先进金属材料制备科学与技术考试要点(北航)

时间:2019-05-13 14:10:57下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《先进金属材料制备科学与技术考试要点(北航)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《先进金属材料制备科学与技术考试要点(北航)》。

第一篇:先进金属材料制备科学与技术考试要点(北航)

1、何谓材料制备加工?请简述材料制备加工工艺在材料科学与工程中的作用。

(一)定义:材料制备技术是指材料的合成与加工,使材料经过制备过程后获得的新材料在化学成份、元素分布或组织结构上与原材料有显著的不同。

(二)作用:可以通过材料制备技术控制现有的内部组织,如宏观微观结构、原子排列、元素分布、能量状态等,来控制现有材料的性能,特别是新的制备技术的出现,如快速冷凝技术可极大的提高凝固速率、改善金属的组织;复合材料制备技术的出现还克服了材料在各自性能上的缺点实现优势互补。此外,通过一些新的制备技术还能获得一些新的组织结构,得到一些新的材料,如高速冷却下可以得到金属非晶材料;不同的制备技术控制不同的实验条件还可以得到新的相,从而改善原有材料的性能。

(三)意义:材料制备时新材料的获取和应用的关键,也是对材料进行加工、成形和应用的品质保证,现已成为材料研究和材料加工领域引人注目的技术热点。其地位和作用已经超出了技术经济的范畴,而与整个人类社会有密不可分的关系。高新技术的发展,资源能源的有效利用,通信技术的进步,工业产品的质量,环境的保护都与材料的制备密切相关。先进制备与成形加工技术的发展对于新材料的研制、应用和产业化具有决定性的作用,其的出现与应用加速了新材料的研究开发、生产应用进程、促进如微电子和生物医用材料等新兴产业的形成。促进了现代航空航天、交通运输、能源保护等高新技术发展。现有结构材料向高性能化、复合化、结构功能一体化发展,尤其需要先进制备与成形技术的支撑,可使材料生产过程更加高效、节能、清洁。

(四)应用:材料制备、合成与成形在材料科学研究中占有核心支柱地位,主要用于纳米材料、薄膜材料、金属复合材料、高温柱状合金、单晶合金、非晶合金、亚晶合金以及磁性材料等的制备。

2.论述材料合成、制备与成形在材料科学与工程中的地位。并举例说明其基本 手段和方法。

3.先进金属材料快速凝固背景、优点、工艺及方法。并简述合金快速凝固的原 理、组织基本特征与性能特点。

背景:常规铸造合金之所以会出现晶粒粗大,偏析严重、铸造性能差等缺陷的主要原因是合金凝固时的过冷度和凝固速度很小,这是由于它们凝固时的冷速很小而引起的。要消除铸造合金存在的这些缺陷,突破研制新型合金的障碍,核心是要提高熔体凝固时的过冷度,从而提高凝固速度,因此出现了快速凝固技术。

优点:快速凝固材料的偏析程度大幅度降低,而且在快速凝固材料中获得均匀的化学成分要容易得多.快速凝固工艺可制备具有超高强度、高耐蚀性和磁性的材料.由于快速凝固是通过合金熔体的快速冷却(大于105~106K/s)或非均质形核的被遏制,使合金在很大的过冷度下发生高生长速率的凝固,因此可制备非晶、准晶、微晶和纳米晶合金.工艺方法:

(一)动力学急冷法:

(1)模冷技术.主要包括:枪法,双活塞法,熔体旋转法,平面流铸造法,电子束急冷淬火法,熔体提取法和急冷模法.(2)雾化技术.具体分为:流体雾化法,离心雾化法和机械雾化法.(3)表面熔化与沉积技术.主要有离子体喷涂沉积法和激光表面重熔法两种.(二)热力学深过冷法:深过冷快速凝固是指在尽可能消除异质晶核的前提下,使液态金属保持在液相线以下数百度,而后突然形核并获得快速凝固组织的一种工艺方法.(1)大体积液态金属的深过冷,主要有熔融玻璃净化法,循环过热法和熔融玻璃净化法+循环过热法.(2)微小金属液滴的深过冷,包括乳化-热分析法,落管法和无容器电磁悬浮熔炼法.(3)其它形状金属液态的深过冷——熔体急冷法,可分为:气枪法,雾化沉积法,熔体旋转法,锤砧法,单辊法.(三)快速定向凝固法.原理:快速凝固技术一般指以大于105~106K/s的冷却速率进行液相凝固成固相,是一种非平衡的凝固过程,通常生成亚稳相(非晶、准晶、微晶和纳米晶),使粉末和材料具有特殊的性能和用途.由于凝固过程的快冷,起始形核过冷度大,生长速率高,使固液界面偏离平衡,因而呈现出一系列与常规合金不同的组织和结构特征.组织基本特点:(1)细化凝固组织,使晶粒细化。(2)减小偏析。(3)扩大固溶极限。(4)快速凝固可导致非平衡相结构产生,包括新相和扩大已有的亚稳相范围。(5)形成非晶态。(6)高的点缺陷密度。性能特点:

4.简述激光增材制造技术的背景、原理及优势。谈一谈制备过程中可能遇到的问题。

背景:现代工业高端装备正向大型化、高参数、极端恶劣条件下高可靠、长寿命服役的方向快速发展。金属构件尺寸越来越大、结构日益复杂、性能要求日益提高,对制造技术的要求越来越高、挑战日益严峻。传统制造技术生产 上述大型、整体、高性能金属构件,不仅需要万吨级以上的重型锻造装备及大型锻造模具,技术难度大,而且材料切削量大、材料利用率低、周期长、成本高。

原理:以合金粉末或丝材为原料,通过高功率激光原位冶金熔化/快速凝固逐层堆积。直接从零件数字模型一步完成全致密、高性能大型复杂金属结构件的直接近净成形制造 优势:

1)激光原位冶金/快速凝固“高性能金属材料制备”与“大型、复杂构件成形制造”一体化,制造流程短。2)零件具有晶粒细小、成分均匀、组织致密的快速凝固非平衡组织,综合力学性能优异。

