第一篇:九年级数学圆教学设计5
圆
教学设计
(一)明确目标
首先师生一起来复习上节课点的轨迹的概念及两层含义和常见的点的轨迹前三种.
复习提问:
1.什么叫做点的轨迹?它的两层意思是什么?请结合讲过的常见点的轨迹解释两层意思.
2.上节课我们讲了常见的点的轨迹有几种?请回答出其内容.
上节课我们学习了常用点的轨迹的三种,我们教科书中有五种常见的轨迹.本节课我们来进一步学习常见点的轨迹的后两种.教师板书“点的轨迹之二”.
(二)整体感知
首先引导学生学习点的轨迹的定义,解释由定义得到的两层意思,提问学生来解释上节课常见的三个轨迹的两层意思.
圆是图形——这个图形是轨迹.
它符合的两层含义:圆上每一个点都符合到圆心O的距离等于半径r的条件,反过来到定点O的距离等于r的每一个点都在圆上.所以圆是到定点的距离等于定长的点的轨迹.
接着教师引导学生解释线段垂直平分线,角的平分线的两层意思,然后正确地回答出这两个点的轨迹.
在复习圆、线段的垂直平分线、角的平分线的基础上可进一步了解其它的两个点的轨迹、由于第四、第五个点的轨迹学生比较生,这样还要指导学生复习点到直线的距离,特别是在两条平行线内取一点到这两条直线的距离都相等,这一点的取法应在教师的指导下来完成.
(三)重点、难点的学习与目标完成过程
在学生学习常见的五种轨迹的后两种轨迹没有感性、直观的印象之前,教师首先帮助学生复习已有的知识:点的轨迹的定义、定义的两层意思、前三个常见的轨迹等,这种复习不是简单的重复,而是让学生结合所学的三个轨迹来解释定义中的两层意思.这样对后两个点的轨迹的教学起到了奠基的作用. 提问:已知直线l,在直线l外取一点P,使P到直线l的距离等于定长d,这一点怎么取,具有这个性质的点有几个?在教师的指导下学生动手来完成.由师生共同找到在已知直线l的两侧各取一点P、P′,到直线l的距离都等于d.教师再提出问题,现在分别过点P、P′作已知直线l的平行线l1、l2,那么直线l1、l2上的点到已知直线l的距离是否都等于已知线段d呢?学生的回答是肯定的,这时反过来再问,除直线l1、l2外平面上还是否有点到已知直线l的距离等于d呢,学生一时并不一定能答上来,经过学生讨论研究,最终学生还是能正确回答的,这就是说到已知直线l的距离等于定长d的点只有在直线l1、l2上.
这时教师引导学生归纳出第四个轨迹,教师把轨迹4板书在黑板上: 轨迹4:到直线l的距离等于定长d的点的轨迹,是平行于这条直线,并且到这条直线的距离等于d的两条直线.
现在我们来研究相反的问题,已知直线l1∥l2,在l1、l2之间找一点P,使点P到l1、l2的距离相等,这样一点怎样找?有前面问题的基础在教师的指导下都能找到点P,再过点P作l1的平行线l,这时提出问题:
1.直线l上的点到直线l1、l2的距离是否都相等;
2.到平行线l1,l2的距离都相等的点是否都在直线l上?有前一个问题的铺垫和前四个基本轨迹的启发,学生很快地回答出第五个轨迹的两层意思,而且回答是非常肯定的.总结归纳出第五个轨迹:
轨迹5:到两条平行线的距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线.
接下来为了使学生能准确的把握轨迹
4、轨迹5的特征,教师在黑板上出示一组练习题:
1.到直线l的距离等于2cm的点的轨迹;
2.已知直线AB∥CD,到AB、CD距离相等的点的轨迹.
对于这两个题教师要求学生自己画图探索,然后回答出点的轨迹是什么,学生对于这两个轨迹比较生疏回答有一定的困难,这时教师要从规律上和方法上指导学生怎么回答好一些,抓住几处重点词语的地方:如轨迹4中的“平行”、“到直线l的距离等于定长”、“两条”,或轨迹5中的“平行”、“到两条平行线的距离相等”、“一条”.这样学生回答的语言就不容易出现错误.
接下来做另一组练习题: 判断题:
1.到一条直线的距离等于定长的点的轨迹,是平行于这条直线到这条直线的距离等于定长的直线.
()
2.和点B的距离等于2cm的点的轨迹,是到点B的距离等于2cm的圆.
()
3.到两条平行线的距离等于5cm的点的轨迹,是和这两条平行线的平行且距离等于5cm的一条直线.
()
4.底边为a的等腰三角形的顶点轨迹,是底边a的垂直平分线.
()
这组练习题的目的,训练学生思维的准确性和语言表达的正确性. 这组习题的思考,回答都由学生自己完成,学生之间互相评议,找出语言的问题,加深对点的轨迹的进一步认识和规范化的语言表述.
(四)总结扩展
本节课主要讲了点的轨迹的后两个.从知识的结构上可以知道:
从方法上能准确地回答点的轨迹和能把所要回答的轨迹问题辨认出属于哪一个常用的基本轨迹.
从能力上学生通过旧知识的学习,学生自己能归纳出五个基本轨迹,使学生学习数学知识的能力又有了新的提高.
对于基本轨迹的应用还要逐步加深,特别是在今后学习立体几何、解析几何时要用到这些知识.所以常见五个基本轨迹要求学生必须掌握.
(五)布置作业 略 板书设计
第二篇:九年级数学《圆》教学反思
九年级数学《圆》教学反思
圆的认识是在学生对圆有了初步感性认识的基础上来进行教学的,目的是为以后学习圆的性质及圆柱体、圆锥体等知识打下基础。为引导学生动手、动脑,主动参与知识的形成过程,这节课的教学设计主要突出了以下几点:
学生对圆并不陌生,生活中这个完美的曲边图形几乎处处可见,全部学生都能从若干个平面图形中挑出圆。学生看到的圆一般都是静态的,而圆的本质特点是到定点距离等于定长的点的轨迹,是动点的轨迹,这和直边图形有着本质的区别。要想让学生感悟圆的图形性质特征,就需要让学生看到动点,看到圆“动态生成”的过程——点动成线。圆是由一条封闭曲线围成的图形,它的特征主要体现在隐形的线段——半径和隐形的点——圆心上。
二、充分发挥学生的动手操作能力,动手学数学。
教师在学习的过程中应时刻关注学生的发展,尊重学生的选择,充分体现学生的主体性。新课标指出:“学生是学习的主人”,教师要“向学生提供充分从事数学活动的机会”。对圆的认识我的设计是从画圆开始。首先让学生利用手中的工具尝试自己画圆,然后展示所画的圆并说说用什么画的,重点放在用圆规规范画圆上。利用投影,先展示学生用圆规画圆的过程,然后让其他学生补充用圆规画圆的过程中需要注意的事项,使学生明确画圆时的定点、定长。这样的设计目的是让学生初步感知画圆可以利用手中的现有圆形物体来描画,也可以用圆规画出更规范的圆。
三、创设开放的生活情境,展现学生的不同思维。
每个学生都有分析、解决问题和创造的潜能,但是学生个体之间存在着一定的差异,这是必然的。学生在生活经验、认知特点、思维方式等方面的差异要求教师要适当创设开放性的问题情境,使学生能从不同的角度进行思考和探索。本节课几处开放性的设问都为学生创造了机会,使其不同思维都能在课堂中闪光。例如在解决“为什么车轮做成圆的”这一问题时,学生就展现出了不同的思维水平。绝大部分学生可以发现在同一圆内所有半径相等。学生用量的方法量出多条半径的长度,从而推断出所有的半径都相等。
四、利用多媒体调动学生的积极性。
利用多媒体的动画演示,学生不仅认识了圆的各部分名称,学会了画圆、而且掌握了圆的特征,半径直径之间的相互关系,更重要的是通过学生的主动探究过程,使学生从知识的积累和能力的发展走向素质的提高;使学生学会了从不同角度来思考问题,创造性思维得到了培养和发展。
这节课也出现了一些问题,一是没有给学生充分的时间探索圆的特性,二是学生在动手操作上还有许多的问题,另外,在动画制作上差距很大。
针对这三方面,在今后教学中,要不断完善,虚心学习,努力做到以学生为主,提高教学效率。
第三篇:九年级数学《圆》经典试题集锦
九年级数学《圆》经典试题集锦
一、选择题
1.如图,BC是⊙O的直径,P是CB延长线上一点,PA切⊙O于点A,如果PA=,PB=1,那么∠APC等于()
(A)(B)(C)(D)
2.如果圆柱的高为20厘米,底面半径是高的,那么这个圆柱的侧面积是()
(A)100π平方厘米(B)200π平方厘米
(C)500π平方厘米(D)200平方厘米
3.“圆材埋壁”是我国古代著名的数学菱《九章算术》中的一个问题,“今在圆材,埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”用现在的数学语言表述是:“如图,CD为⊙O的直径,弦AB⊥CD,垂足为E,CE=1寸,AB=寸,求直径CD的长”.依题意,CD长为()
(A)寸(B)13寸(C)25寸(D)26寸
4.(北京市朝阳区)已知:如图,⊙O半径为5,PC切⊙O于点C,PO交⊙O于点A,PA=4,那么PC的长等于()
(A)6(B)2(C)2(D)2
5.如果圆锥的侧面积为20π平方厘米,它的母线长为5厘米,那么此圆锥的底面半径的长等于()
(A)2厘米(B)2厘米(C)4厘米(D)8厘米
6.相交两圆的公共弦长为16厘米,若两圆的半径长分别为10厘米和17厘米,则这两圆的圆心距为()
(A)7厘米(B)16厘米(C)21厘米(D)27厘米
7.如图,⊙O为△ABC的内切圆,∠C=,AO的延长线交BC于点D,AC=4,DC=1,则⊙O的半径等于()
(A)(B)(C)(D)
8.一居民小区有一正多边形的活动场.为迎接“AAPP”会议在重庆市的召开,小区管委会决定在这个多边形的每个顶点处修建一个半径为2米的扇形花台,花台都以多边形的顶点为圆心,比多边形的内角为圆心角,花台占地面积共为12π平方米.若每个花台的造价为400元,则建造这些花台共需资金()
(A)2400元(B)2800元(C)3200元(D)3600元
9.如图,AB是⊙O直径,CD是弦.若AB=10厘米,CD=8厘米,那么A、B两点到直线CD的距离之和为()
(A)12厘米(B)10厘米(C)8厘米(D)6厘米
10.某工件形状如图所示,圆弧BC的度数为,AB=6厘米,点B到点C的距离等于AB,∠BAC=,则工件的面积等于()
(A)4π(B)6π(C)8π(D)10π
11.如图,PA切⊙O于点A,PBC是⊙O的割线且过圆心,PA=4,PB=2,则⊙O的半径等于()
(A)3(B)4(C)6(D)8
12.已知⊙O的半径为3厘米,⊙的半径为5厘米.⊙O与⊙相交于点D、E.若两圆的公共弦DE的长是6厘米(圆心O、在公共弦DE的两侧),则两圆的圆心距O的长为()
(A)2厘米(B)10厘米(C)2厘米或10厘米(D)4厘米
13.如图,两个等圆⊙O和⊙的两条切线OA、OB,A、B是切点,则∠AOB等于()
(A)(B)(C)(D)
14.如图,AB是⊙O的直径,∠C=,则∠ABD=()
(A)(B)(C)(D)
15.弧长为6π的弧所对的圆心角为,则弧所在的圆的半径为()
(A)6(B)6(C)12(D)18
16.(甘肃省)如图,在△ABC中,∠BAC=,AB=AC=2,以AB为直径的圆交BC于D,则图中阴影部分的面积为()
(A)1(B)2(C)1+(D)2-
17.(宁夏回族自治区)已知圆的内接正六边形的周长为18,那么圆的面积为()
(A)18π
(B)9π(C)6π(D)3π
18.(山东省)如图,点P是半径为5的⊙O内一点,且OP=3,在过点P的所有弦中,长度为整数的弦一共有()
(A)2条
(B)3条(C)4条(D)5条
19.(南京市)如图,正六边形ABCDEF的边长的上a,分别以C、F为圆心,a为半径画弧,则图中阴影部分的面积是()
(A)(B)(C)(D)
20.(杭州市)过⊙O内一点M的最长的弦长为6厘米,最短的弦长为4厘米,则OM的长为()
(A)厘米(B)厘米(C)2厘米(D)5厘米
21.(安徽省)已知圆锥的底面半径是3,高是4,则这个圆锥侧面展开图的面积是()
(A)12π(B)15π(C)30π(D)24π
22.(安微省)已知⊙O的直径AB与弦AC的夹角为,过C点的切线PC与AB延长线交P.PC=5,则⊙O的半径为()
(A)(B)(C)10(D)5
23.(福州市)如图:PA切⊙O于点A,PBC是⊙O的一条割线,有PA=3,PB=BC,那么BC的长是()
(A)3(B)3(C)(D)
24.(河南省)如图,⊙A、⊙B、⊙C、⊙D、⊙E相互外离,它们的半径都是1,顺次连结五个圆心得到五边形ABCDE,则图中五个扇形(阴影部分)的面积之和是()
(A)π(B)1.5π(C)2π(D)2.5π
25.(四川省)正六边形的半径为2厘米,那么它的周长为()
(A)6厘米(B)12厘米(C)24厘米(D)12厘米
26.(四川省)一个圆柱形油桶的底面直径为0.6米,高为1米,那么这个油桶的侧面积为()
(A)0.09π平方米(B)0.3π平方米(C)0.6平方米(D)0.6π平方米
27.(贵阳市)一个形如圆锥的冰淇淋纸筒,其底面直径为6厘米,母线长为5厘米,围成这样的冰淇淋纸筒所需纸片的面积是()
