第一篇:《圆的有关概念》教学设计
《圆的有关概念》教学设计
一、教材分析:
本节课是人教版《义务教育课程标准实验教科书》九年级上册第二十四章圆第一节内容,圆的定义和有关概念,是圆的第一节第一课时。因为学生在小学中已经学过圆的一些知识,对圆已有初步的了解,本课时的内容也较为简单。这节课概念较多,是今后进一步学习圆的相关内容的基础,因此在教材的处理上,不能盲目忽略这一节,结合小学中学习的内容、生活中的实例来学习这一节。根据《数学课程标准》的要求,结合以上分析从而确定教学目标。
二、教法分析:
新的课程标准指出,数学课程不仅要考虑到数学自身的特点,更应遵循学生学习数学的心理规律,从学生已有的生活经验出发,通过自主探索与合作交流的形式,使学生乐于投入到数学活动中去。为此我联系学生生活实际创设问题情境引入新课,使大多数学生在问题情境中自然的进入新课,引起学生学习的兴趣;通过教师问题的设置,抓住学生已有的知识点,在学生主动参与,教师引导下,使学生更好掌握新知识,培养学生的探索精神;经过学生合作学习,共同探究新知识,培养学生与他人合作的意识。结合我校的“学——讲——练”教学模式学习圆的有关概念,最后利用新的知识解决问题。采用直观教具和多媒体演示,使学生获得直观印象便于学生理解新知。
三、学情分析
学生在小学中学过圆的一些知识,对于圆已经有进步的了解,并会利用圆规画面,经历了在操作活动中探索圆的性质的过程。初步了解圆所具有的一些性质,并会用自己的语言加以简单描述,初步具有了有条理地思考与表达的能力,为本章的深入学习奠基了基础
圆是一种基本的几何图形,圆形物体在生活中随处可见。学生通过观察体会现实生活中圆形物体所具有的性质。获得了初步的数学活动体验。因此,圆这部分知识得以从小学到初中的顺利过渡,并以积极的态度投入到初中数学的学习,具有了一定的主动参与、合作意识和初步的观察、分析抽象概括的能力。通过一系列不同问题,采用自主学习与合作学习,结合“学——讲——练”的教学模式,使不同学生都能积极参与,提高学生分析问题,解决问题的能力。激发学生学习兴趣。
四、学习目标:
1.明确圆的两种定义、弦、弧等概念;
2.经历动手实验,观察思考,分析概括的学习过程,养成良好习惯;
3.利用我国悠久的数学历史,对学生进行爱国主义熏陶,通过圆的完美性,进行美的体验。
教学重(难)点:
圆及圆的有关概念。
教学理念:
采用学——讲——练的教学方法,结合合作学习,自主探究培养学生的能力。
教学工具:
多媒体课件及自制教具和圆规,三角板。
五、教学过程:
一.创设情景,导入新课:
1.多媒体展示图片,感知圆的世界。举例说出生活中的圆。
2.观察车轮为什么是圆的?
(设计意图:教师通过设置问题,引起学生的思考,培养学生善于发现问题、总结问题、解决问题的能力,让学生明白数学来源于生活,同时也不断地激活学生思维,生成新问题,引起认知冲突,从而自然引入新课。)
(学生活动:学生观察图片,感知圆的世界,独立思考,举出生活中常见的圆的实例。)
二、合作学习,自主探究:
(一)圆的定义:
问题1:
在练习本上用圆规画圆。体验画圆的过程。你能说出圆的形成过程吗?
(设计意图:通过学生自己体会画圆的过程得出圆的描述性定义,充分体现了数学来源于实践,培养学生观察思考问题的能力。)
(学生活动:学生在小学的基础上,动手操作用圆规画圆,并尝试说出圆的形成。)
在学生个体的基础上,师生共同归纳圆的描述性定义:
在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点所形成的图形叫做圆。固定的端点O叫做圆心,线段OA叫做半径.以点O为圆心的圆,记作“⊙O”,读作“圆O”.
问题2:
我们以前学过“角平分线上的一点到角两边的距离相等”;“到角两边的距离相等的点在角平分线上”;角平分线可以看作“到角两边的距离相等的所有点的 集合”。线段的垂直平分线也有类似的结论,那么圆从集合的角度应该怎样定义?
(设计意图:通过类比思考,渗透集合的思想,培养学生的归纳能力。)
(学生活动:通过类比以及画图,师生共同归纳圆的描述性定义。)
(1)图上各点到定点(圆心O)的距离都等于定长(半径r);
(2)到定点的距离等于定长的点都在同一个圆上.
因此,我们可以得到圆的新定义:圆心为O,半径为r的圆可以看成是所有到定点O的距离等于定长r的点组成的图形.
【知识文档】:我国古人很早对圆就有这样的认识了,战国时的《墨经》就有“圆,一中同长也”的记载.它的意思是圆上各点到圆心的距离都等于半径.
(设计意图:通过展示古人的成就,培养学生的民族自豪感和爱国热情。)
(二)圆的有关概念:
1.自学课本P78---P79页思考下列问题:
弄清圆的有关概念?怎样用数学符号表示?
(设计意图:采用我校的“学——讲——练”教学模式,通过自主学习,掌握知识。)
(学生活动:独立阅读,自主学习。)教师巡视指导。
2.自学检测:
(1)、车轮为什么做成圆形的?
生答:把车轮做成圆形,车轮上各点到车轮中心(圆心)的距离都等于车轮的半径,当车轮在平面上滚动时,车轮中心与平面的距离保持不变,因此,当车辆在平坦的路上行驶时,坐车的人会感觉到非常平稳,这也是车轮都做成圆形的数学道理.
(2)、为什么说“直径是圆中最长的弦”?试说说你的理由.(3)、什么是弦、直径、弧、半圆、等圆、等弧、优弧、弧劣?
①连接圆上任意两点的线段叫做弦;
②经过圆心的弦叫做直径;
③圆上任意两点间的部分叫做圆弧,简称弧。大于半圆的弧叫做优弧,•小于半圆的弧叫做劣弧.
④圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆.