3)无需大型锻铸工业装备及其相关配套基础设施,无需锻坯制备和锻造模具制造,后续机械加工余量小、材料利用率高、周期短、成本低。

4)具有高度的柔性和对构件结构设计变化的 “超常快速”响应能力,同时也使结构设计不再受 制造技术的制约。

5)激光束能量密度高,可以方便地实现对包括W、Mo、Nb、Ta、Ti、Zr等在内的各种难熔、难加工、高活性高性能金属材料的激光冶金快速凝固材料制备和复杂零件的直接“近净成形”。

6)可根据零件的工作条件和服役性能要求,通过灵活改变局部激光熔化沉积材料的化学成分和显微组织,实现多材料、梯度材料等高性能金属材料构件的直接近净成形等。可能遇到的问题:

金属材料激光增材制造过程中可能遇到的材料基础问题:

(一)激光/金属交互作用行为及能量吸收与有效利用机制

(二)内部冶金缺陷形成机制及力学行为

(三)移动熔池约束凝固行为及构件晶粒形态演化规律

(四)非稳态瞬时循环固态相变行为及显微组织形成规律

(五)内应力演化规律及构件变形开裂预防控制

5.简述合金定向凝固的原理、组织基本特征与性能特点。阐述制备的具体优势 并举例说明。

原理:在凝固过程中采用强制手段,在凝固金属和为凝固熔体中建立起特定方向的温度梯度,从而使熔体沿着与热流相反的方向凝固,获得具有特定取向柱状晶的技术。组织基本特征:

柱状晶具有特定取向、各向异性、晶间杂质少、组织致密、缩松少 性能特点:

消除横向晶界,提高材料的纵向力学性能;材料韧性、抗高温蠕变性能、抗疲劳性能、持久强度等能力大幅提升,对热循环影响不敏感 举例说明具体优势:

该技术运用于燃汽涡轮发动机叶片的生产,所获得的具有柱状乃至单晶组织的材料具有优良的抗热冲击性能、较长的疲劳寿命、较高的蠕变抗力和中温塑性,因而提高了叶片的使用寿命和使用温度。

6.何谓金属间化合物。简述金属间化合物的性能特点及强化途径

(一)定义:金属间化合物是指金属与金属之间,类金属和金属原子之间以共价键形式结合形成的化合物,其原子的排列遵循某种有序化的规律,当以微小颗粒形式存在于金属合金的组织中时,将会使金属合金的整个强度得到提高,特别是在一定温度范围内,合金的强度随温度升高而增加,这使得金属间化合物材料在高温结构应用方面具有极大的潜在优势。

(二)性能特点:屈服强度随温度的升高而提高;密度低,比刚度高;韧性很低或者说是脆性抗氧化性能优良;高温强度好。

(三)强化途径:a提高合金的原子间结合力,提高其理论强度,并得到无缺陷完整晶体,无晶须。b向晶体中引入大量晶体缺陷,如位错、点缺陷、异类原子等。具体方法有固熔强化、形变强化、沉淀强化和弥散强化、细晶强化等。

(四)塑化和强化方法:通常有微量元素合金化,主要有元素合金化、控制微观组织、纤维强塑化、快速凝固细化晶粒方法。

(五)提高韧性:a加入置换元素,改变原子间键合状态和电荷分布以改善塑性;b通过合金化改变有序结构的类型;c微量合金强化晶界;d材料纯化;e细化晶粒,细化第二相组织以及加入弥散第二相质点从而提高合金塑性。f用韧性的纤维与其复合增强其韧性,同时还保留金属间化合物的诸多优点。

7.试述制备高性能金属基复合材料的主要方法以及材料设计与制备过程中应考虑的主要材料科学问题和解决方法;并谈谈金属基复合材料在工业实际应用中可能面临的主要问题。

制备方法:依据增强体的加入方式,金属基复合材料的制备方法可分为外加法和原位反应法。外加法是以粉体混合、熔融金属中添加陶瓷颗粒等物理方式达到基体和增强相相容,再通过烧结、铸造、压力加工等后续工艺制备成品,常用的外加法主要有粉末冶金法、喷射沉积法、搅拌铸造法、挤压铸造法等。

原位反应法同外加法的区别在于增强体不是额外加入,而是通过添加原料与基体、添加原料之间发生反应生成,并原位析出。目前报道的原位合成法主要有:放热弥散法、气液反应合成法、自蔓延燃烧反应法和反应喷射沉积等。主要问题和解决方案:

(一)金属熔体与增强相之间的润湿性

改善金属熔体与增强体之间的润湿性的方法主要有:(1)对增强颗粒进行金属涂覆(如Ni, Cu)处理。(2)向金属熔体中加入活性元素(如Li, Mg, Ca, Ti, Zr和P等)。(3)增强颗粒进行预热及保持颗粒表面清洁等方法。(4)增加增强相的表面能、减少熔化金属基体的表面张力和基体与增强相之间的界面能

(二)界面结构

牢固的结合界面使得复合材料的弹性模量和抗拉强度增加。改善基体/增强相的润湿性,控制化学反应,尽可能地减少氧化物的形成

(三)复合材料力学性能

挤压变形方法、固溶时效处理工艺

(四)计算机模拟

自洽模型、微分法、复合圆柱族模型、Eshelby等效夹杂物和Mori-Tanaka模型、有限元法

面临的问题:金属基复合材料在提高强度、硬度、弹性模量的同时,却大大地降低了其塑性,不利于对复合材料二次塑性加工。

增强体的均匀分散,多相融合的界面效应及其机理,产品性能参数的离散性大,基体与增强体本身特性导致的应力集中、不浸润等

8.简述先进金属材料快速凝固的背景和凝固组织特征,快速凝固激光加工与成 形的主要工艺方法和具体优势。

凝固组织特征:

偏析形成倾向减小 形成非平衡态 细化凝同组织

析出相的结构发生变化 形成非晶态

快速凝固激光加工与成形的主要工艺方法

钛合金速凝固激光熔覆技术 激光熔覆高温耐磨耐蚀特种涂层 小面相液固界面结构与生长机制 高性能金属零件激光快速成形 难熔金属激光约束熔铸成型 柱晶钛合金激光约束熔铸成形 具体优势

不仅可以直接获得具有快速凝固组织特征(如:枝晶及组织细化、元素高度过饱和固溶、低偏析或无偏析、形成各种亚稳相、准晶、非晶等非平衡相等)和特殊物理化学及力学性能的表层材料外,还可以在激光材料表面快速熔化过程中灵活地向熔池中加入合金元素或直接熔化同步输送于零件表面的合金粉末,从而获得成分、组织及性能完全不同于零件基材、具有细小均匀快速凝固非平衡组织特征和所设计优异特殊性能配合的特种表面冶金涂层材料。另外,激光表面熔化过程快速、灵活、热影响区小、无变形、零件表面快速凝固表面改性过程易于实现自动化。9.非晶材料的主要制造技术及应用?

熔剂包敷法、金属模铸造法、水淬法、喷铸-吸铸法、高能束熔覆法、电弧熔炼吸铸法、定向凝固法、非晶粉末挤压法等

非晶硅材料具有光吸收系数高、基片材料限制小、性能易于扩展、制作工艺简单等优点,因而作为敏感功能材料倍受青睐,现已日益广泛应用于各种传感器,如光传感器、温度传感器、功率传感器、压力传感器。在电力领域,铁基非晶、铁镍基非晶、钴基非晶、铁基纳米晶等广泛应用于配电变压器、磁放大器等。

未来的非晶硅产品可望在随意基片上低温淀积非晶硅,即使是在不能耐温的基片(如塑料膜)上也照样能淀积,同时用非晶硅单片模式制作三维器件也成为可能。

10.简述金属基复合材料的主要优点和制备方法。选一种具体的金属基复合材料 介绍其制备原理和应用情况。

主要优点:

其特点在力学方面为横向及剪切强度较高,韧性及疲劳等综合力学性能较好,同时还具有导热、导电、耐磨、热膨胀系数小、阻尼性好、不吸湿、不老化和无污染等优点。

1、高比强度、比模量

2、导热、导电性能好

3、热膨胀系数小、尺寸稳定性好

4、良好的高温性能

5、良好的耐磨性

6、良好的断裂韧性和抗疲劳性能

7、不吸潮、不老化、气密性好 制备方法:

(一)粉末冶金复合法

(二)铸造凝固成型法

1、原生铸造复合法

2、搅拌铸造法

3、半固态铸造复合法

4、含浸凝固法(MI技术)

5、离心铸造法

6、加压凝固铸造法

7、热浸镀与反向凝固法

8、真空铸造法

(三)喷射成型法

(四)叠位复合法

(五)原位生成复合法

1、直接氧化法

2、放热弥散法

3、SHS铸渗法

4、反应喷射沉积技术

颗粒增强铝基复合材料(particulate reinforcedaluminum matrix composites, PRAMCs)以其基体合金可选择范围宽、成本低、易于用传统工艺方法制备和加工、能实现批量和大规模生产、制备的材料表现出良好的尺寸稳定性和各向同性而备受瞩目。例如,由山东大学与曲阜金皇活塞有限公司联合研制的SiCp/Al复合材料活塞已应用于摩托车及小型汽车的发动机[10]。北京航空材料研究院研制的颗粒增强铝基复合材料已应用于卫星的相机零件。

粉末冶金是最早开发的用于制备颗粒增强金属基复合材料的工艺。它是将金属粉末和增强陶瓷颗粒等经筛分、均匀混合、冷压固结、除气、烧结,以及后续处理制得复合材料。

烧结后的试样经过热挤压可以减少空洞的数量、细化晶粒、改善复合材料的界面结合强度和SiC颗粒的分布,从而有效提高复合材料的力学性能。经过热处理(如固溶、淬火和时效)后能进一步强化复合材料的力学性能。

11.航空涡轮发动机为工业王冠上的明珠,涡轮叶片为其中的重中之重,当前涡 轮叶片的主要制造技术及技术瓶颈是什么?

目前,涡轮叶片主要以单晶高温合金作为基体材料,采用熔模精密铸造工艺进行成形。在新材料方面,F136 发动机涡轮 3 级陶瓷基复合材料导向叶片,该导向叶片不再采用精密铸造工艺进行制造,而是基于化学气相渗透法等方法进行制备。叶片结构形式的变化也会导致其制造工艺的变化,如多孔层板 Lamilloy结构,Allison 公司为此发明了所谓的铸冷(Castcool)制造技术,冷却通道利用浇铸成形加工。此外,随着 3D 打印技术的发展及成熟,将 3D 打印技术应用于涡轮叶片精密成形成为一大发展趋势,如 GE 利用电子束熔覆(Electron Beam Melting, EBM)技术生产低压涡轮叶片

技术瓶颈:

(1)材料难加工,切除率大

(2)叶片形状与内部冷却结构复杂

(3)加工精度高,精铸工艺流程复杂,成品率极低

13.根据你的了解,你认为 3D 打印技术的发展前景及瓶颈是什么?