(A)66π平方厘米(B)30π平方厘米(C)28π平方厘米(D)15π平方厘米
28.(新疆乌鲁木齐)在半径为2的⊙O中,圆心O到弦AB的距离为1,则弦AB所对的圆心角的度数可以是()
(A)(B)(C)(D)
29.(新疆乌鲁木齐)将一张长80厘米、宽40厘米的矩形铁皮卷成一个高为40厘米的圆柱形水桶的侧面,(接口损耗不计),则桶底的面积为()
(A)平方厘米(B)1600π平方厘米
(C)平方厘米(D)6400π平方厘米
30.(成都市)如图,已知AB是⊙O的直径,弦CD⊥AB于点P,CD=10厘米,AP∶PB=1∶5,那么⊙O的半径是()
(A)6厘米(B)厘米(C)8厘米(D)厘米
31.(成都市)在Rt△ABC中,已知AB=6,AC=8,∠A=.如果把Rt△ABC绕直线AC旋转一周得到一个圆锥,其表面积为S;把Rt△ABC绕直线AB旋转一周得到另一个圆锥,其表面积为S,那么S∶S等于()
(A)2∶3(B)3∶4(C)4∶9(D)5∶12
32.(苏州市)如图,⊙O的弦AB=8厘米,弦CD平分AB于点E.若CE=2厘米.ED长为()
(A)8厘米(B)6厘米(C)4厘米(D)2厘米
33.(苏州市)如图,四边形ABCD内接于⊙O,若∠BOD=,则∠BCD=()
(A)(B)(C)(D)
34.(镇江市)如图,正方形ABCD内接于⊙O,E为DC的中点,直线BE交⊙O于点F.若⊙O的半径为,则BF的长为()
(A)(B)(C)(D)
35.(扬州市)如图,AB是⊙O的直径,∠ACD=,则∠BAD的度数为()
(A)(B)(C)(D)
36.(扬州市)已知:点P直线l的距离为3,以点P为圆心,r为半径画圆,如果圆上有且只有两点到直线l的距离均为2,则半径r的取值范围是()
(A)r>1(B)r>2(C)2<r<3(D)1<r<5
37.(绍兴市)边长为a的正方边形的边心距为()
(A)a(B)a(C)a
(D)2a
38.(绍兴市)如图,以圆柱的下底面为底面,上底面圆心为顶点的圆锥的母线长为4,高线长为3,则圆柱的侧面积为()
(A)30π(B)π(C)20π(D)π
39.(昆明市)如图,扇形的半径OA=20厘米,∠AOB=,用它做成一个圆锥的侧面,则此圆锥底面的半径为()
(A)3.75厘米(B)7.5厘米(C)15厘米(D)30厘米
40.(昆明市)如图,正六边形ABCDEF中.阴影部分面积为12平方厘米,则此正六边形的边长为()
(A)2厘米(B)4厘米(C)6厘米(D)8厘米
41.(温州市)已知扇形的弧长是2π厘米,半径为12厘米,则这个扇形的圆心角是()
(A)(B)(C)(D)
42.(温州市)圆锥的高线长是厘米,底面直径为12厘米,则这个圆锥的侧面积是()
(A)48π厘米(B)24平方厘米
(C)48平方厘米(D)60π平方厘米
43.(温州市)如图,AB是⊙O的直径,点P在BA的延长线上,PC是⊙O的切线,C为切点,PC=2,PA=4,则⊙O的半径等于()
(A)1(B)2(C)(D)
44.(常州市)已知圆柱的母线长为5厘米,表面积为28π平方厘米,则这个圆柱的底面半径是()
(A)5厘米(B)4厘米(C)2厘米(D)3厘米
45.(常州市)半径相等的圆内接正三角形、正方形、正六边形的边长之比为()
(A)1∶∶(B)∶∶1(C)3∶2∶1
(D)1∶2∶3
46.(广东省)如图,若四边形ABCD是半径为1和⊙O的内接正方形,则图中四个弓形(即四个阴影部分)的面积和为()
(A)(2π-2)厘米(B)(2π-1)厘米
(C)(π-2)厘米(D)(π-1)厘米
47.(武汉市)如图,已知圆心角∠BOC=,则圆周角∠BAC的度数是()
(A)(B)(C)(D)
48.(武汉市)半径为5厘米的圆中,有一条长为6厘米的弦,则圆心到此弦的距离为()
(A)3厘米(B)4厘米
(C)5厘米(D)6厘米
49.已知:Rt△ABC中,∠C=,O为斜边AB上的一点,以O为圆心的圆与边AC、BC分别相切于点E、F,若AC=1,BC=3,则⊙O的半径为()
(A)(B)
(C)(D)
50.(武汉市)已知:如图,E是相交两圆⊙M和⊙O的一个交点,且ME⊥NE,AB为外公切线,切点分别为A、B,连结AE、BE.则∠AEB的度数为()
(A)145°(B)140°(C)135°(D)130°
二、填空题
1.(北京市东城区)如图,AB、AC是⊙O的两条切线,切点分别为B、C,D是优弧上的一点,已知∠BAC=,那么∠BDC=__________度.
2.(北京市东城区)在Rt△ABC中,∠C=,AB=3,BC=1,以AC所在直线为轴旋转一周,所得圆锥的侧面展开图的面积是__________.
3.(北京市海淀区)如果圆锥母线长为6厘米,那么这个圆锥的侧面积是_______平方厘米
4.(北京市海淀区)一种圆状包装的保鲜膜,如图所示,其规格为“20厘米×60米”,经测量这筒保鲜膜的内径、外径的长分别为3.2厘米、4.0厘米,则该种保鲜膜的厚度约为_________厘米(π取3.14,结果保留两位有效数字).
5.(上海市)两个点O为圆心的同心圆中,大圆的弦AB与小圆相切,如果AB的长为24,大圆的半径OA为13,那么小圆的半径为___________.
6.(天津市)已知⊙O中,两弦AB与CD相交于点E,若E为AB的中点,CE∶ED=1∶4,AB=4,则CD的长等于___________.
7.(重庆市)如图,AB是⊙O的直径,四边形ABCD内接于⊙O,,的度数比为3∶2∶4,MN是⊙O的切线,C是切点,则∠BCM的度数为___________.
8.(重庆市)如图,P是⊙O的直径AB延长线上一点,PC切⊙O于点C,PC=6,BC∶AC=1∶2,则AB的长为___________.
9.(重庆市)如图,四边形ABCD内接于⊙O,AD∥BC,=,若AD=4,BC=6,则四边形ABCD的面积为__________.
10.(山西省)若一个圆柱的侧面积等于两底面积的和,则它的高h与底面半径r的大小关系是__________.
11.(沈阳市)要用圆形铁片截出边长为4厘米的正方形铁片,则选用的圆形铁片的直径最小要___________厘米.
12.(沈阳市)圆内两条弦AB和CD相交于P点,AB长为7,AB把CD分成两部分的线段长分别为2和6,那么=__________.
13.(沈阳市)△ABC是半径为2厘米的圆内接三角形,若BC=2厘米,则∠A的度数为________.
14.(沈阳市)如图,已知OA、OB是⊙O的半径,且OA=5,∠AOB=15,AC⊥OB于C,则图中阴影部分的面积(结果保留π)S=_________.
15.(哈尔滨市)如图,圆内接正六边形ABCDEF中,AC、BF交于点M.则∶=_________.
16.(哈尔滨市)两圆外离,圆心距为25厘米,两圆周长分别为15π厘米和10π厘米.则其内公切线和连心线所夹的锐角等于__________度.
17.(哈尔滨市)将两边长分别为4厘米和6厘米的矩形以其一边所在直线为轴旋转一周,所得圆柱体的表面积为_________平方厘米.
18.(陕西省)如图,在⊙O的内接四边形ABCD中,∠BCD=130,则∠BOD的度数是________.
19.(陕西省)已知⊙O的半径为4厘米,以O为圆心的小圆与⊙O组成的圆环的面积等于小圆的面积,则这个小圆的半径是______厘米.
20.(陕西省)如图,⊙O的半径OA是⊙O的直径,C是⊙O上的一点,OC交⊙O于点B.若⊙O的半径等于5厘米,的长等于⊙O周长的,则的长是_________.
21.(甘肃省)正三角形的内切圆与外接圆面积之比为_________.
22.(甘肃省)如图,AB=8,AC=6,以AC和BC为直径作半圆,两圆的公切线MN与AB的延长线交于D,则BD的长为_________.
23.(宁夏回族自治区)圆锥的母线长为5厘米,高为3厘米,在它的侧面展开图中,扇形的圆心角是_________度.
24.(南京市)如图,AB是⊙O的直径,弦CD⊥AB,垂足是G,F是CG的中点,延长AF交⊙O于E,CF=2,AF=3,则EF的长是_________.
25.(福州市)在⊙O中,直径AB=4厘米,弦CD⊥AB于E,OE=,则弦CD的长为__________厘米.
26.(福州市)若圆锥底面的直径为厘米,线线长为5厘米,则它的侧面积为__________平方厘米(结果保留π).
27.(河南省)如图,AB为⊙O的直径,P点在AB的延长线上,PM切⊙O于M点.若OA=a,PM=a,那么△PMB的周长的__________.
28.(长沙市)在半径9厘米的圆中,的圆心角所对的弧长为__________厘米.
29.(四川省)扇形的圆心角为120,弧长为6π厘米,那么这个扇形的面积为_________.
30.(贵阳市)如果圆O的直径为10厘米,弦AB的长为6厘米,那么弦AB的弦心距等于________厘米.
31.(贵阳市)某种商品的商标图案如图所求(阴影部分),已知菱形ABCD的边长为4,∠A=,是以A为圆心,AB长为半径的弧,是以B为圆心,BC长为半径的弧,则该商标图案的面积为_________.
32.(云南省)已知,一个直角三角形的两条直角边的长分别为3厘米、4厘米、以它的直角边所在直角线为轴旋转一周,所得圆锥的表面积是__________.
33.(新疆乌鲁木齐)正六边形的边心距与半径的比值为_________.
34.(新疆乌鲁木齐)如图,已知扇形AOB的半径为12,OA⊥OB,C为OA上一点,以AC为直径的半圆和以OB为直径的半圆相切,则半圆的半径为__________.
35.(成都市)如图,PA、PB与⊙O分别相切于点A、点B,AC是⊙O的直径,PC交⊙O于点D.已知∠APB=,AC=2,那么CD的长为________.
36.(苏州市)底面半径为2厘米,高为3厘米的圆柱的体积为_________立方厘米(结果保留π).
37.(扬州市)边长为2厘米的正六边形的外接圆半径是________厘米,内切圆半径是________厘米(结果保留根号).
38.(绍兴市)如图,PT是⊙O的切线,T为切点,PB是⊙O的割线交⊙O于A、B两点,交弦CD于点M,已知:CM=10,MD=2,PA=MB=4,则PT的长等于__________.
39.(温州市)如图,扇形OAB中,∠AOB=,半径OA=1,C是线段AB的中点,CD∥OA,交于点D,则CD=________.
40.(常州市)已知扇形的圆心角为150,它所对的弧长为20π厘米,则扇形的半径是________厘米,扇形的面积是__________平方厘米.
41.(常州市)如图,AB是⊙O直径,CE切⊙O于点C,CD⊥AB,D为垂足,AB=12厘米,∠B=30,则∠ECB=__________;CD=_________厘米.
42.(常州市)如图,DE是⊙O直径,弦AB⊥DE,垂足为C,若AB=6,CE=1,则CD=________,OC=_________.
43.(常州市)如果把人的头顶和脚底分别看作一个点,把地球赤道作一个圆,那么身高压2米的汤姆沿着地球赤道环道环行一周,他的头顶比脚底多行________米.
44.(海南省)已知:⊙O的半径为1,M为⊙O外的一点,MA切⊙O于点A,MA=1.若AB是⊙O的弦,且AB=,则MB的长度为_________.
45.(武汉市)如果圆的半径为4厘米,那么它的周长为__________厘米.
三、解答题:
1.(苏州市)已知:如图,△ABC内接于⊙O,过点B作⊙O的切线,交CA的延长线于点E,∠EBC=2∠C.
①求证:AB=AC;
②若tan∠ABE=,(ⅰ)求的值;(ⅱ)求当AC=2时,AE的长.
2.(广州市)如图,PA为⊙O的切线,A为切点,⊙O的割线PBC过点O与⊙O分别交于B、C,PA=8cm,PB=4cm,求⊙O的半径.
3.(河北省)已知:如图,BC是⊙O的直径,AC切⊙O于点C,AB交⊙O于点D,若AD︰DB=2︰3,AC=10,求sinB的值.
4.(北京市海淀区)如图,PC为⊙O的切线,C为切点,PAB是过O的割线,CD⊥AB于点D,若tanB=,PC=10cm,求三角形BCD的面积.
5.(宁夏回族自治区)如图,在两个半圆中,大圆的弦MN与小圆相切,D为切点,且MN∥AB,MN=a,ON、CD分别为两圆的半径,求阴影部分的面积.
6.(四川省)已知,如图,以△ABC的边AB作直径的⊙O,分别并AC、BC于点D、E,弦FG∥AB,S△CDE︰S△ABC=1︰4,DE=5cm,FG=8cm,求梯形AFGB的面积.
7.(贵阳市)如图所示:PA为⊙O的切线,A为切点,PBC是过点O的割线,PA=10,PB=5,求:
(1)⊙O的面积(注:用含π的式子表示);
(2)cos∠BAP的值.
