第一篇:初步认识轴对称图形教案
《初步认识轴对称图形》的教案
教学目标:
1、联系生活中的具体物体,通过观察和动手操作,使学生初步体会生活中的对称现象;认识轴对称图形的一些基本特征,并初步知道对称轴。
2、使学生能根据自己对轴对称图形的初步认识,在一组实物图案或简单平面图形中识别出轴对称图形;能用一些方法“做”出一些简单的轴对称图形,能在方格纸上画出简单的轴对称图形。
3、使学生在认识、制作和欣赏轴对称图形的过程中,感受到物体或图形的对称美,激发对数学学习的积极情感。教具学具:
课件、剪刀、长方形纸、正方形纸、信封、三角形、梯形、平行四边形纸。教学过程:
一、看一看,想一想
1.谈话: 师:同学们喜欢玩游戏吗? 生:喜欢。
师:刚才在楼下,老师看到很多同学再玩纸飞机,你们玩过吗? 生:玩过。
师:谁会折纸飞机?能上台教教老师吗?
请同学上台演示怎样折纸飞机。师: 首先将长方形纸怎么折? 生:对折。(板书 对折)师:对折到什么程度?
生:完全重合。(板书 完全重合)学生若说不出完全重合,教师可帮助总结。2.观察:
师:要想纸飞机飞的又高又稳,飞机的左右两边的翅膀必须怎么样?(完全一样)我们把这种物体的两边形状相同、大小相等的现象称为对称。(板书:对称)3.寻找:
这条折痕两边就是对称,长方形的纸就是对称的物体。(教师同时展示)其实,生活中还有很多像这样对称的物体。你们知道吗?学生可回答,课件演示。
(教学设想:利用学生熟悉的纸飞机引入,可激发学生兴趣。通过折纸飞机,使学生认识到折纸飞机的过程必须对折且要完全重合。为教学判断轴对称图形的标准埋下伏笔。最后,通过观察折好的纸飞机的特征,让学生初步感知生活中存在的对称现象,了解对称在现实中的一些作用。并为从对称的实物抽象成轴对称图形作出铺垫。)
二、折一折,画一画
1.师:日常生活中,我们不但可以经常看到一些对称的物体,还能看到很多对称的图形。
刚才折纸飞机用的长方形纸就是对称的物体。画出的这条折痕,我们叫它对称轴。(板书:对称轴。)那长方形就是轴对称图形。(板书课题:轴对称图形)
注意对称轴是一条直线,两端可以无限地延长。所以我们一般要画的比图形长一些的虚线来表示对称轴。(课件演示注意有2条对称轴)
2.学生动手折正方形纸,并画出对称轴。请同学上台演示画法。教师提醒怎样快速画对称轴。(课件演示注意有4条对称轴)
3.你能用自己的话说一说怎样判断一个图形是不是轴对称图形? A 对折 如果两边完全重合就是轴对称图形。B 观察 如果两边对称就是轴对称图形。
(教学设想:本节设计利用学生最熟悉的长方形、正方形教学对称轴有两个目的,一是分散难点,为下面的练习做出铺垫。二是长方形、正方形的几种对折方法学生都很熟悉。好让学生明白轴对称图形可能有几条对称轴,通过调换方向对这可以找到。)
三、议一议,辩一辩
教师出示信封。里面装有三角形、梯形、平行四边形纸片。每组一个信封。每个信封分别装有三个不同的三角形或三个不同的梯形或三个不同的平行四边形。
出示要求:
1.先判断。哪个图形是轴对称图形,哪个图形不是轴对称图形。2.再验证。自己的判断是否正确。
3.交流。每个图形有几种折法?就是有几个对称轴。4.把你的发现填到记录单里。
(教学设想:本节设计一是检验前面内容的教学效果,培养学生合作精神、交流能力。二是通过折平行四边形,使学生明白判断轴对称图形不但对折后两边完全一样,还要完全重合。)
四、悟一悟,说一说
1.课件出示图标、国旗、交通标志让学生判断是否是轴对称图形。
2.课件出示C H I N A让学生判断每个英文字母及“中国”是不是轴对称图形。3.出示半个奥运五环。猜想是不是轴对称图形。
4.出示方格图,教学轴对称图形画法。教师引导先找对应点可快速画出轴对称图形。(教学设想:第一题是书上课后“想想做做”第一、第五、第六题的代表。因为这三题内容太多,所以我选三个比较有代表性,难度适中的的题目。第二题就是取代课后“想想做做”第二题。可以渗透些思想教育,及方便过渡到下一题。第三题发展学生的空间观念自然过渡到第四题。第四题取代书上的第三题以完成教学目标二。)
五、全课总结
提问:同学们,今天我们一起学习了轴对称图形,你有哪些收获?
第二篇:图形认识初步 教案范文
第四章 图形认识初步 4.1.1 几何图形
教学目标:
1、能从现实物体中抽象得出几何图形,正确区分立体图形与平面图形;能把一些立体图形的问题,转化为平面图形进行研究和处理,•探索平面图形与立体图形之间的关系。
2、经历探索平面图形与立体图形之间的关系,发展空间观念,•培养提高观察、分析、抽象、概括的能力,培养动手操作能力,经历问题解决的过程,提高解决问题的能力。
3、积极参与教学活动过程,形成自觉、认真的学习态度,•培养敢于面对学习困难的精神,感受几何图形的美感;、倡导自主学习和小组合作精神,在独立思考的基础上,•能从小组交流中获益,并对学习过程进行正确评价,体会合作学习的重要性。
重点:从现实物体中抽象出几何图形,•把立体图形转化为平面图形是重点 难点:立体图形与平面图形之间的转化是难点 教学过程
一、引入新课
请同学们看课本P116中的图4.1-1, 提出问题:在同学们所观看的图中,有哪些是我们熟悉的几何图形?
