第一篇:微课梯形的面积教学设计
《梯形面积公式的推导》微课教学设计
阳平镇第二九年制学校
安小宁
一、教学目标:
1.知识与技能:运用“转化”的方法引导学生学习推导梯形面积的计算公式。2.过程与方法:使学生进一步体会转化方法的价值,发展空间观念和初步的推理能力。3.情感态度与价值观:让学生在探索活动中获得成功的体验,进一步培养学习兴趣。
二、教学重点:引导学生运用“转化”的方法推导梯形面积的计算公式。
三、教学难点:对梯形面积=(上底+下底)×高÷2公式中“÷2”的理解。
四、教学准备:多媒体课件
五、教学过程:
(一)、回忆平行四边形、三角形面积计算公式的推导步骤: 1.转化;2.找新旧图形之间的关系;3.推导计算公式
(二)讲解推导方法
1、拼摆法
教师利用课件呈现用两个完全一样的普通梯形拼摆成一个平行四边形,讲解推导出梯形的面积计算公式。
2、切割法,教师利用课件呈现将一个普通梯形切割成两个三角形,讲解推导出梯形的面积计算公式。
(三)、公式形式
梯形面积=(上底+下底)×高÷2 用字母表示:S梯 =(a + b)h÷2
(四)小结
你想知道还有什么方法可以推导出梯形的面积计算公式吗?欢迎您下次继续观看我的微课。谢谢您今天的耐心地聆听,再见!
第二篇:梯形面积的计算微课(范文)
《梯形面积的计算》微课教学设计
【教学内容】
人教版五年级数学上册第五单元《多边形的面积》中《梯形面积的计算》
【教学目标】
1、经历梯形面积计算公式的探索过程,理解梯形的面积计算公式,会用字母表示,并掌握梯形面积的计算方法。
2、通过观察、猜想等数学活动,发展空间观念和推理能力,获得解决问题的多种策略,感受数学方法的内在魅力。
3、体验数学“再创造”的乐趣,获得个性化的发展。
【教学重点】
理解梯形面积的计算公式,并掌握其计算的方法。
【教学难点】
通过动手操作、发现规律,归纳出梯形面积的公式。
【学习准备】不同类型的梯形各两个、剪刀等
【教学过程】
一、生活引入
师:汽车车窗玻璃是梯形的,怎样求出它的面积呢?引入本课所要学习的内容。
二、回顾旧知
师:上节课我们学习了三角形的面积计算,下面我们来回顾一下三角形面积计算公式是如何推导的。
师:在推导三角形的面积公式时,使用两个完全一样的三角形拼成了一个平行四边形,则,三角形的面积就是平行四边形的一半。所以面积公式为:底乘高除以2。
三、转化思想的应用 师:可见,要推导梯形面积的公式,也要将梯形转化为我们学过的图形。转化为什么图形呢?也就是可以转化为长方形、正方形、平行四边形和三角形。(课件分别出示图形)
师:如何将梯形转化为我们学过去的图形呢?可以采用切割法、割补法、拼摆法等。(课件分别出示图形)
四、公式推导
师:我们带着“转化后图形与原来的梯形有什么关系”来推导梯形的面积公式。
1、一般情况
师:请准备好两个完全一样的梯形,动手拼一拼,可以拼成什么图形呢?对!一般情况下能拼成一个平行四边形,如果是直角梯形,还可以拼成长方形。
师:下面我们以拼成平行四边形为例,演示一下拼的过程,及平行四边形与梯形的关系。两个完全一样的梯形通过旋转、平移,拼成一个平行四边形,让我们来观察,拼成的平行四边形与原来的梯形有什么关系?
