第一篇:数学教案-圆柱的体积公开课-教学教案
教材简析: 本节内容包括圆柱的体积计算公式的推导,利用公式直接计算圆柱的体积,利用公式求:圆柱形物体的容积。教材充分利用学生学过的知识作铺垫,采用迁移法,引导学生将圆柱体化成已学过的立体图形,再通过观察、比较找两个图形之间的关系,可推导出圆柱的体积计算公式。教学目的:
1、运用迁移规律,引导学生借助因面积计算公式的推导方法来推导圆柱的体积计算公式,并理解这个过程。
2.会用圆柱的体积计算圆柱形物体的体积和容积,运用公式解决一些简单的问题。3.引导学生逐步学会转化的数学思想和数学法,培养学生解决实际问题的能力 4.借助实物演示,培养学生抽象、概括的思维能力。教 具:圆柱的体积公式演示教具,多媒体课件 教学过程:
一、情景引入
1、出示圆柱形水杯。
(1)老师在杯子里面装满水,想一想,水杯里的水是什么形状的?(2)你能用以前学过的方法计算出这些水的体积吗?
(3)讨论后汇报:把水倒入长方体容器中,量出数据后再计算。(4)说一说长方体体积的计算公式。
2、创设问题情景。(课件显示)
如果要求压路机圆柱形前轮的体积,或是求圆柱形柱子的体积,还能用刚才那样的方法吗?刚才的方法不是一种普遍的方法,那么在求圆柱体积的时候,有没有像求长方体或正方体体积那样的计算公式呢?
今天,我们就来一起研究圆柱体积的计算方法。(出示课题:圆柱的体积)(设计意图:问题是思维的动力。通过创设问题情景,可以引导学生运用已有的生活经验和旧知,积极思考,去探索和解决实际问题,并能制造认知冲突,形成“任务驱动”的探究氛围。)
二、新课教学: 设疑揭题:我们能把一个圆采用化曲为直、化圆为方的方法推导出了圆面积的计算公式,现在能否采用类似的方法将圆柱切割拼合成一个学过的立体图形来求它的体积呢?今天我们一起来探讨这个问题。板书课题:圆柱的体积。1.探究推导圆柱的体积计算公式。
课件演示拼、组的过程,同时演示一组动画(将圆柱底面等分成32份、64份……),让学生明确:分成的扇形越多,拼成的立体图形就越接近于长方体。c、依次解决上面三个问题。①把圆柱拼成长方体后,形状变了,体积不变。(板书:长方体的体积=圆柱的体积)②拼成的长方体的底面积等于圆柱的底面积,高就是圆柱的高。配合回答,演示课件,闪烁相应的部位,并板书相应的内容。)③圆柱的体积=底面积×高 字母公式是v=sh(板书公式)讨论并得出结果。你能根据这个实验得出圆柱的体积计算公式吗?为什么?让学生再讨论:圆柱体通过切拼,圆柱体转化成近似的 体。这个长方体的底面积与圆柱体的底面积,这个长方体的高与圆柱体的高。因为长方体的体积等于底面积乘以高,所以,圆柱体的体积计算公式是:。(板书:圆柱的体积=底面积×高)用字母表示:。(板书:v=sh)(设计意图:在新课教学中,先让学生通过复习旧知识,在观察中理解,在比较中归纳,通过这些措施可以使学生切实经历圆柱体积公式充分体现了教师的主导作用和学生的主体作用。这样的教学,不仅有利于学生理解算理,掌握算法,而且在公式的推导过程中,领悟了学习方法,培养了学生的学习能力、抽象概括能力和逻辑思维能力)要用这个公式计算圆柱的体积必须知道什么条件? 填表:请同学看屏幕回答下面问题,底面积(㎡)高(m)圆柱体积(m3)63 0.5 8 52(设计意图:设计练习能使学生达到举一反三的效果,从而训练学生的技能。这是第一层基本练习,通过这道题可以使学生更好的掌握本课重点,夯实基础知)
例:一个圆柱形油桶,底面内直径是6分米,高是7分米.它的容积约是多少立方分米?(得数保留整立方分米)解: d=6dm,h=7dm.r=3dm s底 = πr2= 3.14×32 = 3.14×9 =28.26(dm2)v = s底h = 28.26×7 = 197.82198dm3 答:油桶的容积约是198立方分(设计意图:使学生注意解题格式,注意体积的单位为三次方)三.巩固反馈
