1 绪论1绪论材料加工工艺(第2版) 11材料加工工艺在制造业中的地位材料

时间:2019-05-13 12:36:57下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《1 绪论1绪论材料加工工艺(第2版) 11材料加工工艺在制造业中的地位材料》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《1 绪论1绪论材料加工工艺(第2版) 11材料加工工艺在制造业中的地位材料》。

第一篇:1 绪论1绪论材料加工工艺(第2版) 11材料加工工艺在制造业中的地位材料

绪论

1绪论

材料加工工艺(第2版)

1.1材料加工工艺在制造业中的地位

材料加工工艺(materials processing technology)又称材料成形技术,是金属液态成形、焊接、金属塑性加工、激光加工及快速成形、热处理及表面改性、粉末冶金、塑料成形等各种成形技术的总称。它是利用熔化、结晶、塑性变形、扩散、相变等各种物理化学变化使工件成形,达到预定的机器零件设计要求。材料加工成形制造技术与其他制造加工技术的重要不同点是工件的最终微观组织及性能受控于成形制造方法与过程。换句话说,通过各种先进的成形加工工艺,不仅可以获得无缺陷工件,而且能够控制、改善或提高工件的最终使用特性。材料加工工艺与机械切削加工方法不同,在加工过程中机器零件不仅会发生几何尺寸的变化,而且会发生成分、组织结构及性能的变化。因此材料加工工艺的任务不仅要研究如何获得必要几何尺寸的机器零部件,还要研究如何通过加工过程的控制而使零件具有设定的化学成分、组织结构和性能,从而保证机器零部件的安全性、可靠性和寿命。

图11材料科学与工程四要素

关系三角锥

材料的使用性能取决于材料的组织结构和成分,然而材料的应用最终取决于材料的制备与成形加工。因而,材料的成形加工工艺是制造高质量、低成本产品的中心环节,是材料科学与工程四要素中极为关键的一个要素(图11),也是促进新材料研究、开发、应用和产业化的决定因素。

材料加工技术不仅在机械电子工业领域、而且对制造业中的纺织工业、资源加工业及其他工业领域都起着重要作用。机械工业是国民经济的支柱产业。我国机械工业近年来取得了飞速的发展。根据中国机械工业联合会提供的统计数字,2006年我国机械工业的工业增加值占同期国内生产总值(GDP)的6.86%,国际上通常认为: 当一个产业的增加值超过国内生产总值的5%即为支柱产业,我国机械工业长期以来高于此值。我国的机械工业无论产值、利润、新产品产值、进出口总额都在我国有着重要地位。

2006年,我国机械工业总产值突破5万亿元大关,全行业连续4年以20%以上的增幅快速发展。在主要机械产品中,2006年发电设备产量为1.1亿千瓦,比2005年创造的9200万千瓦的历史纪录又增加了1800万千瓦。汽车产量为728万辆,比上年增长27.6%,已超过德国,仅次于美国、日本,居世界第三位。金属切削机床,按销售额计仅次于日本、德国,居世界第三位。在其他重要机械产品中,产量已居世界第一位的还有大中型拖拉机、铲土运输机械、数码相机、复印机械、塑料加工机械、起重设备、工业锅炉、变压器、电动工具、金属集装箱、摩托车等。

以铸造、塑性加工、焊接、热处理、电镀为代表的材料成形与改性加工技术是国民经济的基础制造技术,它所提供的产品零件具有精密化、轻量化、高质量和高精度、形状复杂、生产效率高的特点,同时又能做到材料和能源消耗少、污染低,节约资源和能源,是一种可持续发展的技术。它对我国国民经济的发展和国防力量的增长起着重要作用,占有重要地位。在汽车、石化、钢铁、电力、造船、纺织、装备制造等支柱产业中,铸件都占有较大的比重。全世界钢材的75%要进行塑性加工,65%的钢材要用焊接得以成形,80%以上的零件需经过热处理提高其性能; 汽车重量的65%以上仍由钢材、铝合金、铸铁等材料通过铸造、塑性加工、焊接、热处理等加工方法而成形。

铸造是制造业的基础,也是国民经济的基础产业,各行业都离不开铸件,从汽车、机床到航空、航天、国防以及人们的日常生活等都需要铸件。汽车中铸件重量占整车重量的19%(轿车)~23%(卡车); 手机、笔记本电脑和许多照相机、录像机的壳体都是铝镁轻合金铸件。我国铸件总产量2007年已达3127万t,超过美国和日本铸件年产量的总和,占世界产量的30%。我国铸件出口数量呈逐年递升趋势,目前每年铸件出口总量占铸件总产量的1/10左右。我国也是世界塑性成形的第一大国,我国锻造、冲压、零件轧制成形超过2000万t。我国生产大型锻件的能力和拥有自由锻造水压机的数量、压力等级及大型锻件生产能力等均已跨入世界大型锻件生产大国之列。通过技术引进、技术改造和科技创新,我国大型锻件的生产技术水平大大提高,能提供如300MW核电机组及火电机组成套锻件和轧钢设备等用大型锻件,已具备走向国际市场的能力。

我国2007年粗钢产量达到4.8966亿t,成品钢材5.6894亿t,成为世界最大的钢生产与消费国,而焊接结构的用钢量也相当于美国或日本一年的钢产量,成为世界上最大的焊接钢结构制造国。

我国每年钢材热处理的总重量约为全国钢材总产量的30%,年实际热处理生产量超过1亿t。我国现有热处理厂点约为2余万家,主要分布在钢铁和机械行业中。

世界制造业的发展史告诉我们,要制造一部好的机器,不仅需要好的设计,更重要的是靠良好的制造工艺来保证,特别是要保证有好的零件毛坯; 用劣质的、不良的毛坯是无法装配出优质的产品来。现在我国生产的汽车质量与工业发达国家相比仍有较大的差距,其原因主要不在于设计水平,而在于制造工艺水平较差; 汽车的使用寿命、耗油量、可靠性、安全性等无不与毛坯的制造工艺水平有密切关系。所以,材料加工工艺在制造业中占有非常重要的作用。

1.2材料加工工艺的展望

展望未来,材料成形制造技术一方面正在从主要制造毛坯向直接制造成工件即精确成形或称净成形工艺的方向发展; 另一方面为控制或确保工件质量,成形制造技术已经从主要凭经验走向有理论指导的生产过程,成形制造过程的计算机模拟仿真技术已经进入实用化阶段。近年来,精确铸造成形技术发展迅速,方法繁多,在诸多的工业领域中,轿车铸件的生产往往最集中地反映了精确铸造成形技术发展的新动向。为了提高轿车的运行速度和节约能源,轿车铸件生产朝着轻量化、精确化、强韧化和复合化方向发展。国外正在研究3mm壁厚的灰铸铁缸体,3mm壁厚的耐热合金钢排气管和2.0~2.5mm壁厚的球墨铸铁件。扩大铝镁合金的应用是轿车工业的重要发展趋势,国外汽车材料铝合金用量以每年10%的速度递增。日本全部轿车缸盖已采用高强度铝合金生产,预计越来越多的汽缸体也将采用铝合金生产。国外已经提出从近精确成形铸造向精确成形铸造发展。为了实现这一目标,除继续发展低压铸造及压力铸造等工艺外,各种新一代精确铸造成形技术应用也更加普遍,水平更高。与此同时,各种铸造工艺的复合、传统铸造合金与新型工程材料的复合成为铸造生产的另一重要动向。21世纪的金属塑性成形产品将朝着轻量化、高强度、高精度、低消耗的方向发展。同时,要有效地利用能源、改善环境。加工材料仍会是以汽车业为代表的大规模制造业所用的材料为主,但也有难加工的高价格材料的塑性成形。上述客观需求将汇聚在精确塑性成形这个焦点上。1997年,我国的锻件年产量为253万t,其中模锻件占151万t,占锻件总产量的59.6%。而1991年日本锻件年产量就已达到243万t,其中,模锻件占70%,而冷温精锻件(不包括传统的紧固件和轴承)估计为70万t/年。展望21世纪,焊接技术仍将是金属与非金属材料重要的成形制造技术之一,从而也是先进制造技术领域的重要组成部分。精确焊接成形、特种材料及特种环境下的焊接技术、焊接过程的智能控制、胶接与复合材料构件的成形是当今世界焊接技术的主要发展趋势。焊接生产自动化将突出表现为生产系统的柔性化和焊接控制系统的智能化。

随着金属间化合物材料、金属基复合材料、各种新型功能材料、超导材料等高新技术材料的不断出现,传统的加工方式或多或少地遇到了困难。与新的材料制备和合成技术相适应,新的加工方法成为材料加工研究开发的一个重要领域。材料制备和材料加工一体化是一个发展趋势。新材料的发展与新的成形加工技术密切相关。因此,要使材料达到极端状态,则往往要改变材料的原有属性。从新材料的合成与制造来看,往往利用极端条件作为必要的手段。如超高压、超高温、超高真空、极低温、超高速冷却及超高纯等。

激光加工技术多种多样,包括电子元件的精密微焊接、汽车和船舶制造中的焊接、坯料制造中的切割、雕刻与成形等。有不同种类的表面改性处理方法,如热处理、表面修整、合金化、打标等,使用的激光器主要是大功率CO2激光器、YAG激光器。

纳米材料是现代材料科学的一个重要的发展方向。作为新的结构功能材料的纳米材料,其未来的应用在很大程度上取决于纳米材料零件的成形技术的发展,以保证纳米微结构的稳定性,保留成形加工后的纳米团组良好的机械、磁学、固化性能等。

计算机技术的发展引起了机械制造工业一场新的革命。计算机模拟仿真或称计算机辅助工程(CAE),并行工程技术及虚拟制造技术的相继出现为成形制造技术注入了新的活力。计算机模拟仿真是在人类的大量生产实践与实验研究基础上,建立物理及数学模型,充分利用计算机的强大计算功能而发展起来的多学科交叉的学科前沿领域。因此,在大力发展成形制造过程仿真研究的同时,仍然要重视成形制造过程的机理及基础理论的实验研究。并行工程的出现正在改变着制造工业的企业结构和工作方式,而材料成形制造过程模拟技术将成为与产品设计开发和制造加工紧密相连、必不可少的重要环节。

环境与资源是当今世界的两个重大课题。遵循“减量化、再循环、再利用和再制造”的4R原则,实现可持续发展,这也是摆在材料加工领域的重要课题,所谓集约化制造和清洁生产是指整个制造生产过程中应满足对环境无害、合理使用和节约自然资源、依靠科学技术得到最大的产出和效益等几个要求。因此,在材料加工工艺的应用和发展中,必须充分重视环境保护和资源的合理利用,体现“以人为本”的思想,包括对企业周边环境和工人作业环境、安全的保障。

1.3“材料加工工艺”课程的任务

“材料加工工艺”课程的任务是讲授材料加工的一些主要方法及其相关的工艺装备,使“材料成形与控制工程”专业或相近专业的学生对材料加工领域的技术现状和发展趋势有一个较为系统和全面的了解。与本门课程同时(或先后)讲授的另一门课——“材料加工原理”则主要阐述材料加工过程中的内在规律和物理本质,从而揭示材料加工过程中所出现的共性现象。这两门课程都是“材料加工工程”类专业学生所必须掌握的专业基础知识。由于学时的限制,本书不可能介绍所有的加工方法,只能有重点地介绍一些常用的方法,对其他方法只作简单介绍,学生如有兴趣或需要,可以通过查阅有关书籍或选修课来了解。配合本门课程和“材料加工原理”开设的“材料加工系列实验”则向同学提供了亲自动手的机会,通过一系列实验加深对各种工艺的感性认识和对课程的理解; 同时还可以了解由于篇幅和时间的限制在教材和课堂上没有介绍的其他材料加工工艺。参考文献

1柳百成,沈厚发.21世纪的材料成形加工技术与科学.香山科学会议第184次学术讨论会.北京,2002,1

2柳百成,李敏贤,吴浚郊,等.材料加工成形制造,国家自然科学资金优先资助领域战略研究报告——先进制造技术基础.北京: 高等教育出版社,1998,144~182

3石力开.新材料的发展趋势及其在我国的发展状况.科技成果纵横,1996(5),25~27

4中国工程院咨询研究项目.装备制造业自主创新战略研究.北京: 高等教育出版社,2007,12

5谢建新.材料加工新技术与新工艺.北京: 冶金工业出版社,2004,3

6柳百成主编.工程前沿,第1卷: 未来的制造科学与技术.北京: 高等教育出版社,2004,12

液态金属成形

2液态金属成形

材料加工工艺(第2版)

2.1概述

液态金属成形,通常也称铸造,是将液态金属注入铸型中使之冷却、凝固而形成零件的方法。所铸出的金属制品称为铸件。绝大多数铸件用作毛坯,需要经机械加工后才能成为各种机器零件; 少数铸件当达到使用的尺寸精度和表面粗糙度要求时,可作为成品或零件直接应用。2.1.1铸造生产的特点 1.适用范围广

铸造方法几乎不受零件大小、厚薄和复杂程度的限制,适用范围广,可以铸造壁厚范围为0.3mm~1m,长度从几个毫米到几十米,重量从几克到500多吨的各种铸件。铸件形状可以非常复杂,例如汽车发动机汽缸体铝合金铸件(图21)。