二、讲授新课
1、学生在回顾刚才所看的图片后,充分发表自己的意见,•并通过小组交流,补充自己的意见,积累小组活动经验.
2、指定一名学生回答问题,并能正确说出这些几何图形的名称。
学生回答:有圆柱、长方体、正方体等等。
教师活动:纠正学生所说几何图形名称中的错误,并出示相应的几何体模型让学生观察它们的特征。
3、立体图形的概念。
(1)长方体、正方体、球、圆柱、圆锥等都是立体图形。
(2)学生活动:看课本图4.1-3后学生思考:这些物体给我们什么样的立体图形的形象?(棱柱和棱锥)
(3)请同学们看课本P118图4.1-4(4)提出问题:在这幅图中,包含哪些简单的平面图形?
(5)探索解决问题的方法。
①学生进行小组交流,教师对各小组进行指导,通过交流,得出问题的答案。
②学生回答:包含的平面图形有长方形、圆、正方形、多边形和三角形等。
4、平面图形的概念。
长方形、正方形、三角形、圆等都是我们十分熟悉的平面图形。
注:对立体图形和平面图形的概念,不要求给出完整的定义,只要求学生能够正确区分立体图形和平面图形。
5、立体图形和平面图形的转化。
(1)从不同方向看:出示课本图4.1-7(1)中所示工件模型,•让学生从不同方向看。
(2)提出问题。
从正面看,从左面看,从上面看,你们会得出什么样的平面图形?能把看到的平面图形画出来吗?(3)探索解决问题的方法。
①学生活动:让学生从不同方向看工件模型,独立画出得到的各种平面图形。
②进行小组交流,评价各自获得的结论,得出正确结论。
③指定三名学生,板书画出的图形。
6、思考并动手操作。
(1)学生活动:在小组中独立完成课本P119的探究课题,然后进行小组交流,评价。
(2)教师活动:教师对学生完成的探究课题给出适当、正确的评价,•并对学生给予鼓励,激发学生的探索热情。
7、操作试验。
(1)学生活动:让学生把准备好的墨水瓶包装盒裁剪并展开,•并在小组中进行交流,得出一个长方体它的平面展开图具有的一个特征:多样性.许多立体图形都能展开成平面图形.
(2)学生活动:观察展开图,看看它的展开图由哪些平面图形组成?•再把展开的纸板复原为包装,体会立体图形与平面图形的关系。
三、课堂小结
1.本节课认识了一些常见的立体图形和平面图形.
2.一个立体图形从不同方向看,可以是一个平面图形;•可以把立体图形进行适当的裁剪,把它展开成平面图形,或者把一个平面图形复原成立体图形,即立体图形与平面图形可以互相转换.
注:小结可采取师生互动的方式进行,由学生归纳,教师进行评价、补充.
四、布置作业
课本P123~P124习题4.1第1~6题
4.1.2 点、线、面、体
教学目标:
1、了解几何体、平面和曲面的意义,•能正确判定围成几何体的面是平面还是曲面;了解几何图形构成的基本元素是点、线、面、体及其关系,•能正确判定由点、线、面、体经过运动变化形成的简单的几何图形。
2、经历探索点、线、面、体的关系的数学活动过程,提高空间想像能力和抽象思维能力,发展运动变化的观念。
3、经历本节课的数学活动过程,养成主动探索、求知的学习态度,激发学生对数学的好奇心和求知欲,体验数学活动中小组合作的重要性。
重点:正确判定围成立体图形的面是平面还是曲面,探索点、线、面、•体之间的关系是重点
难点:探索点、线、面、体运动变化后形成的图形是难点 教学过程
一、引入新课
1、出示一个长方体模型,请同学们认真观察.
2、提出问题:这个长方体有几个面?面和面相交成了几条线?•线和线相交成几个点?
二、讲授新课
1、经过学生的独立思考,然后在小组中进行交流,在小组讨论中,•评价并修正自己的结论。
2、各小组学生公布自己小组讨论后的结论。
教师活动:在探索问题解决方法和小组讨论过程中,教师进行巡视,及时给予指导,教师对学生分布的答案作鼓励性评价。
3、几何体的概念。
(1)长方体是一个几何体,我们学过的正方体、圆柱、圆锥、球、棱柱、•棱锥等都是几何体。
(2)提出问题:观察长方体和圆柱体,说出围成这两个几何体的面有哪些?•这些面有什么区别?
4、给出面的分类。
通过对上面问题的解决,给出面的分类:平面和曲面。
教师活动:板书:平面和曲面。
提出问题:在小组活动中,教师指导学生看课本P121~P122内容,•得出观察图片能发现的结论。
师生互动:请学生给出观察结论:点动成线,线动成面,面动成体.教师对学生的回答给出正面评价,并把学生观察结论板书.
注:在探索问题解决的方法活动过程中,教师应充分调动学生的想像能力,鼓励学生进行深入探究。
思考课后思考题,让学生进行小组讨论,教师给以必要的指导,然后得出合理的解释。
5、点、线、面、体与几何图形关系。
指导学生阅读课本P122内容,总结出点、线、面、体与几何图形的关系。
三、课堂小结
1、本节课我们主要探究了几何体的形成:由平面和曲成围成一个几何体。
2、点、线、面、体之间的关系。
3、体验了在数学活动过程中小组合作的重要性。
四、布置作业
课本P125~P126习题4.1第7~12、13、14题
4.2 直线、射线、线段(1)
教学目标:
1、能在现实情境中,经历画图的数学活动过程,理解并掌握直线的性质,•能用几何语言描述直线性质;会用字母表示直线、射线、线段,会根据语言描述画出图形。
2、能在现实情境中,进行抽象的数学思考,提高抽象概括能力,经历画图的数学活动过程,提高学生的动手操作与实践能力。
3、体验通过实验获得数学猜想,得到直线性质的过程。
重点:理解并掌握直线性质,•会用字母表示图形和根据语言描述画出图形。难点:根据语言描述画出图形. 教学过程
一、引入新课
1、出示墨盒,请一个同学演示使用墨盒弹出一条直线的过程。
2、提出问题:为什么这样拉出线是直的?其关键是什么?