1.求下面圆柱体的体积。(单位:厘米)
同学板演,其余同学在作业本上做。板演的同学讲解自己的解题方法题,教师归纳学生所用的解题方法,强调在解题的过程中格式。(设计意图:这是第二层变式练习。是让学生在掌握公式的基础上理解公式,学会灵活运用公式的训练题。通过对公式的拓展性理解,可以进一步加深学生对圆柱体积公式的理解和掌握,同时也能培养学生的逻辑思维能力。)
练习:(回到想一想中)圆柱形水杯的底面直径是10cm,高是15cm.已知水杯中水的体积是整个水杯体积的 2/3 计算水杯中水的体积?(设计意图:这是第三层发展性练习,安排了密切联系生活实际的习题,让学生运用公式解决引入环节中的两个问题,切实体验到数学就存在于自己的身边。)四.拓展练习1.一个长方形的纸片长是6分米,宽4分米.用它分别围成两个圆柱体,a是用4分米做底高6分米,b是用6分米做底高是4分米它们的体积大小一样吗?请你计算说明理由.(结果保留π)2.一个底面直径是20cm的圆柱形容体里,放进一个不规则的铸铁零件后,容体里的水面升高4cm,求这铸铁零件的体积是多少?、(设计意图:安排了密切联系生活实际的习题,让学生运用公式解决引入环节中的两个问题,使学生认识到数学的价值体验到数学对于了解周围世界和解决实际问题是非常有作用的;能使学生的思维处于积极的状态达到培养学生思维的灵活性和创造性解决问题能力的目的。)五.课堂小结:
1.谈谈这节课你有哪些收获。2.解题时需要注意那些方面。
(设计意图:收获包括知识、能力、方法、情感等全方位的体会,在这里采用提问式小结,使学生畅谈收获、发现不足,既能训练学生的语言表达能力,又能培养学生的归纳概括能力;同时通过对本节所学知识的总结与回顾,还能使学生学到的知识系统化、完整化。)六.布置作业 1.a册习题2.7 2.拓展练习2题
教学反思: 本节课的教学体现了:
一、利用迁移规律引入新课,为学生创设良好的学习情境;
二、遵循学生的认知规律,引导学生观察、思考、说理,调动多种感观参与学习;
三、正确处理“两主”关系,充分发挥学生的主体作用,注意学生学习的参与过程及知识的获取过程,学生积极性高,学习效果好。达到预期效果,不足处学生讨论时间控制太少,课后作业个别学生还是对公式不会灵活应用。
第二篇:圆柱的体积公开课教学设计
第三单元:圆柱与圆锥 课题:圆柱的体积 新民
邓小梅
学习目标:
1.理解并掌握圆柱的体积计算方法。
2.能较好地运用公式求圆柱体积,并解决简单实际问题。重点:掌握圆柱体积的计算公式。难点:圆柱体积的计算公式的推导。【预习温固】
1、什么叫物体的体积?拿出一大一小两个圆柱,哪个的体积大?什么叫圆柱的体积?圆柱的体积怎样求?你会计算哪些物体的体积?
2、长方体、正方体的体积公式是什么?长方体、正方体的体积公式是什么?(长方体的体积=长×宽×高,正方体的体积=棱长×棱长×棱长,长方体或正方体体积=底面积×高)长方体和正方体的体积=底面积×高
3、拿出长方体、正方体、圆柱形物体,让学生观察他们有什么相同的地方?不同的是什么?(都有高,底面不同)
4、复习圆面积计算公式的推导过程:把圆等分切割,拼成一个近似的长方形,我们能把圆柱的底面转化成一个长方形吗?
找出圆和所拼成的长方形之间的关系,再利用求长方形面积的计算公式导出求圆面积的计算公式。【自主学习】
自学课本25页,猜想:圆柱体积计算公式是什么? 【合作探究】
1、验证圆柱体积计算公式(圆柱体积计算公式的推导)。
(1)用将圆转化成长方形来求出圆的面积的方法来推导圆柱的体积。
(2)由于我们分的不够细,所以看起来还不太像长方体;如果分成的扇形越多,拼成的立体图形就越接近于长方体了。长方体的体积就是谁的体积?长方体的底面积就是谁的底面积?高呢?
