱上了数学。数学很有用,吴老师不是靠说教,而是引导孩子们亲身体验。例如,吴老师在教学“三角形具有稳定性”的这一内容时,她没有照本宣科,而是很自然地从生活实际进入,引起了孩子们极大的学习兴趣和探索热情。上课开始,吴老师将一把快散架的椅子摆在了同学们面前,说:“有件事情想让同学们帮忙,这把椅子摇晃了,需要加固一个,这根木条钉在哪里比较合适呢?”同学们热闹起来,有的说将木条横着钉,有的说将木条竖着钉,有的说能不能将木条斜着钉。出现了三种不同的情况。吴老师微笑着说:“感谢同学们想了这么多好办法。到底把木条钉在什么位置就能使这把即将散架的椅子加固起来呢?带着这个问题,咱们共同来研究三角形的知识,你们一定会有一个惊喜的发现。”教师说话不多,却为新知识的学习做好了心理准备和知识准备,同学们带着疑问走进了数学知识的探索中。一个同学上来了,没能把这个用木条钉成的三角架拉动;又有一个同学上来了,三角形木架仍然无动于衷;最后上来的是一个身高体重的“大力士”,居然也没能把这个小小的三角架拉动,三角形的稳定性就在活动中被孩子们发现了。这时,几位同学几乎是同时惊喜地喊了出来:“老师,那根木条要斜着钉在椅子上才会稳固!”接下来,同学们列举了大量的生活事例来说明三角形稳定性,如三角架子搭成的屋顶,输送高压电线路的铁塔架结构,还有一座座新建成的斜拉桥,上面一根根钢筋组合而成的也都是三角形的。„„三角形的稳定性在生产生活中发挥着神奇的作用。
“数学很有用”是被千百年来人们的生活实践所证实了的,这是数学的魅力所在,但又不是每个学生都能感受到的,这就需要教师去创设生活的情境,有意识地捕捉数学信息,采撷生活实例,去沟通数学与生活的联系。吴老师就是常用学生所熟悉的生活事例引入新课,创设生动活泼的学习情境。学生在熟悉的学习情境中,把自己与数学融为一体,常常在不知不觉中把握了知识的内涵,并且在生活实践中自觉地应用数学知识,取得了很好的学习效果。(四)简单数学
吴老师认为,让学生喜欢数学最重要的是让学生先得听懂数学,觉得数学很简单,一点也不难,这样才能学会数学。学生也的确如此,学生只有听懂了数学,才能学会数学,才可能喜欢学数学。
吴老师在教学中关注每一个孩子的发展,让每一个孩子都抬起头来走路,不让任何一个孩子扮演“失败的角色”。尤其是对学习有困难的孩子,吴老师更付出了加倍的爱,帮助他们扬起自信的风帆,使他们感受成功,从而树立起“我能学好数学”的信心。吴老师常坐下来和学习有困难的孩子一起寻找分析“听不懂、学不会”的原因。让他们在听懂了、学会了的感受中觉得数学简简单单,从而萌
发对数学知识的喜爱。吴老师始终认为,只有听懂了,学会了,才有可能喜欢数学。
吴老师就是这样让孩子喜欢上数学的。在吴老师的课堂上,数学是简单的,有趣的,有用的,奇妙的。所以,无论是怎样的一个孩子,只要是在吴老师的课堂上,都会不知不觉的爱上数学。
老师们,我们喜欢吴老师,我们感悟吴老师,我们走进吴老师,我们学习吴老师。让我们也在吴老师的引导与感染下,和我们的孩子们一起走进有趣的、奇妙的数学乐园吧!
第三篇:吴正宪讲座整理稿
吴正宪讲座整理稿
(2012-06-28 20:59:18)
转载▼ 标签:
杂谈
思考:为什么同样的40分种,同样的教学内容,同样年级的学生,由于经历了不同的学习过程,数学教育的效果就不同呢?