二、讲授新课
学生活动:学生经过小组交流后,总结出结论:两点确定一条直线。其关键在于先固定墨盒中墨线上两个点。教师活动:参与学生活动,并请学生思考:这个现象符合数学上的什么原理?
1、探究直线性质。
学生活动:完成课本P128探究课题,学生动手按要求画图,•并进行小组交流,总结出课题结论。
教师活动:巡视小组活动情况,并给出课题:板书直线、射线、线段,直线的性质。
2、寻找生活中直线性质应用的例子。
想一想:日常生活中有哪些现象是应用的直线的性质?
学生回答(只要答案合理,教师都给以肯定的评价)。
3、直线、射线、线段的表示方法。
学生活动:阅读课本P129有关内容。
教师活动:讲解直线、射线、线段的表示方法.
三、巩固练习
1、提出问题:下图中,有几条直线?几条射线?几条线段?•说出它们的名称。
注:此题在学生完成后,教师再行讲评,并对学生的完成情况作出适当、肯定的评价。
2、根据语句画出图形。
例:读下列语句,并按照语句画出图形:
(1)直线L经过A、B两点,点B在点A的左边。
(2)直线AB、CD都经过点O,点E不在直线AB上,但在直线CD上。
注:此例让学生独立完成后在小组中交流和自我评价,然后教师进行讲评。
3、完成课本P129练习。
注:此练习请四个同学进行板书,教师巡视学生完成的情况给予评价,•并请学生作出自我评价。
四、课堂小结
1、提问:直线的性质是什么?如何表示直线、射线、线段?
2、本节课还学习了根据语句画图,•知道了每一个语句都对应着一个几何图形。
五、布置作业
课本P132~P134习题3.2第1、2、3、4、10题
4.2 直线、射线、线段(2)
教学目标:
1、会用尺规画一条线段等于已知线段,会比较两条线段的长短;理解线段等分点的意义,理解两点间距离的意义,借助现实的情境,•了解“两点之间,线段最短”的线段性质。
2、培养学生的动手操作能力,提高学生的抽象概括能力,能从实际问题中抽象出数学问题,初步学会数学的建模方法。
3、积极参与实验数学活动中,体会数学是解决实际问题的重要工具,通过对解决问题过程的反思,懂得知识源于生活并用于生活。
重点:画一条线段等于已知线段,比较两条线段的长短是一个重点,•在现实情
ACDB境中,了解线段的性质“两点之间,线段最短”是另一个重点
难点:画一条线段等于已知线段的尺规作图方法,•正确比较两条线段长短是难点
教学过程
一、引入新课
1、提出问题:有一根长木棒,如何从它上面截下一段,•使截下的木棒等于另一根木棒的长?
教师活动:出示长短不同的两根木棒。
学生活动:小组讨论,探索方法,总结出问题的解决方法。
注:教师对学生给出的解决方法,应进行可操作性评价,对好的方法给予鼓励和肯定,以激发学生的学习兴趣。
2、提出数学问题:
上面的问题,可以转化为如下一个数学问题:已知线段a,画一条线段等于已知线段a。
二、讲授新课
学生活动:独立思考,动手画图,小组讨论交流,总结出问题的解决方法。
教师活动:参与学生小组讨论,指导学生探索问题的解决方法。
1、用刻度尺量出已知线段长,•在画出的射线(或直线)上量出相同长度的一条线段。
2、用尺规截取.(按课本P130所讲方法)板书:画一条线段等于已知线段。
3、思考课本P130的问题,从中得出数学问题:如何比较两条线段的长短?
4、探索比较两条线段长短的方法:
学生活动:小组交流,总结出比较方法。
教师活动:评价学生总结出的比较方法,并用教具请一个学生进行演示,板书:比较线段的长短。
(1)用刻度尺分别测量出它们的长度进行比较。
(2)用把一条线段移到另一条线段上,端点对齐的方法进行比较。
5、线段长短的比较结果。
学生活动:通过上面的讨论,总结出线段比较结果。
教师活动:用教具(三根木棒)演示线段比较方法,评价学生得出的比较结果,再用多媒体演示两条线段的比较方法和比较结果。
板书:(1)AB
6、线段的等分点。
(1)线段的中点:
教师活动:用多媒体演示,取线段AB上一点M,移动线段AM到线段MB上,当AM•与MB完全重合时,线段AM=MB,此时点M就叫做线段AB的中点。板书: AM=MB=2 AB(2)线段的等分点:
通过类比线段的中点,可得出线段的三等分点、四等分点. ABABAB板书:AMNB AMNPB
11AM=MN=NB=3 AB AM=MN=NP=PB=4 AB
7、探索线段的性质
(1)完成课本P132思考题
(2)提出问题:由这个思考题,你能得出线段的性质?
学生活动:联想以前所学知识及生活常识,经过小组讨论,得出直线的性质:两点之间,线段最短。
教师活动:
板书:线段的性质,并用几何语言完整归纳出线段性质。
(3)举例说明线段的性质在生活中的应用。
(4)在直线L上顺次取三点A、B、C,使得AB=4cm,BC=3cm,如果O是线段AC的中点,求线段OB的长度。
注:这两个问题先请学生在小组中独立完成后进行交流,教师再作评价.