发展前景:

一是各种新型材质的投入使用,可以打印出更多的真实物体,例如:新型高聚合材质、纳米材质等。随着技术的进步,未来适用于 3D 打印的基础材料也将会大幅增加,而且会产生多元材料的混合制造,实现复杂物体的制造。

二是基于技术的革新,其打印效率、速度都会得到迅速的发展。

三是应用范围将会更加广泛,不仅仅局限于早前的医疗、机械、航空领域,将会更加广泛的应用于家用的军事上的机械零件、食品、厨具等范畴。

四是打印设备的两型化、智能化。

3D 打印机具有灵活性、轻便性、移动性,操作员可以通过网络发出指令,产品可以在不同的地方生产并配送给客户,颠覆了传统的生产时间和地点不易改变得观念,也颠覆了传统的供应链、分销网的部署格局,可以实现真正的云制造。瓶颈:

(1)成本较高。现有3D打印机造价普遍较为昂贵,今年虽然多家公司推出了廉价3D家用打印机(1000美元以下),但是苦于打印材料价格高居不下,导致总体成本偏高。

(2)打印材料限制。目前3D打印的成型材料多采用化学聚合物,选择的局限性较大,成型品的物理特性较差,而且安全性也存在一定隐患。(3)精度、速度和效率方面。目前3D打印成品的精度还不尽如人意,打印效率还远不适应大规模生产的需求,而且受打印机工作原理的限制,打印精度与速度之间存在严重冲突。

(4)打印零件尺寸限制。目前的3D打印机并不能实现大尺寸零件的制造。

(5)产业环境方面。3D打印技术的普及将使产品更容易被复制和扩散,制造业面对的盗版风险大增,现有知识产权保护机制难以适应产业未来发展的需求。

14.先进金属材料(制备、工艺等)的发展前景及理解。

先进金属材料是新型金属材料和具有高性能的传统金属材料的总称。如今,许多新兴的金属材料应运而生,加工制备工艺上不断革新,出现了单向凝固技术,快速凝固,半固态加工技术,多孔金属成型技术,喷射铸造,微重力凝固,激光表面处理,爆炸成型等。除此之外,还有如快速冷凝金属非晶和微晶材料、纳米金属材料、有序金属间化合物、定向凝固柱晶和单晶合金等新型高性能金属材料,如非晶态软磁合金、形状记忆合金、新型铁氧体及超细金属隐身材料、贮氢材料及活性生物医用材料等新型金属功能材料,向着高功能化和多功能化发展。

金属材料工业,如钢铁工业已经具有了一套相当完整的生产技术和生产能力,同时质量稳定,供应方便,在性价比上也具有一定的优势,同时在今后相当长的一段时间内其资源也是有保证的,并且我们知道,金属是可以回收循环使用的,其本身对环境没有污染。最终要的是,在于金属材料具有其他材料体系不能完全取代的独特的性质和使用性能,例如它具有很高的模量,较高的韧性,并且具有磁性和导电性等优异的性能。而且,在其他材料发展的过程中,金属材料也在不断地推陈出新。在可以预见的将来,凭借其不可替代的功能,金属材料仍将占据材料工业的主导地位。

第二篇:先进材料制备技术

铝基复合材料的制备及其应用

材料是人类赖以生存的必需品,是社会发展的基础,是现代文明的重要支柱。而先进材料对人类生活质量的提高,对社会的发展,对其他技术的发展都起着重要的促进作用。

先进材料是新材料和具有高性能的传统材料的总称,既包括具有优良性能的新材料,又包括具有高性能的传统材料。

汽车工业是一个国家的支柱产业,汽车工业是大型的、综合性的加工产业,它可以带动和促进系列相关工业和相关社会服务行业的发展。相关的工业有冶金、石油化工、机械、电子电器、轻工、纺织等。相关的服务行业有交通运输、保险、维修、商业等。这些工业和服务行业所涉及的经济效益和社会效益十分巨大。在材料方面,汽车工业需用11大类材料,分别为钢板、特种钢、结构用塑料和复合材料、非结构用塑料和复合材料、橡胶、涂料、有色金属合金(主要为铝合金材料)、铸件、陶瓷和玻璃、金属基复合材料。汽车工业对材料的需求很大,仅美国每年需用6000万吨以上。随着现代汽车向轻量化、节能、环保、安全舒适方向发展,需用传统材料提高性能,同时需要具有高性能的新型材料代替部分传统材料。例如,采用IF钢板和抗拉强度超过400MPa的超级钢做汽车钢板,可以减薄,减轻汽车车体质量;采用新型的铝基复合材料代替铸铁件,用深冲铝合金板代替钢板,都显著减轻汽车质量。自20世纪60年代以后,塑料件在汽车中的应用逐渐增多,以工程塑料和复合材料为主,目前,在单台轿车上的塑料件用量已接近120Kg。由于先进材料的发展,汽车上使用的原材料结构组成比逐年发生变化。

先进复合材料的兴起,克服了均一材质材料的不具有多种性能的弱点,在汽车上应用,既有利于减轻汽车自身质量,又有利于提高性能。

一. 铝基复合材料制备技术

先进铝合金材料包括高强高韧性铝合金材料、半固态铸造成型铝合金材料和耐腐蚀铝合金材料等。

当前铝基复合材料的研究几种在两个方面:1.采用连续纤维增强的具有优异性能的复合材料,其应用范围几种在很特殊的领域,如航空航天领域;2.采用不连续增强体增强的具有优良性能的复合材料,其应用范围相当广泛。

相对来说,后者具有制备工艺简单、增强体成本低廉等优点,实现工业化大批量生产的潜力更大,因此成为当前铝基复合材料的研究重点。

1.纤维增强铝基复合材料的制造方法

为获得无纤维损伤、无空隙、高性能的致密复合材料,必须考虑增强纤维与铝及铝合金间的润湿性好坏和反应性大小、增强纤维的分布状态和高温下的损伤老化程度及界面稳定性等。纤维增强铝基复合材料的制造方法主要有熔融浸润法、加压铸造法扩散粘接法和粉末冶金法等。1.1 熔融浸润法

熔融浸润法是用液态铝及铝合金浸润纤维束,或将纤维束通过液态铝及铝合金熔池,使每根纤维被熔融金属润湿后除去多余的金属面得到复合丝,再经挤压而制得复合材料。其缺点是当纤维很容易被浸润时,熔融铝及铝合金可能会对纤维性能造成损伤利用增强纤维表面涂层处理技术,可有效地改善纤维与金属间的浸润性和控制界面反应。目前熔融浸(Al—Mg)等纤维增强铝基复合材料的制造。1.2 加压铸造法