图21戴姆勒克莱斯勒12缸汽车发动机铝合金汽缸体铸件

2.可制造各种合金铸件

用铸造方法可以生产铸钢件、铸铁件、各种铝合金、铜合金、镁合金、钛合金及锌合金等铸件。对于脆性金属或合金,铸造是唯一可行的加工方法。在生产中以铸铁件应用最广,约占铸件总产量的70%以上。3.铸件的尺寸精度高

一般比锻件、焊接件尺寸精确,可节约大量金属材料和机械加工工时。4.成本低廉

铸件在一般机器生产中约占总重量的40%~80%,而成本只占机器总成本的25%~30%。成本低廉的原因是: ①容易实现机械化生产; ②可大量利用废、旧金属料; ③与锻件相比,其动力消耗低; ④尺寸精度高,加工余量小,节约加工工时和金属。2.1.2铸造方法 铸造方法有许多种,一个铸件到底选择什么铸造方法来制造,必须根据这个铸件的合金种类、重量、尺寸精度、表面粗糙度、批量、铸件成本、生产周期、设备条件等方面的要求综合考虑才能决定。表21是一些铸件基本尺寸的公差等级(CT),表22是各种铸造方法应用范围,可根据铸造企业的实际情况适当选择。在所有各种铸造方法中,砂型铸造是应用最广的方法,我国和世界范围内,大部分铸件(约为铸件总产量的60%~70%)是应用砂型铸造方法生产的,其次是熔模铸造、离心铸造、金属型铸造、压铸等铸造方法。因此,本章以介绍砂型铸造工艺为主,其他工艺方法为辅。

表21一些铸件基本尺寸的公差等级 mm

铸件基 本尺寸

铸件公差等级CT ***13141516 10 0.1 0.14 0.20 0.28 0.38 0.54 0.78 1.1 1.6 2.2 3 4.4 — — — —

0.15 0.22 0.30 0.44 0.62 0.88 1.2 1.8 2.5 3.6 5 7 10 12 16 20 400 — — — 0.64 0.90 1.2 1.8 2.6 3.6 5 7 10 14 18 22 28 4000 — — — — — — — — 7.0 10 14 20 28 35 44 56

注: 此表为一些铸件基本尺寸所对应的公差等级举例,详细内容见国家标准GB/T 6414—1999。

表22各种铸造方法应用范围

序 号

铸造工艺 适用合金 种类 铸件质量 范围 最小壁厚 /mm 铸件表面 粗糙度 Ra/μm 铸件尺寸 公差等级 CT 批量砂型铸造 不限 不限 3 12.5~100 8~10 不限壳型铸造 不限 几十克~ 几十千克 2.5 1.6~50 6~9 中、大批量 续表

序 号

铸造工艺 适用合金 种类 铸件质量 范围 最小壁厚 /mm 铸件表面 粗糙度 Ra/μm 铸件尺寸 公差等级 CT 批量熔模铸造

不限(主要是合金钢、碳钢、不锈钢)几克~ 几百千克 约0.5,最小孔径0.5 0.8~6.3 4~7 大、中、小批量金属型 铸造

不限(主要是非铁合金)几十克~ 几百千克 2~3(铝)5(铁)3.2~12.5 6~9 中、大批量低压铸造 非铁合金 几百克~ 几十千克 2(铝)2.5(铸铁)3.2~25 5~8 大、中、小批量压力铸造 非铁合金 几克~ 几十千克 0.3~1.0,2(铜)

1.6~6.3(铝)0.2~6.3(镁)4~8 大批量离心铸造 不限 管件、套筒类 最小内径8 1.6~12.5 —

大、中、小批量陶瓷型 铸造 钢、铁 中、大件 2 3.2~12.5 5~8 单件、小批石膏型 铸造

以非铁合金为主 几克~ 几百千克 约0.5,最小孔径0.5 0.8~6.3 4~7 大、中、小批量连续铸造 不限

坯料或型材 4 12.5~100 — 大批 11 真空铸造 不限 小件 5 — —

中、大批量挤压铸造 不限 几十克~ 几十千克 1 1.6~6.3 5 中、大批量消失模 铸造 不限 不限 2~3 3.2~50 6~9 不限

2.2金属的熔炼

液态金属的凝固成形,首先必须获得符合要求(化学成分、温度等)的液态金属(熔体),即把固态金属,例如生铁锭、铝锭、废钢、回炉料等在专门的熔炉里进行熔炼; 然后进行必要的熔体处理,例如孕育、球化、净化、除气等,并达到规定的温度范围,然后浇入铸型凝固成形。

2.2.1铸铁的熔炼

铸铁熔炼炉种类较多,主要有冲天炉和感应电炉,因为小型冲天炉造价低,上马容易,所以目前我国铸造企业中冲天炉应用更普遍。1.冲天炉

冲天炉靠焦炭燃烧加热金属使之熔化,其结构见图22(a)。从热交换角度分析,冲天炉的工作过程是焦炭燃烧放出热量和金属炉料吸热熔化并过热的过程; 从冶金角度分析,冲天炉的工作过程又是各种元素或物质发生一系列物理、化学变化达到冶炼的过程。冲天炉熔化后的铁液温度一般为1300~1500℃。冲天炉内炉气气氛、炉气温度、金属温度的变化曲线,如图22(b)所示。

图22冲天炉结构(a)及其炉内温度、炉气成分分布曲线(b)

1—铁槽; 2—出铁口; 3—前炉炉壳; 4—前炉炉衬; 5—过桥窥视孔; 6—出渣口; 7—前炉盖; 8—过桥;

9—火花捕集器; 10—加料机械; 11—加料桶; 12—铸铁砖; 13—层焦; 14—金属炉料; 15—底焦;

16—炉衬; 17—炉壳; 18—风口; 19—风箱; 20—进风管; 21—炉底; 22—炉门; 23—炉底板;

24—炉门支撑; 25—炉腿

为了实现冲天炉的节能、减排和冶金质量的提高,国内外近年来出现了热风冲天炉、水冷长炉龄冲天炉、外热式冲天炉等热效率高、烟气排放少的新型冲天炉。图23就是带有炉气点燃、鼓热风、炉气冷却、布袋除尘器的冲天炉系统。冲天炉排出的炉气温度在200℃左右,经过燃烧室时将CO点燃,炉气温度可达950℃,与新鼓入的冷风混合后的温度可达450℃。需要排放的废气温度经过气体冷却器降温达到200℃以下,然后经布袋除尘器除去粉尘颗粒再排放到大气中,达到国家规定的排放标准。

图23带有炉气处理的冲天炉系统

2.无芯感应电炉

感应电炉可用于铸钢、铸铁、各种有色合金的熔炼,是所有熔炼炉中应用最广的炉型之一,一般按电源的频率分为工频炉(频率为50Hz)、中频炉(频率为500~1000Hz)和高频炉(频率≥1000Hz); 按炉型结构分为无芯(坩埚式)炉和有芯(沟槽式)炉,还可按变频技术、连接形式、调控方式、工作状态等进行分类。对于铸铁合金的熔炼,大多采用静态变频的中频无芯(坩埚式)感应电炉(见图24),热转换效率高、铁液温度高、升温速度快、节省能源。

图24无芯(坩埚式)中频感应电炉结构示意图(a)和外形(b)

1—感应线圈; 2—坩埚炉; 3—金属液; 4—金属液内部的运动; 5—液面升高

第二篇:面粉加工工艺流程 工艺1

面粉加工工艺流程 工艺1: 原粮→磁选→(筛选)初清筛→风选→去石机→精选→打麦机→风选→着水→撞击机→去石机→打麦机→筛选(平面筛)→磁选→磨粉→筛理→面粉半成品→绞龙→保险筛→磁选→打包→入库 工艺2: 原粮→磁选→筛选(初清筛)→风选→去石机→精选→打麦机→风选→着水→撞击机→去石机→打麦机→筛选(平面筛)→磁选→磨粉→筛理→面粉半成品→绞龙→基粉仓→配粉仓→混合机→打包仓→保险筛→磁选→打包→入库

第三篇:《数控加工工艺及设备》教案2

《数控加工工艺及设备》教案

第二章

数控机床机械结构

第一节 数控机床机械结构特点

一、数控机床机械结构的组成

主要由以下几部分组成:

1.机床基础部件,如床身、立柱、工作台等; 2.主传动系统; 3.进给传动系统;

4.实现某些动作和辅助功能的系统和装置,如液压、气动、润滑、冷却等系统及排屑、防护装置和刀架、自动换刀装置;

5.工件实现回转、定位的装置及附件,如数控回转工作台; 6.特殊功能装置,如监控装置、加工过程图形显示、精度检测等。掌握这些结构对于正确合理使用数控机床是非常必要的。

二、数控机床的结构特点

为了保证高精度、高效率的加工,数控机床的结构应具有以下特点: 1.高刚度和高抗振性 2.高灵敏度 3.热变形小 4.高精度保持性 5.高可靠性

6.工艺复合化和功能集成化

第二节 数控机床的主传动系统一、数控机床的主传动系统特点

1.主轴转速高、调速范围宽并实现无级调速 2.主轴部件具有较大的刚度和较高的精度 3.良好的抗振性和热稳定性

4.为实现刀具的快速或自动装卸,数控机床主轴具有特有的刀具安装结构

二、数控机床主轴的传动方式

(一)齿轮传动方式(图2-1a)

(二)带传动方式(图2-1b)

同步齿形带传动具有如下优点:

《数控加工工艺及设备》教案

1.传动效率高,可达98%以上。2.无滑动,传动比准确。3.传动平稳,噪声小。

4.使用范围较广,速度可达50m/s,速比可达10左右,传递功率由几瓦至数千瓦。

5.维修保养方便,不需要润滑。

6.安装时中心距要求严格,带与带轮制造工艺较复杂,成本高。

(三)调速电动机直接驱动主轴传动方式(图2-1c)

三、主轴组件

主轴、主轴支承、装在主轴上的传动件和密封件等组成了主轴组件。

(一)数控机床的主轴支承

主轴轴承是主轴组件的重要组成部分,它的类型、结构、配置、精度直接影响主轴组件的工作性能。

1.主轴轴承类型

数控机床主轴经常采用滚动轴承和滑动轴承两类轴承。(1)滚动轴承(2)滑动轴承 2.主轴轴承的配置

典型的主轴轴承的结构配置形式有下面三种:

(l)图2-6a结构配置形式是现代数控机床主轴结构中刚性最好的一种。它使主轴的综合刚度得到大幅度提高,可以满足强力切削的要求,所以目前各类数控机床的主轴普遍采用这种配置形式。

(2)前支承采用3个超精密级角接触球轴承组合方式,具有较好的高速性能。后支承结构有采用2个角接触球轴承支承的,如图2-6b,也有用一个圆柱滚子轴承支承的。

(3)圆锥滚子轴承,图2-6c。这种轴承径向和轴向刚度高,能承受重载荷,尤其能承受较大的动载荷,安装与调整性能好,但是这种轴承配置方式限制了主轴的最高转速和精度,所以仅适用于中等精度、低速与重载的数控机床主轴。

3.主轴轴承的装配

采用选配定向法进行装配,可提高主轴组件的精度。装配时尽可能使主轴定位内孔与主轴轴颈的偏心量和轴承内圈与滚道的偏心量接近,并使其方向相反,这样可使装配后的偏心量减小。

4.滚动轴承的间隙与预紧

将滚动轴承进行适当预紧,使滚动体与内外圈滚道在接触处产生预变形,使受载后承载的滚动体数量增多,受力趋向均匀,从而提高承载能力和刚度,有利于减少主轴回转轴线的漂移,提高旋转精度。若过盈量太大,轴承磨损加剧,承载能力将显著下降。轴承所需的预紧量与轴承精度、类型和工作条件等因素有关。

(二)主轴准停功能

《数控加工工艺及设备》教案

机床的切削扭矩由主轴上的端面键来传递,每次机械手自动装取刀具时,必须保征刀柄上的键槽对准主轴的端面键,这就要求主轴具有准确定位的功能。为满足主轴这一功能而设计的装置称为主轴准停装置或称主轴定向装置。主轴准停装置是加工中心换刀过程中所要求的特别装置,为了将主轴准确地停在某一固定位置上,以便在该处进行换刀等动作,这就要求主轴定向控制。

(三)主轴上刀具自动夹紧和切屑清除

加工中心为了实现刀具在主轴内的自动装卸,其主轴必须设计有刀具的自动夹紧机构。刀杆采用7:24的锥柄,这种锥柄既有利于定心,也为松夹带来了方便。

第三节 数控机床主传动系统应用

一、SSCK20/500数控车床主传动系统及主轴箱结构

(一)主传动系统

SSCK20/500数控车床的主传动系统由功率为11kw的AC伺服电动机驱动,经l:1的带传动带动主轴旋转,使主轴在 24~2400r/min的转速范围内实现无级调速,主轴箱内省去了齿轮传动变速机构,提高了主轴精度,减少齿轮传动躁声的影响,结构简单,维修方便。改变电机旋转方向,可以得到相应的主轴正、反转,主轴停车是由电机制动来实现。螺纹切削和主轴每转进给量是通过主轴脉冲编码器来实现。