以小学六年级数学“圆的周长”一课为例,例谈两种不同的教学过程带给我们的思考。课例片断
(一)教师要求每一位学生用课前准备好的大小不等的圆,分别测量它的直径和周长(滚动、绳绕),再计算出该圆周长与直径的比值,并提出看谁测量得准,既∏=3、14
一组4位学生的“实践”活动 生1:早已知道结果,不再操作 生2:翻看着数学书
生3:认认真真测量着、计算着 生4:东张西望,不时进行着“破坏” 汇报开始:
学生踊跃举手并发言
生1:有幸被成为第一位发言者,比值是3、12 老师高兴地表扬了他:很好,你很认真 并将“
3、12”板书在黑板上
[这是位非常聪明的学生,其实他早就知道“老师不就想要一个3、14吗?”为了不引起老师的怀疑,他选择了离标准答案很接近的“
3、12”] 这时,其他同学也分别汇报:“
3、15”、“
3、17”、“
3、11”„„
老师很高兴地把这些数据一一写在黑板上,学生窃喜“我榜上有名!” [学生的心理学比教师强多了,但是这些数据怎么得来的呢?老师并没有考察了 生4被老师点名发言,他不知如何是好,吱吱唔唔,学生2窃语“你说3、14”生4毫无底气地照说“
3、14”
教师却喜出望外给了他赞扬,非常正确,太好了,你做得最认真,并用红笔把“
3、14重重地写在黑板的正中央
[没有按要求操作的学生,却得到了老师的最高奖赏]
此时,教师终于提出了本节课中最有价值的一个问题“还有不同意见的吗?”
生3:老师,我计算的比值是2、98„„
教师打断了他的话,表情是僵硬的,怎么会是2、98呢?你先坐下,再认真量一量,再仔细算一算,面向大家,提醒同学们做事一定要认真![学生的学习现实就这样在不经意中被扭曲了]
老师慷慨地表扬了同学们在今天数学课堂上走了一番当年科学家探索发现数学知识的道理,并出示祖冲之画像,配乐诵读,进行爱民族,爱科学的教育。
听了这个教学片断的介绍,此时此刻的您在想些什么?
课例片断
(二)说明:该教师首先进行课前调研,80%以上的学生已对圆周率有所了解,知道了“∏=3、14”更有接近40%学生已知道圆周长公式。
在这样的现状下,学生对测量圆的周长不会真正感到“兴趣”和“需要”,测量活动的目的,不仅仅是实验的结果,而实际测量这一操作活动又是学生经历人类对圆周率探索过程所必须的。因此,这位教师安排了如下“操作实践”活动。
思考:
1、怎样让学生用科学的研究态度和方法去科学地解决问题。
2、在揭示数学文化的时候是怎样的一种态度? 课堂实录: 提出问题
师:实验的次数为什么要测3次?
生1:防止有一次出现实验误差,有两交出现误差。生2:每次实验不一定保证都那么准确的,做一次实验来确认一下。师:多次实验希望能获得更准确的数据。
生3:做3次实验以后可以求平均值,这样更精确。另外,3次实验还可以用不同的方法。
师:实验打算分工合作,还是交换? 生齐:合作„„
师:都是为了数据尽可能精确,根据你们小组拿到实验对象的实际情况,选择你们刚才所说的可行方法。学生开始实验 学生交流汇报
师:选择你们组认为最精确的,操作最成功的一组数据。
生1:杯口的周长是232毫米,杯口的直径,我们测了两次,一次是70毫米。师:周长是232这一次直径是多少?(师将数据汇总填入表格中)生2:我们的周长是217.5毫米。师:“5”是怎么来的? 生2:大概估出来的。师:好!精益求精。
生3:我们测量两次,取了平均数,周长是209,直径是64.25,64.25是平均数。
生4:平均数是86.5,直径是24.5 探究
师:观察一下,这是我们亲手实验找到的数据,发现了什么?有什么想法? 生1:周长永远是直径是3倍多一些 师:是这样吗?
生2:我们组的数据都不准确,不知道是多少?而且这个尺子也不够精确。师:就是说,这些数据你认为都是汪准确的,那么不准确的原因是什么? 生3:我可以推断尺子也不标准。
师:尺子不标准,或者是测量的方法,都有可能造成误差,还有吗?
