第一篇:圆柱的表面积教学设计
圆柱的表面积教学设计
张进华
教学目标
1.理解圆柱的侧面积和表面积的含义.
2.掌握圆柱侧面积和表面积的计算方法.
3.会正确计算圆柱的侧面积和表面积. 教学重点
理解求表面积、侧面积的计算方法,并能正确进行计算. 教学难点
能灵活运用表面积、侧面积的有关知识解决实际问题.
教学过程
一、复习准备
(一)口答下列各题(只列式不计算).
1.圆的半径是5厘米,周长是多少?面积是多少?
2.圆的直径是3分米,周长是多少?面积是多少?
(二)长方形的面积计算公式是什么?
(三)回忆圆柱体的特征.
二、探究新知
(一)圆柱的侧面积.
1.学生讨论:圆柱的侧面展开图(是长方形)的长、宽和圆柱底面周长、高的关系.
2.小结:因为长方形的面积等于长乘宽,而这个长方形的长等于圆柱的底面周长,宽等于圆柱的高,长方形的面积就是圆柱的侧面积,所以圆柱的侧面积等于底面周长乘高.
(二)教学例1.
1.出示例1
例1.一个圆柱,底面的直径是0.5米,高是1.8米,求它的侧面积.(得数保留两位小数)
2.学生独立解答
教师板书: 3.14×0.5×1.8
=1.75×l.8
≈2.83(平方米)
答:它的侧面积约是2.83平方米.
3.反馈练习:一个圆柱,底面周长是94.2厘米,高是25厘米,求它的侧面积.
(三)圆柱的表面积.
1.教师说明:圆柱的侧面积加上两个底面积就是圆柱的表面积.
2.比较圆柱体的表面积和侧面积的区别.
圆柱的表面积是指圆柱表面的面积,是侧面积加上两个底面积,而侧面积是指圆柱侧面的面积;表面积包含着侧面积.
(四)教学例2.
1.出示例2
例2.一个圆柱的高是15厘米,底面半径是5厘米,它的表面积是多少?
2.学生独立解答
侧面积:2×3.14×5×15=471(平方厘米)
底面积:3.14×
=78.5(平方厘米)
表面积:471+78.5×2=628(平方厘米)
答:它的表面积是628平方厘米.
3.反馈练习:一个圆柱,底面直径是2分米,高是45分米,求它的表面积.
(五)教学例3.
1.出示例3
例3.一个没有盖的圆柱形铁皮水桶,高是24厘米,底面直径是20厘米,做这个水桶要用铁皮多少平方厘米?(得数保留整百平方厘米)
2.教师提问:解答这道题应注意什么?
这道题是求做这个水桶要用铁皮多少平方厘米.实际上是求这个圆柱形水桶的表面积.题里告诉我们的“一个没有盖的圆柱形铁皮水桶”,计算时就是用侧面积加上一个底面积.
3.学生解答,教师板书.
水桶的侧面积:3.14×20×24=1507.2(平方厘米)
水桶的底面积:3.14×
=3.14×
=3.14×100
=314(平方厘米)
需要铁皮:1507.2+314=1821.2≈1900(平方厘米)
答:做这个水桶要用1900平方厘米.
4.教师说明:这里不能用“四舍五入”法取近似值.在实际中,使用的材料都要比计算得到的结果多一些.因此,要保留整百平方厘米,省略的十位上即使是4或比4小,都要向前一位进1.这种取近似值的方法叫做进一法.
5.“四舍五入”法与“进一法”有什么不同.
(1)“四舍五入”法在取近似值时,看要保留位数的后一位,是5或比5大的舍去尾数后向前一位进一,是4或比4小的舍去.
(2)“进一法”看要保留位数的后一位,是4或比4小的舍去尾数后都向前一位进一.
三、课堂小结
这节课我们所研究的例
1、例
2、例3都是有关圆柱表面积的计算问题.圆柱的表面积在实际应用时要注意什么呢?
归纳:圆柱的表面积,在实际应用时,要根据实际需要计算各部分的面积,必须灵活掌握.如油桶的表面积是侧面积加上两个底面积;无盖的水桶的表面积是侧面积加上一个底面积;烟筒的表面积只求侧面积.另外,在生产中备料多少,一般采用进一法,就是为了保证原材料够用.