参考答案
一、选择题
1.B 2.B 3.D 4.D 5.C 6.C 7.A 8.C 9.D 10.B 11.A 12.B 13.C 14.D 15.D 16.A 17.B 18.C 19.C 20.B 21.C 22.A 23.A 24.B 25.B 26.D 27.D 28.C 29.A 30.B 31.A 32.A 33.B 34.C 35.A 36.D 37.B 38.B 39.B 40.B 41.C 42.D 43.A 44.C 45.B 46.C 47.A 48.B 49.C 50.C
二、填空题
1.50 2.2π 3.18π 4. 5.5 6.5 7.30° 8.9 9.25 10.h=r 11.4 12.3或4 13.60°或120° 14. 15.1:2 16.30 17.80π或120π 18.100° 19.
20.π 21.1:4 22.1 23.288 24.4 25.2 26.15π 27. 28.3π 29.27π平方厘米 30.4 31.
32.24π平方厘米或36π平方厘米 33. 34.4 35. 36.12π 37.2,38. 39. 40.24,240π 41.60°,42.9,4 43.4π 44.1或 45.8π
三、解答题:
1.(1)∵ BE切⊙O于点B,∴ ∠ABE=∠C.
∵ ∠EBC=2∠C,即 ∠ABE+∠ABC=2∠C,∴ ∠C+∠ABC=2∠C,∴ ∠ABC=∠C,∴ AB=AC.
(2)①连结AO,交BC于点F,∵ AB=AC,∴ =,∴ AO⊥BC且BF=FC.
在Rt△ABF中,=tan∠ABF,又 tan∠ABF=tanC=tan∠ABE=,∴ =,∴ AF=BF.
∴ AB===BF.
∴ .
②在△EBA与△ECB中,∵ ∠E=∠E,∠EBA=∠ECB,∴ △EBA∽△ECB.
∴,解之,得EA2=EA·(EA+AC),又EA≠0,∴ EA=AC,EA=×2=.
2.设⊙的半径为r,由切割线定理,得PA2=PB·PC,∴ 82=4(4+2r),解得r=6(cm).
即⊙O的半径为6cm.
3.由已知AD︰DB=2︰3,可设AD=2k,DB=3k(k>0).
∵ AC切⊙O于点C,线段ADB为⊙O的割线,∴ AC2=AD·AB,∵ AB=AD+DB=2k+3k=5k,∴ 102=2k×5k,∴ k2=10,∵ k>0,∴ k=.
∴ AB=5k=5.
∵ AC切⊙O于C,BC为⊙O的直径,∴ AC⊥BC.
在Rt△ACB中,sinB=.
4.解法一:连结AC.
∵ AB是⊙O的直径,点C在⊙O上,∴ ∠ACB=90°.
CD⊥AB于点D,∴ ∠ADC=∠BDC=90°,∠2=90°-∠BAC=∠B.
∵ tanB=,∴ tan∠2=.
∴ .
设AD=x(x>0),CD=2x,DB=4x,AB=5x.
∵ PC切⊙O于点C,点B在⊙O上,∴ ∠1=∠B.
∵ ∠P=∠P,∴ △PAC∽△PCB,∴ .
∵ PC=10,∴ PA=5,∵ PC切⊙O于点C,PAB是⊙O的割线,∵ PC2=PA·PB,∴ 102=5(5+5
x).解得x=3.
∴ AD=3,CD=6,DB=12.
∴ S△BCD=CD·DB=×6×12=36.
即三角形BCD的面积36cm2.
解法二:同解法一,由△PAC∽△PCB,得.
∵ PA=10,∴ PB=20.
由切割线定理,得PC2=PA·PB.
∴ PA==5,∴ AB=PB-PA=15,∵ AD+DB=x+4x=15,解得x=3,∴ CD=2x=6,DB=4x=12.
∴ S△BCD=CD·DB=×6×12=36.
即三角形BCD的面积36cm2.
5.解:如图取MN的中点E,连结OE,∴ OE⊥MN,EN=MN=a.
在四边形EOCD中,∵ CO⊥DE,OE⊥DE,DE∥CO,∴ 四边形EOCD为矩形.
∴ OE=CD,在Rt△NOE中,NO2-OE2=EN2=.
∴ S阴影=π(NO2-OE2)=π·=.
6.解:∵ ∠CDE=∠CBA,∠DCE=∠BCA,∴ △CDE∽△ABC.
∴
∴ ===,即,解得 AB=10(cm),作OM⊥FG,垂足为M,则FM=FG=×8=4(cm),连结OF,∵ OA=AB=×10=5(cm).
∴ OF=OA=5(cm).
在Rt△OMF中,由勾股定理,得
OM===3(cm).
∴ 梯形AFGB的面积=·OM=×3=27(cm2).
7.ÞPA2=PB·PCÞPC=20Þ半径为7.5Þ圆面积为(或56.25π)(平方单位).
Þ△ACP∽△BAPÞÞ.
解法一:设AB=x,AC=2x,BC为⊙O的直径Þ∠CAB=90°,则 BC=x.
∵ ∠BAP=∠C,∴ cos∠BAP=cos∠C=
解法二:设AB=x,在Rt△ABC中,AC2+AB2=BC2,即 x2+(2x)2=152,解之得 x=3,∴ AC=6,∵ ∠BAP=∠C,∴ ∴ cos∠BAP=cos∠C=
第四篇:2017九年级数学圆教学设计
圆
教学过程(一)明确目标
首先师生一起复习已学过的线段垂直平分线或角的平分线的性质,提醒学生线段垂直平分线上的点,到线段的两个端点有什么性质.学生很快得出“相等”,如果再换一点看有什么特征.从而帮助学生归纳出“线段垂直平分线上的点到线段两个端点的距离相等”.当学生都承认这个事实后教师再提出:如果线段AB外有一点D,且满足DA=DB.那么这个点D会在什么位置上呢?让学生充分研究,在教师指导下得出,如果DA=DB,那么点D必在线段AB的垂直平分线上.有了以上感性认识教师提出:本节课我们就来研究具有这种性质的点的有关问题,——轨迹.
(二)整体感知
首先引导学生复习用集合的观点定义圆的方法,“圆是到定点的距离等于定长的点的集合.”这就使学生理解点动成线的这一事实.再复习从定义可看出圆上的点具有两个性质:
(1)圆上各点到定点(圆心O)的距离都等于定长(半径的长r);(2)到定点距离等于定长的点都在圆上.
这时再引导学生把“到定点的距离等于定长”这一事实看成是条件,那么所得符合这个条件的点都应该在圆上.这时就可给轨迹这个概念下定义了.有了这个定义学生就很容易得出第一个点的轨迹:“到定点距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆.”
有了这些知识,在复习线段的垂直平分线、角的平分线的概念的基础上,很快就能得出第二个、第三个点的轨迹来.
(三)重点、难点的学习与目标完成过程
在学生对三种点的轨迹没有感性、直观的印象之前就抽象出学生难以理解的点的轨迹概念,学生就会感到糊涂.为此我们首先帮助学生学习已有的知识:圆的定义、线段的垂直平分线的性质、角的平分线的性质.这种复习不应是简单的重复,而是应该接轨迹概念的要求进行.
提问:从集合的观点,圆是怎样定义的?绝大多数学生都能说出“圆是到定点的距离等于定长的点的集合”.这就是说圆是由一些点组成的,那么这些点都满足什么条件呢?学生经过讨论后能说出:“到定点的距离等于定长”就可以了.前面我们还学习了圆的内部的点、圆上的点、圆外部的点,从这个观点看,满足到定点距离等于定长的点是否都在圆上,学生的回答是肯定的.这就完成了轨迹的两条性质,把它写在黑板的最左边.
已知线段AB,求作AB的垂直平分线ML,学生都会作,作完后再问:如果在直线ML上任取一点D,这一点到线段AB两个端点的距离如何?学生很快就能证明出DA=DB.由于D点在线段AB的垂直平分线上任取的,这个任意性说明什么问题.要求学生用数学语言把它概括出来.教师点拨学生说出线段垂直平分线上的点到线段两个端点的距离相等.再问学生到线段AB两个端点的距离相等的点应该在什么位置上?由前一个例子,学生能回答出“在线段垂直平分线上”.
已知∠AOB,求作角的平分线OM,问学生:在角的平分线OM上任取一点D,过D点分别作角的两边OA,OB的垂直线,垂足分别为E、F,请同学们观察,这两条垂线段DE,DF有什么特征?学生通过思考,能回答出DF=DE.再问学生如果在∠AOB内任取一点D′,过D′分别作OA,OB的垂线,垂足分别为E′,F′,且D′E′=D′F′,那么点D′应在什么位置上呢?让学生讨论回答.通过以上三个问题的复习学生的回答是肯定的.
有了以上的充分准备现在我们来研究轨迹的问题.
首先用一根细绳,一端固定在黑板上,另一端拴上粉笔,教师在黑板上慢慢的让粉笔动拉紧绳子,让学生仔细观察,这样给学生以点动成线的感觉,在动的过程中教师指出拉紧绳子的是条件——轨,笔画出来的线就是印迹——迹,这就是数学上的轨迹问题.
符合某一条件——拉紧绳子;所有点组成的图形——画出的圆,叫做符合这个条件的点的轨迹(这里指画出的图而言).由于前面的准备讲轨迹所含的两层意思:
1.图形上任何点都符合条件;
2.符合条件的点都在圆形上时就显得水到渠成了.
下面就是按照轨迹的定义及我们复习的圆、线段的垂直平分线、角的平分线让学生自己归纳、整理出三种常见的点的轨迹,教师只能指导、点拨,决不能代替.因为这正是锻炼学生归纳、整理、概括、迁移等能力的好机会.
学生回答轨迹,教师板书在黑板上:
轨迹1:到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆.
轨迹2:和已知线段两个端点距离相等的点的轨迹,是这条线段的垂直平分线. 轨迹3:到已知角两边的距离相等的点的轨迹,是这个角的平分线. 为了使学生能进一步深入地掌握常见的前三种轨迹,巩固练习下面几个小题:
练习:画图说明满足下列条件的点的轨迹:(1)到定点A的距离等于5cm的点的轨迹;(2)到∠AOB的两边距离相等的点的轨迹;(3)经过已知点A、B的圆O,圆心O的轨迹.
让学生在下面画图,回答满足这个条件的轨迹是什么?让学生归纳出每一个题的点的轨迹属于哪一个基本轨迹.
(四)总结、扩展
本节课学生学习了轨迹的概念,特别是通过对三个几何知识的学习,学生自己归纳出三个基本轨迹,使学生自己学习数学知识的能力又提高了一步.
本节课主要学的知识点:
(五)布置作业 略 板书设计
第五篇:数学六年级圆教学设计
数学六年级圆教学设计1
学习内容
人民教育出版社六年级数学上册第56-57页 例1 例2
学习目标
(1)认识圆,知道圆的各部分名称。
(2)掌握圆的特征,理解和掌握在同一个圆里半径和直径的关系。
(3)初步学会用圆规画圆。
(4)通过探究活动,发展学生的空间观念和初步探索的能力。
学习重难点
重点:掌握圆的特征,会使用圆规画圆。
难点:会使用圆规画圆。
学习过程
一激趣定标
(一)复习导入
在数学王国里,住着许许多多的平面图形。现在请同学们回忆一下,我们都认识了哪些平面图形?(投影出示长方形,正方形,三角形,平行四边形,梯形)今天,老师就再次带领大家走入我们的平面图形世界,并认识一个新的朋友-圆。
(二)板书课题
圆的认识
(三)出示学习目标
1.认识圆,知道圆的各部分名称。
2.掌握圆的特征,理解和掌握在同一个圆里半径和直径的关系。
3.初步学会用圆规画圆。
二、自学互动(适时点拨)
活动(一)
1.找圆
在我们的生活中,那些物体是圆形的?
2.感受圆的曲线特性
(课件出示圆,正方形,长方形,三角形,平行四边形,梯形)
观察,比较圆和其他平面图形的异同点。
3.用物体画圆
利用含圆的小物体在之上画圆,并用剪刀剪下来。
活动(二)
1.认识圆的特征
(1)认识圆各部分的名称
A.认识圆心
a.( 将剪好的圆,对折,打开,再换个方向对折,再打开)
让学生说一说自己的发现。
b.小结圆心的概念
B.认识直径
a.( 用彩色笔将其中一条折痕描出来)
让学生观察所描出来的线段,说一说自己的发现。
b.小结直径的概念
C.认识半径
(在圆上任取一点,并与圆心连接)
教师介绍半径,并让学生在圆纸片上画出一条半径。
(2)认识同一圆内半径和直径的关系
小组讨论:在同一圆内,有多少条半径?多少条直径?直径和半径的长度有什么关系?
A.学生动手操作,讨论交流,教师巡视指导。
B.反馈交流结果,并归纳总结。
活动(三)
1.用圆规画圆
(1)师介绍圆规并示范画圆。
(2)学生尝试画圆。
(3)交流画圆的方法和经验。
(4)思考:圆的位置由什么确定?圆的`大小由什么决定?
2.适时点拨
(1)圆心的概念:将圆反复对折,所有折痕相交于圆中心的一 点,这一点叫做圆心。
一般用字母O表示。
(2)半径的概念:连接圆心和圆上任意一点的线段。
(3)直径的概念:通过圆心并且两端都在圆上的线段。
(4)半径,直径的特征及关系:一个圆内,有无数条半径,所有半径都相等.
有无数条直径,所有直径都相等。
直径是半径的2倍,半径是直径的一半。
用字母表示为:d=2r或r=d÷2(同一个圆内)
(5)用圆规画圆的方法:把圆规两脚分开,定好两脚间的距离(即半径),
把有针脚的一脚固定在圆心上,把装有铅笔芯的一
脚旋转一周,就能画出一个圆。
(定点,定长,旋转一周)
四、测评训练
1.填一填。
(1)圆中心的一点叫做,用字母( )表示,
它到圆上任意一点的距离都( )。
(2)()叫做半径,用字母()表示。
(3)()叫做直径,用字母()表示。
(4)在一个圆里,有()条半径、有( )条直径。
(5)()确定圆的位置,( )确定圆的大小。
2.画一画.。
分别用圆规画出半径为2厘米,4厘米的圆。
五、课堂小结
今天我们学习了哪些内容?把你的收获和同学说一说,好吗?