(二)主轴箱结构

交流主轴电动机通过带轮把运动传给主轴。主轴有前后两个支承,前支承采用预加负荷的超精密级角接触球轴承组成,三个一组,其中两个轴承用来承受向后的推力,另一个用于承受向前推力。主轴的后支承采用圆柱滚子轴承,用来承受较大的径向载荷。前支承轴承的间隙用螺母来调整。主轴的支承形式为前端定位,主轴受热膨胀向后伸长。前后支承所用轴承的支承刚性好,前支承中的角接触球轴承能承受较大的轴向载荷,且允许的极限转速高。主轴所采用的支承结构适宜高速重载的需要。

二、JCS-018A加工中心主传动系统及主轴箱结构

(一)主运动传动系统

主轴电动机采用的是FANUC AC电动机。主轴电动机在45~4500r/min转速范围通过一对1:2同步带轮将运动传给主轴,使主轴在22.5~2250r/min转速范围内可以实现无级调速。

(二)主轴箱结构 1.主轴结构

主轴的前支承4配置了三个高精度的角接触球轴承,用以承受径向载荷和轴向载荷。前两个轴承大口朝下,后面一个轴承大口朝上。前支承按预加载荷计算的预紧量由螺母5来调整。后支承6为一对小口相对应的角接触球轴承,它们只

《数控加工工艺及设备》教案

承受径向载荷,因此轴承外圈不需要定位。该主轴选择的轴承座和配置形式,能满足主轴高转速和承受较大轴向载荷的要求,主轴受热变形向后伸长,不影响加工精度。

2.刀具的自动夹紧机构

它主要由拉杆

7、拉杆端部的四个钢球

3、碟形弹簧

8、活塞

10、液压缸11等组成。机床执行换刀指令,机械手要从主轴拔刀时,主轴需松开刀具。这时液压缸上腔通压力油,活塞推动拉杆向下移动,使碟形弹簧压缩,钢球进入主轴锥孔上端的槽内,刀柄尾部的拉钉(拉紧刀具用)2被松开,机械手即拔刀。之后,压缩空气进入活塞和拉杆的中孔,吹净主轴锥孔,为装入新刀具做好准备。当机械手把下一把刀具插入主轴后,液压缸上腔无油压,在碟形弹簧和弹簧9的恢复力作用下,使拉杆、钢球和活塞退回到图示的位置,即碟形弹簧通过拉杆和钢球拉紧刀柄尾部的拉钉,使刀具被夹紧。

3.主轴准停装置

JCS-018A加工中心采用的是主轴电气式准停装置,即用磁力传感器检测定向。在主轴上安装一个发磁体,使之与主轴一起旋转,在距离发磁体外1~2mm处固定一个磁传感器。磁传感器经过放大器与主轴控制单元连接,当主轴需要定向准停时,便控制主轴停止在预定的位置。

第四节 数控机床进给传动系统一、数控机床对进给传动系统的要求

对进给系统中的传动装置和元件要求具有高的寿命,高的刚度,无传动间隙,高的灵敏度和低摩擦阻力的特点,如导轨必须摩擦力较小,耐磨性要高,通常采用滚动导轨、静压导轨等。为了提高转换效率,保证运动精度,当旋转运动被转化为直线运动时,广泛应用滚珠丝杠螺母副。为了提高位移精度,减少传动误差,对采用的各种机械部件首先保证它们的加工精度,其次采用合理的预紧来消除轴向传动间隙,因此在进给传动系统中采用各种措施消除间隙,但仍然可能留有微量间隙。此外由于受力而产生弹性变形,也会有间隙,所以在进给系统反向运动时仍然由数控装置发出脉冲指令进行自动补偿。

数控机床进给传动系统的机电部件主要有伺服电动机及检测元件、联轴节、减速机构(齿轮副和带轮)、滚珠丝杠螺母副(或齿轮齿条副)、丝杠轴承、运动部件(工作台、导轨、主轴箱、滑座、横梁和立柱)等。

二、导轨

导轨是用来支撑和引导运动部件沿着直线或圆周方向准确运动的。与支承件连成一体固定不动的导轨称为支承导轨,与运动部件连成一体的导轨称为动导轨。

(一)导轨的类型和要求 1.导轨的类型

《数控加工工艺及设备》教案

按运动部件的运动轨迹,导轨可分为直线运动导轨和圆周运动导轨。按导轨接合面的摩擦性,导轨可分为滑动导轨、滚动导轨和静压导轨。滑动导轨又可分为普通滑动导轨和塑料滑动导轨。而静压导轨根据介质的不同又可分为液压导轨和气压导轨。

2.导轨的要求(1)高的导向精度

导向精度保证部件运动轨迹的准确性。导向精度受导轨的结构形状、组合方式、制造精度和导轨间隙调整等因素的影响。

(2)良好的耐磨性

耐磨性好可使导轨的导向精度得以长久保持。耐磨性一般受导轨副的材料、硬度、润滑和载荷的影响。

(3)足够的刚度

在载荷作用下,导轨的刚度高则保持形状不变的能力好。刚度受导轨结构和尺寸的影响。

(4)具有低速运动的平稳性

运动部件在导轨上低速移动时,不应发生“爬行”的现象。造成“爬行”的主要因素有摩擦的性质、润滑条件和传动系统的刚度等。

(二)滑动导轨 1.滑动导轨的结构

滑动导轨的常见截面形状有矩形、三角形、燕尾槽形和圆柱形。

矩形导轨(图2-12a)承载能力大,制造简单,水平方向和垂直方向上的位置精度互不相关。侧面间隙不能自动补偿,必须设置间隙调整机构。三角形导轨(图2-12b)的三角形截面有两个导向面,同时控制垂直方向和水平方向的导向精度。这种导轨在载荷的作用下能自行补偿而消除间隙,导向精度较其他导轨高。燕尾槽导轨(图2-12c)的高度值最小,能承受颠覆力矩,摩擦阻力也较大。圆柱形导轨(图2-12d)制造容易,磨损后调整间隙较困难。以上截面形状的导轨有凸形(图2-12上图)和凹形(图2-12下图)两类。凹形导轨容易存油,但也容易积存切屑和尘粒,因此适用于防护良好的环境。凸形导轨需要良好的润滑条件。

直线运动导轨一般由两条导轨组成,不同的组合形式可满足各类机床的工作要求。数控机床上滑动导轨的形状主要为三角形一矩形式和矩形一矩形式,只有少部分结构采用燕尾式。

2.滑动导轨的材料

导轨材料主要有铸铁、钢、塑料以及有色金属。目前常采用一种导轨材料为金属和塑料的滑动导轨,称为塑料导轨(贴塑导轨),它具有刚度好,动、静摩擦系数差值小,在油润滑状态下其摩擦系数约为0.06,耐磨性好,使用寿命为普通铸铁导轨的8~10倍,无爬行,减振性好。其形式主要有塑料导轨板和塑料导轨软带两种。软带是以聚四氟乙烯为基材,添加青铜粉、二硫化铝和石墨的高分子复合材料。软带应粘贴在机床导轨副的短导轨面上,如图2-13所示,圆形导

《数控加工工艺及设备》教案

轨应粘贴在下导轨面上。塑料导轨软带有各种厚度规格,长与宽由用户自行裁剪,粘贴方法比较固定。由于塑料导轨软带较软,容易被硬物刮伤,因此应用时要有良好的密封防护措施。塑料导轨在机床上的应用形式如图2-14所示。

(三)滚动导轨

滚动导轨是在导轨工作面之间安排滚动件,使两导轨面之间形成滚动摩擦,滚动导轨的摩擦系数小,而且动、静摩擦系数相近,磨损小,润滑容易。因此它低速运动平稳性好,移动精度和定位精度高。但滚动导轨的抗振性比滑动导轨差,结构复杂,对脏物也较为敏感,需要良好的防护。数控机床常用的滚动导轨有直线滚动导轨和滚动导轨块两种。

1.直线滚动导轨

直线滚动导轨又称单元直线滚动导轨,它主要由导轨体、滑块、滚珠、保持架、端盖等组成。导轨体固定在不动部件上,滑块固定在运动部件上。当滑块沿导轨体移动时,滚珠在导轨体和滑块之间的圆弧直槽内滚动,并通过端盖内的滚道从工作负荷区运动到非工作负荷区,然后再滚动回到工作负荷区。这样不断循环,把滚动体和滑块之间的移动变成滚珠的滚动。用密封垫来防止灰尘和脏物进入导轨滚道。

2.滚动导轨块

滚动导轨块用滚动体进行循环运动,滚动体为滚珠或滚柱,承载能力和刚度都比直线滚动导轨高,但摩擦系数略大。它多用于中等载荷的导轨,使用时有专业生产厂家提供各种规格、形式供用户选择。

(四)液体静压导轨

静压导轨通常在两个相对运动的导轨面间通入压力油,使运动件浮起。在工作过程中,导轨面上油腔中的油压能随外加负载的变化自动调节,保证导轨面间始终处于纯液体摩擦状态。所以静压导轨的摩擦系数极小(约为0.0005),功率消耗少。这种导轨不会磨损,因而导轨的精度保持性好,寿命长。它的油膜厚度几乎不受速度的影响,油膜承载能力大、刚性高、吸振性良好。这种导轨的运行很平稳,既无爬行也不会产生振动。但静压导轨结构复杂,并需要有一套过滤效果良好的液压装置,制造成本较高。目前静压导轨一般应用在大型、重型数控机床上。

静压导轨按导轨的形式可分为开式和闭式两种,数控机床上常采用闭式静压导轨。静压导轨按供油方式又可分为恒压(即定压)供油和恒流(即定量)供油两种。

(五)导轨的润滑与防护

导轨润滑的目的是减少摩擦阻力和摩擦磨损,避免低速爬行,降低高速时的温升。常用的润滑剂有润滑油和润滑脂,前者用于滑动导轨,而滚动导轨两者均可采用。数控机床上滑动导轨的润滑主要采用压力润滑。一般常用压力循环润滑和定时定量润滑两种方式。如直线滚动导轨滑块上配有润滑油注油杯,只要定期将锂基润滑脂放入润滑油注油杯即可实现润滑。

导轨面上应有可靠的防护装置。常用的防护装置有刮板式、卷帘式和伸缩式

《数控加工工艺及设备》教案

等,数控机床上大多采用伸缩式防护罩。这些装置结构简单,由专门厂家制造。

三、滚珠丝杠螺母副

滚珠丝杠螺母副是回转运动与直线运动相互转换的新型理想传动装置。

(一)滚珠丝杠螺母副的特点

其工作原理是:在丝杠和螺母上加工有弧形螺旋槽,当把它们套装在一起时形成螺旋通道,并且滚道内填满滚珠。当丝杠相对于螺母旋转时,两者发生轴向位移,而滚珠则可沿着滚道流动,按照滚珠返回的方式不同可以分为内循环式和外循环式二种。内循环式带有反向器,如图2-17a,返回的滚珠经过反向器和丝杠外圆返回。外循环式如图2-17b所示,其螺母旋转槽的两端由回珠管连接起来,返回的滚珠不与丝杠外圆相接触,滚珠可以作周而复始的循环运动,在管道的两端还能起到挡珠的作用,用以避免滚珠沿滚道滑出。

钢珠每一个循环闭路称为列。每个滚珠循环闭路内所含导程数称为圈数。内循环滚珠丝杠副的每个螺母有2列、3列、4列、5列等几种,每列只有一圈。外循环每列有1.5圈,2.5圈,3.5圈等几种,剩下的半圈作回珠。外循环滚珠丝杠螺母副的每个螺母有1列2.5圈,1列3.5圈,2列1.5圈,2列2.5圈等,种类很多。

在传动时,滚珠与丝杠、螺母之间基本上是滚动摩擦,所以具有下述特点: 1.摩擦损失小,传动效率高

滚珠丝杠副的传动效率可达92%~98%,是普通丝杠传动的3~4倍。2.传动灵敏,运动平稳,低速时无爬行

滚珠丝杠螺母副滚珠与丝杠和螺母是滚动摩擦,其动、静摩擦系数基本相等,并且很小,移动精度和定位精度高。

3.使用寿命长

滚珠丝杠副采用优质合金钢制成,其滚道表面淬火硬度高达60~62HRC,表面粗糙度值小,另外,因为是滚动摩擦,故磨损很小。

4.轴向刚度高

滚珠丝杠螺母副可以完全消除间隙传动,并可预紧,因此具有较高的轴向刚度。同时,反向时无空程死区,反向定位精度高。

5.具有传动的可逆性

既可以将旋转运动转化为直线运动,也可以把直线运动转化为旋转运动。因为滚珠丝杠副具有这些优点,所以现在被各类中、小型数控机床普遍采用。6.不能实现自锁

由于其摩擦系数小不能自锁,当用于垂直位置时,为防止因突然停断电而造成主轴箱下滑,必须加有制动装置。

7.制造工艺复杂成本高

滚珠丝杠和螺母的材料、热处理和加工要求相当于滚动轴承,螺旋滚道必须磨削,制造成本高。目前已由专门厂集中生产,其规格、型号已标准化和系列化,这样,不仅提高了滚珠丝杠螺母副的产品质量,而且也降低了生产成本,使滚珠