四、巩固练习
(一)求出下面各圆柱的侧面积.
1.底面周长是1.6米,高是0.7米
2.底面半径是3.2分米,高是5分米
(二)计算下面各圆柱的表面积.(单位:厘米)
(三)拿一个茶叶桶,实际量一下底面直径和高,算出它的表面积.(有盖和无盖两种)
五、课后作业
(一)砌一个圆柱形的沼气池,底面直径是3米,深是2米.在池的周围与底面抹上水泥,抹水泥部分的面积是多少平方米?
(二)一个圆柱的侧面积是188.4平方分米,底面半径是2分米,它的高是多少分米?
六、板书设计 探究活动 面包的截面
活动目的
培养学生的观察能力和操作能力,发展学生的空间观念.
活动题目
有一个圆柱形的面包,要切一刀把它分成两块,截面会是什么形状的图形?
活动过程
1、学生分组讨论.
2、利用橡皮泥捏
第二篇:圆柱表面积教学设计
《圆柱表面积》教学设计
教学目标:
1、理解圆柱侧面积和圆柱表面积的含义。
2、掌握圆柱侧面积和表面积的计算方法。
3、根据圆柱的表面积与侧面积的关系学会运用所学的知识解决简单的实际问题。
教学重点:掌握圆柱侧面积和表面积的计算方法。教学难点:运用所学的知识解决简单的实际问题。教学准备:多媒体课件 教学过程:
一、创设情景
1、复习圆柱的特征。
2、大屏幕出示问题,学生口头回答:
(1)一个圆形花池,直径是5米,周长是多少? 面积是多少?
(2)长方形的面积怎样计算? 板书:长方形的面积=长×宽
二、探究新知
1、教学圆柱的侧面积。
(1)大屏幕出示课题:圆柱的表面积。
(2)理解“圆柱的侧面积”的含义。用手指出实物圆住的侧面积。
(3)大屏幕出示圆柱的侧面展开图,思考:圆柱的侧面积应该怎样计算呢? 引导学生根据展开后的长方形的长和宽与圆柱底面周长和高的关系,推出: 圆柱的侧面积=底面周长×高
2、小结。
要计算圆柱的侧面积,必须知道什么条件?如果题目只给出直径或半径,又如何求圆住的侧面积呢?
3、理解圆柱表面积的含义。
观察自己制作的圆柱模型:圆柱的表面由哪几个部分组成? 那么,圆柱的表面积是指什么? 大屏幕:圆柱的表面积=圆柱侧面积+两个底面的面积
4、教学例4。
(1)大屏幕出示例4的题目。
思考:这道题已知什么?求什么?要求圆柱的表面积,应该先求什么?后求什么?(2)学生试着解答。
(3)全班交流:为什么只求了一个底面面积呢?(4)小结。
在实际应用中计算圆柱形物体的表面积,要根据实际情况计算各部分的面积。如计算烟筒用铁皮只求一个侧面积,水桶用铁皮是侧面积加上一个底面积,油桶用铁皮是侧面积加上两个底面积,求用料多少,一般采用进一法取值,以保证原材料够用。
5、巩固练习:完成第14页的“做一做”。
三、课堂小结
圆柱的表面积指的是哪几个面?如何求圆柱的表面积?