数学六年级圆教学设计2
教学内容:
人教版《义务教育课程标准实验教科书数学》六年级上册第三单元《圆》62-64页的内容。
教学目标
1、使学生认识圆的周长,掌握圆周率的意义和近似值,初步理解和掌握圆周长的计算公式,能正确计算圆的周长。
2、通过动手操作、实践探究的活动,培养和发展学生的空间观念,提高学生的抽象概括能力,渗透“化曲为直”的数学思想方法;通过小组合作学习,培养学生的合作意识。
3、通过渗透数学文化,培养学生的爱国情怀,激发学生的民族自豪感。
教材分析:
《圆的周长》是六年级数学上册第三单元62至64页的内容。这部分内容是在三年级上册学习了周长的一般概念以及长方形和正方形周长的计算的基础上进一步学习圆的周长的,同时它又是学生初步研究曲线图形的开始,为以后学习圆柱、圆锥等知识打好基础,因而它起着承前启后的作用,是小学几何初步知识教学中的一项重要内容。
学情分析:
因为六年级学生正在经历从具体形象思维向抽象逻辑思维过渡的时期,所以在教学中,我注重从学生已有的知识和生活经验出发,通过自主探究、猜测验证、推导圆的周长计算公式,从而使学生理解公式中的固定值“π”是如何得来的。
教学重点:正确计算圆的周长。
教学难点:理解圆周率的意义,推导圆的周长的计算公式。
教学准备:一套多媒体课件、若干大小不同的圆片、一把直尺、一根绳子、一个计算器
教学过程:
(一)创设情境,提出问题。
师:同学们,20xx年是中国人扬眉吐气的一年,因为上海世博会的成功举办让我们有足够的理由为之骄傲和自豪。虽然世博会已经于10月31日完美落幕,但是,这场规模空前的盛会却创造了7308万人次参观的新纪录。其中,中国馆是众多展馆中的一朵奇葩,深受游客们的喜爱,它的外观好像古代的一顶帽子,因此又被称为“东方之冠”。此外,城市地球馆也得到了中小学生的青睐。同学们,瞧,这是地球馆中的地球模型,它叫“蓝色星球”。如果杨老师绕着它的最大横截面走一圈,大约走多少米呢?(板书课题:圆的周长)
【设计意图:上海世博会这个情境的创设是为了突破教材,以学生的.兴趣作为出发点,使学生对新知识的学习充满了热情和渴望,激发学生的探索欲望,为后面的学习做好铺垫。】
(二)自主学习,探究新知。
1、自主探究
(1)熟悉圆的周长的概念。
师:既然求大圆的周长没有好办法,那么我们就把小圆片做为研究对象。同学们,你能自己先摸一摸圆的周长吗?然后用自己的话说一说什么是圆的周长。
(找个别学生示范)
生:圆的周长是指圆一周的长度。
(2)测量圆的周长。
要求学生先独立思考有几种方法,再尝试用自己喜欢的办法去测量圆的周长。
【设计意图:培养学生养成独立思考的思维习惯,提高学生的动手操作能力。】
2、合作交流
在四人小组内交流方法。
【设计意图:小组合作旨在增强学生的合作意识,在此过程中,通过不断的交流、质疑,实现思想的碰撞与思维方式的互补,也使学生逐渐养成学会倾听的好习惯,并在聆听的过程中学会“取”和“舍”,即学会分析。】
3、汇报展示
学生汇报展示滚动法和绳绕法,教师点评:同学们,刚才有的同学用绳子绕圆片一周,这种方法属于绳绕法。还有的学生把圆片沿直尺滚动一周,这种方法我们称之为滚动法。无论是滚动法还是绳绕法,大家都是把我们没学过的圆的周长转化为一条线段,这是一种很重要的数学思想方法——化曲为直。(板书:化曲为直)同学们展示的方法里面一定有你最欣赏的,那么就请大家用你们最欣赏最喜欢的方法同桌合作测量圆的周长,并把测得的数据直接写到圆上。
【设计意图:通过个别学生的展示,使学生深切地体会到“化曲为直”的数学思想方法,从而突出重点,突破难点。】
教师质疑:这些小圆我们可以用类似的方法来测量圆的周长,那么“蓝色星球”最大横截面的周长,再比如赤道的长度,还能用以上这些方法吗?
生:不能。
【设计意图:再次把学生带回课堂伊始的情境中,在质疑中激发学生的学习兴趣,并促使他们产生探究一般方法的迫切愿望。】
4、猜想验证
师:圆的周长与什么有关呢?
生1:与直径有关。
生2:圆的周长与半径有关。
师:孩子们,因为在同一个圆里半径是直径的一半,与半径有关也就是与直径有关,因此这节课我们先来讨论圆的周长与直径的关系。
(2)探讨圆的周长与直径的关系
①小组合作
要求学生以四人小组为单位,由小组长负责分配任务,两人合作测量直径与周长,一人用计算器计算圆的周长与直径的比值,第四个人把相关数据按要求填入表格中。补充完整后,看看有什么发现。
周长直径周长与直径的比值(保留两位小数)
1号圆片
2号圆片
3号圆片
4号圆片
②学习“圆周率”
师:同学们,由于各种原因,不同的圆计算出的周长与直径的比值可能不完全相同,但实际上,这个比值是一个固定不变的数,通常我们称之为“圆周率”,用希腊字母“π”来表示,“π”是一个无限不循环小数,为了计算方便,一般我们只取它的近似数π≈3.14。(板书:圆周率,π≈3.14)
(3)渗透数学文化
师:孩子们,不仅我们发现了圆周率,古人们同样用自己的智慧得出了圆周率的值是多少。【找学生介绍《周髀算经》中与圆的周长相关的内容以及我国古代伟大的数学家和天文学家祖冲之的故事。】听完了刚才两位同学的介绍,你能谈谈自己的想法吗?
【设计意图:数学文化的渗透是为了激发学生的爱国情怀,从小培养学生的民族自豪感。】
5、推导公式
师:同学们,刚才我们已经知道了圆的周长始终是直径的π倍,而且知道了圆周率是个常量,如果已知直径,怎样求圆的周长呢?
生:圆的周长=直径×圆周率。(板书:圆的周长=直径×圆周率)
师:你能用字母表示圆的周长计算公式吗?
生:C=πd。(板书公式:C=πd)
师:如果已知半径呢?
生:C=2πr。(板书公式: C=2πr)
师:为什么呢?
生:因为直径是半径的2倍。
师:孩子们,就让我们带着满满的收获,再次看看“蓝色星球”吧!已知“蓝色星球”最大的横截面的直径是32米,如果杨老师绕着它的最大横截面走一圈,大约走多少米呢?要求大家先认真审题,然后把你的过程写到练习本上。
【设计意图:再次回到蓝色星球的情境中,运用新的知识解决问题,首尾呼应,使整节课完整而有序。】
(三)巩固新知,解决问题
1、世博会不仅汇聚了各具特色的展馆,还有一些纪念品也给游客留下了深刻的印象,比如这款金镶玉挂件,其中玉的半径是1.5厘米,如果在玉的一周镶一层金边,那么需要多长的金边?
2、菲利斯大转盘每节车厢旋转一周大约是251.2米,那么它的直径是多少米?
3、课件上所展示的是世博会众多花圃中的一个,如果给这个花圃加上栅栏,需要几米长的栅栏?
【设计意图:这三道习题是从基础练到拓展练的跨越,让学生在掌握了新内容的基础上,用所学的知识来解决生活当中的实际问题,培养学生的应用意识。】
结束语:同学们,虽然我们没有以设计者的身份参与到世博会的建设中,但是我们可以做自己人生的设计师,去建设属于你们的美丽新世界。
板书设计:
圆的周长
化曲为直
圆的周长=直径×圆周率 π≈3.14
C=πd或C=2πr
课后反思:
本课的教学设计以上海世博会作为一条主线,贯穿课堂的始终,体现在以下四个方面:首先,在创设情境时,我在理解教材的基础上,激活教材,创造性地使用教材,以学生的兴趣作为出发点,激发学生的探索欲望,为后面的学习做好铺垫。其次,学生经过自主探究、合作、展示等教学活动,使学生深切地体会到“化曲为直”的数学思想方法,与此同时,我向学生提出质疑,以相同的方法测量赤道的长度,在质疑中激发学生的学习兴趣,并促使学生产生探究一般方法的迫切愿望。第三,学生通过小组合作的形式验证猜想,在理解了圆的周长与直径的关系及圆周率的基础上,推导出圆的周长的计算公式,第三次回到情景中,使学生在掌握新内容的基础上,解决实际问题,培养学生的应用意识。最后,在巩固新知解决问题的环节中,以世博会为背景,设计了三道不同层次的练习题,这三道题实现了从基础练到拓展练的跨越,提高学生发现信息、解决问题的能力。
数学六年级圆教学设计3
课时目标:
⒈理解圆的周长和圆周率的含义,初步理解和掌握圆的周长的计算公式,并能正确计算圆的周长。
⒉培养学生观察比较、分析判断及动手操作的能力,从而发展学生的空间观念。
⒊结合祖冲之的资料,对学生进行爱国主义的教育。
重点:
理解并掌握圆的周长的计算方法
突破方法:
让学生利用实验的手段,通过测量、计算、观察发现圆的周长和直径的关系,理解并掌握圆的周长的计算方法
难点:
理解圆周率的意义
突破方法:
观察交流实验报告单,发现规律,理解圆周率的意义
教学过程:
一、复习:
1、老师在黑板上画了一个长方形和一个正方形,谁能用红笔描出它的周长并写出字母表示其周长公式。
2、当你看到这两个周长公式时,你们发现了什么?
生:长方形的周长与长和宽的和有倍数关系
正方形的周长与边长有倍数关系
3、那就说明我们研究长方形或正方形的周长时,主要考虑两个方面:
它与什么有关?有什么样的关系?
今天我们就带着这样的问题来学习圆的周长(板书课题)
二、新授:
1、师出示一个圆,请大家看,老师手里有一个圆,你知道圆的周长是指的哪部分吗?
谁来动手摸一摸,指一指
那么什么是圆的周长呢?圆是由什么线围成的?课件展示什么是圆的周长。
板书:围成圆的曲线的长是圆的周长
2、今天老师带来一些圆,请你们各个组来测量这些圆的周长,不管用什么样的方法,只要能够得到圆的周长就可以了,请你们一律用厘米作单位,我们每个小组桌上都有一张小表格,请你们将测得的周长填在第一栏里,请小组分工合作。
师:你们是怎样测得圆的周长呢?哪位同学到前面来给大家讲一讲,同时演示。
(一) 用卷尺直接绕圆一圈(卷尺与起点重合)
(二) 把圆放在直尺上滚一圈得到圆的周长.(在圆上固定一点,在尺子上滚动)
(三) 拿线绕圆一周,再将线拉直,量出线的长度就是圆的周长.
(学生在演示时,老师主动说我来帮你,你也是在小组合作中完成的)
那刚才我们同学不管是通过绳子还是把圆放在尺上滚得到圆的周长,最后都是测量一条直的线段的长,但我们开始已经知道圆的周长是一条曲线的长,这就说明我们是把曲线化为一条直线段来测量,那是不是所有的圆都可以用这个方法来测量它的周长呢?想一想,为什么?
(生:不行,有的圆特别小,不好滚动,有些特别大)
师:如我们转动的吊扇、转动的摩天轮,它在转动时也是形成一个圆,但这个圆能通过刚才的方法来测量它的周长呢?(不能直接测量)那看来,我们刚才所有的测量周长的方法都有一定的局限性。
看来,我们也需要像研究长方形和正方形一样来找到一种作为普遍的公式能够直接计算周长,那现在大家想一个问题:圆的周长与什么有关(请大家认真看屏幕)通过观察这三幅图,你发现了什么?
(直径越长,周长越长)
看来直径确实能决定圆的周长,是这样吗?
请同学们继续刚才的测量,先前已经得到圆的`周长,接下来我们来测量圆的直径,找出圆的周长和直径的关系。
请同学们继续合作,把桌上的表格填好(注意,周长除以直径,如果除不尽时保留两位小数。)
(有人测量、有人计算、有人填表,分工非常明确)
填完之后,小组内同学互相说说,你们发现了什么?
哪个小组最快填完,老师把这一组的结果填在黑板上。算完之后,请你们仔细看看,有没有算得跟这个组不一样的。(生:有)
师:这是什么原因呢?是我们计算不对吗,还是别的原因呢?(误差)那你们小组讨论出的结论是周长与直径有什么关系呢?
(生:每个圆的周长都是它直径的三倍多一些)
是不是所有的圆,它的周长都是直径的三倍多呢?
请大家看大屏幕,这是我们三个直径不同的圆,让我们看看它们是不是也有我们同学刚才所说的倍数关系呢?
(动画的形式,演示圆的周长与直径的倍数关系)
看来,我们同学得到的结论是正确的,确实每个圆的周长都是它直径的三倍多一些,说明圆的周长与直径确实有倍数关系,我们把这个固定不变的倍数叫做圆周率,用字母“π”表示,(板书)请大家看屏幕,这里是有关于圆周率的介绍(出示课件)
看完这段话,你们有什么感想?(古代有无数的数学家为此付出了很多的心血,为我们古代数学家感到自豪,为我们的民族感到骄傲)
现在请同学们打开数学书第63面中间一段文字,看完之后,还有什么新的收获(还知道关于圆周率的什么知识)圆周率是一个无限不循环小数,在实际应用中一般取它的近似值为3.14。
现在同学们知道怎样来计算圆的周长吗?有公式吗?