加压铸造法是使熔融铝及铝合金强制压入内置纤维预制件的固定模腔,压力一直施加到凝固结束。加压铸造法因高压改善了金属熔体的浸润性,所制得复合材料的增强纤维与铝及铝合金间的反应最小,没有孔隙和缩孔等常规铸造缺陷。铸造压力和增强纤维含量对铝基复合材料的性能有较大影响。加压铸造法成功地用于制造B/AI,SiC/A1,A1 Od(Al—Li),A1 OJ(A1一Mg)等铝基复合材料。1.3 扩散粘接法

扩散粘接法主要是指铝箔与经表面处理后浸润铝液的纤维丝或复合丝或单层板按规定的次序叠层,在真空或惰性气体条件下经高温加压扩散粘接成型以得到铝基复合材料的制造方法。此外,扩散粘接法还包括常压烧结法、热压法、高温挤拉法。目前采用扩散粘接法制造的纤维增强铝基复合材料有C/A1,B/A1,SiC/A1等。

1.4 粉末冶金法

粉末冶金法是传统的粉末冶金工艺在新的工程材料制备上的发展。随着制粉工艺的发展和分散工艺方法的完善,人们已经利用粉末冶金法成功制备了大量性能优异的铝基复合材料。它们不仅具有高比强、高比模、低膨胀、高抗磨的特点,而且可以随意调整工艺路线。这种方法制备的铝基复合材料中增强相分布均匀,界面反应易于控制,在性能和稳定性上大大优于其它工艺方法制备的材料。

2、颗粒增强铝基复合材料的制备方法: 2.1 液态金属浸渗 1)挤压铸造

’ 挤压铸造是目前制造金属基复合材料较成熟的一种方法。首次在工业上应用的铝基复合材料制件即13 本丰田公司制造的铝基A 1,O,晶须增强汽车活塞就是用挤压铸造方法获得的。挤压铸造是在液体压力作用下将液态金属渗入增强相预制块中。在制造过程中,为了防止熔体过早冷却,需要对压模和预制块进行预热处理,预热温度一般低于基体合金的液相线温度。2)气压铸造

用气体压力取代挤压铸造的液体压力。就形成了气压浸渗制造复合材料工艺。气压浸渗工艺一般都施加真空作用,所需要的浸渗压力较低,大都在十几M P a 以下。目前,已经出现了多种气压浸渗工艺技术。3)无压浸渗

无压浸渗工艺是1 9 8 9 年L a n x i d e 公司:提出的专利技术,也称为L a n x i d e 5 2 艺。在该工艺中,基体合金放在可控制气氛的加热炉中加热到基体合金液相线以上温度,在不加压力的情况下合金熔体自发浸渗到 颗粒层或预制块中。利用该方法可制造出近终形态的复合材料制品。因为没有压力作用,浸渗模具材料选择很容易,如可选用;透气性好的耐火材料和烧结陶瓷材料。影响该工艺的主要因素为: 浸渗温度、颗粒大小和环境气体种类。无压浸渗工艺本质是实现自润湿作用。目前该工艺只能在一定条件下才能实现,合金含镁和氮气环境是两个前提条件,因此无压浸渗工艺具有局限性。2.2 弥散混合工艺

弥散混合工艺是用机械力作用使颗粒和熔体混合,然后浇注成铸锭或复合材料制件。该工艺研究开始于6 0 年代。由于大多数类型的颗粒和铝合金熔体之间具有不润湿特点,因此为了使得颗粒和熔体之间完全结合,必须施加外力作用以克服热力学表面障碍和黏滞阻力。该工艺主要包括: 搅拌铸造、流变铸造、螺旋挤压、喷射分散、团块分散等方法。2.3 原位复合工艺

原位复合工艺是由加入到基体金属熔体中的粉末或其它材料与基体反应生成一定的增强相而制得复合材料的一种工艺。主要包括自蔓延合成工艺、X D 52 艺和气液反应工艺。这些工艺的主要优点为: 陶瓷颗粒表面无污染,与基体界面相容性好,颗粒细小,因而材料增强效果好,是研究和开发复合材料很有效的方法” M a r i e t t a 公司开发的专利复合材料制造X D T M 技术。该技术是向有溶解能力的金属(如A 1)中加入某几种物质使其发生化合反应放热生成需要的增强体。以T i B,颗粒在A l 基体中的形成为例,T i、B 和A l 以元素粉末的形成或以A l — T i、A l — B 合金的形式混合并加热至足够高的温度形成熔融的A l 介质,T i 或B 在其中扩散析出T i B。典型的做法是先制备含高体积分数(5 0 v 0 1% 以上)的母合金,再加入到金属基体中制得含所需体积分数的复合材料。该技术可产生的陶瓷颗粒包括硼化物、碳化 物、氮化物和硅化物等。2.4 粉末冶金

粉末冶金是制备高熔点难成型金属材料的传统工艺。它是将快速凝固金属粉末和增强陶瓷颗粒等经筛分、混合、冷压固结、除气、热压烧结,以及压力加工制得复合材料的一种工艺。研究结果表明,用粉末冶金工艺生产的颗粒增强金属基复合材料的综合强度水平比用熔融金属工艺生产的同种材料高,伸长率也较高,材料微观组织结构有所改善。但是这种工艺及设备复杂,金属粉末与陶瓷颗粒混合时会因颗粒分布不均,除气不完全而导致材料内部出现气孔,温度选择不当易造成汗析。另外,制得的复合材料坯件一般还需要二次成型。这种设备不适用于生产较大型件,所以对铝基复合材料的工业规模生产有所限制。2.5 喷射沉积工艺

喷射沉积工艺是由英国S i n g e r 教授首创并干1 9 7 0 年正式公布。这一工艺早期应用于一些金属半成品的生产和制备,后来加利福尼亚大学L a v e r n i a E J 等人开始利用这一技术制备颗粒增强金属基复合材料。