《数控加工工艺及设备》教案

丝杠螺母副得到广泛的应用。

(二)滚珠丝杠螺母副间隙的调整

轴向间隙通常是指丝杠和螺母无相对转动时,丝杠和螺母之间的最大轴向窜动量。除了结构本身所有的游隙之外,还包括施加轴向载荷后产生弹性变形所造成的轴向窜动量。通常采用双螺母预紧的办法解决,预紧是指它在过盈的条件下工作,把弹性变形量控制在最小限度。而用双螺母加预紧力调整后,基本上能消除轴向间隙。利用双螺母加预紧力消除轴向间隙时,必须注意:

1.预加载荷能够有效地减少弹性变形所带来的轴向位移,预紧力太小不能起到消除间隙的作用。但预紧力也不宜过大,过大的预紧载荷将增加摩擦力,使传动效率降低,缩短丝杠的使用寿命。

2.要特别减小丝杠安装部分和驱动部分的间隙。消除间隙的方法除了少数用微量过盈滚珠的单螺母消除间隙外,常用的双螺母消除轴向间隙的结构形式有垫片预紧方式、螺纹预紧方式和齿差预紧方式等。

(1)图2-18是双螺母垫片预紧方式结构,通过调整垫片的厚度使左右螺母产生轴向位移,就可达到消除间隙和产生预紧力的作用。

(2)图2-19是双螺母螺纹预紧方式结构,用键限制螺母在螺母座内的转动。调整时,拧动圆螺母将螺母沿轴向移动一定距离,在消除间隙之后用圆螺母将其锁紧。

(3)图2-20是双螺母齿差预紧方式结构,在两个螺母1和2的凸缘上各制有一个圆柱外齿轮,两个齿轮的齿数相差一个齿,即z1z21。两个内齿圈3和4与外齿轮齿数分别相同,并用预紧螺钉和销钉固定在螺母座的两端。调整时先将内齿圈取下,根据间隙的大小调整两个螺母1、2分别向相同的方向转过一个或多个齿。使两个螺母在轴向移近了相应的距离达到调整间隙和预紧的目地。间隙消除量△可用下式简便地计算出:

(2-1)

式中

n —— 螺母在同一方向转过的齿数;

t —— 滚珠丝杠的导程;

z1,z2——齿轮的齿数。

ntz1z2备

nz1zt 例如,当z1=101,z2=100,t=5mm时,如果两个螺母向相同方向各转过一个齿时,其相对轴向位移量为=5/(100×101)≈0.0005mm,若间隙量为0.002mm,n=0.002×100×101/5=4。则相应的两螺母沿同方向转过4个齿即可消除。

(三)滚珠丝杠螺母副的结构形式

接螺旋滚道法向截面形状分单圆弧型和双圆弧型;按滚珠循环方式分内循环式和外循环式;按消除轴向间隙和调整预紧方式的不同分为垫片预紧方式、螺纹预紧方式和齿差预紧方式三种;按用途分为定位滚珠丝杠副(P类)、传动滚珠丝

《数控加工工艺及设备》教案

杠副(T类)两类,数控机床进给运动采用P类。

国内生产的滚珠丝杠螺母副螺旋滚道法向截形有两种:单圆弧型和双圆弧型,见图2-21。在螺纹滚道法向剖面内,滚珠与滚道接触点法线与丝杠轴线的垂直线夹角称接触角,理想接触角等于45°。

1.单圆弧型

如图2-21a所示。滚道半径R稍大于滚珠半径rb,取比值:R/rb=1.02~1.12,常取1.04或1.1。接触角随初始间隙和轴向截荷大小而变化。当增大后,轴向刚度、传动效率随之增大。为保证=45°,必须严格控制径向间隙。这种截面形状滚道形状简单,用成形砂轮磨削可得到较高精度。为消除轴向间隙和调整预紧,必须采用双螺母结构。

2.双圆弧型

如图2-21b所示。滚道由半径R稍大于滚珠半径rb的对称双圆弧组成。理论上轴向和径向间隙为零,接触角=45°是恒定的。比值:R/rb也常取1.02~1.12,并也常取1.04或1.1。这种截形滚道接触稳定,但加工较复杂。消除轴向间隙和调整预紧,不仅可以采用双螺母结构,也可以采用增大滚珠直径的单螺母结构。另外两圆弧交接处有一小沟槽,可容纳润滑油和脏物,这对工作有利。

(四)滚珠丝杠螺母副的主要参数及代号 1.滚珠丝杠螺母副的主要参数

(1)公称直径dm:即滚珠丝杠的名义直径(图2-22)。.滚珠与螺纹滚道在理论接触角状态时,包络滚珠球心的圆柱直径,是滚珠丝杠螺母副的特征尺寸。名义直径与承载能力有直接关系,dm越大,承载能力和刚度越大,有的资料推荐滚珠丝杠螺母副的名义直径应大于丝杠工作长度的 1/30。数控机床常用进给丝杠的名义直径dm为30mm至80mm。国际标准ISO规定滚珠丝杠螺母副的名义直径系列为:6,8,10,12,16,20,25,30,40,50,60,80,100,120,125,160及200 mm。

(2)导程L0:丝杠相对于螺母旋转一圈时,螺母上基准点的轴向位移。它按承载能力选取,并与进给系统的脉冲当量要求有关。导程的大小是根据机床的加工精度要求确定的。精度要求高时,应将导程取小一些,这样在一定的轴向力作用下,丝杠上的摩擦阻力较小。但为了使滚珠丝杠具有一定的承载能力,滚珠直径又不能太小。导程过小势必使滚珠直径变小,滚珠丝杠螺母副的承载能力亦随之减小。若丝杠副的名义直径不变,导程减小则螺旋升角也变小,传动效率降低。因此在满足机床加工精度的条件下,导程应尽可能取得大些。国际标准ISO规定滚珠丝杠螺母副的导程为 1,2,2.5,3,4,5,6,10,12,16,20,25,30,40 mm。应尽量选用2.5,5,10,20,40 mm。

此外还有接触角、丝杠螺纹大径d、丝杠螺纹小径d1、螺纹全长l、滚珠直径db、螺母螺纹大径D、螺母螺纹小径D1、滚道圆弧偏心距e 以及滚道圆弧半径R等参数。

《数控加工工艺及设备》教案

2.精度等级

根据JB3162.2—91滚珠丝杠螺母副按其使用范围及要求分为7个精度等级,即1、2、3、4、5、7和10七个精度等级。一级精度最高,其余依次逐级递减,一般动力传动可选用4、5、7级精度,数控机床和精密机械可选用2、3级精度,精密仪器、仪表机床、螺纹磨床可选用1、2级精度。滚珠丝杠螺母副精度直接影响定位精度,承载能力和接触刚度,因此它是滚珠丝杠副的重要指标,选用时要予以考虑。

3.滚珠丝杠螺母副代号的标注

根据JB3162.2—91滚珠丝杠副代号的标注方法如图2-23a所示。采用汉语拼音字母、数字及汉字结合标注法,标注示例如图2-23b 所示。例如:CDM6012-3.5-P4LH它表示外循环插管式,垫片预紧,回珠管埋入式,公称直径为60mm,导程为12mm,螺纹旋向为左旋,负荷钢球圈数为3.5圈,定位滚珠丝杠,精度等级为4级。滚珠丝杠副的特征代号见表2-1。

(五)滚珠丝杠螺母副的支承

滚珠丝杠主要承受轴向载荷,它的径向载荷主要是卧式丝杠的自重。因此对滚珠丝杠的轴向精度和刚度要求较高。此外,滚珠丝杠的正确安装及其支承的结构刚度也不容忽视。滚珠丝杠两端常用支承形式如图2-24所示。图2-24a是一端固定一端自由的支承形式。其特点是结构简单,轴向刚度低,它适用于短丝杠及垂直布置丝杠,一般用于数控机床的调整环节和升降台式数控铣床的垂直坐标轴。图2-24b是一端固定一端浮动的支承形式,丝杠轴向刚度与图2-24a形式相同,丝杠受热后有膨胀伸长的余地,需保证螺母与两支承同轴。这种形式的配置结构较复杂,工艺较困难,适用于较长丝杠或卧式丝杠。图2-24c是两端固定的支承形式,这种支承结构只要轴承无间隙,丝杠的轴向刚度比一端固定形式高约4倍,固有频率比一端固定的高,可预拉伸,在它的一端装有蝶形弹簧和调整螺母,这样既可对滚珠丝杠施加预紧力,又可使丝杠受热变形得到补偿,保持恒定预紧力,但结构工艺都较复杂,适用于长丝杠。

(六)滚珠丝杠螺母副的密封与润滑 1.密封

通常滚珠丝杠副可用防尘密封圈和防护套密封,防止灰尘及杂质进入滚珠丝杠副。密封圈有接触式和非接触式两种,装在滚珠螺母的两端。防护套可防止尘土及杂质进入滚珠丝杠,影响其传动精度。对于暴露在外面的丝杠一般采用螺旋钢带、伸缩套筒、锥形套管以及折叠式防护罩,以防止尘埃和磨粒粘附到丝杠表面。这些防护罩一端连接在滚珠螺母的端面,另一端固定在滚珠丝杠的支承座上。近年来还出现了一种钢带缠卷式丝杠防护装置。

2.润滑

使用润滑剂,以提高耐磨性及传动效率,从而维持传动精度,延长使用寿命。常用的润滑剂有润滑油和润滑脂两类。润滑脂一般在安装过程中放进滚珠螺母的滚道内,定期润滑。使用润滑油时应注意要经常通过注油孔注油。

(七)滚珠丝杠螺母副的选择方法

《数控加工工艺及设备》教案

1.滚珠丝杠螺母副结构的选择

可根据防尘、防护条件以及对调隙及预紧的要求选择适当的结构形式。例如:允许间隙存在(如垂直运动)时,可选用具有单圆弧型螺纹滚道的单螺母滚珠丝杠副;如果必须有预紧,并在使用过程中因磨损而需要定期调整时,应采用双螺母螺纹预紧或齿差预紧式结构;当具备良好的防尘条件,只需在装配时调整间隙及预紧力时,可采用结构简单的双螺母垫片调整预紧式结构。

2.滚珠丝杠螺母副结构尺寸的选择

选用滚珠丝杠螺母副时主要选择丝杠的公称直径和导程。公称直径应根据轴向最大工作载荷,按滚珠丝杠副的尺寸系列选择。在允许的情况下螺纹长度要尽量短。导程(或螺距)应按承载能力、传动精度及传动速度选取。当要求传动速度快时,可选用大导程滚珠丝杠副。

3.滚珠丝杠螺母副的选择步骤

在选用滚珠丝杠螺母副时,必须知道实际的工作条件,包括最大工作载荷(或平均工作载荷、最大载荷作用下的使用寿命、丝杠的工作长度(或螺母的有效行程)、丝杠的转速(或平均转速)、滚道的硬度及丝杠的工作状况等,然后按下列步骤进行选择:

(1)最大的工作载荷;

(2)最大动载荷。对于静态或低速运转的滚珠丝杠,需考虑另一种失效形式—滚珠接触面上的塑性变形,即最大静载荷是否充分地超过了滚珠丝杠的工作载荷;

(3)刚度的验算;

(4)压杆稳定性核算。另外,滚珠丝杠在轴向力的作用下将伸长或缩短,在扭矩的作用下将产生扭转而影响丝杠导程的变化,从而影响传动精度及定位精度,故应验算满载时的预紧量。

四、传动齿轮间隙消除机构

(一)直齿圆柱齿轮传动间隙的调整 l.偏心套调整

如图2-25所示偏心轴套消除传动间隙结构。电动机1是用偏心套2与箱体连接的,通过转动偏心套2的位置就能调整两啮合齿轮中心距,从而消除齿侧间隙。其结构非常简单,常用于电动机与丝杠之间齿轮传动。

2.垫片调整

如图2-26所示,在加工相互啮合的两个齿轮1、2时,将分度圆柱面制成带有小锥度的圆锥面,使齿轮齿厚在轴向稍有变化,装配时只需改变垫片3的厚度,使齿轮2作轴向移动,调整两齿轮在轴向的相对位置即可达到消除齿侧间隙的目的。

3.双齿轮错齿调整

如图2-27所示,两个相同齿数的薄片齿轮1、2与另外一个宽齿轮啮合。可作相对回转运动的齿轮1、2套装在一起。每个薄片齿轮上分别开有周向圆弧槽,《数控加工工艺及设备》教案

并在齿轮1、2的槽内压有装弹簧的短圆柱3,在弹簧4的作用下使齿轮1、2错位,分别与宽齿轮的齿槽左右侧贴紧,消除了齿侧间隙。无论正向或反向旋转都分别只有一个齿轮承受扭矩,因此承载能力受到限制,设计时必须计算弹簧4的拉力,使它能克服最大扭矩。