平行四边形的底等于梯形上、下底的和,平行四边形的高就是梯形的高,平行四边形的面积是梯形面积的2倍,如此,我们就可推导出梯形的面积公式是:
平行四边形的面积= 底 ×高
‖ ‖
梯形的面积=(上底+下底)×高÷2
如果用S表示梯形的面积,用a、b和h分别表示梯形的上底、下底和高,那么,梯形面积的计算公式可以写成:S=(a+b)h÷2。
五、完成“学习任务单”
师:下面请同学们拿出任务单,巩固一下我们研究的成果。
第三篇:梯形面积教学设计
《梯形面积》教学设计 旬阳县麻坪镇中心学校
杨汝鹏
教学内容:人教版小学数学五年级上册第95至96页。教学目标:
1、在理解的基础上掌握梯形面积计算公式的推导,并能运用公式正确计算梯形的面积。
2、通过动手操作、观察、比较,发展学生空间观念。培养学生分析、综合、抽象、概括和解决实际问题的能力。
3、掌握“转化”的思想和方法,进一步明白事物之间是相互联系,可以转化的。
教学重点:梯形面积计算公式的推导和运用。教学难点:理解梯形面积公式的推导过程。学具准备:学生每人准备一个梯形纸片 教学过程:
一、导入新课
1、平行四边形、三角形的面积公式是什么?
2、出示梯形,引导学生认识梯形的上底、下底、高,总结出梯形的定义。
3、提问:我们在生活中见过有哪些图形是梯形。
4、教师导语:我们已经学会了计算长方形、正方形、平行四边形、三角形的面积计算方法,大家回忆回忆三角形的面积公式是怎样推导出来的?
5、那么我们能不能也想办法推导出梯形面积的计算公式呢?(板书:梯形的面积)
二、新课展开
第一层次,推导公式
1、操作学具
(1)启发学生思考:你能仿照求三角形面积计算公式的推导办法,把梯形也转化成已学过的图形计算出它的面积吗?
(2)学生预设:
方法一:把两个完全一样的梯形拼成一个平行四边形; 方法二:把一个梯形分成两个三角形;
方法三:把一个梯形分成一个平行四边形和一个三角形。„„
(3)学生拿出两个完全一样的梯形,剪一剪,拼一拼,教师巡回观察指导。
师:刚才同学们用自己的方法将梯形转化成我们学过的图形,利用这些方法都可以推导出梯形的面积计算公式。下面我们先选择其中的一种方法来共同推导梯形的面积。
(4)教师带领学生共同操作:拿两个完全一样的梯形,先重合,再按住梯形右下角的顶点,使一个梯形逆时针旋转180度,使梯形上、下底成一条直线,然后把第一个梯形的左边沿着第二个梯形的右边平行移动,直到成为一个平行四边形为止。
2、观察思考
(1)教师提出问题引导学生观察。(同时播放幻灯片)
① 用两个完全一样的梯形可以拼成一个平行四边形。这个平行四边形的底和高与梯形的底和高有什么关系?
②每个梯形的面积与拼成的平形四边形的面积有什么关系?
(2)反馈交流,推导公式。
①学生回答上述问题。
②师生共同总结梯形面积的计算公式。
板书:梯形的面积=(上底+下底)×高÷2 问:梯形的面积公式中“(上底+下底)×高”求的是什么?
为什么要除以2?
(3)在小组内尝试上面另外几种不同的转化方法,如何推导出梯形的面积公式。(可根据教学实际时间情况灵活处理)
方法一:梯形的面积=上底×高÷2+下底×高÷2
=(上底+下底)×高÷2 方法二:梯形的面积=平行四边形面积+三角形面积
=上底×高+三角形的底×高÷2
=(2个梯形上底+三角形底)×高÷2
=梯形上底×高÷2+(梯形上底×高÷2+三角形底×高÷2)
=梯形上底×高÷2+(梯形上底+三角形底)×高÷2
梯形下底
=(梯形上底+梯形下底)×高÷2
④字母表示公式。教师叙述:如果有S表示梯形的面积,用a、b和h分别表示梯形的上底、下底和高,怎样用字母表示梯形面积的计算公式呢?