哈尔滨工业大学武高辉等人对石墨纤维增强铝基复合材料在空间遥感器镜筒结构中的应用进行了研究。为了设计和制造出性能更加优越的空间遥感器,对一种新型航天材料石墨纤维增强铝基复合材料进行了研究。突破了石墨纤维与铝合金的界面反应控制、纤维铺层和缠绕设计等关键技术,成功制备了石墨纤维增强铝基复合材料,材料的密度为2.12×10 kg/m。,弹性模量为129 GPa,线膨胀系数为5.0×10 K。针对这种复合材料,摸索出一套完整的加工和后处理工艺,并首次把这种复合材料应用在空间红外遥感器镜简结构设计中,设计的镜筒较之钛合金镜筒减重31.8。最后,完成了镜筒组件的加工装配、透镜的装校和随机振动试验。实验结果表明,镜筒组件的一阶谐振频率为284 Hz,高于100 Hz的设计要求,振动试验后光机系统没有发生变化。上述工作表明,石墨纤维增强铝基复合材料在航天遥感领域具有较高的应用价值。

2.1 材料的特点分析

对于小型空间红外遥感器来说,结构部分不仅要满足高刚度、高强度和尺寸稳定性的要求,而且应该尽量减轻质量。本文研究的空间红外遥感器镜筒材料采用了石墨纤维增强铝基复合材料(以下简称铝基复合材料),这种材料属于长纤维增强(连续强化)金属基复合材料,由哈尔滨工业大学金属基复合材料研究所自 主研制。

与金属材料相比,铝基复合材料具有如下优点:耐高温、高比强、高比模、热膨胀系数小、尺寸稳定性好、对缺口不敏感且抗磨损。与聚合物基复合材料相比铝基复合材料具有如下优点:耐高低温、防燃、尺寸稳定、抗氧化、抗辐照、抗电磁脉冲、无气化和导热、导电、剪切强度高、热膨胀系数低、可直接加工螺纹和圆孔。

表1比较了常用航天材料的主要性能参数,从中可以看出,铝基复合材料(Gr/A1)的密度比铝小,但是弹性模量比钛大。铝基复合材料的比刚度很大,仅次于铍,但它的生产过程不会像铍一样产生剧毒和污染。它的线膨胀系数为5.0×10 K,在±5O。C多次循环下,结构尺寸稳定,可以很好地满足光学系统对温度和结构尺寸稳定性的要求。

比刚度和比强度高、线膨胀系数小、尺寸稳定性好是铝基复合材料的突出特点,这些特点决定了它是一种制造空问相机镜筒的理想材料。

2.3 材料的加工和处理工艺

铝基复合材料是一种设计性很强的材料,可以按照设计者的要求进行石墨纤维的铺层、缠绕、毛坯件的精密成型,这样既可以提高材料性能,又可以节约昂贵的石墨纤维,降低成本。设计人员也可以根据材料纤维铺层和缠绕的特性,在结构上设计合理的过渡与连接,充分利用材料特点,使零部件获得更好的力学性能和尺寸稳定性。这种材料还可以直接加工圆孔和螺纹,不需要安装预埋件,较之树脂基复合材料使用起来更加方便。

图2列举了一种典型石墨纤维增强铝基复合材料零件的加工工艺流程。需要特别注意的是在铝基复合材料的切削加工过程中,一般应使用金刚石刀具,而且不能使用冷却液。由于石墨纤维的存在,普通刀具很容易磨损,切削力的稳定性很差,易引起机床的振动,切削速度也不宜过高。图3展示的是铝基复合材料的毛坯料,图4展示的是精加工后的铝基复合材料,从图中可以看出铝基复合材料的表面 加工质量完全可以达到钛合金的水平。这种铝基复合材料发黑过程实际就是在材料表面镀覆双层金属(Ni P合金和Zn),再进行黑色钝化处理,这样就可以获得耐蚀性能及光学性质良好的膜层,膜层总厚度约为30/xm。最后通过超声无损检 测来检验零件内部是否存在缺陷。

.4 应用实例

应用铝基复合材料进行了空间红外遥感器镜筒结构的设计。已经公开的相关文献表明,本文所研究的铝基复合材料是首次应用于空间光学镜筒结构设计。镜筒是保证红外遥感器成像质量的重要部件。镜筒的结构形式、镜筒材料的选择、镜筒的结构设计不仅要满足光学系统的要求,而且要满足力学性能和真空高低温环境的要求,同时尽可能降低质量。特别是对光学透镜组件来说,其加工与装配都有严格的公差要求,也只有保证各个镜片及其相对位置在空间使用过程中仍然保持地面上的装校精度,才能获得高清晰度和满意的遥感图像。镜筒主要零件使用了上述体积百分比为50 的M40/A1复合材料。材料的具体参数为:密度2.12 x 10。kg/m。,弹性模量l29 GPa,线膨胀系数5.0×10 K_。,经过±5O℃多次循环下,结构尺寸稳定。经过加工后,零件安装透镜的端面位置平行度公差可以达到10 m,表面粗糙度达到1.6,说明了这种复合材料的加工精度可以达到金属材料的精度。零件表面发黑后测量红外发射率为0.856(5O℃)。由于卫星所提供的安装空间有限,本文采用了转折光路设计,如图5所示。镜筒组件结构如图6所示。设计要点如下:

(1)镜筒由遮光罩、窗口镜筒、大镜筒、中镜 简、转折镜筒、反射镜压板几部分组成;

(2)遮光罩由铝蜂窝内胆和碳纤维复合材料外壳组成,具有去除杂散光的功能。窗口镜筒、大镜筒、中镜筒使用铝基复合材料制造。转折镜筒由于形状不规则,采用钛合金精密铸造而成;

(3)铝基复合材料镜筒的设计过程中特别注意了结构过渡处理,考虑具体的结构尺寸,设计相应的圆角和连接方式,可以更好地适应纤维铺层、缠绕的要求。其加工工艺符合图2中的工艺流程;

(4)考虑到镜筒的直径比较小,主镜筒采用分体结构,便于透镜的安装和调试,透镜各个安装端面要求有高的形位公差,以保证各个透镜的相互平行;