(二)斜齿圆柱齿轮传动间隙的消除 1.轴向垫片调整

如图2-28所示,宽齿轮同时与两个相同齿数的薄片齿轮啮合,薄片齿轮通过平键与轴联结,相互间不能转动。通过调整薄片齿轮之间垫片厚度的增减量,然后拧紧螺母,这时它们的螺旋线产生错位,其左右两齿面分别与宽齿轮的齿槽左右两齿面贴紧消除了齿侧间隙。垫片厚度的增减量t和齿侧间隙的关系可由下式算出:

tctg

(2-2)

式中——斜齿轮的螺旋角;

——齿侧间隙; t——垫片厚度的增减量。

2.轴向压簧调整

如图2-29所示,轴向压簧调整齿轮齿侧间隙的原理与轴垫片法是一样的。但用弹簧压紧

能自动补偿齿侧间隙,达到无间隙传动。弹簧弹力要用调整螺母达到适当的值。过大会使齿轮磨损加快,降低使用寿命;过小达不到消除齿侧间隙的作用。

(三)圆锥齿轮传动间隙的消除

1.周向压簧调整

如图2-30所示,将大锥齿轮加工成1和2两部分,齿轮的外圈1开有三个圆弧槽8,内圈2的端面上的三个凸爪4,套装在圆弧槽内。弹簧6的两端分别顶在凸爪4和镶块7上,使内外齿圈1、2的锥齿错位与小锥齿轮啮合达到消除间隙的作用。为了安装方便,螺钉5将内外齿圈相对固定,安装完毕后即刻卸去。

2.轴向压簧调整

如图2-31所示,两个锥齿轮相互啮合。在其中一个锥齿轮的传动轴上装有压簧,调整螺母可改变压簧的弹力。锥齿轮在弹力作用下沿轴向移动,从而达到消除齿侧间隙的目的。

五、回转进给系统

数控机床靠回转工作台实现圆周进给运动。常用的回转工作台有分度工作台和数控回转工作台,它们的功能各不相同,分度工作台只是将工件分度转位,实现分别加工工件的各个表面的目的,给零件的加工尤其是箱体类零件的加工带来了很大的方便。而数控回转工作台除了分度和转位的功能之外,还能实现圆周进给运动。

1.分度工作台

《数控加工工艺及设备》教案

分度工作台是按照数控系统的指令,在需要分度时工作台连同工件按规定的角度回转,有时也可采用手动分度。分度工作台只能够完成分度运动而不能实现圆周运动,并且它的分度运动只能完成一定的回转度数如 90°、60°或45°等。

鼠牙盘式分度工作台其结构如图2-32 所示,它主要由工作台面底座、夹紧液压缸、分度液压缸和鼠牙盘等零件组成。鼠牙盘是保证分度精度的关键零件,在每个齿盘的端面有相同数目的三角形齿。当两个齿盘啮合时,就能自动确定周向和径向的相对位置。

(1)工作台抬起,鼠齿盘脱离啮合

机床需要进行分度时,数控装置发出指令→电磁铁控制液压阀使压力油经孔23进入到工作台7中央的夹紧液压缸下腔10→推动活塞6向上移动→经推力轴承5和13将工作台7抬起→内齿轮12向上套入齿轮11→上下两个鼠齿盘4和3脱离啮合,完成分度前的准备工作。

(2)回转分度

当工作台7上升时,推杆2在弹簧力的作用下向上移动→使推杆1向右移动→微动开关S2复位→使压力油经油孔21进入分度油缸左腔19→推动齿条活塞8向右移动→齿轮11作逆时针方向转动→与齿轮11相啮合的内齿轮12转动→分度台也转过相应的角度。回转角度的大小由微动开关和挡块17决定,开始回转时,挡块14离开推杆15使微动开关S1复位,通过电路互锁,始终保持工作台处于上升位置。

(3)工作台下降,完成定位夹紧图

当工作台转到预定位置附近,挡块17通过16使微动开关S3工作。压力油经油孔22进入到压紧液压缸上腔9→活塞6带动工作台7下降→上鼠齿盘4与下鼠齿盘3在新的位置重新啮合并定位压紧。为了保护鼠齿盘齿面不受冲击,液压缸下腔10的回油经节流阀可限制工作台的下降速度。

(4)复位为下次分度作准备

当分度工作台下降时,推杆2和1启动微动开关S2→分度液压缸右腔18进压力油→活塞齿条8退回→齿轮11顺时针转动→挡块17、14回到原位,为下次分度作准备。

鼠齿盘式分度工作台具有刚性好,承载能力强,重复定位精度高,分度精度高,能自动定心,结构简单等特点。鼠齿盘制造精度要求高,它分度的度数只能是鼠齿盘齿数的整数倍。这种工作台不仅可与数控机床做成一体,也可作为附件使用,广泛应用于各种加工和测量装置中。

2.数控回转工作台

为了实现任意角度分度,并在切削过程中能够实现回转,采用了数控回转工作台。它主要用于数控镗铣床。从外形上看与分度工作台没有多大差别,但在内部结构和功能上则有较大的不同。

如图2-33所示,由传动系统、间隙消除装置及蜗轮夹紧装置等组成了数控回转工作台。它由伺服电动机1驱动,经齿轮2和4带动蜗杆

9、蜗轮10使工作台回转。通过调整偏心环3来消除齿轮2和4啮合侧隙。为了消除轴与套的配合间

《数控加工工艺及设备》教案

隙,通过楔形拉紧圆柱销5(A—A剖面)来连接齿轮4与蜗杆9。蜗杆9采用螺距渐厚蜗杆,蜗杆齿厚从头到尾逐渐增厚,这种蜗杆的左右两侧具有不同的导程。但由于同一侧的螺距是相同的,所以仍能保持正确的啮合。通过移动蜗杆的轴向位置来调节间隙,实现无间隙传动。

当工作台静止时,必须处于锁紧状态。为此,在蜗轮底部装有八对夹紧块12及13,并在底座上均布着八个小液压缸14,夹紧液压缸14的上腔通入压力油,使活塞向下运动,通过钢球17撑开夹紧块12及13,将蜗轮夹紧。当工作台需要回转时,数控系统发出指令,夹紧液压缸14上腔的油流回油箱,钢球17在弹簧16的作用下向上抬起,夹紧块12和13松开蜗轮,这时蜗轮和回转工作台可按照控制系统的指令作回转运动。

数控回转工作台的导轨面由大型滚柱轴承支承,并由圆锥滚子轴承及双列圆柱滚子轴承保持回转中心的准确。为消除累积误差,数控回转工作台设有零点,当它作回零运动时首先由安装在蜗轮上的挡块碰撞限位开关,使工作台减速,然后通过感应块和无触点开关的作用使工作台准确停在零点位置上。分度角度位置通常由角度反馈元件圆光栅18反馈给数控系统。

数控回转工作台可作任意角度的回转和分度,因此能够达到较高的分度精度。

第五节

数控机床进给传动系统应用

一、MJ-50数控车床进给传动系统

(一)特点

数控车床的进给运动是把伺服电动机的旋转运动转化为刀架和滑板X、Z轴的直线运动,而且对移动精度要求很高,X轴最小移动量为0.0005mm(直径编程),Z轴最小移动量为0.00lmm。采用滚珠丝杠螺母传动副,可以有效地提高进给系统的灵敏度、定位精度并防止爬行。另外,消除丝杠螺母副的配合间隙和丝杠两端的轴承间隙,也有利于提高传动精度。

数控车床的进给系统采用伺服电动机驱动,经同步带轮传动到滚珠丝杠上,滚珠丝杠螺母带动刀架或滑板移动,所以刀架或滑板的快速移动和进给运动均为同一传动路线。

(二)X轴进给系统传动装置

图2-34是MJ-50数控车床 X轴进给传动装置的结构简图。如图a所示,功率为0.9kw的AC伺服电动机15经20:24同步带轮 14和 10以及同步带 12带动滚珠丝杠6回转,滚珠丝杠螺距为6mm,其上螺母7带动刀架21(图2-34b所示)沿滑板1的导轨移动,实现X轴的进给运动。电动机轴与同步带轮14用键13连接。滚珠丝杠有前后两个支承。前支承3由三个角接触球轴承组成,其中一个轴承大口向前两个轴承大口向后,分别承受双向的轴向载荷。前支承的轴承由螺母2进行预紧。其后支承9为一对角接触球轴承,轴承大口相背放置,由螺母11进行预紧。这种丝杠两端固定的支承形式,其结构和工艺都较复杂,可以

《数控加工工艺及设备》教案

保证和提高丝杠的轴向刚度。脉冲编码器16安装在伺服电动机的尾部。图中5和8是缓冲块,在出现意外碰撞时起保护作用。

A-A剖面图表示滚珠丝杠前支承的轴承座 4用螺钉20固定在滑板上。滑板导轨如B-B剖视图所示为矩形导轨,镶条17、18、19用来调整刀架与滑板导轨的间隙。

图2-34b中22为导轨护板,26、27为机床参考点的限位开关和撞块。镶条23、24、25用于调整滑板与床身导轨的间隙。

因为滑板顶面导轨与水平面倾斜30°,回转刀架的自身重力使其下滑,滚珠丝杠和螺母不能以自锁阻止其下滑,故机床依靠AC伺服电动机的电磁制动来实现自锁。

二、JCS-018A加工中心机床进给传动系统及传动装置

JCS-018A机床的 X、Y、Z三个轴各有一套进给系统,分别由三台功率为1.4kw的脉宽调速直流伺服电动机直接带动滚珠丝杠旋转。三个轴的进给速度均为1~400mm/min,快移速度X、Y轴为14 m/min,Z轴为10 m/min。为了保证各轴的进给传动系统有较高的传动精度,电动机轴和滚珠丝杠之间均采用了锥环无键连接和高精度十字联轴器的连接结构。以Z轴进给装置为例,分析电动机轴与滚珠丝杠之间的连接结构。图2-35为Z轴进给装置中电动机与丝杠连接的局部视图。如图中所示,l为直流伺服电动机,2为电动机轴,7为滚珠丝杠。电动机轴与轴套3之间采用的锥环4无键连接结构。锥面相互配合的内外锥环,当拧紧螺钉时,外锥环向外膨胀,内锥环受力后向电动机轴收缩,从而使电动机轮与轴套连接在一起。这种连接方式无需在被连接件上开键槽,而且两锥环的内外圆锥面压紧后,可以实现无间隙传动,而且对中性较好,传递动力平稳,加工工艺性好,安装与维修方便。选用锥环对数的多少,取决于所传递扭矩的大小。

高精度十字联轴器由三件组成,其中与电动机轴连接的轴套3的端面有与中心对称的凸键,与丝杠连接的轴套6上开有与中心对称的端面键槽,中间一件联轴节5的两端面上分别有与中心对称且互相垂直的凸键和键槽,它们分别与件3和件6相配合,用来传递运动和扭矩。为了保证十字联轴节的传动精度,在装配时凸键与凹键的径向配合面要经过配研,以便消除反向间隙和传递动力平稳。由于主轴箱垂直运动,为防止滚珠丝杠因不能自锁而使主轴箱下滑,所以Z轴电动机带有制动器。

第六节

自动换刀装置自动换刀装置应当满足的基本要求: 1.刀具换刀时间短且换刀可靠; 2.刀具重复定位精度高;

《数控加工工艺及设备》教案

3.足够的刀具储存量; 4.刀库占地面积小。

一、自动换刀装置的形式

根据其组成结构,自动换刀装置可分为回转刀架式、转塔式、带刀库式三种形式,下面作分别介绍。

(一)回转刀架自动换刀装置

数控机床上使用的回转刀架是一种最简单的自动换刀装置。根据不同的适用对象,刀架可设计为四方形、六角形或其它形式。回转刀架可分别安装四把、六把以及更多的刀具,并按数控装置发出的脉冲指令回转、换刀。

CK7815型数控车床采用 BA200L刀架,最多可以有 24个分度位置,机床可选用 12位、8位刀盘。其工作循环是:刀架接收数控装置的指令→松开→转到指令要求的位置→夹紧→发出转位结束的信号。按照这个规律就可以分析各种结构刀架的工作过程。

图2-36中,当电动机11通电时,尾部的电磁制动器30ms以后松开,电动机开始转动,通过齿轮10、9、8带动蜗杆7旋转,从而使蜗轮5转动。蜗轮内孔有螺纹,与轴6上的螺纹配合。这时轴6不能回转,当蜗轮转动时,使得轴6沿轴向向左移动,因为刀架1与轴

6、活动鼠牙盘2是固定在一起的,所以刀盘和鼠牙盘也向左移动,鼠牙盘2和3脱开。在轴6上有两个对称槽,内装滑块4,在鼠牙盘脱开后,蜗轮转到一定角度与蜗轮固定在一起的圆盘14上的凸起便碰到滑块4,蜗轮便通过轴6上的螺纹使轴6右移,鼠牙盘2、3结合定位,电磁制动器通电,维持电动机轴上的反转力矩,以保证鼠牙盘之间有一定的压紧力。最后电动机断电,同时轴6右端的小轴13压下微动开关12,发出转位结束信号。刀架的选位由刷形选位器进行选位。松开、夹紧位置检测则由微动开关12实行。整个刀架是一个纯电器系统,结构简单。