四、作业
完成练习二的5——7题。
五、思维训练
1、压路机前轮滚动一周能压多少路面,实际就是求圆柱的()。
2、在一个圆柱形的蓄水池里抹水泥,求抹水泥部分的面积,实际就是求()与()的()。
第三篇:《圆柱的表面积》教学设计
《圆柱的表面积》教学设计
单位:官亭镇高庄小学 作者:刘影
教案背景:冀教2011课标版小学数学六年级下册第四单元 教学课题:圆柱的侧面积。教材分析:
本节内容是学生学习了长方体与正方体的表面积后,在充分理解了表面积的含义的基础上展开的。圆柱的表面积是它的侧面积与两个底面面积的和,其中侧面积是新知识,底面积(即圆的面积)是学生学过的。所以侧面积计算方法的推导是本节课的难点,掌握侧面积的计算方法是本节课的重点。教材选用了来自现实生活中的问题,通过想象和操作活动,使学生知道圆柱的侧面沿着高展开后可以是一个长方形(或正方形),从而探索出圆柱侧面积的计算方法。在此过程中,学生把曲面转化成平面,开展了一系列的推理活动,空间观念和思维能力能够得到锻炼。
教学目标:
1、使学生理解和掌握圆柱体侧面积的计算方法,能正确运用公式计算圆柱的侧面积。
2、培养学生观察、操作、概括和思考的能力,以及灵活地分析、解决实际问题的能力。
3、培养学生的合作意识,让学生体验出探索、发现的快乐,激起热爱数学的情感。
教学重点:圆柱侧面积的计算。
教学难点:圆柱体侧面积计算方法的推导。
教法运用:本节课我采用操作和演示、讲练相结合的教学方法。通过直观演示和实际操作,引导学生观察、思考和探索圆柱侧面积的计算方法;同时将直观和抽象、新授和练习有机地融为一体,较好地突出教学重点、突破教学难点。
学法指导:采取引导-放手-引导的方法,鼓励学生积极、主动地探求新知,运用化曲为平的方法推理发现侧面积的计算方法。
教具准备:圆柱体教具、多媒体课件。
学具准备:圆柱体纸筒、圆柱体物体、长方形纸、剪刀。教学过程:
一、复习导入,引入新知
1、复习圆柱体的特征
师:上节课,我们认识了圆柱,对圆柱体有了更深的理解,谁来说说它的特征?(指明学生回答后,课件动画展示同时师生小结)
四、课堂小结
1、本节课你有何收获?
2、教师小结:在解答实际问题前一定要先进行分析,灵活运用,选择合适的方法。
五、课后作业
应用本节课学到的知识,你会求圆柱的表面积吗?同学之间相互交流,试着推一推圆柱的表面积公式吧!附:板书设计
圆柱的侧面积 =底面周长 ×
高→S侧=ch ↓
↑
↑ 长方形面积=
长
×
宽
教学反思
这节课,我在学生的认知发展水平和已有的知识经验基础上,深入钻研教材,引导学生合作探究,动手动脑,使学生学有所获。通过教学有如下感悟:
一、数学教学要注重数学思想和数学方法的渗透。
在本节课的教学中,我注重给学生渗透“转化”的数学思想方法,化曲面为平面,让学生经历观察、思考、操作等环节。课上我尽量让孩子们自己探索、发现。
二、重视学生的合作意识和实践能力的培养。
在教学圆柱侧面积计算方法时,我没有拘泥于教材上把侧面转化为长方形这一思路,而是放手学生合作探究:能否将这个曲面转化为学过的平面图形?鼓励学生大胆猜想和实验,把圆柱形纸筒剪开,结果学生根据纸筒的特点和剪法分别将曲面转化成了长方形、正方形、平行四边形等平面图形。通过观察和思考,最终都探讨出了侧面积的计算方法。在组织学生合作学习中,较好地培养了学生的合作探究能力。
三、合理利用现代化教学手段辅助教学。
侧面积计算公式的推导是本届的难点,在教学中,我适时利用了多媒体课件辅助教学,取得了较好的效果。直观形象的图片展示,不仅有利于学生审题,而且提高了课堂效率。
第四篇:《圆柱的表面积》教学设计
《圆柱的表面积》教学设计
晓义小学 程琼
课题:圆柱的表面积 课型:新授 学习目标
1.理解和掌握圆柱体的侧面积和表面积的计算方法。
2.会运用公式计算圆柱体的侧面积、表面积,会解决有关圆柱的实际问题。学习重点
掌握圆柱的侧面积和表面积的计算方法。学习难点
明确求圆柱形物体的表面积实际是求哪几个面的面积和。教学具准备
圆柱展开图、制作好的硬纸片圆柱模型、剪刀等 学习过程
一、复习导入
1、谁能说说长方体、正方体的表面积怎么计算?
2、我们上节课进一步认识了圆柱,圆柱有哪些特征?它各部分的名称叫什么? 师:两个底面和侧面合在一起就是圆柱的表面。这节课,我们一起来学习圆柱的表面积。(板书:圆柱的表面积)
二、出示学习目标
让学生朗读,了解本节课的学习任务。
三、合作探究新知
1、圆柱的表面积指的是什么?(例3)
师:在前面的学习中,我们已经知道了圆柱的展开图。(侧面展开是长方形或正方形和2个底面都是圆。)
2小组讨论:圆柱的表面积指的是什么?如何求圆柱的表面积?