生4:我们用肉眼看尺子有时会和实际不一样,实际是24.5,测量出来可能是23.几 师:小数点后面的一位是估计出来的。
生5:还有一点,因为我们不是专业人士,我们的实验可能会一些错误造成误差。
师:你这个错误是指操作上的失误,但是这个方法还是可能用的,还有吗? 生6:我觉得这个圆形,剪的也有误差。
师:可能是会有一些不太圆,是吗?包括我们的纸杯,稍微捏一捏可能就有变化。
种种的误差会带来诸多的误差,你认为这种误差可以怎样避免,可能通过实验或测量的方法把这种误差统统都避免掉吗? 生齐:不能!
师:但它又是属于正常的,还是不正常的,看看计算结果。
(师直接用电脑算出计算结果)拖动一下,好了,快不快?这就是电脑的优势。当然,它是根据我们人的指令来进行的。但就是算得快。
观察结果,现在你们有什么感觉?(显示数据)生齐:第7个数据比较准。
师:要我说,都已经相当准了,根据你的实验,周长和直径应该是3倍多的关系是吗?比值是3点多,你们的测量已经非常精确了,已经很不容易,很了不起了,这么简单的工具,简单的实验方法,不好的实验条件,桌面也很滑,能测出这么准确的数据已经很不容易了。
但是,我们能否根据我们的实验结果来断定,我们已经找到了圆的周长与直径的关系了? 生齐:不能。师:为什么?
生1:因为我们的数据有误差。师:对。这是我们已经预想到了。生2:测量方法也有误差。
师:这种误差又不可能避免,那怎么办?如果我们得不到精确的周长的长度,那也就意味着我们永远也无法用测量实验的方法得到圆的周长的长度,那么怎么办?那我们怎么得到圆的周长也直径的关系?
中国的一位古人曾经说过(出示课件)割之弥细,所失弥少,割止又割,以至于不可割,则面合作,而无所失矣!(已经没有什么区别了?)
出示正多边形
师:提出这个思想的人是我国魏晋时期的数学家刘幑,他正是用了这样一种全新的割圆思想,将圆的周长与直径的比值计算得更精确,这种方法被称作割圆术。
后来,我们的另一位著名的数学家也就是你们熟悉的祖冲之,继承并发扬了刘幑的思想,经过艰苦卓绝的计算,将圆的周长与直径的比值第一次精确到了3.1415926—3.1415927之间。这是人类第一次将这个数据算得如此精确,这个数据保持了一千多年无人超越,就是根据割圆思想,你们刚才想到了很了不起。
当然,再后来经过无数中外的数学家研究得出
课件出示:圆的周长与直径之比是一上固定数,是一个无限不循环的小数。对圆周率∏探索,人类经历了几千年的时间,今天,我们用一节课来感受和体验,感受这个人类共有的材富,实际上正如你们查找的资料一样,小数点的后面是无穷无尽,人类对真理和完美的追求是永无止境的。
两个教学片断分析:
看了教学片断
(二)可能会引起我们新的思考,两个教学片断让我们心中感到沉甸甸的。作为数学教育工作者,我们强烈地感到了一种责任——数学教育给予学生的该是什么?(一通则百通)我们的一点思考;
1、追求数学教育的最高境界,让学生在“求真 求实”的数学教育中学会老实做人,踏实做事。
上述案例,没有痕迹,却直接指向学生的心理体验,直接指向学生的情感、态度、价值观 案例
(一)中的学生
1、学生4非常清楚,他们的回答没有依托自己的实践和探索,却得到了老师的赞赏,学生3的回答是经过自己老老实实、认认真真操作和计算得出的结论,却遭到了教师“不公平”的待遇。
于是一种观念悄然产生“投机取巧有利可图,老实人必定吃亏”。不难想像,不宪政在课堂中一次次以历这样的体验,反复的经验必定会逐渐形成一种价值观。
没有痕迹,到潜移默化地使学生对“实事求是、诚实守信”的“有痕迹”的教育发生动摇,而我们习惯的这种有痕迹的教育与学生所经历的深刻的心理体验相比,却是那样的苍白无力。(写在我们的心里。教育的智慧不可复制)一个表情,一个手势都表明一种思想; 尊重学生已有的知识经验,知识基础; 三维目标的落实是一个艰苦的过程; 有机的三维目标就是最大的教学艺术„„
案例
(二)该教师没有像第一位教师那样提出“看谁测量得准”而是提出“实际测量的结果是多少就说多少。”该教师没有像第一位教师那样对待不可避免的误差,而是宽容地接纳误差,客观地正视误差,实事求是的教育就是这样润物无声地浸润在师生真诚的交流中。
学生在其中也初步体验了数学探究的真谛——求真、求实!(脱离了求真求实,教学艺术从哪里来?)