学生回答后,教师板书:“S=(a+b)h÷2”。
第二层次,公式应用。
(1)出示课本第96页的例题。同学们知道我国最大的水电站是哪个吗?下面是水电站大坝的横截面图,教师指导学生理解“横截面”。
(2)学生尝试解答。
(3)展示台出示例题的解答,反馈矫正。
(4)完成例题下面的“做一做”。强调计算时不要忘记除以2。
三、巩固练习
用幻灯片出示。(见幻灯片)
四、全课小结。(略)板书设计: 梯形的面积计算
平行四边形的面积=底×高
例3 S=(a+b)h÷2 梯形的面积=(上底+下底)×高÷2
=(36+120)×135÷2
S=(a+b)h÷2
=156×135÷2
=10530(平方米)
第四篇:梯形面积教学设计
梯形的面积教学设计
教学内容:教科书第88-90页。
教学目标:
1、在实际情境中,认识计算梯形面积计算的必要性。在自主探索活动中,经历推导梯形面积公式的过程。
2、能应用梯形的面积计算公式,解决相应的实际问题。
3、让学生感受到我们可以应用学过的数学知识来解决问题,体验生活中处处有数学。
教学重点:
在实际情境中,认识计算梯形面积计算的必要性。在自主探索活动中,经历推导梯形面积公式的过程。
教学难点:
能应用梯形的面积计算公式,解决相应的实际问题。
教具准备: 梯形图形。
教学过程
一、复习
师:前面我们学过了长方形、正方形、平行四边形、三角形的面积计算,我们是怎样找到平行四边形和三角形面积公式的?(课件指引学生回想)
(出示梯形的车窗玻璃)我们要推导梯形的面积计算公式,该怎么办呢?
(把梯形转化成我们学过的图形。)
二、探索梯形的面积计算公式。
师:怎样把梯形转化成我们学过的图形呢?请同学们先以小组为单位,在小组里动脑筋、想办法,看看哪个小组的同学能最先想到办法。
1、学生小组合作、交流。
请小组代表发言。
2、、归纳出梯形面积计算的方法。
方法一:把两个完全一样的梯形拼成一个平行四边形。
思考:拼成后的平行四边形跟原来的梯形之间有什么关系?
师:通过比较,你们能不能得出梯形的面积计算公式呢?
方法二:可以把梯形分解成一个平行四边形和一个三角形。
如果这样分解,可以怎样算出梯形的面积?
方法三:把梯形分解成两个三角形。
师:这样分解可以怎样算出梯形的面积?
方法四:把梯形剪拼成一个三角形。师:用这种方法应该想一想从哪开始剪哟!
各小组独立思考后,动手操作,整理推导梯形面积公式。
3、各小组完成后派代表把推导梯形面积公式的过程写在本组的小黑板上。
4、全班交流各组的推导过程。
5、总结公式:
梯形的面积=(上底+下底)×高÷2 用字母表示梯形的面积公式: S=(a+b)×h÷2
三、应用知识,解决问题。
1、学习例3:(课件出示)
学生独立尝试完成。
师对学习有困难的学生给予个别辅导。
请两位同学板演,再全班订正。
2、练习:
(1)学生独立完成“做一做”
(2)课件 出示2个不同的梯形计算面积。
四、拓展练习。(课件出示题)
五、小结:
师:通过这节课的学习,你们有什么收获?
六、作业设计。
书P90第1、2、3、4,做在作业本上。
第五篇:《梯形面积》教学设计
教学内容
小学数学五年级第二单元图形的面积
(一),探索活动
(三)梯形的面积。教学目的
1.知识与技能:能运用梯形面积的计算公式,解决相应的实际问题。
2.过程与方法:在自主探索和小组合作探索的活动中,经历推导梯形面积公式的过程。
3.情感态度价值观:在探索梯形面积计算方法的过程中,获得探索问题成功的体验。渗透计算机是学习的有力工具的思想。教学重点 理解并掌握梯形面积的计算公式。
教学难点 经历梯形面积计算公式的推导过程。
教具准备 多媒体课件一套
学具准备 两个完全相同的梯形(一般的、等腰的、直角的均可)卡片、小剪刀。教学过程
一、复习旧知,铺垫引导
师:同学们还记得我们前两天学习的平行四边形和三角形的面积计算公式吗?还记得三角形的面积是怎样推导出来的吗?