师:现在我们一起来学习圆柱的表面积,刚才大家讨论两个底面面积和侧面面积合在一起就是圆柱的表面积。圆柱的底面是圆形,侧面展开是长方形,长方形的长等于圆柱底面的周长,长方形的宽是圆柱的高。
/ 2
小组讨论,圆柱的表面积怎么计算?
总结发言:两个底面和侧面合在一起就是圆柱的表面,所以圆柱的表面积=圆柱的侧面积+圆柱的底面积×2 3.圆柱的侧面积
在前面的学习中,我们已经知道圆柱的展开图(沿着圆柱的一条高剪开,圆柱的侧面是一个长方形)
师:圆柱的侧面展开图是一个长方形。小组讨论:
问题:①这个长方形和圆柱体有哪些关系?②你能推导出圆柱侧面积的计算方法吗? 师板书:
长方形的面积=长×宽 圆柱的侧面积=底面周长×高 4.圆柱的表面积(1)推导公式
同学们已经学会求圆柱的侧面积,那么如何求圆柱的表面积呢? 根据学生汇报过板书:
圆柱的表面积=圆柱的侧面积+2个底面面积的和。
四、课堂练习
学生独立完成21做一做,师引导学生独立完成。(可让学生板演)
五、课堂小结
本节课学习之后,你有什么收获?(学生自由发言)
六、布置作业 练习四1---6题
板书设计: 圆柱的表面积
长方形的面积=长×宽
圆柱的侧面积=底面面周长×高
圆柱的表面积=侧面积+底面积×2
/ 2
第五篇:作业:圆柱表面积教学设计
《圆柱的侧面积和表面积》教学设计
水南镇中心小学
申水友
教学内容:
圆柱的侧面积和表面积的含义及计算方法。人民教育出版社六年级下册课本第13—18页一个红点问题,自主练习第1-12题。教学目标:
1.使学生理解圆柱体侧面积和表面积的含义,掌握计算方法,并能正确地运用公式计算出圆柱的侧面积和表面积。
2.培养学生观察、操作、概括的能力以及利用所学知识解决实际问题的能力。
3.培养学习数学的兴趣。
教学重点:理解和掌握求圆柱表面积的计算方法。教学难点:圆柱体侧面积和表面积解决实际问题的能力。教具准备:圆柱体表面展开圆模型,学生自作一个圆柱体纸筒。
教学过程:
一、回顾旧知
1.口答下面问题.(只列式不计算)(1)圆的直径是3分米,周长是多少?面积是多少?(2)圆的半径是5厘米,周长是多少?面积是多少? 2.长方形的面积计算公式是什么? 3.口答:圆柱体的各部分名称和特征。
二、新授课 1.引入新课
师:我想让白纸站起来有什么好方法?
生:学生介绍把白纸制作成圆柱形让他直立起来。师:根据需要平面可以化曲为直。
课件出示例信息窗二。2.思考:
长方体和正方体的表面积是什么?圆柱的表面积又是什么?
教师手拿教具边演示边讲解。我们先来看圆柱的侧面,如果我们都把圆柱的侧面展开,大家发现圆柱的侧面展开后是什么形状呢?这个侧面展开后的长方形面积与圆柱侧面的面积的关系怎样呢?那么求圆柱的侧面积只要求谁的面积?这个长方形的长相当于圆柱哪一部分的长度?宽相当于哪一部分的长度?圆柱的侧面积应当怎么求?(让学生通过动手操作得出结论。)
同学们能不能根据这两个关系,再根据长方形面积公式推出一个圆柱的侧面积的计算公式。(学生答,师板书)教师边问边板书如下:
长方形的面积=长×高 圆柱的侧面积=底面周长×高 最后请几个学生口述侧面积计算公式的推导过程。3.尝试练习
(1)请同学运用刚才学到的计算公式解答下题:
例1:一个圆柱形状的罐头,它的底面周长是314厘米,高是15厘米,侧面有一张商标纸(如右图),商标纸的面积大约是多少平方厘米?(接头处忽略不计)学生审题后,让两个学生板演,其他学生练习。
(2)讲评后问:如果已知圆柱底面直径或半径与高,能不能求圆柱的侧面积?计算公式怎样? 4.圆柱表面积的计算方法。
(1)请学生拿出自己准备的圆柱的学具,并把表面所有的纸取下,问:把圆柱表面的纸全部取下后,这里一共有几个面?哪几个面?那么圆柱体表面积应包括哪些面的面积?(在学生回答基础上教师归纳板书:圆柱的侧面积+两个底面的面积=圆柱的表面积。问:要求圆柱表面积要先求哪些面的面积?