2、追求数学探索的科学精神,在探索数学知识的过程中,培养学生科学的研究方法和态度,培养学生的创新思维。
案例
(一)的教师只要求学生测量一次就急于得出“3.14”的结论,并用结果是否接近标准答案作为衡量学生探究是否“认真”的唯一标准。这就使探究活动徒具形式而缺乏了它的本质属性。这样的教学活动不仅失去了探究的科学性,也禁锢了学生的创新思维。
案例
(二)该教师为学生创设了宽松的探究环境,学生亲历了三次以上的操作实践、探索。在交流中发现数学规律,这种严谨求实的探究过程闪烁着理性科学的光辉。在这个过程中,学生获得的情感、态度、价值观,比单纯获取圆周率的知识更重要!它无疑为学生科学探究态度的形成打与了重要基础。
3、追求数学教育的文化品味,丰富学生的数学涵养,提升了学生的认识水平。
案例
(一)教师在揭示圆周率时,像例行公事一样,推出了学生早已熟悉的“祖冲之”进行着爱民族爱祖国的教育,试图让学生产生自豪感。
案例
(二)教师勇敢地提出“科学地研究这个带数的第一人是阿基米德。数形结合地介绍了刘幑的“割圆术”,接着谈到祖冲之是站在前人的肩膀上才有了将∏值精确到小数点后7位的辉煌成就。他特别补充到,更有后来的许许多多中外数学家呕心沥血,甚至付出一生艰苦演算、证明,才使人类终于认识到圆周率是一个无限不循环小数。
在此过程中,学生亲历多边形逼近圆的过程,体会着割圆术所闪烁的化曲为直,极阴等丰富的数学思想内涵。
与此同时,学生还体会到人类对真理和完美的追求正象圆周率的小数无穷无尽一样,也是永无止境的,学生的心灵受到触动,强烈地感受数学的文化价值。
学生探究失败了怎么办?
教师是数学学科德育中的重要人物!教好数学基础的教师 教出数学味道的教师 教出数学品味的教师 教出数学境界的教师 教出人文精神的教师
第四篇:听吴正宪授课及讲座有感
听吴正宪老师讲座有感
在10月7日我有幸参加了在兴隆一中举办的吴正宪小学数学教师启动会,听了吴老师的讲座,令我获益良多。其中令我印象最深刻的是吴正宪老师执教的数学《重叠问题》,其中还做了关于《国家数学课程标准》的再修订的专题讲座。吴正宪老师的精彩课堂教学,不仅打动了每个学生,也彻底征服了所有参会的老师。课上完了学生们还是依依不舍,老师们更是意犹未尽。看吴老师的课,听吴老师的专题讲座,让我对课堂教学有了新的认识:上课必须先要读懂学生,必须从学生的实际出发,跟着学生的实际情况走,这样的课堂才是学生最喜欢的课堂,才是对学生帮助最大的课堂。
《重叠问题》一课的教学,吴老师没有讲什么是重叠,而是出了一个排队的题,“亮亮从左数是第5个,从右数还是第5个,这队一共有几个同学?”这时班里出现了不同的声音“11个”“10个”“9个”,吴老师没有马上说出答案而是让学生用自己能看懂,别人也能明白的方法去表示出来。吴老师在巡视过程中,把不同层次的学生、用不同答案的学生,都请到讲台上,然后把他们的方法一一呈现在学生面前。先让一种方法也没想起来的学生说一说做这道题的困惑在哪里?并安慰他“没想起来没关系,一会儿你一言我一语,就会明白了”。最后一个展示的是用画图来表示方法的学生。而最后一个离开讲台的却是开始一种搭配方法也不会,最终也是满载而归的学生。吴老师的这种教学正是从学生的认知水平出发,跟着学生的认知水平走。她让我看到了学生由不会到会的过程是这么简单、这么愉悦。