(二)转塔式自动换刀装置

在带有旋转刀具的数控机床中,转塔刀架上装有主轴头,主轴头通常有卧式和立式两种,常用转塔的转位来更换主轴头以实现自动换刀,它是一种比较简单的换刀方式,各个主轴头上预先装有各工序加工所需要的旋转刀具,当收到换刀指令时,各主轴头依次的转到加工位置,并接通主运动使相应的主轴带动刀具旋转,而其它处于不加工位置上的主轴都与主运动脱开。如图2-37数控钻镗铣床,它是装有8把刀具且绕水平轴转位的转塔式自动换刀装置。

(三)带刀库的自动换刀装置

带刀库的自动换刀系统由刀库和刀具换刀机构组成,目前这种换刀方法在数控机床上的应用最为广泛。

刀具的交换方式通常分为机械手交换刀具和由刀库与机床主轴的相对运动实现刀具交换即无机械手交换刀具两种。刀具的交换方式及它们的具体结构直接影响机床的工作效率和可靠性。

1.无机械手交换刀具方式

《数控加工工艺及设备》教案

无机械手的换刀系统一般是采用把刀库放在主轴箱可以运动到的位置,或整个刀库或某一刀位能移动到主轴箱可以到达的位置,同时,刀库中刀具的存放方向一般与主轴上的装刀方向一致。换刀时,由主轴运动到刀库上的换刀位置,利用主轴直接取走或放回刀具。

2.带机械手交换刀具方式

采用机械手进行刀具交换方式在加工中心中应用最为广泛。机械手是当主轴上的刀具完成一个工步后,把这一工步的刀具送回刀库,并把下一工步所需要的刀具从刀库中取出来装入主轴继续进行加工的功能部件。

图2-39a是单臂单爪回转式机械手,带一个夹爪的手臂可自由回转,装刀卸刀均靠这个夹爪进行,因此,换刀时间较长。

图2-39b是单臂双爪摆动式机械手,手臂上的一个夹爪只完成从主轴上取下“旧刀”送回刀库的任务,而另一个夹爪则执行由刀库取出“新刀”送到主轴的任务,其换刀时间较单爪回转式机械手要短。

图2-39c是双臂回转式机械手,手臂两端各有一个夹爪,能够同时完成抓刀→拔刀→回转→插刀→返回等一系列动作。为了防止刀具掉落,各机械手的活动爪都带有自锁机构。由于双臂回转机械手的动作比较简单,而且能够同时抓取和装卸机床主轴和刀库中的刀具,因此换刀时间可进一步缩短,是最常用的一种形式。图右边的机械手在抓取刀具或将刀具送入刀库主轴时,其两臂可伸缩。

图2-39d是双机械手,相当于两个单臂单爪机械手,它们相互配合完成自动换刀动作。

图2-39e是双臂往复交叉式机械手。这种机械手的两臂可以进行往复运动,并交叉成一定的角度。一个手臂从主轴上取下“旧刀”送回刀库,另一个手臂由刀库中取出“新刀”装入主轴,整个机械手可沿某导轨直线移动或绕某个转轴回转,以实现刀库与主轴间的换刀动作。

图2-39f是双臂端面夹紧式机械手。它的特点是靠夹紧刀柄的两个端面来抓取刀具,而其它机械手均靠夹紧刀柄的外圆表面抓取刀具。

二、刀库

刀库是用来储存加工刀具及辅助工具的,是自动换刀装置中最主要的部件之一。

1.刀库的类型

按刀库的结构形式可分为圆盘式刀库、链式刀库和箱型式刀库。圆盘式刀库如图2-40,结构简单,应用也较多。但因刀具采用单环排列,空间利用率低,因此出现了将刀具在盘中采用双环或多环排列的形式,以增加空间利用率。但这样使刀库的外径扩大,转动惯量也增大,选刀时间也长。所以,圆盘式刀库一般用于刀具容量较小的刀库。链式刀库如图2-41所示,适用于刀库容量较大的场合。链的形状可以根据机床的布局配置,也可将换刀位突出以利于换刀。当需要增加链式刀库的刀具容量时,只需增加链条的长度,在一定范围内,无需变更刀库的线速度及惯量。一般刀具数量30~120把时都采用链式刀库。箱型式刀库的结构

《数控加工工艺及设备》教案

也比较简单,有箱型和线型两种,如图2-42,图2-43。箱型刀库一般容量比较大,刀库的空间利用率较高,换刀时间较长,往往用于加工单元式加工中心。线型刀库容量小,一般在十几把刀左右,多用于自动换刀的数控车床,数控钻床也有采用。

另外,按设置部位的不同刀库可以分为顶置式、侧置式、悬挂式和落地式等

多种类型。按交换刀具还是交换主轴,刀库可分为普通刀库(简称刀库)和主轴箱刀库。

2.刀库的容量

确定刀库的容量首先要考虑加工工艺的需要。对若干种工件进行分析表明,各种加工所必需的刀具数量是:4把铣刀可完成工件95%左右的铣削工艺,10把孔加工刀具可完成70%的钻削工艺,因此,14把刀的容量就可完成70%以上工件的钻铣工艺。如果从完成工件的全部加工所需的刀具数目统计,则80%的工件(中等尺寸,复杂程度一般)完成全部加工任务所需的刀具数为40种以下。所以对于一般的中、小型立式加工中心,配有14~30把刀具的刀库就能够满足70%~95%工件的加工需要。

3.刀库的选刀方式

目前,加工中心刀库使用的选刀方式有顺序选刀和任意选刀两种

顺序选刀是在加工之前,将加工零件所需刀具按照工艺要求依次插入刀库的刀套中,顺序不能有差错。加工时按顺序调刀。加工不同的工件时必须重新调整刀库中的刀具顺序,因而操作十分繁琐,而且加工同一工件中各工序的刀具不能重复使用。这样就会增加刀具的数量,而且由于刀具的尺寸误差也容易造成加工精度的不稳定。其优点是刀库的驱动和控制都比较简单。因此这种方式适合加工批量较大、工件品种数量较少的中、小型自动换刀装置。

随着数控系统的发展,目前绝大多数的数控系统都具有刀具任选功能。任选刀具的换刀方式可以有刀套编码、刀具编码和记忆等方式。刀具编码或刀套编码都需要在刀具或刀套安装用于识别的编码条,如图2-44,一般都是根据二进制编码原理进行编码。刀具编码选刀方式采用了一种特殊的刀柄结构,并对每把刀具编码。由于每把刀具都具有自己的代码,因而刀具可以放在刀库中的任何一个刀座内,这样不仅刀库中的刀具可以在不同的工序中多次重复使用,而且换下的刀具也不用放回原来的刀座,这对装刀和选刀都十分有利,刀库的容量也可以相应地减少。而且还可以避免由于刀具顺序的差错所造成的事故。但是由于每把刀具上都带有专用的编码系统,使刀具的长度加长,制造困难,刀具刚度降低,同时使得刀库和机械手的结构也变得复杂。对于刀套

二、刀库

刀库是用来储存加工刀具及辅助工具的,是自动换刀装置中最主要的部件之一。

1.刀库的类型

《数控加工工艺及设备》教案

按刀库的结构形式可分为圆盘式刀库、链式刀库和箱型式刀库。圆盘式刀库如图2-40,结构简单,应用也较多。但因刀具采用单环排列,空间利用率低,因此出现了将刀具在盘中采用双环或多环排列的形式,以增加空间利用率。但这样使刀库的外径扩大,转动惯量也增大,选刀时间也长。所以,圆盘式刀库一般用于刀具容量较小的刀库。链式刀库如图2-41所示,适用于刀库容量较大的场合。链的形状可以根据机床的布局配置,也可将换刀位突出以利于换刀。当需要增加链式刀库的刀具容量时,只需增加链条的长度,在一定范围内,无需变更刀库的线速度及惯量。一般刀具数量30~120把时都采用链式刀库。箱型式刀库的结构也比较简单,有箱型和线型两种,如图2-42,图2-43。箱型刀库一般容量比较大,刀库的空间利用率较高,换刀时间较长,往往用于加工单元式加工中心。线型刀库容量小,一般在十几把刀左右,多用于自动换刀的数控车床,数控钻床也有采用。

另外,按设置部位的不同刀库可以分为顶置式、侧置式、悬挂式和落地式等

多种类型。按交换刀具还是交换主轴,刀库可分为普通刀库(简称刀库)和主轴箱刀库。

2.刀库的容量

确定刀库的容量首先要考虑加工工艺的需要。对若干种工件进行分析表明,各种加工所必需的刀具数量是:4把铣刀可完成工件95%左右的铣削工艺,10把孔加工刀具可完成70%的钻削工艺,因此,14把刀的容量就可完成70%以上工件的钻铣工艺。如果从完成工件的全部加工所需的刀具数目统计,则80%的工件(中等尺寸,复杂程度一般)完成全部加工任务所需的刀具数为40种以下。所以对于一般的中、小型立式加工中心,配有14~30把刀具的刀库就能够满足70%~95%工件的加工需要。

3.刀库的选刀方式

目前,加工中心刀库使用的选刀方式有顺序选刀和任意选刀两种

顺序选刀是在加工之前,将加工零件所需刀具按照工艺要求依次插入刀库的刀套中,顺序不能有差错。加工时按顺序调刀。加工不同的工件时必须重新调整刀库中的刀具顺序,因而操作十分繁琐,而且加工同一工件中各工序的刀具不能重复使用。这样就会增加刀具的数量,而且由于刀具的尺寸误差也容易造成加工精度的不稳定。其优点是刀库的驱动和控制都比较简单。因此这种方式适合加工批量较大、工件品种数量较少的中、小型自动换刀装置。

随着数控系统的发展,目前绝大多数的数控系统都具有刀具任选功能。任选刀具的换刀方式可以有刀套编码、刀具编码和记忆等方式。刀具编码或刀套编码都需要在刀具或刀套安装用于识别的编码条,如图2-44,一般都是根据二进制编码原理进行编码。刀具编码选刀方式采用了一种特殊的刀柄结构,并对每把刀具编码。由于每把刀具都具有自己的代码,因而刀具可以放在刀库中的任何一个刀座内,这样不仅刀库中的刀具可以在不同的工序中多次重复使用,而且换下的刀具也不用放回原来的刀座,这对装刀和选刀都十分有利,刀库的容量也可以相应地减少。而且还可以避免由于刀具顺序的差错所造成的事故。但是由于每把刀具

《数控加工工艺及设备》教案

上都带有专用的编码系统,使刀具的长度加长,制造困难,刀具刚度降低,同时使得刀库和机械手的结构也变得复杂。对于刀套编码的方式,一把刀具只对应一个刀套,从一个刀套中取出的刀具必须放回同一刀套中,取送刀具十分麻烦,换刀时间长。因此,无论是刀具编码还是刀套编码都给换刀系统带来麻烦。目前在加工中心上绝大多数都使用记忆式的任选换刀方式。这种方式是第一次给刀库装刀时,告诉控制系统刀库中的每个刀套号和该刀套上的刀具号,刀具在使用中不一定被送还到原来的刀套上,但是控制系统仍能记住该刀具号所在的新刀套号。这种方式有利于缩短换刀、选刀时间。由于这种方式经常改变刀具号与刀套的对应关系,所以在重新启动机床时必须使刀库回零,校验一下显示器上显示的内容与实际刀具的情况。

刀库选刀方式一般采用就近移动原则,即无论采取哪种选刀方式,在根据程序指令把下一工序要用的刀具移到换刀位置时,都要向距离换刀最近的方向移动,以节省选刀时间。

三、实例

这是JCS-018A加工中心的自动换刀装置。1.自动换刀工作过程

(1)刀套下转90°

本机床的刀库位于立柱左侧,刀具在刀库中的安装方向与主轴垂直,如图2-45所示。换刀之前,刀库2转动将待换刀具5送到换刀位置,之后把带有刀具5的刀套4向下翻转90°,使刀具轴线与主轴轴线平行。

(2)机械手转75°

如K向视图所示,在机床切削加工时,机械手1的手臂与主轴中心到换刀位置的刀具中心线的连线成75°,该位置为机械手的原始位置。机械手换刀的第一个动作是顺时针转75°,两手爪分别抓住刀库上和主轴3上的刀柄。

(3)刀具松开

机械手抓住主轴刀具的刀柄后,刀具的自动夹紧机构松开刀具。

(4)机械手拔刀

机械手下降,同时拔出两把刀具。

(5)交换两刀具位置

机械手带着两把刀具逆时针转180°(从K向观察),使主轴刀具与刀库刀具交换位置。

(6)机械手插刀

机械手上升,分别把刀具插入主轴锥孔和刀套中。(7)刀具夹紧

刀具插入主轴锥孔后,刀具的自动夹紧机构夹紧刀具。(8)液压缸复位

液压缸复位驱动机械手逆时针转180°的液压缸复位,机械手无动作。

(9)机械手反转75°

机械手反转75°,回到原始位置。

(10)刀套上转 90°

刀套带着刀具向上翻转90°,为下一次选刀做准备。2.机械手传动过程

本机床上使用的换刀机械手为双臂回转式机械手。图2-46为机械手传动结构示意图,它是目前加工中心上用得较多的一种。这种机械手的拔刀、插刀动作大都由油缸完成。根据结构要求可以采取“油缸动、活塞固定”或“活塞动、油缸