(设计意图:采用先让学生独立思考,然后小组交流,鼓励学生用自己的语言说明理由,并逐步渗透用教学语言进行说理能力,但不强求每位同学都用严格的语言进行表述,培养学生利用所学教学知识解决问题的能力。体现了知识来源于生活,同时服务于生活,将数学融入到生产生活中,激发学生的积极性和主动性。)
(学生活动:思考,小组讨论,交流.)
三、应用新知,巩固提高:
1.P80页练习1.2.2、判断正误:
1)、弦是直径()
2)半圆是弧;()
3)过圆心的线段是直径;()
4)过圆心的直线是直径;()
5)半圆是最长的弧;()
6)直径是最长的弦;()
7)圆心相同,半径相等的两个圆是同心圆;()
8半径相等的两个圆是等圆;()
9)等弧就是拉直以后长度相等的弧。()
3.探究与思考:
如图,一根5m长的绳子,一端栓在柱子上,另一端栓着一只羊,请画出羊的活动区域.(设计意图:考查了圆的基本概念,反馈本节所学的内容,更深层理解概念的意义。
探究与思考是我们平时中经常见到的,充分体现了知识来源于生活,同时服务于生活,将数学融入到生产生活中,激发学生的积极性和主动性。学会与人交流,合作,真正成为教与学的主体,形成师生互动的课堂氛围。采用先让学生独立思考,然后小组交流,鼓励学生用自己的语言说明理由,并逐步渗透用教学语言进行说理能力,但不强求每位同学都用严格的语言进行表述,培养学生利用所学教学知识解决问题的能力。)
(学生活动:思考,小组讨论,交流.)
四、归纳小结:
1.本节你学到了什么?有那些收获?
2.通过今天的学习,你想进一步探究的问题是什么?
引进古希腊的数学家毕达哥拉斯的一句话“一切立体图形中最美的是球,一切平面图形中最美的是圆。”
(设计意图:小结时再次通过对两个问题的思考引导学生回顾自己的学习过程,畅所欲言、加强反思。作为结束语,使学生感受数学的美。)
(学生活动:学生思考,用自己的语言反馈本节得到的收获,互相补充。)
五:作业:
1.圆中最长的弦长为12,则该圆半径为多少?
2.在投掷比赛中,如铅球,标枪等距离标志线为什么画成弧线型呢?
3.请写一篇对圆的认识的日记,并找一找,看一看生活中哪些物品中有圆,为什么用到圆。
(设计意图:作业中第1,2题是必做题,考察同学们对本节的掌握,第3题是开放性的题目,培养学生的综合能力。)
(学生活动:学生课下独立解答。)
六.板书设计:
圆的定义 圆的有关概念 练习
七.教学反思
1、注意联系实际
圆是人们日常生活和生产中应用较广的一种几何图形,不仅日常生活中许多物体是圆形的,而且在工农业生产、交通运输、土木建筑等方面都可以见到圆。在引入圆定义时,列举了大量的实际生活中的实例,教科书的例题、习题中也有一些实际应用的例子等等。这些材料都是从实际中提炼出来的,要通过这些知识的教学,帮助学生从实际生活中发现数学问题,运用所学知识解决实际问题。
2、重视知识间的联系与综合圆是学生学习的第一个曲线形,学生由学习直线形的到曲线形,在认识上是一个飞跃,在教学时,应注意充分利用学生在小学学习过的圆的知识,搞好衔接。
3、重视渗透数学思想
给出圆的描述定义以后,进一步结合画圆的过程,从集合的角度对圆作进一步的刻画,渗透把一个几何图形看成满足某种条件的点的集合的思想。
在板书设计上因为条件的制约,没有体现,在语言上可以更精准,在教学中应该更多的关注学生,这都是我今后更加需要完善和改进的。
第二篇:圆的概念教学反思
这一节课是本章的第一节课,内容不算多,但每一个元素都对后面的学习比较有用,所以,这一节必须让学生都把该记的定义弄清楚、记好。在这节课当中,我觉得一定要让学生清晰地明白等弧和等弦。
上课之后,让学生知道什么是弧、弦、等弧、等圆之后,一定要做一些练习让学生学以致用,例如,在一个圆上画出几种弧、几种角(圆心角、圆周角)等,让学生能够尽量我地找到图中的弦、弧、圆周角。特别注意的是要引导学生学会看到直径就能说出直径是最长的弦。对于等弧这个定义,一定要直观地让学生弄清楚等弧是全等的,而不仅仅是弧长相等,这为下面的学习做好铺垫。
对于《分层导学》的练习题,练习量比较适量,因为待新课上完之后,能力较强的学生完全可以把这节课的内容做完,做题之后,一定要学生总结做完这些题之后,印象最深的是什么?(实际上要学生知道,圆的所有半径都是相等的,因此,很多时间都可能了现等腰三角形,等腰三角形就有可以用到三线合一。有些时候,直径的出现很大程度要用到圆心是直径的中点,也可能用到三角形的中位线。)
总之,虽然这节课内容不算多,但基础的知识点务必让学生掌握,能够在题目中根据条件而逐一联想出来,这也是这一章我们学习的一个基本思想方法,不能单靠背,这也是学好几何的一种好方法。
第三篇:圆 教学设计
《圆的认识》教学设计
教学内容:
设计说明:
圆的认识”是义务教育课程标准实验教科书小学数学六年级上册55——58页的内容,它是在学生已经初步认识了长方形、正方形、平行四边形、三角形、梯形等平面图形和初步认识圆的基础上进行学习的。对于学生来说,虽然已经初步认识过圆,但对于建立正确的圆的概念以及掌握圆的特征来说还是比较困难的。学生由认识平面上的直线图形到认识平面上的曲线图形,无论是内容本身,还是研究问题的方法,都是认识发展的又一次飞跃。
本课的教学设计注重从学生已有的生活经验和知识背景出发,结合具体情境和操作活动激活已经存在于学生头脑中的经验,促使学生逐步归纳内化,上升到数学层面来认识圆,体会到圆的本质特征。教学目标:
1、结合生活实际,通过观察、操作等活动认识圆,理解圆心、半径、直径的意义,掌握圆的特征,理解同圆里(或等圆)半径与直径的关系。
2、会用圆规画圆,培养学生的操作能力。
3、结合具体的情境,体验数学与生活密切联系,能用圆的知识来解释生活中的简单现象。
4、通过观察、操作、想象等活动,培养学生自主探究的意识,进一步发展学生的空间观念。
教学重点:在探索中发现圆的特征。
教学难点:理解同圆里(或等圆)半径与直径的关系,并掌握圆的正确画法。教学材料:生——圆规、直尺、剪刀、、A4纸、圆形物体。(提前让学生回去玩圆规,试着画圆)
师——教学用的圆规一把、直尺一把、课件、“研究记录单”、白纸一些。事先画好一个圆在黑板上,并将大圆规“定长”。教学过程
一、寻宝中创造“圆”
师(很神秘):小明参加头脑奥林匹克的寻宝活动,得到这样一张纸条——“宝物距离你左脚3米。”
(稍顿)你手头的白纸上有一个红点,这个红点就代表小明的左脚,想一想,宝物可能在哪呢?用1厘米表示1米,请在纸上表示出你的想法。(学生独立思考、在纸上画着……)
师:刚才我看了一圈,同学们都在纸上表示出了自己的想法。(课件演示)宝物可能在这——
师:找到这个点的同学,请举手。(几乎全班举手。)还可能在其它位置吗?(学生们纷纷表示还有其它可能,课件依次出示2个点、3个点、4个点、8个点、16个点、32个点,直到连成一个圆。)师(笑着):这是什么?(板书:①是什么?)