如果用C表示圆的周长,就有:
C= πd 或C= 2πr
这两个公式都可以用来计算圆的周长
三、巩固练习
1、求下面各圆的周长:
①直径为6㎝ ②半径为5㎝
2、接下来,咱们去生活中看看,能不能利用我们刚才学到的知识去解决生活中的问题呢?
出示例1:一辆自行车轮子的半径大约是33㎝,这辆自行车轮子转一圈,大约可以走多远?(结果保留整米数)小明家离学校1㎞,骑车从家到学校,轮子大约转了多少圈?
3、判断练习:
(1)只要知道圆的直径或者半径就可以求圆的周长
(2)π=3.14()
(3)大圆的圆周率比小圆的圆周率大()
(4)圆周率就是圆周长除以直径的商()
(5)圆周长是半径的2π倍 ()
四、总结:这节课我们学习了很多有关圆的周长的知识,那你们说说都有什么收获?
生:答
师:同学们有收获,就是老师最大的收获。
板书: 圆的周长
围成圆一周的曲线的长叫做圆的周长
周长 直径周长/直径的比值 圆周率π
(保留两位小数)
38 12 3.17C= πd
258 3.133倍多一些 或C= 2πr
196 3.17
数学六年级圆教学设计4
教材分析:
这部分内容是在学生认识了圆周长的概念和圆的基本特征的基础上,引导学生从已有的生活经验出发,以小组合作的方式,通过实验探究圆的周长与直径的关系,自学自知圆周率,从而总结探究出求圆的周长的公式。另一方面提高学生运用公式解决实际问题的能力,体会数学与现实生活的密切联系。
教学目标:
1.让学生经历圆周率的探索过程,理解圆周率的意义,掌握圆周长的公式,能运用圆周长公式解决一些简单的实际问题。
2.培养学生的观察、比较、分析、综合及动手操作能力,发展学生的空间观念。
3.让学生理解圆周率的含义,熟记圆周率的近似值,结合圆周率的教学,感受数学文化,激发爱国热情。
教学重点:
通过多种数学活动推导圆的周长公式,能正确计算圆的周长。
教学难点:
圆的周长与直径关系的探讨。
教学准备:
多媒体课件、线、尺、塑胶板上剪下的直径大小不一的圆、实验报告单、计算器等。
教学过程:
一、把准认知冲突,激发学习愿望。
1.谈话:同学们,知道大家都喜欢看《喜羊羊和灰太狼》的.动画片,今天,老师把它俩带到了我们的课堂。听:(课件播放故事:在一个天气晴朗的日子里,喜羊羊和灰太狼举行跑步比赛,喜羊羊沿正方形路线跑,灰太狼沿圆形路线跑,一圈过后,它们又同时回到了起点。此时,它俩正为谁走的路程长而争论不休。同学们,你们认为呢?)(学生进行猜测)
2.要想确定它俩究竟谁跑的路程长,可怎么做?(生:先求出正方形和圆形的周长,再进行比较。)
3.指名一生说说正方形的周长计算方法:(生:边长4=周长)今天这节课,我们一起来研究圆的周长。(揭示课题:圆的周长)
二、经历探究全程,验证猜想发现。
(一)认识圆周长的含义并初步感知圆周长与直径之间的关系。
1.谈话:那什么是圆的周长呢?(课件出示3个车轮)
2.师:上面的3个数据是表示什么的?(生:圆的直径)英寸是什么意思?(学生看书回答)
数学六年级圆教学设计5
教学目标:
知识目标:组织学生通过画一画、折一折、观察体验圆的特征,认识圆的各部分名称,
理解在同一个圆内直径与半径的关系。
能力目标:让学生了解、掌握画圆的多种方法,初步学会用圆规画圆;
转变学生学习的方式,培养学生观察、分析、概括等思维能力和初步的空间观念。
德育目标:让学生养成在交流、合作中获得新知的习惯。
教学重点:探索出圆各部分的名称、特征及关系。
教学难点:通过动手操作体会圆的特征。
教具准备:硬币、线绳、图钉、铅笔头、圆规、课件。
教学过程:
一、创设情境、激发兴趣:
1、创设情境
师:同学们,你们喜欢运动会吗?老师今天给你们带来了一场紧张而又激烈的塞车运动。看,它们已经来到了起跑线上,一号、二号、三号谁将会成为最后的冠军,请同学们大胆预测。
师:让我们把掌声献给冠军,送给一号车手。同学们预测的很好,那么一号的赛车为什么成为了最后的冠军呢?
生:因为一号的赛车,轮子是圆的。
师:其它的车手为什么会比一号的赛车慢呢?
生:因为它们的轮子是方形,是三角形,有棱有角的。
2、联系生活、举例说明
师:你在生活中,哪些物体上还有圆?指名学生回答日常生活中含有圆的物体。
师:圆在我们的生活中是无处不在的,汽车作为现代工业化的产物,正是因为装上了圆形的轮子,不仅极大的方便了我们的生活出行,也大大提高了社会生产效率;家庭用的圆形套装餐具,满足我们审美需求的同时,也更让我们味口大开,看来圆在我们的生活中的确很重要。下面就让我们对圆作更进一步的认识吧!揭示课题:圆的认识
二、自主探索,初步体验:
1、第一次自主探索画一画。
师:你能创造出一个任意大小的圆吗?
生:能。
师:同学们真有自信,下面就请同学们前后四人小组为单位,可以利用学具袋中老师给大家准备的工具,也可以自己想办法去创造圆,比一比看哪个小组想到的方法最多?
学生进行小组合作,分工创造圆。
生:进行小组反馈。
教师注意将各种方法进行概括分类,学生可能会出现的答案有①利用硬币或其它圆形轮廓描圆;②利用图钉和线画圆;③用圆规画圆;④用圆形物体用力在纸上压印圆;⑤线一头系上重物旋转形成圆……
师:这么多的.方法都能创造出圆,那么这些方法有什么缺点吗?
学生说一说各种画法的缺陷:(
1、利用圆形轮廓描和印圆,方便但圆的大小固定。
2、线画圆,比较麻烦但可以画很小的圆也可以画很大的圆。
3、旋转形成圆不能留下痕迹。
4、圆规画圆,方便且一定大小的圆都能画)
师:那你认为这么多方法中用什么画圆最科学最方便?
生:用圆规画圆最方便。
2、第二次尝试画一画-----用圆规画圆。
师:那请同学们用圆规自已尝试画一个圆。
没有画成功的同学把图案展示,我们愿意帮助你寻找原因。
生:(
1、画移位的,
2、重新画又找不到位置的,)如:问为什么会移位,为什么会找不到原来的位置?
学生回答问题的原因,教师边示范边讲解:所以画圆的时候要先确定位置,点上一点,把钢针戳在点上,用手捏住圆规的头,岔开圆规两脚的开口,将圆规略微倾斜一点,旋转一周,一个圆就画好了。请大家也一起试试看。(板书:定点、定长、旋转一周)
师:学生根据老师的讲解独立画圆。
师:大家画的圆的位置都一样吗?
生:不一样。
师:为什么会不一样?
生:因为刚针戳的位置不一样,(或点的位置不一样)
师:看来这个点能决定圆的位置,(板书:能决定圆的位置)
师:请同桌再互相比较一下你们刚才画的圆大小完全一样吗?
生:不一样。
师:为什么会不一样?
生:因为我们圆规的开口大小不一样。
生:圆规的两脚开得越大,所画的圆也就越大,圆规两脚间的距离能决定圆的大小。(师板书:能决定圆的大小)
师:那请同学们把圆规两脚间的距离定为3厘米,来画一个圆,并用剪刀将你所画的圆剪下来。
三、认识圆各部分名称及探究其特征:
①学生跟老师一起操作:把圆对折、打开,换个方向,再对折,再打开…这样反复几次。(也可进行一下小竞赛,看谁折得快、折得好。)
提问:折过若干次后,你发现什么?(在圆内出现了许多折痕。)
师:仔细观察一下,这些折痕总在圆的什么地方相交?(圆中心一点)
教师指出:我们把圆中心的这一点叫做圆心。(贴出纸圆,点出圆心,并板书:圆心)
师:圆心一般用字母o来表示。(板书:o)
教师领学生读字母“o”,说明“o”的写法,让学生在自己的圆里标出圆心并用字母“o”来表示。
游戏过渡:下面让我们放松一下,玩一个“食指点圆”的游戏,游戏规则:教师说出圆的位置(圆外、圆心、圆内、圆上)让学生用食指来点,看谁点的快,点的准。尤其强调“圆上”的概念,指圆的边缘上。
②师:强调之后,让学生说圆上有多少个点?(无数个)现在请同学们用尺子量一量圆心到圆上任意一点的距离,看一看,可以发现什么?
通过测量引导学生发现:圆心到圆上任意一点的距离都相等。
教师指出:我们把连接圆心和圆上任意一点的线段叫做半径。(教师在圆内画出一条半径,并板书:半径)
提问:谁能说一说什么样的线段叫做半径?
教师说明:半径一般用字母r来表示。(板书:r)
教师领学生读“r”,强调“r”的写法,让学生在自己圆里画出一条半径并用字母r来表示。
学生做完后,教师提问:在同一个圆里可以画出多少条半径?所有的半径长度都相等吗?
启发学生说出:在同一个圆里,有无数条半径,所有的半径长度都相等。(并板书)。
③同学们接着观察,刚才我们把圆对折时,每条折痕都从圆的什么地方通过?两端都在圆的什么地方?(每条折痕都通过圆心,两端都在圆上。)
学生回答后,教师指出:我们把这样的线段叫做直径。(在圆内画出一条直径,并板书:直径)
提问:谁能说一说,什么样的线段叫做直径?
启发学生说出:通过圆心并且两段都在圆上的线段叫做直径。
教师说明:直径一般用字母“d”来表示。(板书:d)
教师领学生读“d”,强调“d”的写法,让学生在自己的圆里画出一条直径,并用字母“d”来表示。
学生做完后,教师提问:在同一个圆里可以画出多少条直径?自己用尺子量一量同一个圆里的的几条直径,看一看可以发现什么?
引导学生得出在同一个圆里有无数条直径,所有的直线的长度都相等。
④练习:出示课件请观察下图中哪些直径,哪些是半径。哪些不是,为什么?
⑤小结与过渡:通过刚才的学习我们知道,在同一个圆里,有无数条半径,所有半径的长度都相等;有无数条直径,所有直径的长度也都相等。那么,在同一个圆里,直径与半径之间又有什么关系呢?(组织学生讨论)
引导学生得出:在同一个圆里,直径的长度是半径的2倍,半径的长度是直径的一半。
师:如何用字母表示这种关系?学生回答后,教师板书:d=2rr=d/2。
师:这就是说,在同一个圆里,知道了半径的长度,乘以2就可以求出直径的长度;知道了直径的长度,乘以1/2就可以求出半径的长度。(组织学生说半径或直径的长度,让其他学生说直径或半径的长度,然后组内互说互评。)
⑥练习:出示课件填表。
⑦巩固练习:出示判断题。
四、转回课前问题:
为什么车轮做成圆形的能得冠军呢?
(让学生结合今天所学知识解决此题。)
五、课后作业:
用今天所学知识画出各种大小、不同颜色的圆,组合出一幅美丽的图画。
六、板书设计:
圆的认识
圆心O ——能决定圆的位置(定点)
半径r
——能决定圆的大小(定长)
直径d
同圆半径
无数条且长度相等
(等圆)直径
d=2r或r=d=
数学六年级圆教学设计6
【教学内容】
《义务教育课程标准实验教材 数学》六年级上册第62~64页。
【教学目标】
1.通过小组合作探究,实际测量计算理解圆周率的意义。
2.通过对比分析掌握圆周长的计算公式。
3.能用圆的周长的计算公式解决一些简单的数学问题。
4.通过对圆周率的计算,渗透爱国主义的思想。
【教学重、难点】
重点:推导圆的周长的计算公式,准确计算圆的周长。
难点:理解圆周率的意义。
【教学过程】
一、情景引入
出示一块钟表
问题1:你能猜想小秒针的顶端在一分钟的时间里,所走过的轨迹是一个什么图形吗?
学生猜想。
教师演示小秒针的运动过程,证实学生的猜想是否正确。
问题2:你能知道不知疲倦的小秒针顶端,在一个小时的时间内所走过的路程有多长吗?我们应该怎样解决这个问题呢?
生:先计算出走一圈的路程有多长,在计算出走60圈的长度。
师:非常好。那么小秒针走一圈的路程,就是这个圆的周长又怎么来求呢?今天我们就来学习怎样计算圆的周长。(引入课题——圆的周长)
(设计目的:通过学生身边的实物引入新课,能充分的调动学生的学习积极性,把学生的注意力集中到课堂中来。)
二、动手量一量
学生活动:请同学们拿出你准备好的圆,小组内交换圆,合作完成下表,看哪一组完成的最快。测量值精确到毫米。
物品名称
周长
直径
1号圆
2号圆
3号圆
4号圆
教师评价学生小组合作的情况。
(设计目的:强调学生的小组合作意识)
师:哪个小组汇报一下你们小组是怎么测量的,并展示一下小组测量的结果。
学生展示小组的成果。
(设计目的:通过实物投影,向其它小组的同学展示本小组的结果,增强学生的自信)
三、对比分析
师:观察一下我们得到的几组数据,你发现什么规律了吗?