8、两点的距离。
教师活动:讲解两点的距离定义。
三、课堂小结
1、本节课学会了画一条线段等于已知线段,学会了比较线段的长短。
2、本节课学习了线段的性质和两点间距离的定义。
3、懂得了知识来源于生活并用于生活的道理。
四、布置作业
课本P133~P114习题4.2第5、6、7、8、9、11题
4.3.1 角的度量(1)
教学目标:
1、在现实情境中,认识角是一种基本的几何图形,理解角的概念,•学会角的表示方法;认识角的度量单位度、分、秒,会进行简单的换算和角度计算。
2、提高学生的识图能力,学会用运动变化的观点看问题。
3、经历在现实情境中认识角的数学活动过程,感受图形世界的丰富多彩,增强审美意识,激发学生的求知欲。
重点:会用不同的方法表示一个角,会进行角度的换算是重点 难点:角的表示、角度的换算是难点 教学过程
一、引入新课
1、观察时钟、四棱锥.
2、提出问题:时钟的时针与分针,棱锥相交的两条棱,都给我们什么样的平面图形的形象?请把它画出来。
学生活动:进行独立思考、画图,然后观看教师的演示过程.
教师活动:演示角的形成过程:一条射线OA绕端点O旋转到OB的位置,得到的平面图形──角.
板书:角.
二、讲授新课
1、角的概念.
(1)提出问题:从上面活动过程中,你能知道角是由什么图形组成的吗?
学生回答:两条射线.
(2)角的定义:有公共端点的两条射线组成的图形叫做角,•这个公共端点是角的顶点,这两条射线是角的两条边.(如下图)
2、角的表示.
学生活动:阅读课本P137有关内容,了解角的表示方法.
教师活动:讲解角的不同表示方法,着重讲解一个顶点有多个角的表示方法.
请用适当的方法表示下图中的每个角.
学生活动:请一个学生板书练习,其余学生独立练习.
教师活动:巡视学生练习情况,给予评价,对多数同学作出肯定评价.
学生活动:阅读课本P138思考题,进行小组交流,获得问题结论.
教师活动:参与学生交流,并用多媒体演示平角、周角的形成过程,启发引导学生对问题进行探索,并对学生讨论结果进行评价.
答案:分别形成平角、周角.
3、角的度量.
教师活动:指导学生阅读课本P138内容,讲解角的度量方法及度、分、秒的换算.
板书:1周角=_____°,1平角=_____°,1°=____′,1′=____″.
学生活动:思考并完成上面的填空.
例:把一个周角7等分,每一份是多少度的角(精确到分)?
教师讲解计算过程.
三、巩固练习
1、课本P139练习
2、计算:(1)48°39′+67°41′;(2)90°-78°19′40″;
(3)22°30′×8;
(4)176°52′÷3.
此:此练习由学生独立完成,在练习过程中充分地进行小组交流以解决练习过程中的疑难,教师巡视过程中对个别学习困难的学生及时给以答疑解惑,并请学生板书后再讲评.
3、想一想:时钟在5点15分时,时钟的时针与分针所成的角是多少度?
师生互动:观察时钟在5点15分时,时针与分针所处位置,教师引导、启发学生先从时针在分针转动到15分时,分针转过的角度与时针转过的角度的关系,并请学生在小组中进行交流,从而得出正确的答案.
答案:76.5°。
四、课堂小结
师生互动,完成本节课的小结: 1.什么是角?组成角的图形是什么?如何表示一个角? 2.本节课还复习了平面、周角?怎样得到这两种角? 3.角的度量单位是什么?它们是如何换算的?
五、作业布置
课本P144习题4.3第1、2、3、4题
4.3.1 角的度量(2)
教学目标:
1、会用量角器测一个角的大小,能借助三角板画出30°,45°,60°,90•°等特殊角及用量角器画出一个给定度数的角,会用尺规作图画一个角等于已知角,熟悉并理解画法语言.
2、经历本节课的画一个角等于已知角,测量角的大小数学活动,提高学生的动手操作能力.
3、经历本节课的数学活动过程,尝试从不同角度寻求解决问题的方法,体会不同方法间的差异,能够在测量画图等操作活动过程中发挥主动作用。
重点:会用量角器测量角的大小,会用尺规画一个角等于已知角 难点:用尺规画一个角等于已知角 教学过程
一、引入新课
1、画出一个五角星的图案,请学生观察图形.(如右图)
2、提出问题:你知道五角星的五个角是多少度吗?你是怎样知道的?
二、讲授新课
学生活动:在小组中交流测量角的大小方法,可借助三角板估计角的度数,或用量角器量出角的度数.
教师活动:巡视收集学生测量的方法,并请学生说明不同方法得出的结论有何不同,对学生的活动过程给予积极评价.
结论:每个角均为36°. 1.画一个角等于已知角.
(1)提出问题:
你能用量角器画一个角等于36°吗?能画一个角等于108°吗?
学生活动:两个学生板书演示画图过程,其余同学独立完成.
教师活动:巡视并指导学生画图.
(2)提出问题:
你能用三角板画出30°,45°,60°,90°等特殊角吗?
学生活动:动手画图.
教师活动:指导个别学生画图,评价学生的画图结果. 2.用尺规画一个角等于已知角.
探究:已知∠AOB,画一个角等于这个角.
学生活动:先进行独立思考,阅读课本P139探究内容,动手画图,•小组交流解决疑难,根据教师的演示,进行自我评价.
教师活动:启发引导学生画图,并巡视指导学生画图,然后板书演示画图过程(画图过程中指导学生阅读课本中的画法),指导学生进行自我评价:用量角器量∠A′O′B′与∠AOB,看一看度数是否相等.