(2)圆柱表面积公式应用。出示例3。
在下面方格纸上画出右边圆柱的展开图。(每个方格边长1厘米)圆柱的侧面沿高展开,得到的长方形的长和宽各是几厘米? 两个底面分别是多大的圆? 学生作图。
圆柱的侧面积与两个底面积的和,叫做圆柱的表面积。
学生分步列式,指名板演。解答完后与课本对照。最后师讲评,强调解题步骤与书写格式。5.圆柱表面积的实际应用
完成练一练。
三、巩固练习
课本第20页练习六的第1、2题。练后讲评,强调注意点。
四、总结:
求圆柱的表面积就是求圆柱侧面积与两个底面积的和。我们不仅要经常用到求圆柱的表面积的计算方法,而且还常常根据实际需要灵活运用这个计算方法。
圆柱的表面积=求圆柱侧面积+两个底圆的面积 圆柱的侧面积=底面圆的周长×圆柱的高
五、课内外作业
质疑:刚才我们解决了几道有关表面积的问题,解决这些问题我们要注意哪些?
拓展思维:如果一段圆柱形的木头,截成两截,它的表面积会有什么变化呢? 表面积增加了多少?
练习:完成练习六的第3—5题。
六、《圆柱的表面积》教学反思
《圆柱的表面积》教学,重点在于通过圆柱的侧面展开图推导出圆柱的侧面积计算公式,难点是灵活运用侧面积、表面积的有关知识解决实际问题。
在本节课的教学中,我从始至终贯穿着“以学生为主体,教师为主导,训练思维为主线”的原则,让学生在动手操作、合作探究中学习。将圆柱侧面积计算方法的推导作为教学难点来突破,将圆柱的表面积的计算作为重点来教学。
(一)、在复习引入环节,我首先通过复习圆的周长和面积的计算,为下面的计算圆柱的侧面积和表面积打下基础;复习圆柱的特征为后面侧面积和表面积的公式推导做好铺垫。
(二)、在侧面积和表面积的计算环节中,我首先让学生看一看、摸一摸,自己观察、发现,形成圆柱表面积的表象。认识到圆柱的表面积等于圆柱的侧面积和两个底面面积的和。然后,在突破侧面积的计算方法这个难点时,让学生自己展开圆柱体模型,观察到侧面展开是一个长方形。长方形的长就是圆柱的底面周长,长方形的宽就是圆柱的高,从而根据长方形的面积公式自然推导出了圆柱侧面积的计算公式,在这一环节中,培养了学生的观察、分析能力,同时也培养了学生的合作意识。
(三)、在练习题的设计中,遵循了从易到难的原则,在形式、难度、灵活性上都有体现。判断题有利于学生对知识的理解;动手测量并计算圆柱体实物表面积的题目,锻炼了学生对知识的实际应用能力,使学生感受到数学与现实生活的联系。
(四)、在教学方法上,充分利用了学生现有的学具和准备的圆柱体实物,让学生自己去动手、观察,推导出了圆柱的表面积和侧面积的计算公式。
(五)、在这节课的教学中,还存在着一些不足:
1、实践操作展示得不够。在动手探索圆柱侧面积的计算方法时,大部分学生联系上节课的经验说出看法,而没有实际操作,我也没有让他们展示推导的过程,加深印象,只是让他们说一说,导致一部分学困生只能听听而已;
2、学生对圆周长和面积的计算不够熟练,所以,在计算圆柱的侧面积和表面积时显得费时费力;
3、部分学生对生活问题中的圆柱表面积(不是三个面的)理解上有欠缺。