学生自由谈。
学生发现:1. 一个圆的周长总是直径的三倍多点。2. 周长和直径的比值与直径相乘可以得到圆的周长。
师:老师也做了一个圆,现在看一下老师是怎么测量这个圆的周长的。
课件展示圆的周长的测量方法。
(设计目的:通过让学生对比分析表格,教师课件展示圆的周长的测量过程,让学生能对圆的周长和直径之间的关系更加清晰,激发学生想要知道两者之间的具体关系的热情)
课件展示:圆的周长随直径的变化而在变化,而周长和直径之间的比值确是一个定值。
(设计目的:通过课件展示,让学生得到结论——圆的周长和直径的比值是一个定值,顺利得到圆周率的值)
小结1:圆周率:一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做——圆周率,用字母π表示。圆周率是一个无限不循环小数。它的值是:π=3.1415926535……,在实际的应用中,一般取它的近似数π≈3.14。
你知道吗?我们的祖先在圆周率的计算上可是有着辉煌的成绩的,你能讲给同学们听吗?
学生自由谈。
我们有这么伟大的祖先,相信我们这些站在伟大巨人肩膀上的现代中国人一定能取得更加辉煌的成绩。
(设计目的:通过学生讲故事渗透爱国主义思想)
小结2:你能通过分析表格得到圆的周长的计算公式了吗?
学生回答。(由于学生已经有了前面的层层铺垫和对表格的分析学生可以很容易的回答这个问题。)
圆的周长(用字母C表示)计算公式:C=πd或C=2πr
四、动手做一做
下面我们来看看怎样应用圆的周长计算公式来解决问题。
1.计算圆的周长
实物投影展示学生的解题过程
(设计目的:通过简单的图形计算让学生理解圆周长的'计算公式的应用,并强调解题的书写过程)
2.一个圆形喷水池的半径是5m,它的周长是多少米?
(设计目的:通过转化把由半径求周长的问题转化为实际问题,让学生体会到学以致用)
3.小组交流错误原因。(可让其他学生避免同样的错误)
(设计目的:通过实例计算,可以让学生更好的理解数学来源于生活,又能解决实际的生活问题的作用,又可为最后的实践题打下很好的伏笔)
4.现在你能告诉大家不知疲倦的小秒针顶端,在一个小时的时间内所走过的路程了吗?要解决这个问题你想得到什么样的数据。
(设计目的:让学生自己寻找解决问题的条件,培养学生的独立思考能力。此题和前面的引入题互相呼应,做到解决问题有始有终)
五.你能说说在这一节课中你有什么收获吗?
可让学生从知识点,从测量方法——能力点,数学史知识——情感态度价值观等方面总结自己的收获。
六、课外合作:
小组合作完成,应用你的知识,想办法测量一下,从学校大门口到圆城楼门口的距离大约是多少米。
(设计目的:让学生真正能够达到学习上的学以致用,并且培养学生的小组合作意识和学生的动手能力)
数学六年级圆教学设计7
【教学内容】:
义务教育课程标准实验教科书(人教版)数学六年级上册第67-68页,圆的面积。
【教学目标】:
知识与技能:让学生经历操作、观察、验证、讨论和归纳等数学活动过程,探索并掌握圆的面积公式,能正确计算圆的面积,并能运用公式解决相关的简单实际问题。
过程与方法:
(1)让学生进一步体会“转化”的数学思想方法,培养运用已有知识解决新问题的能力,增强空间观念,渗透极限数学思想,发展数学思维。
(2)、通过小组合作交流,培养学生合作探究精神和创新意识,提高学生动手实践和数学交流能力,体验数学探究的乐趣。
情感与态度:培养学生能积极主动地参与各种探索和操作活动,进一步体会“转化”方法的价值;培养运用已有知识解决新问题的能力,发展空间观念和初步的推理能力。
【教学重点】:推导圆的面积计算公式并能正确地应用圆面积的计算公式进行圆面积的计算。
【教学难点】:引导学生进一步体会“转化”的数学思想,利用已有知识并结合渗透“极限”的思想推导圆的面积计算公式。
【教具准备】:
多媒体课件,圆片等。
【教学方法】:自主探究法
【教学过程】:
一.以旧引新、导入新课
1、以前我们学过哪些平面图形的面积?
2、长方形的面积怎样计算?
3、回忆一下三角形的面积公式是怎样推导的?
4、小结:我们总是把新的图形经过剪、拼“转化”成已经学过的图形来推导面积公式的。(板书:转化)
5、圆能不能转化成以前学过的平面图形呢?它的面积计算公式该怎样推导呢?这是我们这节课要学习的内容——(板书课题:圆的面积)
二、动手实践、探索新知
1、补充感知、理解意义
(1)(出示圆片):那位同学来指一指圆的面积是哪一部分?
(2)同学们再用手指一指自己带来的圆的面积。
(3)谁来说说什么叫做圆的面积?(板出:圆所占平面的大小叫圆的面积。)学生齐读。
2、比较猜测、探明方向
(1)提问:猜猜圆面积的大小与什么有关?
(2)下面我们来动手验证一下是否与半径有关:①你们想通过什么方法来推导圆的面积计算公式?②想把圆转化成什么图形?(先独立思考,再把你的想法与同桌互相说说。)
(3)活动要求:折一折手中的圆片能折出什么图形?
(4)把16等份圆和32等份圆分别剪开(在黑板上贴出这两个圆),拼成两个长方形,拼好后一起思考黑板上的两个问题:
①圆和(近似的)长方形有什么关系?(形状变,面积相等)
②课件演示:圆16等份和32等份后,拼成什么图形?(分的份数越多就越像长方形)
(教师配合课件演示作适当说明)我把一个圆平均分成16份,并剪成2个半圆,重新拼组成一个近似的长方形。
把一个圆平均分成32份,剪成2个半圆重新拼组成一个更接近长方形。
小结:它们的面积没有改变,圆的面积=拼成的近似长方形的面积。
3、圆的面积计算公式的推导。
小组合作讨论以下问题:
a、拼成的近似长方形的'面积和圆的面积有什么关系?
b、长方形的长与圆的周长有什么关系?
c、长方形的宽与圆的半径有什么关系?
d、你能找出圆的面积计算方法吗?
长方形的面积=长×宽,
所以圆的面积=×()=
学生在小组内积极讨论,探究、分析,并将结果汇报。
长方形的长是圆周长的一半,长方形的宽是半径(r)
因为长方形的面积=长×宽
所以圆的面积=∏r×r=r2
齐读公式S=∏r2强调r2=r×r(表示2个r相乘)
同学们太捧了,学会了把圆转化成长方形,并推导出圆的面积计算公式.
三、巩固运用、形成技能
1、我们用了多种方法推导、验证了圆的面积公式,并知道了圆的面积大小与半径有关,你们能用刚才学到的知识解决生活中的实际问题吗?
2、求圆的面积需要什么条件?是不是只有知道半径才能求圆的面积?
(1)课件出示例1
(2)学生独立审题
(3)教师板演解答过程.
3、求下面圆的面积r=3md=5cm
①学生独立完成
②集体核对时,强调要先算平方再算乘法。
4、判断题(课件出示)
5、拓展练习:机动题
小力量得一棵树干的周长是125.6厘米。这棵树干的横截面积约是多少??
四、课堂总结、深化认知:这节课,你有哪些收获?
五、作业:练习十六2.4题.
附:板书
圆的面积
长方形面积=长×宽
↓↓↓
圆的面积=圆周长的一半×半径
=∏r×r
=∏r2
例1:r:20÷2=10(m)
S:3.14×102=314(m2)
答:它的面积是314m2。
数学六年级圆教学设计8
设计说明
本节课内容是在学生初步认识了圆,学习了圆的周长及多边形面积的基础上进行教学的。在教学设计上有以下特点:
1.注重联系生活实际,开展探究性的数学活动。
学生从认识直线图形发展到认识曲线图形是一次质的飞跃,他们已经能从形象思维发展到抽象思维,对事物已经具有了一定的立体思维空间,所以在教学中注重联系生活实际,利用学具开展探究性的数学活动,使学生从中获得成功的体验,感受到数学的价值,从而更加热爱学习数学,热爱生活。
2.在教学中渗透数学思想,完成新知构建。
在学习数学的过程中,数学知识虽然很重要,但更重要的还是以数学知识为载体所体现出来的数学思想方法。圆是一个由曲线围成的图形,圆的面积计算,对学生来说有一定的难度,所以在让学生猜测和运用小正方形来测量的基础上,利用学具动手操作,让学生自主发现圆的面积和拼成的长方形面积之间的关系,从而推导出圆的面积计算公式,降低了学习的难度,同时将化曲为直的数学思想融入到教学活动中,有效地完成了知识的构建。
课前准备
教师准备PPT课件圆的面积演示教具大小不同的两张圆形纸片
学生准备剪刀小正方形透明塑料片圆形学具
教学过程
⊙复习铺垫,导入新课
1.回忆圆的周长的计算方法。
(1)已知直径怎样求圆的周长?
(2)已知半径怎样求半圆的周长?
2.建立圆的面积的概念。
(1)感知圆的面积的大小。
师拿出准备好的大小不同的两张圆形纸片,问:大家看这两张圆形纸片,它们的面积一样大吗?
师明确:圆的面积有大有小。
师:谁能说一说什么叫做圆的面积呢?
师指出:圆所占平面的大小叫做圆的面积。
(2)区别圆的面积和周长。
指导学生拿出准备好的'圆形学具,同桌之间用手摸一摸,指一指:哪儿是圆的周长?哪儿是圆的面积?
学生操作后,师生共同明确:圆的周长是指围成圆一周的封闭曲线的长;圆的面积是指圆所占平面的大小。
设计意图:在实际的教学中学生很容易混淆圆的周长和面积,因此,设计了摸一摸、指一指这个活动,让学生在初步感知圆的面积和周长的区别的同时,充分感知面积的意义。着重对容易出错的地方进行对比和强化,尽可能地让学生减少差错。
⊙动手操作,探究新知
1.通过度量,猜想圆的面积的大小。
用边长等于半径的小正方形透明塑料片,直接度量圆的面积,(课件演示度量过程)观察后得出圆的面积比4个小正方形小,又比3个小正方形大。初步猜想:圆的面积相当于半径平方的3倍多一些。
师:由此看出,要求圆的精确面积是无法通过度量得出的。
2.回忆多边形面积公式的推导过程。
想一想,我们是用什么方法推导出平行四边形、三角形和梯形的面积公式的?
(课件演示平行四边形的面积推导过程)
过渡:我们在学习推导几何图形的面积公式时,总是把新的图形通过分割、拼合等办法,将它们转化成我们熟悉的图形。今天我们能不能也用这样的方法推导出圆的面积计算公式呢?
3.动手操作。
(1)组织学生分别把圆平均分成16份、32份,然后剪开,拼成两个近似的长方形。
课件演示剪拼的过程:
(2)讨论:
①拼成的图形是长方形吗?(是近似的长方形,因为它的上下两条边不是线段)
②圆和近似的长方形有什么关系?(形状变了,但面积相等)
③把圆平均分成16份和32份后,拼成的图形有什么区别?(把圆平均分成32份后拼成的图形更接近于长方形)
④如果把一个圆平均分成64份、128份……拼成的图形会怎样呢?
(课件演示,得出结论:圆平均分成的份数越多,拼成的图形越接近于长方形)
(3)观察、汇报拼成的长方形与圆的关系。
①拼成的长方形的长和宽与圆的周长和半径有什么关系?(结合学生汇报,课件演示)
圆的半径=长方形的宽
圆的周长的一半=长方形的长
②拼成的长方形的面积与圆的面积有什么关系?
(引导学生理解:形状不同,面积相等)
(4)推导圆的面积计算公式。(引导学生结合图形理解)
因为拼成的长方形的面积相当于原来圆的面积,拼成的长方形的长相当于原来圆的周长的一半,宽相当于原来圆的半径,且长方形的面积=长×宽,所以圆的面积=圆的周长的一半×圆的半径,即S圆=×r。
因为C=2πr,所以S圆=πr×r,S圆=πr2。
数学六年级圆教学设计9
教学内容:
义务教育课程标准实验教科书六年制小学五年级下册P93-94例1-例3及P94练一练、练习十七第1、2题
教学目标:
1、让学生在观察、操作等活动中感受并发现圆的有关特征,知道圆的各部分名称,发现同一圆内半径、直径的特征及关系,学会用圆规画圆。
2、培养学生的观察、分析、抽象、概括等思维能力和初步的空间观念。
3、进一步提高学生与他人合作交流的能力,激发学生学习的热情,培养自主意识,增强学好数学的信心
4、使学生初步学会用数学知识解释、解决生活中的实际问题,进一步体现数学的应用价值。
教学重点:
1、学会用圆规画圆。
2、在观察、操作等活动中感受并发现圆的有关特征。
教学难点:
引导学生归纳圆的特征。
教具准备:
自制多媒体课件、圆规、直尺。
学具准备:
1个圆形物体、圆规、白纸、直尺、图钉、线、2个大小不同的圆形纸片。
教学过程:
一、创设情景,初步感知圆的特征
1、找一找(多媒体出示平面图形)
师:同学们,这些平面图形大家还认识吗?在这些平面图形中,有一个图形与众不同,你能把它找出来吗?为什么?(学生说出弯曲的后多媒体演示)
2、看一看
师:古希腊有一位数学家曾经说过,在一切平面图形中,圆是最美的。下面请你欣赏。(多媒体出示教材97页的'你知道吗图片:自然现象、工艺品和建筑物、运动现象、生活用品)
2、说一说
美不美啊?圆在我们的生活中随处可见,请你说说哪些地方还能看到圆。(学生举例)今天这一节课我们一起来进一步的认识圆(板书课题)
二、实践操作,探索圆的特征
1、画圆:同学们,圆这样美,想不想把它画下来?
师:请你借助老师提供的工具画一个圆。(小组合作)
反馈:你是怎样画的?(学生回答后多媒体随即动画演示)。
(1)借助圆形实物画:你是这样画的吗?还有不同的画法吗?