三、巩固练习 任意画一个钝角∠AOB,用尺规画一个角等于∠AOB.
师生互动:教师在黑板上画钝角∠AOB,•请一个学生板书画图教师巡视指导其余学生画图.
请同学们用三角板画出(1)15°;(2)75°;(3)105°;(4)120°;(5)135°的角.
教师活动:在学生活动过程中,教师对学生进行必要的指导,如15°看成45•°~30°,用两块三角板画出15°的角.
四、课堂小结
本节课我们通过测量角的度数,复习了角的度量方法,学会了用不同的工具画角.
提出问题:请同学们说出你所知道的测量角的大小的仪器.(同学互相补充)
教师活动:打开多媒体播放有关用仪器测量角的活动片子,让学生认识测量角的仪器.
五、作业布置
课本P145~P146习题4.3第6、11、14题
4.3.2 角的比较与运算
教学目标:
1、在现实情境中,运用类比的方法,学会比较两个角的大小,•丰富对角的大小关系的认识,会分析图中角的和差关系.
2、通过动手操作,学会借助三角板拼出不同度数的角,•认识角的平分线及角的等分线,会画角的平分线.
3、进一步培养和提高学生的识图能力和动手操作的能力,认识类比的数学思想方法.
4、能在动手操作画图、拼图的数学活动过程中发挥积极作用,体验数学活动的成功经验,激发学生的学习热情.
重点:比较角的大小,认识角的大小关系,分析角的和差关系,•认识角平分线及画角平分线 C难点:认识复杂图形中角的和差关系,比较两个角的大小 教学过程
一、引入新课
A B 教师活动:在黑板上画出一个三角形.(如右图所示)
1、提出问题:比较图中线段AB、BC、CD的长短.
学生活动:回顾线段长短的比较方法.小组交流,得出适当的比较线段长短的方法.
教师活动:归纳学生的讨论结果,并演示用圆规比较AB、BC、CD三条线段长短的过程,并写出结论:AB>AC>BC.
2、提出问题:怎样比较图中∠A、∠B、∠C的大小?
学生活动:小组交流比较方法,得出结论:可用量角器先量出角的度数,然后比较它们的大小.
教师活动:(1)肯定评价学生提出的方法,并动手测量度数,•比较它们的大小,板书结论:∠C>∠B>∠A.(2)启发引导学生,类比线段长短的比较方法,•也可以把它们叠合在一起比较大小.
二、讲授新课
1、提出问题:如何用叠合的方法比较角的大小? 学生活动:进行小组交流讨论,动手操作:每个学生都在透明纸上画一个角,然后剪下这个角,并与小组中其它同学所画的角进行比较后归纳出比较方法和比较结果,然后观看多媒体演示角的比较过程.
教师活动:巡视并指导学生进行角的比较活动过程,打开多媒体演示角的比较过程:把一个角移到另一个角上,顶点与一条边重合;两个角的另一边都在重合边的同侧.观察这两边的位置关系,就能得出两个角的大小关系.
注:讲解过程应强调操作过程,让学生掌握角的比较的操作过程.
完成课本P142练习.
注:教师在评价学生完成练习的情况时,应对较好的方法给予肯定的评价,鼓励学生进行探索.
2、认识角的和差.
学生活动:思考课本P140观察中的问题,小组交流思考的结论.
教师活动:讲解观察中的问题,给出图中各角之间的和差关系.(如右图)
∠AOC=∠AOB+∠BOC,∠AOB=∠AOC-∠BOC.
提出问题:∠AOC-∠AOB=________.
3、动手操作:用三角板拼出特殊角,完成课本P140探究中的问题.
学生活动:每个学生都用三角板进行尝试拼出15°、75°的角,并讲出其中的理由.
提出问题:利用一副三角板还能拼出多少度的角?
学生活动:小组交流后说出这些角的度数,各小组之间互相补充.
教师活动:评价学生的结论,对学生的答案进行归纳补充. 4认识角的平分线.
教师活动:在透明纸上画一个角,沿着顶点对折,使角的两边重合.
学生活动:观察老师演示过程,并思考下面问题.(如右图)
提出问题:∠AOC被折痕OB分成的两个角有什么关系?
在图中,射线OB把∠AOC分成相等的两个角,即∠AOB=∠BOC,∠AOC与∠AOC•和∠BOC有什么关系?这个关系怎样用式子来表示?射线OB叫做什么?
学生活动:阅读课本P140有关内容,回答上面问题.
教师活动:讲解角平分线定义,板书:角的平分线.
教师活动:指导学生看课本P141图4.3-5,讲解角的三等分线.
请学生动手完成课本P138探究,加深对角的平分线的认识.
在纸上画一个角,设法画出这个角的平分线.
学生活动:思考并进行小组交流,总结出角平分线的画法并画图.
教师活动:对学生总结出的画法进行评价,并演示画图过程.
(1)借助量角器画图:以已知角顶点为顶点,已知角的一边为边,在已知线的内部画一个度数等于已知角度数一半的角,则这个角的另一边就是已知角的平分线.
(2)用折叠方法:把角沿顶点对折,使角的两边重合,沿折痕在角的内部画一条射线即为已知角的平分线.
三、课堂小结
师生互动,共同总结本节课的学习内容:
1、角的大小比较方法和角的大小关系有哪些?认识了角的哪些运算.
2、本节课学习了用三角板拼出哪些角?
3、角平分线的定义是什么?