生(有的惊讶、有的惊喜):圆!
师:刚才想到圆了的同学请举手!(十几位同学举手。)开始没想到的同学,现在认同了吗?那宝物的位置可能在哪呢? 生(高兴地):宝物的位置在这个圆上。
师:谁能说一说这是怎样的一个圆? 生1:这是一个有宝物的圆!
(全班同学善意的笑了。)生2:宝物就在小明周围!
师(点头):说得真好,周围这个词用得没错!(又像是自言自语地)周围的范围可大了……
同学们,想解决这个问题吗?现在我们一块来自学课本,相信大家学习完以后,一定会用我们学习的知识来解决这个问题的。同学们,加油吧。
二、探究活动
(一)自学小提示
1、(1)自学教材,把你认为重点的句子用线画下来,学到了什么,在小组内交流。
(2)在你的圆形纸片上画出圆心、半径和直径,并用字母表示出来。
(3)自学完成后,你能用一句话来描述宝物在哪吗?
2、小组汇报
(1)自学的收获
(2)学生上台画出圆的半径,直径,小练习
(3)描述宝物所在的地方
刚才同学们说宝物就在小明周围!说得真好,周围这个词用得没错!(又像是自言自语地)周围的范围可大了……生(迫切地):宝物在距离左脚3米的位置。(全班同学鼓掌。)
师:是啊,他强调了左脚。通过刚才的学习,谁知道这个左脚也就是圆的什么? 生(争先恐后地):圆心!圆心!师:没错,叫圆心。(板书:圆心。)也就是以左脚为圆心。他刚才强调了,距离左脚3米,这个距离3米,知道叫什么名称吗? 生:直径!半径!师:(板书:半径 直径。)直径还是半径?
生(绝大部分):半径!师:现在,用上“圆心”、“半径”,谁能清楚地说一说这个宝物可能在哪?生:以他左脚为圆心,半径3米的圆内。师:在圆内还是在圆上?生(纷纷纠正道):在圆上!
师:刚才董思纯很精彩的发言,把两个要素都说出来了,是不是只要说“以什么为圆心,以多长为半径”把这个圆就确定下来了?(同学们纷纷点头。)
三、探究活动
(二)同们觉得还有没有什么值得我们深入地去研究?
生:有(自信地)。
师:说得好,其实不说别的,就圆心、直径、半径,还蕴藏着许多丰富的规律呢,同学们想不想自己动手来研究研究?(想!)同学们手中都有圆片、直尺、圆规等等,这就是咱们的研究工具。待会儿就请同学们动手折一折、量一量、比一比、画一画,相信大家一定会有新的发现。小小的建议:研究过程中,别忘了把你们组的结论,哪怕是任何细小的发现都记录在学习纸上,到时候一起来交流。
(一)、通过动手,摸一摸,折一折,画一画。量一量,小组合作探究要求二:
1、圆与其它平面图形一样吗?
2、请同学们在圆纸片上画出半径,10秒钟,看能画出多少条?直径呢?
3、请同学们用直尺量一量画出的半径各是多少厘米?你发现了什么?直径呢?
4、还有关于圆的什么样的特征?
5、把你们组的发现填写到纸上,看哪一小组发现的最多!
(二)小组汇报
很多小组都向张老师推荐了他们刚才的研究发现,张老师从中选择了一部分。下面,就让我们一起来分享大家的发现吧!
生:我们小组发现圆有无数条半径。
师:能说说你们是怎么发现的吗?
生:我们组是通过折发现的。把一个圆先对折,再对折、对折,这样一直对折下去,展开后就会发现圆上有许许多多的半径。
生:我们组是通过画得出这一发现的。只要你不停地画,你会在圆里画出无数条半径。
生:我们组没有折,也没有画,而是直接想出来的。
师:噢?能具体说说吗?
生:因为连接圆心和圆上任意一点的线段叫做圆的半径,而圆上有无数个点(边讲边用手在圆片上指),所以这样的线段也有无数条,这不正好说明半径有无数条吗?
师:看来,各个小组用不同的方法,都得出了同样的发现。至少直径有无数条,还需不需要再说说理由了?
生:不需要了,因为道理是一样的。
师:关于半径或直径,还有哪些新发现?
生:我们小组还发现,所有的半径或直径长度都相等。
师:能说说你们的想法吗?
生:我们组是通过量发现的。先在圆里任意画出几条半径,再量一量,结果发现它们的长度都相等,直径也是这样。
生:我们组是折的。将一个圆连续对折,就会发现所有的半径都重合在一起,这就说明所有的半径都相等。直径长度相等,道理应该是一样的。
生:我认为,既然圆心在圆的正中间,那么圆心到圆上任意一点的距离应该都相等,而这同样也说明了半径处处都相等。
生:关于这一发现,我有一点补充。因为不同的圆,半径其实是不一样长的。所以应该加上“在同一圆内”,这一发现才准确。
师:大家觉得他的这一补充怎么样?