关于《国家数学课程标准》的再修订
《数学课程标准》是由2001年开始实施,10年后进行再次修订,专家分析新修订课标主要在基本理念、数学观、设计思路、领域名称、主要关键词、课程目标和内容标准七大方面发生了变化,吴老师重点从两方面讲述:
1、“双基”变“四基”。
“四基”即:掌握数学基础知识、训练数学基本技能、领悟数学基本思想、积累数学基本活动经验。
《国家数学课程标准》制定组组长、东北师大校长史宁中教授提出了“数学教学的四基”,引起了数学教育界的广泛关注。以前强调的双基是指基础知识、基本技能,双基教学重视基础知识、基本技能的传授,讲究精讲多练,主张‘练中学’,相信‘熟能生巧’,追求基础知识的记忆和掌握、基本技能的操演和熟
练,以使学生获得扎实的基础知识、熟练的基本技能和较高的学科能力为其主要的教学目标。现在提出的四基不但包括了掌握数学基础知识、训练数学基本技能、还增加了领悟数学基本思想、积累数学基本活动经验。“‘基本思想’主要是指演绎和归纳,这应当是整个数学教学的主线,是最上位的思想。”关于基本思想方法,史教授为我们分析了数学思想方法的四大育人功能:一是有利于完善学生的数学认知结构;二是可以提升学生的元认知水平;三是可以发展学生的思维能力;四是有利于培养学生解决问题的能力。
小学阶段涉及到的数学思想方法有:分类、转化、归纳、对应、比较、集合、统计、代换、数形结合、数学建模、猜想、符号化、方程与函数、极限等,在教学中我们要学会关注数学思想方法并渗透数学思想方法是非常必要的。
关于基本活动经验,基本活动经验就是教我们的孩子如何思考问题,最终要培养这个学科的思维方法,更高的就是培养学科的直观。因为对于数学来说,所有的结果是看出来的,而不是证出来的,而如何会看结果,完全是凭借经验,凭借思维形式和思维方法,所以现在在双基基础上变为四基的本质是想培养学生的思维形式和思维方法,培养学生的智慧和创造力。
“双基”变“四基”,为数学教师提出了更高的要求,要求数学教师必须为儿童的学习和个人发展提供了最基本的数学基础、数学准备和发展方向,促进儿童的健康成长,使人人获得良好的数学素养,不同的人在数学得到不同的发展。“双基”变“四基”,任重而道远。
2、“双能”变“四能”
“四能”即:发现问题、提出问题、分析问题和解决问题的能力。多年来我们都注重培养学生”分析”与”解决”问题的能力,却忽视了培养学生”发现”和”提出”问题的能力。现在的学生都缺乏对未知领域的一个探索意识,他们都已经习惯了在以有知识的层面来分析、解决问题,所以在课堂教学中作为教师的我们应给学生一个探索的空间和时间,让他们在活动中发挥智慧,来提升他们的“发现”和“提出”问题的能力。
总之,关于课程标准的再修订,最重要的一点就是:“双基”变“四基”;再说一点就是“双能”变“四能”,希望我们在以后的教学过程中能够融会贯通,灵活运用!