(5)通过红外定心仪来调整各片透镜的同轴度。透镜边缘注入XM-23胶,可以固定透镜,同时保证了透镜和镜筒之间的柔性连接,有一定的减振效果;

(6)平面反射镜通过反射镜压板与转折镜筒连接,反射镜压板在结构上能实现反射镜角度调整;

(7)镜筒组件通过螺钉紧固,本身自成一体,这样可以减轻外部干扰对镜筒组件的影响。外部通过两个铝合金支撑座安装固定,如图7所示。

陕西理工学院徐峰等人A12 03颗粒增强铝基复合材料储能焊接头微观组织及性能。对0.3 mm厚Al:O,颗粒增强铝基复合材料薄板进行了储能点焊连接研究试验。发现其微型点焊接头由熔核区、热影响区和熔核向热影响区过渡的熔合区(线)组成。由于储能焊极短的焊接时间,大的冷却速率达到106 K/s,使得熔核组织显著细化,具有快速凝固特征。熔核中增强相A1 O 颗粒发生偏聚现象,在熔核边缘区域出现了气孔缺陷。当焊接电容C=6 600、电压U=80 V、电极压力F=18 N时,获得较高力学性能的焊接接头。

试验选用A1 O。/2024A1复合材料作为母材,由粉末冶金法制备而成。A1:O,颗粒平均直径15 m、体积分数10%,基体金属为2024A1。焊接试样的尺寸为10 mm×5 ITlm X0.3 mm的薄板材,系线切割加工而成。

1.2 储能焊焊接

试样经金刚砂纸打磨、丙酮清洗和烘干,装配如图I所示的搭接接头。在微型电容储能焊机上进行点焊连接。焊接主要参数为:电容6 600 ixF、电压70~110 V、电极力15—20 N。焊接热输入(E)、焊接电压(U)和电容(C)之问的函数关系为E=C /2。因此,焊接热输人为】6.17—39.9 J

2.1 接头整体相貌

颗粒增强铝基复合材料储能点焊接头整体形貌如图2所示。接头由3个区域组成:形状较规则的扁平熔核区、熔核周围的热影响区及熔核向母材过渡的熔合区(线)。熔核直径约为780 Ixm,最大厚度约320 txm,约占总厚度的1/2,焊点熔核直径符合要求,熔核边缘邻近接合面的区域出现了气孔,对应着图中的黑色区域。熔合区较窄,勾勒出熔核和母材之间的分界线,其组织细小未发现缺陷;热影响区组织未发生明显的粗化,与母材原始组织保持良好的一致性。可见,储能焊可实现A1:0,颗粒增强铝基复合材料薄板的点焊连接,能获得高质量的焊接接头。

图1 搭接接头示意图

2.2 熔核组织

图3为A1 0 颗粒增强铝基复合材料储能点焊接头熔核组织。从图中可以看出,母材经过储能焊接过程后,熔核组织相对于基体组织发生明显细化,是由于焊接接头的形成过程是在电极力的作用下快速凝固,抑制了组织的长大从而细化了熔核组织;另一方面,熔核金属的熔化及其凝固过程是在电容瞬间放电所产生的强磁场氛围中完成的,强力的磁场搅拌作用也是接头组织细化的原因。熔核中的A1:0 颗粒增强相在熔合区(线)周围发生了偏聚,原因是由于增强相A1:0,颗粒与铝合金基体的导热率和熔点相差很大,导致熔池粘度增大,熔池金属的流动性降低,液相与固相互相并存使得增强相分布不均;在凝固过程中A1 0,颗粒增强相不能成为结晶核心,凝固界面前沿对增强相的推移造成了增强相的偏析;另外,由于较小的电极力使得未能挤出熔核的A1:0,颗粒聚集在熔合区的边缘。

图2 储能焊熔核整体形貌 图3 熔核组织

2.3 熔核的快速凝固

电容储能点焊利用电容瞬时放电产生的电流经电极加载在被焊板材上,形成放电回路。板材接触电阻瞬时产生的热量使接触界面板材局部熔化,在电极力的作用下形成熔核。电容放电结束后,由于cu电极和周围基体的快速吸热,熔核处于较大的过冷状态,熔核的冷却速率很大(达到106 K/s),高的冷却速率使熔核的形核率显著增大,熔核组织均匀细小。由于焊接接头尺寸很小,焊接过程中形成的微小熔核中具有较小的温度梯度,凝固速度快,同时也避免了基体组织的迅速长大而形成粗大的柱状晶,接头组织因动态再结晶形成较为均匀细小的柱状晶,晶粒非常细小与母材组织相比晶粒度明显提高,形成了具有快速凝固特征的微观组织焊接接头,提高了焊接质量。

2.4 焊接接头力学性能

2.4.1 接头的显微硬度

A1 0。颗粒增强铝基复合材料储能点焊接头显微硬度分布测试结果如图4所示。焊核区中心组织与母材相近,但由于部分A1:0 颗粒的偏析增加该区域的硬度;热影响区处于很短暂的过热状态,与母材相比组织粗大变化不明显,所以热影响硬度略有提高,但硬度变化不大;熔合区(线)由于又处于固液两相之间。成分和组织不均匀,大的冷却速率,使得熔合区出现较明显的加工硬化现象,同时大量增强相A1 0,颗粒的偏析增大了接头硬度,显微硬度达到113.5 HV,焊接热过程不会造成硬度的显著提高。2.4.2 接头的剪切强度

点焊接头的剪切强度主要取决于电极力、焊接电压和焊接能量等工艺参数。在电极压力作用下熔核周围金属会发生塑性变形和强烈的再结晶而形成先于熔核生长的塑性环,对消除焊点缺陷、改善金属组织和提高力学性能具有较大作用。而电压对焊接能量有直接的影响,焊接能量过小被焊材料不能被加热到热塑性状态;而焊接能量过大很容易产生飞溅和击穿,都很难得到力学性能好的接头。通过实验发现当焊接电压一定时,随着电极力的增加,接头剪切强度也随之增加。当电极力达到l8 N时,剪切强度达到最大值132.5 MPa,进一步增强电极力接头强度开始逐渐降低,如图5所示。通过综合分析显微硬度和剪切强度与焊接参数之间的相关性,发现对于0.3 mm厚的A1:0,颗粒增强铝基复合材料薄板储能焊,焊接参数:电容C=6 600 IxF、电压U=150—170 V和焊接电极力F=17—19 N时,可获得综合性能优良的焊接接头。