(3)通过观察,使学生明确:长方体的底面积等于圆柱的底面积,长方体的高就
是圆柱的高(长方体的体积=底面积×高,所以圆柱的体积=底面积×高,V=Sh)小结:长方体、正方体、圆柱的体积公式都可归结为 :底面积×高,V=Sh
2、练一练
出示:圆柱玻璃杯,底面积是50平方厘米,高是32厘米。它的体积是多少? V=Sh 50×32=1600(立方厘米)答:它的体积是1600立方厘米。【展示交流】(立方厘米)
1、引导思考:如果已知圆柱底面半径r和高h,圆柱体积的计算公式是怎样的?(V=πr2h)
2、出示:半径是3厘米,高是10厘米的小圆柱,你能算出他的体积吗?
V=πr2h 3.14×32×10=94.2(立方厘米)答:它的体积是94.2立方厘米。【基础练习】
1、订正第25页的“做一做”。
2、题 井里挖掉部分的是什么形状?井深是什么意思?1米是圆柱的什么?已知圆柱的底面直径和高以内你能算出圆柱的体积吗?
V=(d/2)2πh
2、练习五第1(2)题。
3、出示:一张长方形的纸长62.8厘米,宽20厘米把他围成一个圆柱,你能算出围城的圆柱的体积吗? 引导得出:V=(c/2/π)2πh 【课堂练习】练习五第2、4题。
1、第4题:指导学生变换公式:因为V=Sh,所以h=V÷S。也可以列方程解答。学生选择喜爱的方法解答这道题目。
2、出示补充题:一根圆柱形钢材,底面积是50平方厘米,高是2.1米。它的体积是多少? 【拓展练习】
把一个长3分米的圆柱,平均分成两段圆柱,表面积增加6.28平方分米。原来这个圆柱体积是多少立方分米?
【课堂总结】本堂课你学会了什么?还有什么疑问?
板书设计:
圆柱的体积
圆柱的体积=底面积×高 V=Sh或V=πr2h V=(d/2)2πh V=(c/2/π)2πh V=Sh 50×32=1600(立方厘米)
答:它的体积是2560立方厘米。
教学反思:
第三篇:圆柱体积教案
《圆柱的体积》教学设计
教学目标:
1、结合具体情境和实践活动,了解圆柱体积(包括容积)的含义,进一步理解体积和容积的含义。
2、经历类比猜想——验证的探索圆柱体积的计算方法的过程,掌握圆柱体积的计算方法,能正确计算圆柱的体积,并会解决一些简单的实际问题。
3、引导学生探索和解决问题,渗透、体验知识间相互“转化”的思想方法。
教学重难点
1.掌握圆柱的体积公式,并能运用其解决简单实际问题。
2.理解圆柱体积公式的推导过程。教学工具
推导圆柱体积公式的圆柱教具一套。教学过程
【复习导入】
1.口头回答。
(1)什么叫物体的体积?你会计算下面哪些图形的体积?
(2)怎样求长方体和正方体的体积?圆柱的体积怎样计算呢?能将圆柱转化成一种学过的图形,计算出它的体积吗?
(3)首先让我们回忆一下圆的面积公式是怎样推导的?在学生回忆的基础上,概括出“转化图形——建立联系——推导公式”的方法。
2.引入新课。
我们在推导圆的面积公式时,是把它转化成近似的长方形,找到这个长方形与圆各部分之间的联系,由长方形的面积公式推导出了圆的面积公式。今天,我们能不能也用这个思路研究圆柱的体积计算公式呢? 教师板书:圆柱的体积(1)。【新课讲授】
1.教学圆柱体积公式的推导。(1)教师演示。
把圆柱的底面分成16个相等的扇形,再按照这些扇形沿着圆柱的高把圆柱切开,这样就得到了16块体积相等,底面是扇形的立体图形。
(2)学生利用学具操作。(3)启发学生思考、讨论:
①圆柱切开后可以拼成一个什么立体图形? 学生:近似的长方体。
②通过刚才的实验你发现了什么? 教师:拼成的近似长方体和圆柱相比,体积大小变了没有?形状呢? 学生:拼成的近似长方体和圆柱相比,底面的形状变了,由圆变成了近似长方形,而底面的面积大小没有发生变化。近似长方体的高就是圆柱的高,没有变化。故体积不变。
(4)学生根据圆的面积公式推导过程,进行猜想:
①如果把圆柱的底面平均分成32份,拼成的形状是怎样的? ②如果把圆柱的底面平均分成64份,拼成的形状是怎样的? ③如果把圆柱的底面平均分成128份,拼成的形状是怎样的? 2
(5)启发学生说出:通过以上的观察,发现了什么?