四、布置作业
课本P145习题4.3第5、10、15题
4.3.3 余角和补角
教学目标:
1、在具体的现实情境中,认识一个角的余角与补角,掌握余角和补角的性质;了解方位角,能确定具体物体的方位。
2、进一步提高学生的抽象概括能力,发展空间观念和知识运用能力,学会简单的逻辑推理,并能对问题的结论进行合理的猜想。
3、体会观察、归纳、推理对数学知识中获取数学猜想和论证的重要作用,初步数学中推理的严谨性和结论的确定性,能在独立思考和小组交流中获益。
重点:认识角的互余、互补关系及其性质,确定方位
难点:通过简单的推理,归纳出余角、补角的性质,•并能用规范的语言描述性质
教学过程
一、引入新课
1、提出问题:
(1)在一副三角板中,每块都有一个角是90°,那么其余两个角的和是多少?
(2)已知∠1=36°,∠2=54°,那么∠1+∠2=?
学生活动:独立思考,小组交流,得出结论:都是90°. 2.提出问题.
(1)观察方格如下图中的两个角,你能猜想∠1+∠2等于多少度?
(2)如果∠1=144°,∠2=36°,那么∠1+∠2=?
学生活动:观察思考,小组交流,得出结论:都是180°.
教师活动:操作多媒体,移动∠2,使∠
1、∠2顶点和一边重合,•引导学生观察∠1,∠2的另一条边,观察到两角的另一条边成一条直线,验证学生的结论.
二、讲授新课
1、余角与补角.
教师活动:指导学生阅读课本P142有关内容,并讲解余角与补角的定义.
注:讲解余角和补角时,必须向学生说明互余、互补是指两个角的数量关系,即∠1+∠2=90°或∠1+∠2=180°,同时强调∠1是∠2的余角(或补角),那么∠2也是∠1的余角(或补角).
2、巩固反思.
(1)填空:
①47°18′的余角是______,补角是_______.
②∠α(0°<∠α<90°)的余角是______,∠β(0°<β<180°)的补角是_______.
(2)已知一个角是它补角的3倍,求这个角.
注:这两个例题讲解时,应通过师生互动的方法进行教学,在学生思考后再讲解.
(3)课本P143练习.
学生活动:独立完成,并由三个学生进行板书,•其余同学进行小组交流并进行小组评价.
教师活动:巡视学生完成练习的情况,并给予适当的评价.
3、余角与补角的性质.
(1)提出问题:
观察方格图,下图中∠1与∠3有什么关系?∠1与∠2,∠3与∠4有什么关系?
学生活动:观察图形,小组交流观察的结果:∠1=∠3,∠1+∠2=180°,∠3+•∠4=180°.
教师活动:移动图中各角,对学生观察的结果进行验证,进一步提出问题:∠2•与∠4有什么关系?
学生活动:观察思考后得出∠2=∠4.
(2)说明理由:
注:教学中,向学生说明,以上从观察图形得出的结论,还应从理论上说明其理由,并讲解课本例1.
例1.如上图,∠1与∠2互补,∠3与∠4互补,如果∠1=∠3,那么∠2与∠4相等吗?为什么?
教师活动:指导学生分析题意,并写出说理过程,归纳性质.
学生活动:完成课本分析中的问题,并在教师指导下,用自己的语言描述余角、补角的性质.
板书:等角的补角相等.
师生互动:类比补角的性质,得出余角的性质.
板书:等角的余角相等.
三、巩固练习
1、如右图,∠EDC=∠CDF=90°,∠1=∠2.
(1)图中哪些角互为余角?哪些角互为补角?
(2)∠ADC与∠BDC有什么关系?为什么?
(3)∠ADF与∠BDE有什么关系?为什么?
学生活动:独立完成练习,并进行小组交流和自我评价.
教师活动:巡视学生完成练习情况,并进行个别指导,然后进行讲评.
2、认识方位角.
提出问题:课本P143例2.
如下图,货轮O在航行过程中,发现灯塔A在它南偏东60°的方向上,同时,•在它北偏东40°,南偏西10°,西北(即北偏西45°)方向上分别发现了客轮B、货轮C和海岛D.仿照表示灯塔方位的方法,画出客轮B、货轮C和海岛D方向的射线.
注:讲解时应讲清楚方位角是以正北或正南方向的射线为一个角的始边,而表示物体运动的方向的射线是角的另一边.
学生活动:在教师指导下画出问题中的每一条射线.
3、知识拓展
提出问题:、小宁从A地向东北方向走62米到B地,再从B地向西走56米到C地,这时她离A•地多少米?在A地的北偏西多少度?画出图形(用1cm表示10m),然后用刻度尺和量角器进行测量.(精确到1m、1°)
学生活动:先进行小组讨论,然后独立完成,再进行小组交流和评价.
教师活动:指导学生画图和测量,并对学生完成的情况进行评价.
四、课堂小结
1、本节课学习了余角和补角,并通过简单的推理,得出余角和补角的性质.
2、了解方位角,学会确定物体运动的方向
五、作业布置
课本P145习题4.3第8、9、12、13题
4.4 课题学习设计制作长方体形状的包装纸盒
教学目标:
1、利用立体图形的平面展开图制作包装纸盒.
2、通过问题的解决使学生进一步理解立体图形和相应平面图形之间的转化关系.
3、通过包装纸盒的制作,使学生掌握制作长方体纸盒的一般方法,能够独立制作出相关的包装盒.
4、在解决问题的过程中,使学生提高对合作意识的认识,培养合作精神.
重点:如何把立体图形转化为平面图形,制作包装纸盒. 难点:如何把立体图形转化为平面图形.
三、小结与作业
小结:制作立体图形――先转化为平面图形(平面展开图),再转化为立体图形(折叠).
作业:
(1)自己设计制作一个正六棱柱形状(底面是6条边相等、6个角都相等的六边形,6个侧面都是长方形)的包装盒;
(2)自己设计制作一个圆柱形的包装纸盒.