生:有道理。
师:看来,只有大家互相交流、相互补充,我们才能使自己的发现更加准确、更加完善。还有什么新的发现吗?
生:我们小组通过研究还发现,在同一个圆里,直径的长度是半径的两倍。
师:你们是怎么发现的?
生:我们是动手量出来的。
生:我们是动手折出来的。
生:我们还可以根据半径和直径的意义来想,既然叫“半径”,自然应该是直径长度的一半喽……
师:看来,大家的想象力还真丰富。
生:我们组还发现圆的大小和它的半径有关,半径越长,圆就越大,半径越短,圆就越小。
师:圆的大小和它的半径有关,那它的位置和什么有关呢?
生:应该和圆心有关,圆心定哪儿,圆的位置就在哪儿了。
生:我们组还发现,圆是世界上最美的图形。
师:能说说你们是怎样想的吗?
生:生活中,我们到处都能找到圆。如果没有了圆,我们生活的世界一定会缺乏生机
生:我们生活的世界需要圆,如果没有了圆,车子就没法自由的行驶……
师:当然,张老师相信,同学们手中一定还有更多精彩的发现,没来得及展示。没关系,那就请大家下课后将刚才的发现剪下来,贴到教室后面的数学角上,让全班同学一起来交流,一起来分享,好吗?
生:好。
四、动手画圆
1、每位同学画一个圆,比较一下,你们所画的圆大小一样吧?为什么,如果让每个小组的几位同学画的圆大小都一样,你们小组能做到吗?试一试,通过刚才的画圆,你们知道了什么?板书(半径决定圆的大小)
2、学生上台板演画圆(投影仪前)
3、总结画圆的方法。
定点,定长,旋转
五、生活中圆
看来,只要我们善于观察,善于联系,善于动手,我们还能获得更多有用的信息。现在让我们重新回到现实生活中来。平静的水面丢进石子,荡起的波纹为什么是一个个圆形?现在,你能从数学的角度简单解释这一现象了吗?
生:我觉得石子投下去的地方就是圆的圆心。
生:石子的力量向四周平均用力,就形成了一个个圆。
生:这里似乎包含着半径处处相等的道理呢。
师:瞧,简单的自然现象中,有时也蕴含着丰富的数学规律呢。至于其他一些现象中又为何会出现圆,当中的原因,就留待同学们课后进一步去调查、去研究了。
师:其实,又何止是大自然对圆情有独钟呢,在我们人类生活的每一个角落,圆都扮演着重要的角色,并成为美的使者和化身。让我们一起来欣赏――
师:西方数学、哲学史上历来有这么种说法,“上帝是按照数学原则创造这个世界的”。对此,我一直无从理解。而现在想来,石子入水后浑然天成的圆形波纹,阳光下肆意绽放的向日葵,天体运行时近似圆形的轨迹,甚至于遥远天际悬挂的那轮明月、朝阳……而所有这一切,给予我们的不正是一种微妙的启示吗?至于古老的东方,圆在我们身上遗留下的印痕又何尝不是深刻而广远的呢。太极图
有的说,中国人特别重视中秋、除夕佳节;有人说,中国古典文学喜欢以大团圆作结局;有人说,中国人在表达美好祝愿时最喜欢用上的词汇常常有“圆满”“美满”……而所有这些,难道就和我们今天认识的圆没有任何关联吗?那就让我们从现在起,从今天起,真正走进历史、走进文化、走进民俗、走进圆的美妙世界吧!
研究报告单
自己动手折一折、量一量、比一比、画一画,把你们的发现写下来:
半径的特征:
直径的特征:
半径与直径之间的关系:
你能用数学的角度解释一下为什么车轮要做成圆的?车轴应装在哪里? 这是利用圆心到圆上任意一点的距离都相等的特性,车轴放在圆心的位置,车轮滚动时车轴保持平稳状态,使行进的车辆也保持平稳状态。
第四篇:圆教学设计
《圆的认识》教学设计
学习目标:
1.认识圆,知道圆各部分的名称;掌握圆的特征,理解直径和半径的相互关系;初步学会用圆规画圆。
2.通过小组学习,动手操作等活动,体验小组合作学习、分享学习成果的乐趣。
3.感受圆在生活中的广泛应用,体验数学与生活的密切联系。学习重点:探索出圆各部分的名称、特征及关系,学会用圆规画圆的方法。
学习难点:通过动手操作体会圆的特征及画法。
学具准备:圆形纸片、圆形物体、直尺、圆规、线、剪刀等。学习过程:
【纵横生活 设疑激趣】
图图是个爱动脑筋的孩子,今天他坐车去上学,他发现汽车的轮子都是圆形的,他想为什么轮子都要做成圆形,而不做成正方形、长方形或三角形呢?生活中还有哪些物体也是圆形的?
【动手实践 自主探究】
活动一:探究圆各部分的名称与特征 1.画一画:你能想办法在纸上画一个圆吗? 说一说你是怎么画的?
2.剪一剪:把你画的圆剪下来? 圆与我们过去认识的长方形、正方形、三角形等平面图形有什么不一样?(圆是由曲线围成的平面图形)
3.折一折:先把圆对折打开,换个方向,再对折,再打开……这样反复折几次。
仔细观察:折过若干次后,你发现了什么?(结合书理解)在动手实验与合作交流中得出圆心、半径、直径的概念:在圆内出现了许多折痕,它们都相交于一点,这一点就是(),圆心一般用字母()表示。连接圆心和圆上任意一点的线段叫做(),半径一般用字母()表示。通过圆心并且两端都在圆上的线段叫做()。直径一般用字母()表示。
4.找一找:在同一个圆里,有多少条半径、多少条直径? 在同一个圆里,半径有()条,直径有()。
5.量一量:自己用尺子量一量同一个圆里的几条半径和几条直径,看一看,你有什么发现?
在同一个圆里,半径有()条,所有的半径都(),直径有()条,所有的直径都(),半径是直径的(),直径是半径的()。
活动二:探究圆的画法
1.想一想,画一画:怎样才能画出任意大小的圆?圆的位置和大小和谁有关?