①平均分的份数越多,拼起来的形状越接近长方体。
②平均分的份数越多,每份扇形的面积就越小,弧就越短,拼起来的长方体的长就越接近一条线段,这样整个立体形状就越接近长方体。
(6)推导圆柱的体积公式。
①学生分组讨论:圆柱的体积怎样计算?
②学生汇报讨论结果,并说明理由。
教师:因为长方体的体积等于底面积乘高,而近似长方体的体积等于圆柱的体积,近似长方体的底面积等于圆柱的底面积,近似长方体的高等于圆柱的高,所以圆柱的体积=底面积×高。
2.教学补充例题。
(1)出示补充例题:一根圆柱形钢材,底面积是1250平方厘米,高是2.1米。它的体积是多少?
(2)指名学生分别回答下面的问题:
①这道题已知什么?求什么?②能不能根据公式直接计算?
③计算之前要注意什么?
学生:计算时既要分析已知条件和问题,还要注意先统一计量单位。
(3)出示下面几种解答方案,让学生判断哪个是正确的。
①1250×2.1=2625(cm3)
答:它的体积是2625cm3。
②2.1m=210 cm
1250×210=262500(cm3)
答:它的体积是262500cm3。
③1250cm2=0.125m2 0.125×2.1=0.2625(m3)
答:它的体积是0.2625m3。
先让学生思考,然后指名学生回答哪个是正确的解答,并比较一下哪一种解答更简单。对不正确的第①种解答要说说错在什么地方。
(4)引导思考:如果已知圆柱底面半径r和高h,圆柱体积的计算公式是怎样的?
教师板书:V=πr2h。
如果知道圆柱底面的直径d和高h,圆柱的体积公式还可以写
d2V=π()× h成: 2如果知道圆柱底面周长C和高h,圆柱的体积公式还可以写 成: V=(C÷π÷2)2×h
【课堂作业】
教材第25页“做一做”第1、2题。课件上练习题。学生独立做在练习本上,做完后集体订正。
【课堂小结】
通过这节课的学习,你有什么收获?你有什么感受? 【课后作业】
完成练习册中本课时的练习。
人教版六年级下册
第三单元圆柱的体积
(一)教学设计
桐河一小 刘 倩2018年8月
第四篇:圆柱体积教案
圆柱的体积
教学目标:
1.结合具体情境,让学生探索并掌握圆柱体积的计算方法,并能运用计算公式解决简单的实际问题。
2.让学生经历观察、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,渗透数学思想,体验数学研究的方法。
3.通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。教学重点:掌握和运用圆柱体积计算公式 教学难点:圆柱体积公式的推导过程 教学过程:
一、引入汉秀,创设情境。
1、用课件呈现汉秀剧场直观图,让学生观察它的形状.(圆柱)
2、走进汉秀,介绍汉秀剧场的观众席,舞台,表演样式以及它的外部数据,让学生体会到汉秀剧场的内部空间大,即引入体积的概念.提问:同学们,你们根据以前所学的知识,能回忆起体积的定义吗?(物体所占空间的大小叫做物体的体积。)
3、汉秀剧场的内部空间到底有多大呢?同学们想知道吗?那么今天就一起来学习圆柱的体积。板书课题:圆柱的体积
二、回顾旧知,重温转化以及极限的数学思想。
1、启发:大家想不想知道圆柱的体积怎样计算?
猜想一下:圆柱的体积怎么算?生猜想:用底面积× 高=体积等。
2、回顾:我们的猜想对不对呢?首先我们来回顾已学过长方体和正方体的体积计算公式。
归纳总结:我们最终都可以用一个公式来计算 体积=底面积×高。
3、观察发现:圆柱和长方体的特征,尤其是在面上,有什么区别?
引导学生回忆起圆是如何转化成长方形的,最后归纳:转化前后,图形的形状发生了变化,但是面积没有发生变化。当分的份数越多,拼成的图形就越接近长方形。
4、提问:既然我们解决了平面上的圆到长方形的转化,那么你们能够想象一下圆柱是否也能转化成我们学过的图形进行体积的求解呢?
三、圆柱转化成近似长方体过程的描述。
1、结合自己的预习,小组讨论,尝试说一说转化的过程。
2、观察课件演示,学生再次阐述转化的过程。
3、教师对照课件,带着学生准确的阐述转换的过程。
归纳:将圆柱的底面平均分成若干份,然后沿着高切开,通过平移拼接组合将它拼成一个近似的长方体,分成的份数越多,拼成的图形越接近长方体。
四、圆柱体积的推导。
1、让学生观察圆柱与转化而成的近似长方体,你有什么发现?(哪里变了,哪里没变?)