《数控加工工艺及设备》教案

固定”的结构形式。它的手臂的回转动作通过活塞带动齿条齿轮传动来实现,并且活塞的可调行程来保证机械手臂的不同回转角度。

3.刀库结构

图2-47是本机床盘式刀库的结构简图。如图a所示,当数控系统发出换刀指令后,直流伺服电动机1接通,其运动经过十字联轴节

2、蜗杆

4、蜗轮3传到如图b所示的刀盘14,刀盘带动其上面的16个刀套13转动,完成选刀的工作。每个刀套尾部有一个滚子11,当待换刀具转到换刀位置时,滚子11进入拨叉7的槽内。同时气缸5的下腔通压缩空气(如图a所示),活塞杆6带动拨叉7上升,放开位置开关9,用以断开相关的电路,防止刀库、主轴等有误动作。如图 b所示,拨叉 7在上升的过程中,带动刀套绕着销轴 12逆时针向下翻转 90°,从而使刀具轴线与主轴轴线平行。

刀套下转90°后,拨叉7上升到终点,压住定位开关10,发出信号使机械手抓刀。通过图a中的螺杆8,可以调整拨叉的行程,而拨叉的行程又决定刀具轴线相对主轴轴线的位置。

第七节

辅助装置

一、数控机床的液压和气动系统

1.数控机床中的液压和气动装置功能

液压和气动装置在数控机床中一般完成如下辅助功能

(1)自动换刀所需的动作。如机械手的伸、缩、回转和摆动以及刀具的松开和拉紧动作。

(2)主轴的自动松开、夹紧。

(3)机床运动部件的制动和离合器的控制,齿轮的拨叉挂档等。(4)机床的润滑、冷却、防护罩、门的自动开关。(5)工作台的松开夹紧,交换工作台的自动交换动作等。

(6)机床运动部件的平衡。如机床主轴箱的重力平衡、刀库机械手的平衡等。

2.数控机床中的液压装置

图2-48所示为数控车床液压系统原理图。液压系统采用单向变量液压泵,系统压力调整至4MPa,由压力表显示。泵出口的压力油经过单向阀进入控制油路。机床的卡盘夹紧与松开、夹盘夹紧力的高低压转换、回转刀架的松开与夹紧、刀架刀盘的正转反转、尾座套筒的伸出与退回动作都是由液压系统驱动的,数控系统的PC控制液压系统中各电磁阀电磁铁的动作。

2位四通电磁阀1控制主轴卡盘的夹紧与松开,电磁阀2控制卡盘的高压夹紧与低压夹紧的转换。当卡盘处于正卡(也称外卡)且在高压夹紧状态下,夹紧力的大小由减压阀6来调整,由压力表12显示卡盘压力。系统压力油经减压阀6→电磁阀2(左位)→电磁阀1(左位)→液压缸右腔,活塞杆左移,卡盘夹紧。

《数控加工工艺及设备》教案

这时液压缸左腔的油液经阀1(左位)直接回油箱。反之,系统压力油经减压阀6→电磁阀2(左位)→电磁阀1(右位)→液压缸左腔,活塞杆右移,卡盘松开。这时液压缸右腔的油液经阀1(右位)直接回油箱。当卡盘处于正卡且在低压夹紧状态下,夹紧力的大小由减压阀7来调整。系统压力油经减压阀7→电磁阀2(右位)→电磁阀1(左位)→液压缸右腔,卡盘夹紧。反之,系统压力油经减压阀7→电磁2(右位)→电磁阀1(右位)→液压缸左腔,卡盘松开。也可对刀架转位、刀盘松开夹紧及尾座套筒动作的控制进行分析。

二、排屑装置

1.排屑装置在数控机床中的作用

切屑占用加工区域,如果不及时清除必然会覆盖或缠绕在工件和刀具上,使自动加工无法继续进行。此外,炽热的切屑向机床或工件散发热量,使机床或工件产生变形,影响加工的精度。因此迅速、有效地排除切屑对数控机床加工来说十分重要,而排屑装置正是完成该工作的必备附属装置。排屑装置的主要作用是将切屑从加工区域排出到数控机床之外。

2.排屑装置的种类

(1)平板链式排屑装置,图2-49a。该装置以滚动链轮牵引钢质平板链带在封闭箱中运转,加工中的切屑落到链带上而被带出机床。这种装置能排除各种形状的切屑,适应性强,各类机床都能采用。在车床上使用时多与机床的冷却液箱合为一体,以简化机床结构。

(2)刮板式排屑装置,图2-49b。该装置的传动原理与平板链式的基本相同,只是链板不同,它的链板带有刮板。这种装置常用于输送各种材料的短小切屑,排屑能力较强。但因负载大而需采用较大功率的驱动电动机。

(3)螺旋式排屑装置,图2-49c。该装置采用电动机,经减速装置驱动安装在沟槽中的长螺旋杆。螺旋杆转动时,沟槽中的切屑即被螺旋杆推动而连续向前运动,最终排入切屑收集箱中。螺旋式排屑装置占用空间小,适于安装在机床与立柱间空隙狭小的位置上,而且它结构简单,排屑性能良好。但这种装置只适于沿水平或小角度倾斜直线方向排运切屑,不能大角度倾斜、提升或转向排屑。

《数控加工工艺及设备》教案

编码的方式,一把刀具只对应一

《数控加工工艺及设备》教案

个刀套,从一个刀套中取出的刀具必须放回同一刀套中,取送刀具十分麻烦,换刀时间长。因此,无论是刀具编码还是刀套编码都给换刀系统带来麻烦。目前在加工中心上绝大多数都使用记忆式的任选换刀方式。这种方式是第一次给刀库装刀时,告诉控制系统刀库中的每个刀套号和该刀套上的刀具号,刀具在使用中不一定被送还到原来的刀套上,但是控制系统仍能记住该刀具号所在的新刀套号。这种方式有利于缩短换刀、选刀时间。由于这种方式经常改变刀具号与刀套的对应关系,所以在重新启动机床时必须使刀库回零,校验一下显示器上显示的内容与实际刀具的情况。

刀库选刀方式一般采用就近移动原则,即无论采取哪种选刀方式,在根据程序指令把下一工序要用的刀具移到换刀位置时,都要向距离换刀最近的方向移动,以节省选刀时间。

三、实例

这是JCS-018A加工中心的自动换刀装置。1.自动换刀工作过程

(1)刀套下转90°

本机床的刀库位于立柱左侧,刀具在刀库中的安装方向与主轴垂直,如图2-45所示。换刀之前,刀库2转动将待换刀具5送到换刀位置,之后把带有刀具5的刀套4向下翻转90°,使刀具轴线与主轴轴线平行。

(2)机械手转75°

如K向视图所示,在机床切削加工时,机械手1的手臂与主轴中心到换刀位置的刀具中心线的连线成75°,该位置为机械手的原始位置。机械手换刀的第一个动作是顺时针转75°,两手爪分别抓住刀库上和主轴3上的刀柄。

(3)刀具松开

机械手抓住主轴刀具的刀柄后,刀具的自动夹紧机构松开刀具。

(4)机械手拔刀

机械手下降,同时拔出两把刀具。

(5)交换两刀具位置

机械手带着两把刀具逆时针转180°(从K向观察),使主轴刀具与刀库刀具交换位置。

(6)机械手插刀

机械手上升,分别把刀具插入主轴锥孔和刀套中。(7)刀具夹紧

刀具插入主轴锥孔后,刀具的自动夹紧机构夹紧刀具。(8)液压缸复位

液压缸复位驱动机械手逆时针转180°的液压缸复位,机

《数控加工工艺及设备》教案

械手无动作。

(9)机械手反转75°

机械手反转75°,回到原始位置。

(10)刀套上转 90°

刀套带着刀具向上翻转90°,为下一次选刀做准备。2.机械手传动过程

本机床上使用的换刀机械手为双臂回转式机械手。图2-46为机械手传动结构示意图,它是目前加工中心上用得较多的一种。这种机械手的拔刀、插刀动作大都由油缸完成。根据结构要求可以采取“油缸动、活塞固定”或“活塞动、油缸固定”的结构形式。它的手臂的回转动作通过活塞带动齿条齿轮传动来实现,并且活塞的可调行程来保证机械手臂的不同回转角度。

3.刀库结构

图2-47是本机床盘式刀库的结构简图。如图a所示,当数控系统发出换刀指令后,直流伺服电动机1接通,其运动经过十字联轴节

2、蜗杆

4、蜗轮3传到如图b所示的刀盘14,刀盘带动其上面的16个刀套13转动,完成选刀的工作。每个刀套尾部有一个滚子11,当待换刀具转到换刀位置时,滚子11进入拨叉7的槽内。同时气缸5的下腔通压缩空气(如图a所示),活塞杆6带动拨叉7上升,放开位置开关9,用以断开相关的电路,防止刀库、主轴等有误动作。如图 b所示,拨叉 7在上升的过程中,带动刀套绕着销轴 12逆时针向下翻转 90°,从而使刀具轴线与主轴轴线平行。

刀套下转90°后,拨叉7上升到终点,压住定位开关10,发出信号使机械手抓刀。通过图a中的螺杆8,可以调整拨叉的行程,而拨叉的行程又决定刀具轴线相对主轴轴线的位置。

《数控加工工艺及设备》教案

《数控加工工艺及设备》教案

哦哦

《数控加工工艺及设备》教案

《数控加工工艺及设备》教案

《数控加工工艺及设备》教案

《数控加工工艺及设备》教案

《数控加工工艺及设备》教案

《数控加工工艺及设备》教案

《数控加工工艺及设备》教案

《数控加工工艺及设备》教案

《数控加工工艺及设备》教案

《数控加工工艺及设备》教案

第四篇:第12章典型零件加工工艺作业

第12章典型零件加工工艺作业

1.顶尖在轴类零件加工中起什么作用?在什么情况下需进行顶尖孔的修答:轴类零件最常用两中心孔为定位基准,既符合基准重合的原则,并能够研?有哪些修研方法?

在一次装夹中加工出全部外圆及有关端面,又符合基准统一的原则,所以顶尖在轴类零件加工中上重要的定位元件,起主要起定位作用。

当加工高精度轴类零件时,中心孔的形状误差会影响到加工表面的加工精度,另一方面,当零件进行热处理后,中心孔表面会出现一定的变形,因此,要在各个加工阶段对中心孔进行修研。

修研的方法有三种:用硬质合金顶尖修研;用油石、橡胶砂轮或铸铁顶尖修研;用中心孔磨床磨削。

2.主轴的机械加工工艺路线大致过程是怎样安排的?

答:机床主轴一般是结构复杂,精度要求较高,其机械加工工艺路线为:备料-正火-车端面和钻中心孔-粗车各外圆-调质-半精车-精车-表面淬火-粗、精磨外圆表面-磨内锥孔等几个主要工序。

3.分析主轴加工工艺过程中如何体现基准统一、基准重合、互为基准的原答:主轴在加工过程中,各主要加工表面的精加工均采用锥心轴或锥堵等代则?它们在保证主轴的精度要求中都起了什么重要作用?

替内孔轴线,采用两顶尖支承定位。一般在精加工完两端的锥孔后,两端用锥堵中心孔定位作为定位基准,这样充分体现了基准统一和基准重合的原则; 而在精加工两端锥堵时,又是以轴上的精加工的主要加工外圆作为基准的,体现了互为基准的原则。通过采用这些加工措施,充分保证了主轴的轴颈相对于支承轴颈的同轴度和端面对轴心线的垂直度等相互位置精度。

4.精磨主轴内锥孔的工序是怎样进行?

答:主轴锥孔对主轴支承轴颈的径向跳动,是机床的主要精度指标,因而锥孔的磨削是主轴加工的关键工序之一。在精磨主轴内锥孔时在专用的磨主轴锥孔夹具上进行。如图1所示。

前后支架和底座固定在一起前支架由带锥度的巴氏合金衬套支撑主轴工件前锥轴颈,后支架由镶有尼龙的顶块支撑工件。必须保证工件轴线与砂轮轴线等高,以免将锥孔母线磨成了曲线。浮动夹头的锥柄装在磨床主轴的锥孔内,工件尾端夹于卡头弹性套内,用弹簧把弹性套连同工件向左拉,并通过钢球压向镶有硬质合金的锥柄端面以限制工件的轴向窜动。

图1 磨主轴锥孔夹具

1一弹性套;2一钢球;3一弹簧;4一浮动夹头:5一底座;6一支承架

5.箱体零件的结构特点及主要技术要求有哪些?这些要求对保证箱体零件答:箱体是机器中箱体部件的基础零件,由它将有关轴、套和齿轮等零件组在机器中的作用和机器的性能有何影响?