看看书上的理解是不是和你想的一样,试用圆规画一个半径是2CM的圆。
2.思考:图图想在操场上画一个圆做游戏,没有那么大的圆规怎么办?
【巩固提高 内化新知】
1.用圆规画一个半径是3cm的圆,并用字母O、r、d标出它的圆心、半径和直径。
2.用圆规画圆,如果半径是4cm,圆规两脚之间的距离取()cm,如果要画直径是10cm的圆,圆规两脚之间的距离取()cm。
【解惑释疑 应用拓展】
思考:车轮为什么是圆形的?车轴应装在什么位置? 板书设计: 圆 圆心:o 直径:d 半径:r 达 标 测 评
一、填空
1.圆中心的一点叫做(),用字母()表示。2.通过(),并且两端都在圆上的(),叫做圆的直径。用字母()表示。
3.从()到()任意一点的线段叫半径。用字母()表示。4.圆是平面上的一种()图形。将一张圆形纸片至少对折()次可以得到这个圆的圆心。
5.在同一圆所有的线段中,()最长。
6.在同一个圆里,所有的半径(),所有的()也都相等,直径等于半径的()。
7.在同一个圆里,半径是5厘米,直径是()厘米。8.画圆时,圆规两脚间的距离是圆的()。
9.()确定圆的位置,()确定圆的大小。10.在一个直径是8分米的圆里,半径是()厘米。
11.用圆规画一个直径20厘米的圆,圆规两脚步间的距离是()厘米。
二、判断
1.所有的半径长度都相等,所有的直径长度都相等。()2.直径是半径长度的2倍。()
3.两个圆的直径相等,它们的半径也一定相等。()4.半径是射线,直径是线段。()
5.经过一个点可以画无数个圆。()6.两端都在圆上的线段就是直径。()
7.画一个直径是4厘米的圆,圆规两脚应叉开4厘米。()
8.在画圆时,把圆规的两脚张开6厘米,这个圆的直径是12厘米。()9.半径能决定圆的大小,圆心能决定圆的位置。()
第五篇:圆教学设计
圆
目标认知 学习要点
1.了解圆的有关概念,理解垂径定理并灵活运用垂径定理及圆的概念解决一些实际问题.
2.了解圆心角的概念,掌握在同圆或等圆中,三组量:两个圆心角、两条弦、两条弧,只要有一组量相等,就可以推出其它两组量对应相等,及其它们在解题中的应用.
3.了解圆周角的概念,理解圆周角定理及其推论,熟练掌握圆周角的定理及其推理的灵活运用. 重点
1.垂径定理及其运用.
2.在同圆或等圆中,相等的圆心角所对的弧相等,•所对弦也相等及其两个推论和它们的应用.
3.圆周角的定理、圆周角的定理的推导及运用它们解题. 难点
1.探索并证明垂径定理及利用垂径定理解决一些实际问题.
2.探索定理和推论及其应用.
3.运用数学分类思想证明圆周角的定理.
一、知识要点梳理 知识点
一、圆的定义
1.定义1:
如图,在一个平面内,线段OA绕它固定的一个端点O旋转一圈,另一个端点A随之旋转所形成的图形叫做圆(circle),固定的端点O叫做圆心(center of a circle),线段OA叫做半径(radius).以点O为圆心的圆,记作“⊙O”,读作“圆O”.
要点诠释:
(1)圆心确定圆的位置,半径确定圆的大小;确定一个圆应先确定圆心,再确定半径,二者缺一不可;
(2)圆是一条封闭曲线.2.定义2:
圆心为O,半径为r的圆是平面内到定点O的距离等于定长r的点的集合.要点诠释:
(1)定点为圆心,定长为半径;
(2)圆指的是圆周,而不是圆平面;
(3)强调“在一个平面内”是非常必要的,事实上,在空间中,到定点的距离等于定长的点的集合是球
面,一个闭合的曲面.知识点
二、与圆有关的概念 1.弦
弦:连结圆上任意两点的线段叫做弦(chord).直径:经过圆心的弦叫做直径(diameter).要点诠释:
直径是圆中通过圆心的特殊弦,也是圆中最长的弦,即直径是弦,但弦不一定是直径.为什么直径是圆中最长的弦?如图,AB是⊙O的直径,CD是⊙O中任意一条弦,求证:AB≥CD.证明:连结OC、OD
∵AB=AO+OB=CO+OD≥CD(当且仅当CD过圆心O时,取“=”号)
∴直径AB是⊙O中最长的弦.2.弧
弧:圆上任意两点间的部分叫做圆弧,简称弧(arc).以A、B为端点的弧记作,读作“圆弧AB”或“弧AB”.半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆(semi-circle).优弧:大于半圆的弧叫做优弧.劣弧:小于半圆的弧叫做劣弧.要点诠释:
(1)半圆是弧,而弧不一定是半圆.(2)无特殊说明时,弧指的是劣弧.3.同心圆与等圆
圆心相同,半径不等的两个圆叫做同心圆.圆心不同,半径相等的两个圆叫做等圆.同圆或等圆的半径相等.4.等弧
在同圆或等圆中,能够完全重合的弧叫做等弧.要点诠释:
等弧成立的前提条件是在同圆或等圆中,不能忽视.知识点
三、圆的对称性 1.圆是轴对称图形
圆是轴对称图形,任何一条直径所在直线都是它的对称轴.或者说,经过圆心的任何一条直线都是圆的对称轴.2.圆是中心对称图形
圆是旋转对称图形,无论绕圆心旋转多少度,它都能和自身重合,对称中心就是圆心,因此,圆又是中心对称图形.要点诠释:
(1)圆有无数条对称轴;
(2)因为直径是弦,弦又是线段,而对称轴是直线,所以不能说“圆的对称轴是直径”,而应该说“圆 的对称轴是直径所在的直线”.知识点
四、垂直于弦的直径
1.垂径定理:
垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.2.推论:
平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.要点诠释:
(1)垂径定理是由两个条件推出两个结论,即
(2)这里的直径也可以是半径,也可以是过圆心的直线或线段.知识点
五、弧、弦、圆心角的关系
1.圆心角定义
如图所示,∠AOB的顶点在圆心,像这样顶点在圆心的角叫做圆心角(central angle).