(2)借助图钉和线段画:你是怎样画的?
(3)借助圆规画:你是怎样画的?
师:同学们,刚才我们用不同的方法画了圆,但是通常我们会借助圆规来画圆。请拿出圆规。师简单介绍:圆规有2只脚,一只脚是针尖,另一只脚是用来画圆的笔,两脚可以随意叉开。那怎样用圆规画圆呢?谁能说一说?(然后老师边示范边讲解)
(4)请你用圆规画一个圆
2、体验:在画圆的过程中,你觉得圆是怎样的一个平面图形?
3、认识圆心、半径、直径
(1)结合圆规画的圆(屏幕),师介绍圆心、半径、直径的概念。并分别用字母表示。
半径有什么特点?直径呢?
(2)学生在自己的圆上画一条半径和直径,并分别用字母表示圆心、半径、直径。
看一看、比一比:圆规两脚间的距离和半径的长度(同样长)
(3)画一个半径是2厘米的圆(圆规两脚间的距离是多少)
师:刚才我们认识了圆心、半径、直径。下面我们一起来研究圆的特征。
4、探索圆的特征
(1)小组合作探索
出示例3:在圆形小纸片上画一画、量一量、比一比、折一折,思考下列问题。
在同一个圆里可以画多少条半径,多少条直径?
在同一个圆里,半径的长度都相等吗?直径呢?
同一个圆的半径和直径有什么关系?
圆是轴对称图形吗?它有几条对称轴?
(2)交流
(3)电脑演示,加深理解。 (多媒体将学生验证的圆的特征运用了旋转、重合等手段,进行动态演示)这些都是圆的特征。多媒体出示::所有的直径都相等,所有的半径都相等,d=2r,R=d/2)
通过验证,你们发现的这些圆的特征正确吗?
质疑:那老师的圆的半径和你的圆的半径相等吗?(强调:在同一个圆内)
(4)学生概括,总结特征。谁能把圆的特征用自己的语言来归纳概括一下。
三、巩固练习(多媒体出示)
1、练一练第1题(指名说一说,说出理由)
多媒体出示
2、练习十七第1题:多媒体出示,学生口答
3、判断题(指名说一说,说出理由)
(1)圆的直径是半径的2倍
(2)圆有无数条半径
(3)通过圆心的线段是直径
(4)画直径4厘米的圆,圆规两脚间的距离是4厘米
(5)半径2厘米的圆比直径3厘米的圆小。
4、练习十七第2题
四、实际应用
1、体育老师要画一个半径是3米的圆,怎么办?(商量商量,帮老师出出点子)学生交流后看动画演示,说明和圆规画圆的道理是一样的。(固定点就是圆心,绳子长就是半径)
2、师:同学们,圆不仅给我们的生活带来美,还给我们的生活带来方便,所以生活中的很多东西都设计成了圆形,比如:车轮为什么要设计成圆形,车轴应装在哪里?(学生讨论)
(多媒体播放车轮是圆形的行进动画)
附板书:
圆的认识
画圆:两脚叉开、针尖固定、旋转成圆
(圆形图)
在同一个圆里,半径的长度都相等,直径的长度都相等。直径的长度等于半径的2倍。
数学六年级圆教学设计10
1.简单而富有内涵的引入
余老师原先的引入是从一则广告开始的,香飘飘奶茶一年所卖出的杯子有3亿多,接起来可以绕地球赤道一周。看广告、说周长、找关系、再化繁为简,这样引入有三个好处:一是激发学生学习兴趣,学生看到广告进入课堂,很新鲜;二是从地球赤道整个巨大的圆回到纸上的小圆,要研究大圆的周长和直径的关系,我们先从小圆开始研究,这就是华罗庚所说的化繁为简的思想方法;三是生活中的一般实例都是先测量出周长再求直径,比如,测量一棵树的直径,就是先量出它的周长等,这个广告也是先有周长,我们再来探究赤道直径是多少。
有三个这么明显的优点,为什么会弃而不用呢?因为它有一个巨大的缺点,那就是时间!整个过程大约用了10分钟,才进入新课探究周长和直径的关系。一个缺点把所有的优点都掩盖了,所以,余老师改成下面的引入。先出示一个普通三角形,问它的周长在哪里,要测量什么,怎么计算?再出示一个正方形,也是问同样的问题,最后再追问:为什么只要测量一次,正方形的周长时边长的几倍?最后在出示圆。这种引入的优点是什么呢?一是从平面图形的周长引入,和前面所学的连成一条线,形成知识系统;二是这节课的一个内在线索是探寻圆周长和直径的关系,这个比值是一个固定的数!正方形正好具备了相似的关系,正方形的周长时变长的4倍,也是一个固定的数;三是时间,前后不到3分钟!因为课的导入追求迅速、高效,所以余老师采用了第二种方法导入。
2.自发而科学严谨的探究
关于课堂当中的操作,大多数是教师的指令行为,老师说做什么就做什么,学生根本不明白老师为什么要我们这么做!在本节课中,余老师通过巧妙地问题设计,引导学生自发的进行探究,“这两个圆,哪个圆的周长比较长?”“圆的周长和什么有关?”“怎么样研究它们之间的关系?”“怎样测量圆的周长?”每个问题都经过精心设计,逐步引起学生探究的欲望,明确了操作的目的。在操作时提出了各种操作要求,小组合作分工,务求科学严谨!学生经历探究的过程也是一次科学研究的过程,这是学生忘记了知识之后所留下的最宝贵的.智慧!
3.数学思想和文化的渗透
在本节课中,余老师在不知不觉中渗透了多种数学方法,比如在测量圆周长的时候是化曲为直的思想方法,在汇报操作结果的时候,渗透了“变”与“不变”辩证思想,这也是理解圆是一个固定的数的重要过程,在介绍刘徽割圆术的时候渗透了数形结合的思想等等。在介绍圆周率的历史的时候,提到了我国研究圆周率的主要人物,以及和西方的比较,渗透了思想感情教育。这些数学文化和数学思想,都是我们在课堂中需要挖掘和渗透的,这是数学素养的重要体现!
思考:圆周长÷直径=圆周率,这条规律的出现时机,余老师是放在学生的汇报之后,介绍圆周率的历史之前。我的想法是,学生的操作结果无法得出这是圆周率,这只是一个大概的范围,所以,我想,是不是放在接受前人的探究历史之后再将这条规律补充完整是不是好一些,这样,学生对圆周率是一个无限不循环的小数,是一个固定的数,会有一个更加明确的认识呢?
数学六年级圆教学设计11
【教学内容】
义务教育课程标准北师大版试验教材六年级上册第一单元第2、3页“圆的认识一”。
【教学目标】
1、结合生活实际,通过观察、操作等活动认识圆,认识到“同一个圆中半径都相等、直径都相等”,体会圆的特征及圆心和半径的作用,会用圆规画圆。
2、结合具体的情境,体验数学与日常生活密切相关,能用圆的知识来解释生活中的简单现象。
3、通过观察、操作、想象等活动,发展空间观念。
【教学重、难点】
1、圆的特征。
2、画圆的方法。
【教具、学具准备】
1、三角尺、直尺、圆规。
2、教学课件。
【教学设计】
一、观察思考。
1、欣赏生活中的圆:棋子、桌面、钟面、车轮、中国结。
2、观察这些图形与我们以前学过的图形有什么不同?
生活中还有哪些物体的面是圆形?
做套圈游戏,哪种方式更公平?
二、画一画。
你能想办法画一个圆吗?
用手比划着画圆。
用一根线和一支笔画圆。
用圆规画圆。
2、教学用圆规画圆的方法。
三、认一认。
学生用圆规画一个圆。
讨论:圆规的“尖”、圆规张开的两脚之间的长度所起的作用。
告诉学生半径和圆心。
四、画一画、想一想。
要求学生画一个任意大小的圆,并画出它的半径和直径。
观察比较得知:圆有无数条直径,无数条半径。
在同一个圆内直径都相等,半径都相等。
以点A为圆心,要求学生以A为圆心画两个大小不同的圆。
画两个半径都是2厘米的圆。
五、讨论。
圆的位置与什么有关系?
圆的大小与什么有关? 使学生通过观察日常生活中的圆形物体,建立正确的圆的表象。
使学生在动手操作中体会圆的本质特征。
让学生进一步体会圆的本质特征。
让学生认识到圆心决定圆的位置,圆的半径决定圆的大小。
六、观察与思考。
1、播放课件。
动物王国自行车比赛。分别有圆形、椭圆形、正方形的.车轮。
思考:车轮为什么是圆形?
操作:
用硬纸板分别剪一个圆形、正方形、椭圆形。
小组合作描出运动轨迹。
七、练一练。
课本练一练题目。
八、全课小结。
【教学反思】
圆的认识是在学生已有知识的情况下进行的,所以学生很快能找到圆的主要特征,而且能从本节课里掌握圆的特征,掌握圆各部分的名称,以及直径半径等之间的关系。
数学六年级圆教学设计12
教学目的:
1、使学生理解圆周率的意义,推导出圆周长的计算公式,并能正确的进行简单的计算。
2、培养学生的观察、比较、分析、综合及动手操作能力。
3、领会事物之间是联系和发展的辩证唯物主义观念以及透过现象看本质的辨证思维方法。
4、结合圆周率的学习,对学生进行爱国主义教育。
教学重点:
1、理解圆周率的意义。
2、推导并总结出圆的周长的计算公式并能够正确计算。
教学难点:
深入理解圆周率的意义。
教学过程:
一、复习准备:
(一)最近我们又认识了一个新的平面图形--圆,你对圆又有了哪些认识?
(二)创设情境:龟兔赛跑。
第一次龟兔赛跑,小白兔输了不服气,于是进行了第二次比赛,这回小白兔画了两条比赛路线,小白兔跑圆形路线,乌龟跑正方形路线,结果小白兔赢了,观众纷纷表示比赛不公平,你们知道为什么吗?
二、新授教学。
(一)定义。
1、小乌龟跑的路程就是正方形的什么?小白兔呢?
2、什么是圆的周长?请你摸一摸你手中圆的周长。
3、今天我们就来研究圆的周长。
(二)推导圆的周长公式。
1、学生讨论。
(1)正方形的'周长和谁有关系?有什么关系?
(2)你认为圆的周长和谁有关系?
2、猜测。
看图后讨论:圆的周长大约是直径的几倍?为什么?
小结:通过观察大家都已经注意到了圆的周长肯定是直径的2-3倍,那到底是多少倍呢?你有什么好办法吗?
3、实践操作。
(1)目的:用不完全归纳法得出圆的周长约是直径的几倍。
(2)建议:为了更好的利用时间,提高效率,请你们在动手测量之前考虑好怎样分工更合理。
(3)填写表格。
单位:厘米
测量对象
圆的周长
圆的直径
周长与直径的比值
(4)汇报小结
看了几组不同的结果,虽然倍数不同,但周长大多数是直径的三倍多一些。比三倍多多少呢?
(三)认识圆周率、介绍祖冲之。
1、我们把圆的周长与直径的比值叫做圆周率,用希腊字母表示。
2、介绍祖冲之。
(四)总结圆的周长公式。
1、怎样求周的长?如果我用字母c代表圆的周长,d表示圆的直径,那圆的周长公式用字母怎样表示?
教师板书:C=d
2、圆的周长还可以怎样求?
教师板书:C=2r
3、圆的周长分别是直径与半径的几倍?
(五)课堂反馈。
你能够准确的判断出小乌龟和小白兔谁跑的远了吗?为什么?
三、巩固练习。
(一)判断。
1、=3.14
2、计算圆的周长必须知道圆的直径。()
3、只要知道圆的半径或直径,就可以求圆的周长。()
(二)选择。
1、较大的圆的圆周率()较小的圆的圆周率。
a大于b小于c等于
2、半圆的周长()圆周长。
a大于b小于c等于
(三)实践操作。
请同学们以小组为单位,画一个周长是12.56厘米的圆,先讨论如何画,再操作。
四、课堂小结:
通过这堂课的学习,你有什么收获?你还有什么问题吗?
五、课后作业。
(一)求下面各圆的周长。
1、d=2米
2、d=1.5厘米3.d=4分米
(二)求下面各圆的周长.
1、r=6分米
2、r=1.5厘米
3、r=3米
六、板书设计。
圆的周长
C=dC=2r
单位:厘米
测量对象
圆的周长
圆的直径
周长与直径的比值
活动要求:
1、各个组成部分面积分配合理,布局合理。
2、要体现不同年龄阶段儿童需要.大致分为:1----4岁;5---8岁;9----12岁。
3、要有娱乐活动场所、休息场所、小路。
4、算出各个部分的面积。
数学六年级圆教学设计13
教学目标:
1、通过该活动让学生了解椭圆式田径跑道的结构,学会确定跑道起跑线的方法。
2、让学生切实体会到数学在体育等领域的广泛应用。
教学重点:
如何确定每一条跑道的起跑点。
教学难点:
确定每一条跑道的起跑点。
教学过程:
一、提出研究问题。(出示运动场运动员图片)
1、小组讨论:田径场400m跑道,为什么运动员要站在不同的起跑线上?(终点相同,但每条跑道的长度不同,如果在同一条跑道上,外圈的同学跑的`距离长,所以外圈跑道的起跑线位置应该往前移。)
2、各条跑道的起跑线应该向差多少米?