生:转化成平行四边形。
(在学生说的同时,教师配以投影展示,让学生注意到图形的转化。)师:同学们对前面的知识掌握的真不错。
二、设置情境 提出问题
师:请同学们拿出课前准备好的梯形,边摸边说出它各部分的名称,教师引导。(梯形的上底,下底,两腰,高)
师:梯形的面积到底该怎么计算呢?今天,让我们共同来研究。(板书课题:梯形的面积)
师:你认为我们该从哪儿入手研究呢?
(学生思考片刻可能会回答:可以先转化为学过的图形)师:在我们生活中有很多这样的梯形,而且需要我们计算它的面积。那么到底该怎样计算它的面积呢?我有个建议,发挥小组的力量,共同合作探究。
三、自主探究
1、提出小组合作的要求
师:下面我们共同来研究梯形的面积计算方法。小组全作的要求如下: a.利用你们小组的梯形学具,先独立思考能把它转化成已学过的什么图形。b.把你的方法与小组成员进行交流,共同验证。C.选择合适的方法交流汇报。2.自主探究,合作学习
(学生小组合作讨论,动手操作,教师巡视参与并给以适当的指导。让部分小组上前面展示)
3.全班汇报交流
师:同学们已经用不同的方法转化成了我们学过的图形,哪一个小组先派代表给同学们讲解,其他时小组的同学可以随时提问。
生1:我们小组的方法是用两个相同的梯形拼成一个平行四边形。
(学生边动手演示,边说转化过程,见下图。)
生2:2.我们小组是把梯形沿一腰中点向对角剪开,再转化成三角形。
生3:我们取了两个相同的直角梯形,因此,拼成的图形是长方形。
四、探索、归纳梯形的面积计算公式
师:同学们介绍了各种方法,现以第一种转化为平行四边形为例(实物投影出示),这一个梯形和转化后的平行四边形有什么联系?怎样推导其面积公式?
生:梯形上、下底的和等于拼成后平行四边形的底,梯形的高就是平行四边形的高。
生:梯形的面积是所拼平行四边形面积的一半。生:梯形的面积=(上底+下底)×高÷2(师用课件配合演示),(教师板书梯形面积计算公式)师:一个梯形的面积为什么要除以2 ?
生:因为拼成的平行四边形有两个梯形,求一个梯形就需要除以2。(师用课件配合演示)
师:请同学们再任选一种转化方法进行推导,验证梯形的面积计算公式和刚才的是否一致。
师:如果用S表示梯形的面积,用a、b和h分别表示梯形的上底、下底和高,那么梯形面积的计算公式应怎样表示?
板书:S=(a+b)h÷2
五、联系实际,巩固运用 1.试一试
引入:梯形的用途很广泛,在很多物体中都经常看到梯形。下面我们来解决一些日常中的问题,计算下列梯形的面积。
出示汽车侧面玻璃,要制作这扇门的窗户需要多少平方厘米的有机玻璃?
2.练一练:第1、2、3题,让学生独立完成。
3.利用一面围墙围成一块梯形菜地,已知篱笆全长325米,则这块菜地的面积是多少平方米?
4.思考题:一张梯形彩纸,上底5厘米,下底7厘米,高6厘米,要从中剪下一个最大的三角形,剩下的面积是多少平方厘米?
六、课堂回顾,总结收获
成功和体验是学生情感发展的基础,师生在交流中共享学习的快乐。