2.定理:
在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.
3.推论:
在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦也相等.
在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧也相等.
要点诠释:
(1)一个角要是圆心角,必须具备顶点在圆心这一特征.(2)注意定理中不能忽视“同圆或等圆”这一前提.知识点
六、圆周角 1.圆周角定义:
像图中∠AEB、∠ADB、∠ACB这样的角,它们的顶点在圆上,并且两边都与圆相交的角叫做圆周角.
2.圆周角定理:
在同圆或等圆中,同弧等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
3.圆周角定理的推论:
半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.
要点诠释:
(1)圆周角必须满足两个条件:①顶点在圆上;②角的两边都和圆相交.(2)圆周角定理成立的前提条件是在同圆或等圆中.二、规律方法指导
圆是平面几何知识中接触到的唯一的曲线形,因此它在研究问题的方法上与直线形有很大的不同,所以在学习这部分知识时要注意这个问题.另外,这一章的概念和定理较多,学习时要注意阶段性的小结,巩固每一阶段的知识.由于本章要经常用到前面学过的许多知识,综合性较强,所以要不怕困难,才能学好本章.经典例题透析
类型
一、圆及有关概念
1.判断题(对的打√,错的打×,并说明理由)
(1)半圆是弧,但弧不一定是半圆;
(2)弦是直径;
(3)长度相等的两段弧是等弧;
(4)直径是圆中最长的弦.思路点拨:(1)因为半圆是弧的一种,弧可分为劣弧、半圆、优弧三种,故正确;(2)直径是弦,但弦不一定都是直径,只有过圆心的弦才是直径,故错;(3)只有在同圆或等圆中,长度相等的两段弧才是等弧,故错;(4)直径是圆中最长的弦,正确.答案:(1)√(2)×(3)×(4)√.举一反三
【变式1】下列说法错误的是()4
A.半圆是弧
B.圆中最长的弦是直径
C.半径不是弦
D.两条半径组成一条直径
思路点拨:弧有三类,分别是优弧、半圆、劣弧,所以半圆是弧,A正确;直径是弦,并且是最长的弦,B正确;半径的一个端点为圆心,另一个端点在圆上,不符合弦的定义,所以不是弦,C正确;两条半径只有在同一直线上时,才能组成一条直径,否则不是,故D错误.答案:D.类型
二、垂径定理及应用
2.已知,点P是半径为5的⊙O内一点,且OP=3,在过点P的所有的⊙O的弦中,弦长为整数的弦的条数为()
A.2
B.3
C.4D.5
思路点拨:在一个圆中,过一点的最长弦是经过这一点的直径,最短的弦是经过这一点与直径垂直的弦.知道这些,就可以利用垂径定理来确定过点P的弦长的取值范围.解:作图,过点P作直径AB,过点P作弦
则OC=5,CD=2PC
由勾股定理,得
∴CD=2PC=8,又AB=10
∴过点P的弦长的取值范围是
,连接OC
弦长的整数解为8,9,10,根据圆的对称性,弦长为9的弦有两条,所以弦长为整数的弦共4条.答案:C.总结升华:本题中很多条件是“隐性”出现的,或者称之为“隐含条件”.我们在解题时,要善于挖掘隐含条件,识别隐含条件的不同表达方式,将其转化为容易理解的题目,化难为易,这也体现了转化思想在解题中的具体应用.3.已知:⊙O的半径为10cm,弦AB∥CD,AB=12cm,CD=16cm,求AB、CD间的距离.思路点拨:⊙O中,两平行弦AB、CD间的距离就是它们的公垂线段的长度,若分别作弦AB、CD的弦心距,则可用弦心距的长表示这两条平行弦AB、CD间的距离.解:(1)如图,当⊙O的圆心O位于AB、CD之间时,作OM⊥AB于点M,并延长
MO,交CD于N点.分别连结AO、CO.又∵AB∥CD
∴ON⊥CD,即ON为弦CD的弦心距.∵AB=12cm,CD=16cm,AO=OC=10cm
=8+6
=14(cm)
(2)如图所示,当⊙O的圆心O不在两平行弦AB、CD之间(即弦AB、CD在圆
心O的同侧)时
同理可证:MN=OM-ON=8-6=2(cm)
∴⊙O中,平行线AB、CD间的距离是14cm或2cm.总结升华:解这类问题时,要依平行线与圆心间的位置关系,分类讨论,千万别丢解.4.如图,一条公路的转弯处是一段圆弧(即图中,点O是的圆心,•其中CD=600m,E为上一点,且OE⊥CD,垂足为F,EF=90m,求这段弯路的半径.
思路点拨:本题是垂径定理的应用.解:如图,连接OC
设弯路的半径为R,则OF=(R-90)m
∵OE⊥CD
∴CF=CD=×600=300(m)
根据勾股定理,得:OC2=CF2+OF即R2=3002+(R-90)2 解得R=545
∴这段弯路的半径为545m.
总结升华:构造直角三角形,利用垂径定理、勾股定理,解题过程中使用了列方程的方法,这种用代数方法解决几何问题即几何代数解的数学思想方法一定要掌握.
举一反三
【变式1】有一石拱桥的桥拱是圆弧形,如图所示,正常水位下水面宽AB=60m,水面到拱顶距离CD=18m,当洪水泛滥时,水面距拱顶不超过3m时拱桥就有危险,现在水面宽MN=32m时是否需要采取紧急措施?请说明理由.
思路点拨:要求当洪水到来时,水面宽MN=32m,是否需要采取紧急措施,要求出DE的长,因此要先求半径R.
解:不需要采取紧急措施
设OA=R,在Rt△AOC中,AC=30,OC=OD-CD=R-18
R2=302+(R-18)2,R2=900+R2-36R+324
解得R=34(m)
连接OM,设DE=x,在Rt△MOE中,ME=16
342=162+(34-x)
2x2-68x+256=0
解得x1=4,x2=64(不合题意,舍)
∴DE=4m大于3m
∴不需采取紧急措施.