二、收集数据
1、看课本75页了解400m跑道的结果以及各部分的数据。
2、出示图片、投影片让学生明确数据是通过测量获取的。
直跑道的长度是85。96m,第一条半圆形跑道的直径为72。6m,每一条跑道宽1。25m。(半圆形跑道的直径是如何规定的,以及跑道的宽在这里可以忽略不计)
三、分析数据
学生对于获取的数据进行整理,通过讨论明确一下信息
1、两个半圆形跑道合在一起就是一个圆。
2、各条跑道直道长度相同。
3、每圈跑道的长度等于两个半圆形跑道合成的圆的周长加上两个直道的长度。
四、得出结论
1、看书P76页最后一图
2、学生分别计算各条跑道的半圆形跑道的直径、两个半圆形跑道的周长以及跑道的全长。从而计算出相邻跑道长度之差,确定每一条跑道的起跑线。(由于每一条跑道宽1。25m,所以相邻两条跑道,外圈跑道的直径等于里圈跑道的直径加2。5m)
3、怎样不用计算出每条跑道的长度,就知道它们相差多少米?(两条相邻跑道之间的差是2。5)
五、课外延伸
200m跑道如何确定起跑线?
数学六年级圆教学设计14
教学内容
北师大版小学数学六年级上册教材第9页~第11页。
课前思考
本节课的教学目标非常明确:利用学具合作探究圆的周长的测量方法,发现圆的周长与它的直径之间的关系,从而推导出圆的周长计算公式;能运用公式解决一些简单的数学问题。以此教学目标为指导,为了能抓牢学生的注意力,激发起他们主动参与课堂活动的兴趣,课堂上李老师组织学生积极利用圆片、卷尺、绳子等学具进行探究,使教、学具在数学课堂上的作用得以体现。
课堂写真
(教师利用课件出示两种自行车图片,学生观察。)
师:你会选择哪一辆参加我校组织的自行车比赛呢?
生:第一辆。
师:为什么选择第一辆自行车呢?
生:因为它的轮子大,跑得快。
师:为什么它跑得快呢?
生:因为它滚一圈的长度长。
师:对!轮子大,滚一圈的长度也就长。我们把车轮滚动一圈的长度就叫作它的周长。那么这两款自行车车轮的周长到底是多少呢?谁能帮助我们解决这个问题?
生:我们可以通过测量的方法得到车轮的周长呀!
师:你的反应很快。那么如何测量呢?这是需要我们思考的问题!下面就请同学们小组合作,利用小圆片及其他学具探究圆的周长吧!
(学生开始讨论,操作学具,2分钟后,每个小组都有了各自的测量方法。)
[分析] 李老师从学生的生活出发,利用多媒体课件出示自行车的车轮让学生首先明确“圆的周长”的意义,接着引导学生思考如何得到圆的周长。在学生想到测量方法时,李老师又鼓励学生用手中的学具探究测量圆的周长的方法。在她的主导作用下,学生积极主动地参与了学习,给这节课开了一个好头。
师:哪个小组愿意先来晒一晒你们的测量方法?
生:我们第一小组先来。我们组是在圆形纸片的边缘标一个起点,然后把它放在直尺上,让这个起点对准零刻度,最后把纸片沿直尺滚动一圈,就得到它的周长了。
师:嗯!这是个不错的方法,但请同学们思考:如果有一个很大的圆形游泳池,要测量它的周长,我们能把它放在直尺上滚动一圈吗?
[分析] 让学生操作学具展示自己的测量方法,锻炼他们的动手能力,有了学具的参与,学生用事实说明了问题。同时也促进了他们的合作能力和语言表达能力。接着,李老师又提出了新的问题,为后面的课程做铺垫。
生:下面请听一听我们第二小组的方法。我们小组是用绳子绕圆片一周得到它的周长,所以我们也可以用绳子绕圆形游泳池一周,再测量出绳子的长度,不就测量出了圆形游泳池的周长了吗?
(说完,大家为第二小组的同学们鼓起了掌。)
师:大家对你们的方法已经做出了肯定,这个测量方法的确很棒!
(此时,第二小组同学们的脸上露出了得意的笑容,就在这时,老师拿出一根绳子,绳子的一端系着一个小球,接着将绳子在空中旋转起来。)
师:同学们请看,小球走过的路线是什么形状呢?
生:是一个圆形。
(这时,教师转向第二组的同学并提问。)
师:如果想得到这个圆的`周长,还能用你们小组的这种绕线测量的方法吗?
生:不能。
[分析] 第二小组同学们利用绳子、直尺等学具创设了“绕线法”解决了问题后,李老师再次提出了质疑,这次的问题更难解决,也让同学们进一步意识到测量方法的局限性。
师:第三小组的同学,你们有什么好方法?
(第三小组派代表发言。)
生:我们可以把系有小球的绳子放在纸片上,固定一端,拉紧绳子,旋转一周,用笔描画出小球的运动路线,然后将这个圆剪下来,再利用之前同学们说的滚动或者绕线的方法测量出这个圆的周长,不就解决了这个问题吗?
(同学们听完后,恍然大悟,都夸赞第三小组的同学聪明,此时的他们心里美滋滋的。)
师:你们组的想法很有创意,但大家有没有想过,这个小球的运动方式就好比公园里巨大的摩天轮,如果要得到摩天轮的周长,这个方法还可行吗?
生:不可行。
师:看来,用测量的方法得到圆的周长具有一定的局限性,而且测量中也存在误差,数据不够精确,我们还要像研究长方形或正方形的周长那样,找到一个科学普遍的公式来计算圆的周长。
生:圆的周长与什么有关?有怎样的关系?
师:请利用你们手中的学具合作探究吧!
(同学们通过操作学具,经历测量、填表、计算、观察等活动,终于发现了圆的周长是它的直径的3倍多一些。再结合教材推导出了圆的周长计算公式,心中的成就感和自豪感油然而生。)
[分析] 同学们带着心中的疑惑去探究,目的明确,再加上小组合作,合理的分工,充分利用学具,让每一个学生都有事可干,教室里气氛活跃而井然有序。经过学生自己的努力,他们终于发现了圆的周长与它的直径之间的3倍多一些的关系,也推导出了圆的周长计算公式。
课后解读
数学课堂中应用教具、学具,能锻炼学生的动手操作能力和思维能力,使他们对知识有更深刻的认识和理解。本节课李老师就是利用教具学具紧紧抓住了学生们的注意力,让他们通过一系列的操作活动积极主动地获取了新知,让学生在“玩”中学、“学”中玩,使大家印象中枯燥的数学课变得活跃起来。
数学六年级圆教学设计15
一,指导思想和理论依据:
新课程标准:有效的数学学习活动不能简单依靠模仿和记忆,亲身实践,独立探索和合作是学生学习数学的重要途径。数学学习活动应该是一个活泼,积极和丰富的人格过程。
根据这个概念,在本课设计中,我强调两点,一是让学生主动体验猜测动手操作,练习和演示过程的数学结论;第二是让学生,也是学生的自主空间,自我探索,合作和交流的学习方法在整个教室。
二,教材与学习分析:
教科书是在掌握了矩形和正方形圆周的学生的基础上学习的,以及对圆的初步理解。它是学生初步学习曲线图形的基本方法的开始,是学习圆形区域和未来学习圆柱形,锥形等知识的基础。学习分析:虽然学生有计算线图长度的基础,但第一次接触曲线图形,更抽象的概念不容易理解,推导出圆周的计算方法,理解pi的意义有一些困难。
三,教学目标,关键和难点:
1,知识和技能:
学习学生理解圆的周长,掌握圆的圆周的计算,理解pi的含义,并正确应用公式来解决简单的实际问题。
2,工艺和方法:
(1)通过组织学生观察和实验活动,指导学生体验猜测归纳,一般学习过程,理解pi。
(2)体验圆周圆周的发现,探索过程,培养学生分析,抽象,概括和发现法律的能力。
3,情绪和态度:
(1)通过学生的动手操作,找到,激发学习兴趣,让学生体验到探索问题的乐趣;
(2)结合引进pi,使学生受爱国科学精神的教育。
(3)在解决问题的过程中,增强意识的应用。
教学重点:
学生使用实验的手段,通过测量,计算,猜测圆的周长和直径之间的关系,验证过程的理解和掌握圆的计算方法。
理解pi。
教学准备:
⒈圆形对象实物,课件。
⒉每个学生准备三种不同尺寸的光盘,一条线,一条尺。
四,教学方法:
1,独立探索法。通过实践学生的实践,找到长途的测量学生,培养学生动手操作的能力,激活学生思维。
2,合作交流法。合作沟通是学生学习数学的主要方式。通过学生的团结合作,自我探索,讨论交流,培养学生团结合作精神,激发学生对学习兴趣。
五,主要教学环节和设计:
通过以下链接教授本课:
一,创造形势,初步认识
二,合作交流,探索新知识
三,实际应用,解决问题四,谈论收获,课外推广
六,教学过程:
第一个链接:创建情境,初步感觉的分裂:
哪些学生会骑自行车?当骑车时,车轮向前滚动一周,他们旅行多长时间?如何计算?(课件用于显示滚动向前滚动视频的滚轮。)要求圆形周长的距离有多长。
老师:了解如何计算今天的圆周长。
这部分的设计目的:从熟悉自行车的学生开始,让学生感觉到车轮滚动周是圆周的圆周,刺激学生学习新的兴趣。
第二环节:合作交流,探究新知识
(A)通过以下活动直观地感知圆的周长,帮助学生了解圆的周长。
1,请指出老师在圆形物体的手中。准备一些硬币,杯子,让学生在圆圈上滑动触摸等方式来理解和了解圆周的圆周。
2,分析矩形,正方形和圆周的圆是否不同?
3,指的是手指,他们自己手在圆片的圆周上的描述。
设计意图:让学生双手触摸,圆周的初始感知是一周的周长。而且还增强了知觉知识的周边,并使图像理解周围的意义。
(B)探讨计算方法的周长
圆周计算公式中扣除这个内容,我安排了三个链接:
1,揭示矛盾,导致探索新知识的愿望。要求学生考虑我们的手,有什么办法来衡量他们的周长吗?
预设几种情况:
(1)滚动用绳子包起圆圈并拉直;
(2)折叠圆纸几次,然后测量计算;
总结:以上几方法律是改变歌曲是直的。
课件展示地球图片。
如果你想计算地球赤道周的长度,用绕组法,滚动法显然不能测量怎么办?我们需要探索圆周的一般方法。
设计意图:这个过程允许学生理解绕组,滚动方式有限,触发其计算公式的探索计算的热情和必要性,以便进一步研究问题床面的计算周长。这种矛盾,更多的是刺激学生的好奇心。 2,实验操作,探究圆周的计算方法在本文的内容中,为了探究pi,理解pi是本课的难点,所以我设计学生进行子组合作,通过猜测总结结论要做。
(1)猜想,目的是让学生了解圆周和直径之间的关系,着重解决圆周和什么相关问题。
老师:圆的圆周是否与它相关?
圆的圆周与其直径有关。圆直径长,圆周大;直径短,周长长。
(2)实验验证,目的是让学生找到圆周和直径之间的固定倍数关系,着重解决圆周和直线什么样的物理关系问题。
老师:我们知道方形周长是4倍,那么圆的圆周是直径的'几倍?我们可以找到一般的方法来找到一个圆周像一个正方形的圆周吗?
请分组学生做一个小实验,请使用工具的手,用你最喜欢的方式验证圆周长和直径的多重关系,记录在窗体中。请按照我们小组使用什么方法,过程如何?的顺序报告实验。
面板报告:
健康:我们测量的第一个圆的直径是10厘米,圆周是31厘米,圆周是直径的3.1倍。第二圆直径为2cm,圆周为6.5cm,圆周为直径的3.25倍。第三圆直径为5.5cm,圆周为16.5cm,圆周为直径的3倍。
老师:通过计算你发现什么?
健康:每个圆的圆周是其直径的三倍。
问题:它不是所有的圆周和它的直径有这种关系吗?
最后,老师和学生一起总结:圆的任何圆周总是其直径的长度的三倍。
老师:由于测量错误,导致结果不一样,是正常的。您的研究结果非常接近数学家的结果。谁知道我们称之为这个3倍多?
健康:
老师:你对pi有什么认识?
这是数学家数量的三倍以上,仔细计算后是一个固定数,我们称之为pi的倍数。读为π。发现pi的最杰出贡献者是祖崇志。 Pi是一个无限小的数字,在当今科学技术的飞速发展,计算机已经计算到十亿后的小数点。小学阶段约为3.14。黑板:π≈3.14(课件生成相关信息)
设计意图:通过学生在小组操作,沟通,观察等活动中,见证了知识的发现,了解目的。一些学生早就知道,pi的知识是在交换教师和学生,反映学生为主体获得的。祖崇志的事迹是爱国主义教育的一个很好的例子。使学生感受到中国深厚的文化,发展学生的情感态度价值观目标。
(3)得出结论:你知道计算方法的周长吗?
健康:知道。黑板公式:c =πd,c =2πr
设计意图:推导公式的圆周,解决圆周的问题,圆周的计算只是一个问题。
第三环节:实际应用,解决问题
这部分是使用我们探讨的结果,也就是使用圆周长公式来解决生活中的实际问题。
1,解决课堂上提出的问题:车轮向前滚一周,行程多长?这样就结束了回声。
2,设计三者有一定的实践梯度:①d = 5米,c =?
②r= 5cm c = ③c = 6.28 m d = 3,区分对错,下面的语句对吧?
①π= 3.14()
②大圆的圆周小于小圆的圆周。 ()
③圆的圆周是其半径的2π。 ()
意图:关于pi的设计判断是帮助学生巩固新概念,加深对pi的理解。
第四个链接:谈论收获,课外推广操作:
赤道象地球带,长约40,000公里。你知道地球的半径是多少?
设计意图:在课程结束时,我设置了在室外的延伸的赤道的回声前面。这个设置,课堂教学延伸到课外,提高学生的学习能力。
你有什么?(引导学生学习内容,学习方法,情感体验等)。
七,黑板设计:
圆周
圆是圆的圆周÷直径= pi C÷d =π3.14×20 = 62.8(英寸)
C =πdA:车轮向前滚动一周,行驶62.8英寸。