装在一起,使其保持正确的相互位置关系,彼此按照一定的传动关系协调运动。箱体零件的结构特点是:构造比较复杂,箱壁较薄且不均匀,内部呈腔形,在箱壁上既有许多精度较高的轴承支承孔和平面,也有许多精度较低的紧固孔。箱体类零件需要加工的部位较多,加工的难度也较大。其主要技术要求有:(1)支承孔的精度和表面粗糙度。箱体上轴承支承孔应有较高的尺寸精度和形状精度以及较小的表面粗糙度值,否则,将影响轴承外圈与箱体上孔的配合精度,使轴的旋转精度降低,若是机床主轴支承孔,还会影响其加工精度。

(2)支承孔之间的孔距尺寸精度及相互位置精度。箱体上有齿轮啮合关系的相邻孔之间,应有一定的孔距尺寸精度及平行度的要求,否则会使齿轮的啮合精度降低,工作时产生噪声和振动,并降低齿轮使用寿命,箱体上同轴线孔应有一定的同轴度,否则不仅给轴的装配带来困难,还会使轴承磨损加剧,温度升高,影响机器的工作精度和正常运转。

(3)主要平面精度和表面粗糙度。箱体的主要平面是装配基准面和加工中的定位基准面,它们应有较高的平面度和较小的表面粗造度数值,否则将影响箱体与机器总装时的相对位置和接触刚度以及加工中的定位精度。

(4)支承孔与主要平面的尺寸精度和相互位置精度。箱体上支承孔对装配基面要有一定的尺寸精度和平行度要求,对端面要有一定的垂直度要求。如果车床床头箱主轴孔轴心线对装配基面在水平面内有偏斜,则加工时会使工件产生锥度。

只有满足了这些技术要求才能保证箱体上孔的配合精度、相对位置精度和接6.孔系加工方法有哪几种?举例说明各加工方法的特点及其适用性。答:孔系是指一系列具有相互位置精度要求的孔.箱体零件的孔系主要有平行(1)平行孔系的加工。平行孔系的主要技术要求是各平行孔轴心线之间及中心线与基准面之间的尺寸精度和相互位置精度。加工中常用找正法,镗模法和坐标法。找正法是在通用机床上加工箱体类零件使用的方法,可分为划线找正法,心轴块规找正法和样板找正法,适用于单件小批量生产。用样板找正法时,样板上孔系的孔距精度比工件孔系的孔距精度高,孔径比工件的孔径大。将样板装在工件上,用装在机床主轴上的千分表定心器,按样板逐一找正机床主轴的位置进行加工。该方法找正快,不易出错,工艺装备简单,孔距精度可达上±0.05 mm,常用于加工较大工件。

用镗模法加工孔系时,工件装夹在镗模上,镗杆由模板上的导套支承。加触刚度,使轴装配较为容易。

系、同轴系和交叉孔系。

工时,镗杆与机床主轴浮动连接。影响孔系的加工精度主要是镗模的精度。用镗模法孔距精度较高,这种方法定位夹紧迅速,不需找正,生产效率高,普遍应用于成批和大量生产中。

坐标法镗孔是在普通镗床、立式铣床和坐标镗床上,借助测量装置。按孔系间相互位置的水平和垂直坐标尺寸,调整主轴的位置,来保证孔距精度的镗孔方法。孔距精度取决于主轴沿坐标轴移动的精度。可用于加工孔距精度要求特别高的孔系,如镗模、精密机床箱体等零件的孔系。

(2)同轴孔系加工。同轴孔系的主要技术要求是孔的同轴度。保证孔的同轴度有如下方法:1)镗模法;在成批生产中,采用镗模加工,其同轴度由镗模保证。2)利用已加工过的孔作支承导向法;这种方法是在前壁上加工完毕的孔内装入导向套,支承和引导镗杆加工后壁上的孔,3)利用镗床后立柱上的导向套支承镗杆法;用这种方法加工时镗杆为两端支承,刚度好,但后立柱导套位置的调整复杂,且需较长的镗杆。该方法适用于大型箱体的孔系加工。4)采用调头镗法。当箱体箱壁距离较大时,可采用调头锤法。即工件一次安装完毕,镗出一端孔后,将工件台回转1800,再镗另一端的同轴线孔。这种加工方法锤杆悬伸短,刚性好,但调整工作台的回转时,保证其回转精度较麻烦。(3)交叉孔系的加工。交叉孔系的主要技术要求是各孔的垂直度,主要采用机床本身的回转精度和光学瞄准器定位等方法加工。

7.举例说明安排箱体加工顺序时,一般应遵循哪些主要原则?

答:为了便于安装,箱体一般采用分离式的。分离式箱体的主要加工部位有:轴承支承孔,接合面、端面及底面等。

整个加工过程分为两个大的阶段,先对箱盖和底座分别进行加工,然后对装配好的箱体进行整体加工。第一阶段主要完成平面,连接孔、螺纹孔和定位孔的加工,为箱体的对合装配做准备。第二阶段为在对合装配后的箱体上加工轴承孔及端面,在两个阶段之间安排钳工工序,将箱盖与底座合成箱体,用锥销定位,使其保持一定的相互位置,以保证轴承孔的加工精度和拆装后的精度。这样安排符合箱体加工中的先加工平面、后加工支承孔的原则,也符合粗加工与精加工分开的原则,可以保证箱体轴承孔的加工精底和轴承孔的中心高等尺寸达到要求。

为了保证达到这些要求,加工底座的结合面时,应以底面为精基准,这样可使结合面加工时的定位基准与设计基准重台,有利于保证结合面至底面的尺寸精度和位置精度。箱体对合装配后加工轴承孔时,仍以底面为主要定位基准,并与底面上的两定位销孔组成一面两孔的定位方式,既符合基准统一的原则,也符合基准重合的原则,有利于保证轴承孔轴心线与结合面的重合度和与安装基面的尺寸精度及位置精度。

8.怎能样防止薄壁套筒受力变形对加工精度的影响?

答:为防止薄壁套筒受力变形,在加工时要注意以下几点:①为减少切削力和切削热的影响,粗、精加工应分开进行。使粗加工产生的热变形在精加工中可以得到纠正。并应严格控制精加工的切削用量,以减少零件加工时的变形。

②减少夹紧力的影响,工艺上可以采取以下措施:改变夹紧力的方向,即变径向夹紧为轴向夹紧,使夹紧力作用在工件刚性较好的部位;当需要径向夹紧时,为减少夹紧变形和使变形均匀,应尽可能使径向夹紧力沿圆周均匀分布,加工中可用过渡套或弹性套及扇形夹爪来满足要求;或者制造工艺凸边或工艺螺纹,以减少夹紧变形。

③为减少热处理变形的影响,热处理工序应置于粗加工之后、精加工之前,以便使热处理引起的变形在精加工中得以纠正。

9.深孔加工中首先应解决哪几个主要问题,两种排屑方式的特点如何? 答:钻深孔时,要从孔中排出大量的切屑,同时又要向切削区注放足够的冷却润滑液。普通钻头由于排屑空间有限,冷却液进出通道没有分开,无法注入高压冷却液。所以,冷却、排屑是相当困难的。另外,孔越深,钻头就越长,刀杆刚性也越差,钻头易产生歪斜,影响加工精度与生产率的提高。所以,深孔加工中必须首先解决排屑、导向和冷却毫米几个主要问题,以保证钻孔精度。保持刀具正常工作,提高刀具寿命和生产率。

常用的排屑方式有外排屑和内排屑两种,外排屑时,刀具结构简单,不需用专用设备与专用辅具,排屑空间较大,但切屑排出时易划伤孔壁。内排屑时,将增大刀杆外径,提高刀杆刚度,有利于提高进给量和生产率。冷却排屑效果较好,刀杆稳定,可提高孔的精度和降低孔的表面粗糙度值。

10.滚齿与插齿加工分别用于什么场合?

答:滚齿用于加工精度在7~9级,最高可达4~5级,齿面Ra为1.6~0.4微米的外齿轮;插齿机主要加工精度在7~8,最高可达6,齿面Ra为1.6~0.2米的外齿轮的双连具轮和内齿轮。滚齿是在滚齿机上进行,主要用于滚切直齿和斜齿外啮合圆柱齿轮及蜗轮的轮齿。滚齿的加工精度一般在7~9级,最高可达4~5级,齿面粗糙度值Ra可达1.6~0.4μm。滚齿可作为剃齿或磨齿等齿形精加工之前的粗加工和半精加工。

插齿是在插齿机上进行,主要用于加工直齿圆柱齿轮的轮齿,尤其适合加工内齿轮和多联齿轮的轮齿,还可加工斜齿轮、人字齿轮、齿条、齿扇及特殊齿形的轮齿。插齿加工精度一般在7~8级,最高可达6级,齿面粗糙度值Ra可达1.6~0.2μ m,可作为齿轮淬硬前的粗加工和半精加工。加工较大模数齿轮时,插齿因插齿机和插齿刀的刚性较差,切削时又有空行程存在,生产率比滚齿低;但加工较小模数齿轮,尤其是宽度较小的齿轮时,其生产率不低于滚齿。

11.剃齿原理是什么?它能提高齿轮工件哪些方面的精度? 答:剃齿加工原理相当于一对斜齿轮副的啮合过程,能进行剃齿切削的必要条件是齿轮副的齿面间有相对滑移,相对滑移的速度就是剃齿的切削速度。剃齿刀在加工过程中,在齿面上产生相对滑动,从齿面上刮下很薄的切屑,在啮合过程中逐渐将余量切除。

剃齿能校正前一工序中留下的齿形误差、基节误差、相邻周节误差和齿圈的12.分析珩齿与磨齿有什么异同点?

答:珩齿的加工原理与剃齿相同,珩齿可修正齿形淬火后引起的变形,减小径向圆跳动。

齿面表面粗糙度值,提高相邻周节的精度,并能修正齿轮的短周期分度误差,加工成本低、效率高。磨齿是精加工精密齿轮、特别是加工淬硬的精密齿轮的常用方法,对磨前齿轮的误差或热处理变形有较强的修正能力,但生产率比珩齿低得多,加工成本高,据齿面渐开线形成原理的不同,磨齿可分为成形磨齿和展成磨齿两种。

13.对不同精度的圆柱齿轮,其齿形加工方案如何选择?

答:齿轮加工的工艺路线一般为:毛坯制造与热处理一齿坯加工一轮齿加工一齿端加工一轮齿热处理一精基准修正一轮齿精加工一检验。

对8级精度以下的调质齿轮,用滚齿或插齿就能达到要求,对于淬火齿轮,可采用滚(或插)齿一齿端加工一热处理一修正内孔的方案,但淬火前应将精度相应提高一级,或在淬火后珩齿。

对6~7级精度的齿轮,可用剃一珩齿方案,即滚齿(或插齿)一齿端加工一剃齿一表面淬火一修正基准一珩齿。也可用磨齿方案,即滚齿(或插齿)一齿端加工一渗碳淬火一修正基准一磨齿。剃一珩方案生产率高,广泛用于7级精度齿轮的成批生产中;磨齿方案生产率较低,一般用于6级精度以上或低于6级精度但淬火后变形较大的齿轮。

对5级以上的高精度齿轮,一般应取磨齿方案。

第五篇:数控加工工艺与编程试题2

数控加工工艺与编程试题

注意事项

1.请在试卷的标封处填写您的工作单位、姓名和准考证号

2.请仔细阅读题目,按要求答题;保持卷面整洁,不要在标封区内填写无关内容 3.考试时间为120分钟

一、单项选择题(请将正确答案的字母代号填在题后的括号中,每题1分,共40分,多选错选不得分)

1.世界上第一台数控机床是()年研制出来的。A)1930 B)1947 C)1952 D)1958 2.数控机床的旋转轴之一B轴是绕()直线轴旋转的轴。A)X轴 B)Y轴 C)Z轴 D)W轴

3.按照机床运动的控制轨迹分类,加工中心属于()。A)点位控制 B)直线控制 C)轮廓控制 D)远程控制

4.镗削精度高的孔时,粗镗后,在工件上的切削热达到()后再进行精镗。A)热平衡 B)热变形 C)热膨胀 D)热伸长

5.一般而言,增大工艺系统的()才能有效地降低振动强度。A)B)强度 C)精度 D)硬度 6.高速切削时应使用()类刀柄。

A)BT40 B)CAT40 C)JT40 D)HSK63A 7.刀具半径补偿指令在返回零点状态是()。

A)模态保持 B)暂时抹消 C)抹消 D)初始状态

8.机床夹具,按()分类,可分为通用夹具、专用夹具、组合夹具等。A)使用机床类型 B)驱动夹具工作的动力源 C)夹紧方式 D)专门化程度

9.零件如图所示,镗削零件上的孔。孔的设计基准是C面,设计尺寸为(100±0.15)mm。为装夹方便,以A面定位,按工序尺寸L调整机床。工序尺寸280 mm、80 mm在前道工序中已经得到,在本工序的尺寸链中为组成环。而本工序间接得到的设计尺寸(100±0.15)为尺寸链的封闭环,尺寸80 mm和L为增环,280 mm为减环,那么工序尺寸L及其公差应该为()。0.150.

下载1 绪论1绪论材料加工工艺(第2版) 11材料加工工艺在制造业中的地位材料word格式文档
下载1 绪论1绪论材料加工工艺(第2版) 11材料加工工艺在制造业中的地位材料.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