第五篇:听吴正宪讲座有感
听吴正宪——快乐数学课堂讲座有感
怀着无比敬佩的感情,我们于2012.3.25.和数学专家吴正宪老师来了一次零距离接触。吴正宪老师不仅能给予学生智慧,还能给予学生力量的立体教师。她对学生、对教育的爱,让我感动;她为这份爱所付出的艰辛,让我敬佩.吴老师善于激发每一位学生积极发言,对每一位发言学生都给予积极、肯定的评价,鼓励学生认真倾听,大胆发言;鼓励学生求异思维,勇于创新。在她富有激励性语言的鼓舞下,学生思维活跃,个性得到张扬,兴趣盎然,积极主动地参与探讨、质疑、创造等教学活动,让学生在思考、交流、倾听、争论和发现中学习数学知识,充分发挥了学生的主体作用。
吴老师给我们提供了精彩的范例。在教学<< 估算>>中,让学生对各种估算方法的“二次反思”,让学生在对自己或他人认识过程的再认识过程中,学生了解、监控、调节自己的思维过程,逐步学会认识自己,欣赏他人,培养学生的元认知能力。估算方法展示完后,我们的吴老师并没有就此打住进入练习环节,而是立刻出示了电脑精确计算的结果,其中一个是正确答案,另一个是出奇大的答案。然后让学生说说哪一个答案会是正确的,这样做的目的在于给学生建立一个“数量级”的概念,即估算的一个范围大小。紧接着又追问:“确定了精确的答案后,看看自己的估算结果,想不想说点什么?”这个时候就引起孩子们的反思了:我的估算结果合适吗?偏大了还是偏小了?大小合适还是差距
太大了?反思过后便促使孩子们判断自己的估算方法,调整自己的估算结果。可见,吴老师十分重视学生对估算结果的反馈和二次调整,将反馈教学落到了实处,更增强了课堂教学内涵的厚重,同时也是对学生思维完整性的一次检验。
在教学<<圆的认识>>一课中,为让学生在体验中认识“同圆半径相等这个特性”。吴老师对学生说,请同学们坐上不同车轮的汽车,好好体验一下。屏幕上出现了不同形状车轮的汽车在行驶,车轴心运动的轨迹清晰地显示在同学们的眼前:(有方轮、椭圆、圆,路线有一高一低的折线,一高一低的弧线,还有直线)随着不同形状的车轮的滚动,孩子们各自寻找着自己的感觉,身体随着摆动,如身临其境一般。最后,学生们感受到只有坐在圆形车轮的车上才会平稳,因为同圆的半径都相等。此时,她是快乐与哲理的使者。她在教育之路上收获的快乐与幸福,让我向往。
吴老师把“让学生喜欢我”、“让学生喜欢数学”、“让学生学会学数学”作为数学教学的终极目标。她利用、并创造机会建立民主、平等、友好、和谐的师生关系:下雪了,学生在数学课堂上表现出对冰雪世界的向往,她平息批评指责的冲动。课后,她和孩子们一起走进冰雪世界尽情地玩耍,学生对她说:“老师,我们真的很喜欢您。”;她坚信成功亦是成功之母,制造给孩子重新跃起的机会,在体验成功后露出了自信的笑脸。她新接一个五年级的班级,用一个暑假的时间打造开学的第一课,以“你知道阿基米德检验金冠的故事吗?认识我吗——伟大的0、别小看它
——小数点、车轮为什么制成圆的?1+2+3+……+99+100=?”等等许多有趣的问题,粘住学生的心,让他们喜欢数学。生动的故事,扣人心弦的比赛,人人参与的游戏,象一个个美丽的陷井,使孩子们不由自主地陷入数学的思考中。为了她所爱的事业,她可谓使浑尽浑身解数,这些高招,闪烁着智慧的光芒。“当孩子们的学习遇到困难时,我伸出热情的手,帮助他们扫清障碍;当孩子们内心充满孤独和惆怅时,我又走近他们,为他们分担忧愁,成为可以倾吐肺腑之言的知心朋友;当他们有了点滴进步的时候,又是我满怀真诚地去欣赏和赞美他们,和他们共同体验成功的快慰。在学生们的眼中,我再也不是那个只管传道、授业、解惑的平面教师,而是一个有血有肉,充满情和爱,能给予他们智慧和力量的立体教师。”白天听讲座,晚上记心得。还学习了各种教育理论,写下了几十万字的学习笔记。不论工作多忙,吴老师年年有目标,月月有计划,周周有安排。付出总是有回报的,吴老师建立了完整的数学知识结构,整合成六大知识体系:面积教学一条龙;体积教学一条龙;分数四则计算一条龙;分数百分数应用题一条龙;数的整除一条龙;正反比例一条龙。教学改革试验给课堂教学带来了勃勃生机,学生的思维能力有了明显提高。
通过这次讲座聆听,我明白了什么是课堂?用吴老师的话来概括就是:课堂是交流,交流需要真诚;课堂是生活,生活需要真实;课堂是生命,生命需要真爱。