第三篇:轴对称图形的认识教案
轴对称图形的认识
一.教学目标
1、初步认识轴对称图形的基本特征。使学生理解对称轴的 含义,能画出轴对称图形的对称轴。
2、通过学生动手操作等实践活动,培养学生的观察能力和想象能力。
二、教学重点:认识轴对称图形的基本特征,能画出轴对称图形的对称轴教学难点:能画出轴对称图形的对称轴。
三、教学过程
(一)故事导入,激发兴趣。
(二)探究新知,感受对称
(1)引导观察,感知对称。
(2)认识“轴对称图形”。
想象一下,如果我们把这些图形的左边和右边对折起来,会发生什么情况呢?
小结:如果把一个图形对折以后,两边的图形能够完全重合,我们就把这样的图形叫做轴对称图形。
(3)怎样剪一个轴对称图形。
(4)认识对称轴。仔细观察,这些轴对称图形的中间都有什么?
三、巩固深化,拓展延伸
(1)显身手。(辨对称)
(2)猜图形、画图形。(猜对称)
(2)对称轴。(玩对称)
四、全课总结:同学们,今天这节课你有什么收获?
板书设计:
轴对称图形的认识
1.什么是对称轴?
2什么叫轴对称图形?
第四篇:西师版数学三年级《初步认识轴对称图形 》教案
初步认识轴对称图形教案
一、识别对称
师:同学们昨天李老师去眼镜店看了一副眼镜,请大家帮我参考一下,我到底买不买?(课件出示:不对称眼镜)师:你们笑什么?
(抽生说:两边不一样,不对称)师:那到底怎样才是对称的呢?(抽生说出两边一样)
师:今天我们就一起走进对称的世界来探索对称的奥秘。(课件展示:五个对称事物)
师:请同学们观察这些事物,它们有什么共同特征?(抽生说出:两边大小一样、形状一样)
师:对了,他们两边形状大小是一样的,我们就说他们是对称的,这也是今天我们将要研究的轴对称图形,轴字老师注上拼音。(板书:轴对称对称 齐读一遍“轴对称对称”)
二、认识轴对称图形
师:其实在我们生活中还有许许多多对称的事物,在生活中你还见过哪些事物是对称的?
(抽5个生答)
师:同学们在我们生活中对称的图案有很多,你们想自己做一个对称的吗? 师:做之前请先看李老师是怎样做的。(师对折纸)
师:李老师先把这张纸怎么了?(抽生说出对折)
师:观察真仔细,接着往下看,然后从折痕的地方,撕下一块,最后打开。师:这是什么?(生齐答)
师:这蝴蝶是对称的吗?(生齐答)
师:哪老师为什么要先对折?
(抽生引导答出:对折后剪出的图案两边的形状大小是一样的,就是对称)师:同意吗?掌声送给他。
师:接下来请同学们拿出白纸用这样的方法做一个你们喜欢的对称图案。师:做之前先看一看操作要求,看屏幕,谁来读一读?(抽生读)
师:活动要求清楚了吗?开始。
(学生边做老师边巡视,并抽取对称图形的样本3个左右)
师:好,时间到,请把你做的图案放在桌面上,把多余的纸放在抽屉里,双手放平,坐正,表扬第几组做得又快又好,请观察上面三个同学的图案。
师:如果我们把这些纸看作一个个图形的话,这些同学做的这些图形是对称的吗?(抽生答)
师:(追问)除了看以外,你能怎样做来证明它是对称的呢?(引导生答出:对折)师:刚才你说把图形怎么样? 师:对了,对折。(板书:对折)师:我选一个,请大家拿出你们的图案,先打开再对折,对折后你发现了什么?(抽生答,引导答出图形的两边完全重合)情况一:生:我发现对折后两边全部都重合。
师:同意吗?掌声送给他,(师边展示边说)对折后图形两边全部都重合,我们就说这个图形两边完全重合。
(板书:完全重合 齐读一遍)情况二:生:我发现对折后两边重合。
师:那只重合一部分还是全部都重合?
生:全部都重合
师:对了,全部都重合,我们就说这个图形两边完全重合。(板书:完全重合 齐读一遍)
情况三:生:我发现对折后两边完全重合。
师:同意吗?掌声送给他,回答得很好,对折后图形两边完全重合。(板书:完全重合 齐读一遍)
师:像这样对折后图形两边的完全重合,这样的图形我们叫做轴对称图形。(齐读一遍)
师:(拿着图形边折边说)像这样对折后图形两边的完全重合,这样的图形我们叫做轴 对称图形。
师:你能像老师这样边折边说什么是轴对称图形吗?(抽生答)
师:他说得好不好,谁想来再说一遍吗?(教师引导说清楚为止)
师:请同学们和你的同桌像这样说一说什么是轴对称图形,开始。(教师巡视 约1分钟)
师:我们一起拿着图形边折边说什么是轴对称图形?
(教师引导全部齐说:对折后图形的两边完全重合,这个图形就是轴对称图形)师:同学们你们知道什么是轴对称图形了吗?
师:接下来我们就用对折的方法来检验下你同桌的图形是不是轴对称图形,并说一说你是怎样判断的?交换图形,和同桌说一说,开始。(教师巡视 发现会说的样本 约1分钟)
师:停,请小老师带上你同桌的图形上来说一说是不是轴对称图形,并且说一说你是怎样判断的?