类型
三、圆心角、弧、弦之间的关系及应用
5.如图,在⊙O中,求∠A的度数.思路点拨:在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦也相等.
解:
举一反三
【变式1】如图所示,中弦AB=CD,求证:AD=BC..思路点拨:AD和BC是同圆中两条相等的弦,要说明的AB、CD也是同圆中的两条相等的弦,可以考虑弧、弦、圆心角的关系,因为图中没有给出圆心角,所以可以先考虑弧.证法1:∵AB=CD,∴为优弧或同为劣弧)也相等)
∴
(在同圆中,相等的弦所对的弧(同
∴AD=BC(在同圆中,相等的弧所对的弦也相等)
证法2:如图,连接OA,OD,OB,OC,∵AB=CD,∴的圆心角相等)
(在同圆中,相等的弦所对
∴
∴AD=BC(在同圆中,相等的圆心角所对的弦也相等)
总结升华:在同圆或等圆中,两个圆心角、两条弦、两条弧中若有一组量相等,它们对应的其余各组量也相等,因此在圆中说明或证明弦、弧、圆心角的相等关系时可考虑利用弧、弦、圆心角的关系,只不过叙述时要注意一条弦和两条弧对应,不要认为相等的弦所对的弧一定相等.
类型
四、圆周角定理及应用
6.如图,AB是⊙O的直径,C、D、E都是⊙O上的点,则∠1+∠2=___________.思路点拨:如图,连接OE,则
答案:90°.举一反三
【变式1】如图,A、B、C、D是⊙O上的四点,且∠BCD=100°,求∠1(所对的圆心角)和∠BAD的大小.
思路点拨:要求圆心角∠BOD的大小,且知道圆周角∠BCD=100°,但两者不是同弧所对的角,不能直接利用同弧所对圆心角等于圆周角的2倍来实现求解.观察∠BCD它所对的弧是,而
所对的圆心角是∠2,所以可以解得∠2.又发现∠2和∠1的和是一个周角,所以可得∠1,而∠BAD=
解:∵∠BCD和∠2分别是
∠1.所对的圆周角和圆心角
∴∠2=2∠BCD=200°
又∵∠2+∠1=360°,∴∠1=160°
∵∠BAD和∠1分别是
所对的圆周角和圆心角
∴.
总结升华:圆心角和圆周角是借助它们所对的弧联系起来的,所以在圆中进行有关角的计算时,通常找到已知角所对弧,看看怎么样通过弧和未知角建立起联系.事实上由这个题我们可以总结出圆内接四边形对角互补.
7.如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到C,使AC=AB,BD与CD的大小有什么关系?为什么?
思路点拨:BD=CD,因为AB=AC,所以这个△ABC是等腰三角形,要证明D是BC的中点,只要连结AD证明AD是高或是∠BAC的平分线即可.
解:BD=CD
理由是:如图,连接AD
∵AB是⊙O的直径
∴∠ADB=90°即AD⊥BC
又∵AC=AB
∴BD=CD.举一反三
【变式1】如图所示,AB为⊙O的直径,动点P在⊙O的下半圆,定点Q在⊙O的上半圆,设∠POA=x°,∠PQB=y°,当P点在下半圆移动时,试求y与x之间的函数关系式.9
解:
解法1:如图所示,∵AB为⊙O的直径,∠AOP=x°
∴∠POB=180°-x°=(180-x)°
又
解法2:如图所示,连结AQ,则
又∵AB是⊙O的直径,∴∠AQB=90°
【变式2】已知,如图,⊙O上三点A、B、C,∠ACB=60°,AB=m,试求⊙O的直径长.解:如图所示,作⊙O的直径AC′,连结C′B
则∠AC′B=∠C=60°
又∵AC′是⊙O的直径,∴∠ABC′=90°
即⊙O的直径为
.学习成果测评 基础达标
一、选择题
1.下列三个命题:①圆既是轴对称图形又是中心对称图形;②垂直于弦的直径平分弦;③相等的圆心
角所对的弧相等.其中真命题的是()
A.①②
B.②③
C.①③
D.①②③
2.下列命题中,正确的个数是()
⑴直径是弦,但弦不一定是直径;
⑵半圆是弧,但弧不一定是半圆;
⑶半径相等的两个圆是等圆 ;
⑷一条弦把圆分成的两段弧中,至少有一段是优弧.A.1个
B.2个
C.3个
D.4个
3.如果两个圆心角相等,那么()
A.这两个圆心角所对的弦相等
B.这两个圆心角所对的弧相等
C.这两个圆心角所对的弦的弦心距相等
D.以上说法都不对
4.⊙O中,∠AOB=∠84°,则弦AB所对的圆周角的度数为()
A.42°
B.138°
C.69°
D.42°或138°
5.如图,已知A、B、C是⊙O上的三点,若∠ACB=44°.则∠AOB的度数为()
A.44°
B.46°
C.68°
D.88°
6.如图,如果AB为⊙O的直径,弦CD⊥AB,垂足为E,那么下列结论中,•错误的是()
A.CE=DE
B.C.∠BAC=∠BAD D.AC>AD
7.如图,⊙O的直径为10,圆心O到弦AB的距离OM的长为3,则弦AB的长是()A.4 B.6 C.7 D.8 8.如图,A、B、C三点在⊙O上,∠AOC=100°,则∠ABC等于()
A.140°
B.110°
C.120°
D.130°
9.如图,⊙O的直径CD垂直于弦EF,垂足为G,若∠EOD=40°,则∠DCF等于()
A.80°
B.50°
C.40°
D.20°
10.如图,⊙O的直径为10,弦AB的长为8,M是弦AB上的动点,则OM的长的取值范围()
A.3≤OM≤5
B.4≤OM≤5
C.3<OM<5
D.4<OM<5
二、填空题
1.如图,AB为⊙O直径,E是
中点,OE交BC于点D,BD=3,AB=10,则AC=_____.2.如图,⊙O中,若∠AOB的度数为56°,∠ACB=_________.3.如图,AB是⊙O的直径,CD是弦,∠BDC=25°,则∠BOC=________.4.如图,等边ΔABC的三个顶点在⊙O上,BD是直径,则∠BDC=________,∠ 12 ACD=________.若CD=10cm,则⊙O的半径长为________.5.如图所示,在⊙O中,AB是⊙O的直径,∠ACB的角平分线CD交⊙O于D,则∠ABD=______度.