归纳:圆柱的形状变了,体积没有改变;高没有变,底面积没有变。
2、推导圆柱体积计算公式
提问:想一想,怎样求圆柱的体积?
V=Sh
3、内容小结
提问:那么请同学们再次回顾一下我们推导的过程,谁能和大家交流一下你的想法?
先将圆柱转化成近似的长方体,圆柱的底面积等于长方体的底面积,圆柱的高等于长方体的底面积,因为长方体的体积等于底面积乘高,所以圆柱的体积等于底面积乘高。
五、问题的解决
让学生根据所学解决课前的问题。V=Sh=9500×63=598500 m^3 答:汉秀剧场的内部空间是598500m^3。
(注意过程步骤的严谨性,单位是否带错)
六、巩固练习
李家庄挖了一口圆柱形水井,底面以下的井深10m,底面半径2m,挖出的土有多少立方米?
总结:已知半径和高,我们也可以求出圆柱的体积。故而推出
七、课堂小结
这节课我们学习了什么?有哪些收获?
八、数学欣赏
第五篇:六年级数学教案1.3《圆柱的体积》
《圆柱的体积》教案
教学内容:
北师大版小学数学教材六年级下册第8—10页。
教学目标:
1、结合具体情境和实践活动,了解圆柱体积(包括容积)的含义,能够运用公式正确的计算圆柱的体积和容积。
2、初步学会用转化的思想和方法,提高解决实际问题的能力。
教学重点、难点:
重点:掌握圆柱体积的计算公式。
难点:圆柱体积计算公式的推导。
教学过程:
一、情境导入
1、出示教学情境:怎样用学过的知识测量出老师的水杯里装了多少毫升的水?
想一想:杯子里的水是什么形状?准备用什么方法来计算水的体积?
让学生讨论得出:把杯子里的水倒入长方体或正方体容器,只要量出长方体的长、宽和水的高,就能求出水的体积。
2、出示第二情境:圆柱形的木柱子、压路机的车轮这样的圆柱用这种方法还行吗?怎么办?
怎样计算圆柱的体积?这就是我们本节课要研究的问题。(板书课题:计算圆柱的体积)
二、探究新知:
1、大胆猜想:你觉得圆柱体积的大小和什么有关?
学生猜想,教师出示相应的课件演示,让学生观察,体会圆柱的体积和它的底面积和高,有关系,有怎样的关系。
2、圆柱的体积可能等于什么?(说说猜想依据)
长方体,正方体的体积都等于“底面积×高”猜想圆柱的体积也可能等于“底面积×高”。
(用课件展示切拼过程,让学生观察等分的份数越多越接近长方体,弥补直观操作等分的份数太多不易操作的缺陷。)
学生讨论交流:
(1)把圆柱拼成长方体后,什么变了,什么没变?
(2)拼成的长方体与圆柱之间有什么联系?
(3)通过观察得到什么结论?
得到:圆柱的体积=底面积×高
V=Sh
三、拓展交流
要求圆柱的体积只要找到它的底面积和高就可以,分别讨论知道半径、直径、地面周长,该怎么求出圆柱的体积,总结出公式。
四、练习设计:
1、想一想,填一填:
把圆柱体切割拼成近似(),它们的()相等。长方体的高就是圆柱体的(),长方体的底面积就是圆柱体的(),因为长方体的体积=(),所以圆柱体的体积=()。用字母“V”表示(),“S”表(),“h”表示(),那么,圆柱体体积用字母表示为()
2、判断正误,对的画“√”,错误的画“×”。
(1)圆柱体的底面积越大,它的体积越大。×
(2)圆柱体的高越长,它的体积越大。×
(3)圆柱体的体积与长方体的体积相等。×
(4)圆柱体的底面直径和高可以相等。√
3、分别计算下列各图形的体积,再说说这几个图形体积计算方法之间的联系。
4×3×8
6×6×6
3.14×(5÷2)²×8
=96(cm³)
=216(cm³)
=157(cm³)
4、计算下面各圆柱的体积。
60×4
3.14×1²×5
3.14×(6÷2)²×10
=240(cm³)
=15.7(cm³)
=282.6(dm³)
5、这个杯子能否装下3000mL的牛奶?
3.14×(14÷2)²×20
=3077.2(cm³)
=3077.2(mL)
3077.2mL>3000mL
答:这个杯子能装下3000mL的牛奶。
五、课堂小结:谈谈这节课你有哪些收获?