(抽生答 在巡视中发现的会说的同学答 引导说出:我同桌的图形是轴对称图形,我是 这样判断的,对折后图形两边完全重合,所以是轴对称图形)师:说的很好,掌声送给他。
二、认识折痕
师:同桌交换图形,坐正。
师:同学们刚才我们对折后打开,你发现图形中还有什么? 情况一:生:有一条线。
师:同意吗?掌声送给她,对折后图形中有一条线,我们就叫它折痕。
情况二:生:有一条折痕或者痕迹。
师:同意吗?掌声送给她,对折后图形中间有一条折痕。师:老师把这个图形的折痕画下来。师:第2个图形的折痕你们指一指,老师画。师:第3个图形请一个小朋友上来画。师:请大家在自己作品上也画出折痕。师小结:(指板书说)我们来看,轴对称图形有哪些特点呢?1.对折后,图形左右两边能——完全重合;2.图形中间都有一条直直的——折痕)
三、根据特征判断轴对称图形
师:同学们,刚才我们认识了轴对称图形,老师想来考考你们,准备好了吗? 师:老师这里有一个操作包,每个小组都有,待会由组长拿出操作包里面四个不同的图形,请看大屏幕,活动要求是。。四人小组讨论开始。(教师巡视 发现会说的 时间1分钟)
师:时间到,老师找四位不同图案的同学上来分别说一说你的图案是不是轴对称图形,你是怎样判断的?(教师抽巡视中会说的)
师:你觉得他说的好不好,掌声送给他!师:请小组长收起图片,放到抽屉里面。
师:同学们刚才我们手上有图形,那手上没有图像你们还会判断吗?(展示PPT)
师:请同学们翻到书第104页,练习十七第1题,齐读题目。(抽生答)
师:判断正确的孩子举起你们的右手。
师:请看第二题(齐读题目)猜一猜,通过轴对称图形的一半,想象另一半,并把图案名称写在横线上,开始。师:第一幅图是什么?谁来说?(抽生答出五环)
师:为什么是奥运五环呢?你是怎样判断的?
(引导:左边有2个半圆,因为是轴对称对称图形,对折后两边完全重合,所以右边也 有相同的2个半圆)
师:同意吗?到底是不是,倒数3个数揭晓答案。师:第二幅图是什么? 师:同意吗? 师:第三幅图是什么?
师:同意吗?到底是不是,倒数3个数揭晓答案。师:第四幅图是什么?一起说出来。师:掌声送给你们自己。
课堂总结:通过刚才的学习,我们知道了:。。。。的图形就是轴对称图形。。是对称轴,你还知道了些什么?
五、拓展延伸
师:在生活中还有很多对称的现象,你们想欣赏吗?(PPT展示)
师:这些画面美吗?这些图案都是对称的,对称给我们带来了美,这就是我们数学中的对称美。
师:今天的课就上到这里。
第五篇:认识轴对称图形课件
教学内容:
西师版小学数学第六册第118页例
1、例2及相关练习题。
教学目标:
1、在观察、操作、交流中认识轴对称图形的一些基本特征,能辨认轴对称图形,找出轴对称图形的对称轴。
2、通过观察、操作活动发展学生的空间观念,培养学生的观察能力和动手操作能力。
3、充分感受数学中的对称美,体会数学与生活的紧密联系。
教学重点:
认识轴对称图形的基本特征。
教学难点:
掌握辨别轴对称图形的方法。
教学准备:
教具:多媒体课件、一些简单的几何图形、蝴蝶图形。
学具:一些简单的几何图形(一些对称、一些不对称)
教学过程:
一、游戏活动激趣,认识对称物体
1、游戏“猜一猜”:课件依次出示“剪刀、扫帚、飞机、梳子”的一部分,分男、女生猜。
2、认识对称物体
(1)师质疑:为什么女生猜得又快又准呢?
(2)小结:像这样两边形状、大小都完全相同的物体,我们就说它是对称物体。(板书:对称)
【设计意图:通过猜物体游戏,激发学生学习兴趣和调动学生学习积极性,通过分析猜谜成败原因,加深学生对对称物体特征的再认识,为后面认识轴对称图形打下基础。】
二、猜想验证新知,认识轴对称图形
(一)初步感知对称图形
1、将“剪刀、飞机、扇子”等对称物体抽象出平面图形,让学生观察,这些平面图形还是不是对称的。
2、师小结:像这样的图形,叫做对称图形。(板书:图形)
(二)猜想验证对称图形
1、猜一猜:出示“梯形、平行四边形、圆形、燕尾箭头”等平面图形,让学生观察。师:这些平面图形是不是对称图形?怎样证明它们是不是对称图形?
2、寻找验证方法:师引导学生寻找验证对称图形的方法。(板书:对折)
3、小组合作验证:用对折的方法,验证以上平面图形。要求学生对折后认真观察:将对称图形对折后有什么发现?理解“重合、部分重合、完全重合”。
师小结:这些对称的图形通过对折能够完全重合。
(三)理解认识对称轴,轴对称图形
师:打开折过的对称图形,你有什么新的发现?
师小结:对称图形,对折后能完全重合的这条折痕,我们就把它叫“对称轴”。这些图形就叫“轴对称图形”.【设计意图:数学来源于生活,将学生熟悉的物体抽象成平面图形,以小组合作、探究学习为载体,让学生经历观察——猜想——验证的学习过程,进而发现、理解、掌握轴对称图形的本质特征,从中培养学生动脑动手的能力。】
三、巩固练习,强化新知
1、基础练习:判断。(是否是轴对称图形)
2、应用练习:猜一猜。(课件出示P120的第2题)
3、生活中数学:例举生活中的轴对称物体。
【设计意图:通过巩固练习,强化学生对轴对称图形的全面认识,帮助学生更加准确的判断轴对称图形。】
四、拓展延伸,动手创造
1、欣赏生活中的轴对称物体,感受对称美。
2、生动手做轴对称图形,创造美。
【设计意图:通过欣赏、制作轴对称图形,让学生充分感受数学中的对称美,体会数学知识来源于生活。】
五、全课小结
这节课我们认识了什么图形?什么样的图形是轴对称图形?
板书设计:
认识轴对称图形
完全重合对折