6.(山西)如图,在“世界杯”足球比赛中,甲带球向对方球门PQ进攻,当他带球冲到A点时,同样乙已经助攻冲到B点.有两种射门方式:第一种是甲直接射门;第二种是甲将球传给乙,由乙射门.仅从射门角度考虑,应选择________种射门方式.三、解答题
1.如图,AB为⊙O的直径,CD为弦,过C、D分别作CN⊥CD、DM•⊥CD,•分别交AB于N、M,请问图中的AN与BM是否相等,说明理由.2.如图,在⊙O中,C、D是直径AB上两点,且AC=BD,MC⊥AB,ND⊥AB,M、N•在⊙O上.(1)求证:=
;
成立吗?
(2)若C、D分别为OA、OB中点,则 13
3.如图,已知AB=AC,∠APC=60°
(1)求证:△ABC是等边三角形.(2)若BC=4cm,求⊙O的面积.能力提升
一、选择题
1.如图,在⊙O中,P是弦AB的中点,CD是过点P的直径,是()
A.AB⊥CD
B.∠AOB=4∠ACD
C.D.PO=PD
2.如图,⊙O中,如果=2,那么()
A.AB=AC
B.AB=2AC
C.AB<2AC D.AB>2AC
则下列结论中不正确的14
3.如图,∠
1、∠
2、∠
3、∠4的大小关系是()
A.∠4<∠1<∠2<∠3
B.∠4<∠1=∠3<∠2
C.∠4<∠1<∠3<<∠2
D.∠4<∠1<∠3=∠2 4.如图,AD是⊙O的直径,AC是弦,OB⊥AD,若OB=5,且∠CAD=30°,则BC等于()
A.3
B.3+
C.5-
D.5
二、填空题
1.P为⊙O内一点,OP=3cm,⊙O半径为5cm,则经过P点的最短弦长为________;最长弦长为_______.2.如图,OE、OF分别为⊙O的弦AB、CD的弦心距,如果OE=OF,那么_______(只需写一个正确的结论).3.如图,AB和DE是⊙O的直径,弦AC∥DE,若弦BE=3,则弦CE=________.4.半径为2a的⊙O中,弦AB的长为,则弦AB所对的圆周角的度数是________.5.如图,AB是⊙O的直径,C、D、E都是圆上的点,则∠1+∠2=_______.15
三、解答题
1.如图,⊙O直径AB和弦CD相交于点E,AE=2,EB=6,∠DEB=30°,求弦CD长.2.如图,∠AOB=90°,C、D是AE=BF=CD.三等分点,AB分别交OC、OD于点E、F,求证:
3.如图,⊙C经过坐标原点,且与两坐标轴分别交于点A与点B,点A的坐标为(0,4),M是圆上一点,∠BMO=120°.(1)求证:AB为⊙C直径.(2)求⊙C的半径及圆心C的坐标.综合探究
1.如图,直角坐标系中一条圆弧经过网格点A、B、C,其中,B点坐标为(4,4),则该圆弧所在圆的圆心坐标为___________.16
2.AB是⊙O的直径,AC、AD是⊙O的两弦,已知AB=16,AC=8,AD=DAC的度数.,求∠答案与解析 基础达标
一、选择题
1.A 2.C 3.D 4.D 5.D
6.D 7.D 8.D 9.D 10.A
二、填空题
1.8 2.28° 3.50° 4.60°,30°,10cm 5.45 6.第二
三、解答题
1.AN=BM 理由:过点O作OE⊥CD于点E,则CE=DE,且CN∥OE∥DM.∴ON=OM,∴OA-ON=OB-OM,∴AN=BM.2.(1)连结OM、ON,在Rt△OCM和Rt△ODN中OM=ON,∵OA=OB,AC=DB,∴OC=OD,∴Rt△OCM≌Rt△ODN,∴∠AOM=∠BON,∴
(2)
提示:同上,在Rt△OCM中,同理,.,3.(1)证明:∵∠ABC=∠APC=60°,又,∴∠ACB=∠ABC=60°,∴△ABC为等边三角形.(2)解:连结OC,过点O作OD⊥BC,垂足为D,在Rt△ODC中,DC=2,∠OCD=30°,设OD=x,则OC=2x,∴4x2-x2=4,∴OC=
⊙O的面积
能力提升
一、选择题
1.D 2.C 3.B 4.D
二、填空题
1.8cm,10cm 2.AB=CD 3.34.120°或60°
5.90°
三、解答题
1.过O作OF⊥CD于F,如右图所示
∵AE=2,EB=6,∴OE=2,∴OF=1,EF=,连结OD,∴CD=
2.在Rt△ODF中,42=12+DF2,DF=
2.连结AC、BD,∵C、D是
三等分点,∴AC=CD=DB,且∠AOC=×90°=30°,∵OA=OC,∴∠OAC=∠OCA=75°,又∠AEC=∠OAE+∠AOE=45°+30°=75°,∴AE=AC,同理可证BF=BD,∴AE=BF=CD.3.(1)⊙C经过坐标原点O,且A、B为⊙C与坐标轴的交点,有∠AOB=90°
∴AB为直径;
(2)∵∠BMO=120°,的比为1:2,∴它们所对的圆周角之比为∠BAO:∠BMO=1:2
∴∠BAO=60°,∴在Rt△ABO中,AB=2AO=8,∴⊙C的半径为4;
作
∴AE=OE,BF=OF
在Rt△ABO中,AO=4,OB=,垂足分别为点E、F 18
∴
∴圆心C的坐标为
.综合探究
1.(2,0)提示:如图,作线段AB、BC的垂直平分线,两条垂直平分线的交点即为圆心.2.(1)AC、AD在AB的同旁,如右图所示,作,垂足分别为点E、F
∵AB=16,AC=8,AD=8,∴
在Rt△AOE中,∴∠CAB=60°,同理可得∠DAB=30°,∴∠DAC=30°.(2)AC、AD在AB的异旁,同理可得:∠DAC=60°+30°=90°.19