图4 接头显微硬度 图5 接头剪切强度

2.5 断口形貌分析

图6是Al O,颗粒增强铝基复合材料储能焊接头断口形貌。断口主要为韧性断裂韧窝、准解理面、Al:O,颗粒以及拉拔掉A1:0,颗粒的残留凹坑,增强相AI 0,颗粒与基体结合紧密,故可以保证焊接接头强度。经x衍射射线分析,其组织由OL(A1)+A1 0,+少量的其它相(CuA1:和CuA1 Mg)组成。

接头断口形貌 结论

(1)采用储能焊方法可实现0.3 mm厚的A1 0,颗粒增强铝基复合材料薄板的点焊连接,微型接头由熔核、热影响区及熔合区组成。熔核厚度约占接头厚度 的1/2,熔核向基体金属过渡良好。

(2)由于储能焊瞬间放电的特点,接头冷却速率大使得接头组织具有快速凝固的特征。

(3)断口主要为韧性断裂韧窝,增强相A1:O,颗粒与基体结合紧密,其相组织由O/(A1)+AI:O,少量的其它相(CuA1 和CuA1:Mg)组成。(4)对于0.3 mm厚的A1:O,颗粒增强铝基复合材料薄板的储能焊,当电容C=6 600 IxF、电压 U=150—170 V和焊接电极力F=17—19 N时,剪切强度可达到132.5 MPa,获得综合性能优良的焊接接头。

第三篇:金属纳米材料制备技术的研究进展

金属纳米材料制备技术的研究进展

摘要:本文从金属纳米材料这一金属材料重要分支进行了简要的阐述,其中重点讲述了强行塑性变形及胶束法制备纳米材料,并分析了金属纳米材料的现状及对今后的展望。

关键字:晶粒细化;强烈塑性变形;胶束法;块状纳米材料

引言:

金属材料是指金属元素为主构成的具有金属特性的材料的统称。包括金属、合金、金属间化合物和特种金属材料等。人类文明的发展和社会的进步同金属材料关系十分密切。继石器时代之后出现的铜器时代、铁器时代,均以金属材料的应用为其时代的显著标志。

现代,种类繁多的金属材料已成为人类社会发展的重要物质基础。同时,人类文明的发展和社会的进步对金属材料的服役性能提出了更高的要求,各国科学家积极投身于金属材料领域,向金属材料的性能极限不断逼近,充分利用其为人类服务。

一种崭新的技术的实现,往往需要新材料的支持。例如,人们早就知道喷气式航空发动机比螺旋桨航空发动机有很多优点,但由于没有合适的材料能承受喷射出燃气的高温,是这种理想只能是空中楼阁,直到1942年制成了耐热合金,才使喷气式发动机的制造得以实现。

1金属纳米材料的提出

从目前看,提高金属材料性能的有效途径之一是向着金属结构的极端状态发展:一方面认为金属晶界是薄弱环节,力求减少甚至消除晶界,因此发展出了单晶与非晶态合金;另一方面使多晶体的晶粒细化到纳米级(一般<100 nm,典型为10 nm左右)[1]。细化晶粒是金属材料强韧化的重要手段之一,它可以有效地提高金属材料的综合力学性能,尤其是当金属材料的晶粒尺寸减小到纳米尺度时,金属表现出更加优异的力学性能[2]。因此,金属材料晶粒超细化/纳米化技术的发展备受人们关注,一系列金属纳米材料的制备技术相继提出并进行了探索,包括电沉积法、溅射法、非晶晶化法、强烈塑性变形法(Severe Plastic Deformation, SPD)、[3]粉末冶金法以及热喷涂法等。

金属纳米材料是指三维空间中至少有一维处于纳米尺度或由它们作为基本单元构成的金属材料。若按维数,纳米材料的基本单元可分为(类:一是零维。指在空间三维尺度均在纳米尺度,如纳米粉体、原子团簇等;二是一维。指在空间有两维处于纳米尺度,如纳米丝、纳米棒、纳米管等;三是二维。指在三维空间中有一维处于纳米尺度,如超薄膜、多层膜及超晶格等。超微颗粒的表面具有很高的活性,在空气中金属颗粒会迅速氧化而燃烧。利用表面活性,金属超微颗粒可望成为新一代的高效催化剂和贮气材料以及低熔点材料[4]。金属纳米颗粒表现出许多块体材料所不具备的优越性质,可用于催化、光催化、燃料电池、化学传感、非线性光学和信息存储等领域。

以金金属具体来说,与块状金不同,金纳米粒子的价带和导带是分开的。当金粒子尺寸足够小时,会产生量子尺寸效应,引起金纳米粒子向绝缘体转化,并形成不同能级间的驻电子波。若其能级间隔超出一定的范围并发生单电子跃迁时,将表现出特殊的光学和电子学特性,这些性质在晶体管、光控开关、传感器方面都有其潜在的应用前景。是因为金纳米粒子的特殊性质,使其在生物传感器、光化学与电化学催化、光电子器件等领域有着极其广阔的应用前景。近几年来,基于金纳米粒子在发生吸附后其表面等离子共振峰会发生红移这一性质,对担载金纳米粒子的DNA及糖类分子进行研究,发现其在免疫、标定、示踪领域中有着广阔的应用前景。此外,金纳米粒子作为一种新型催化剂在催化氧化反应中有着很高的催化活性,而担载金纳米粒子后,TiO2薄膜的光催化活性极大提高[5]。

2金属纳米材料的制备技术

如今,金属纳米材料的制备技术已趋于多样化发展,按不同的分类标准具有不同的分类方法。其中基本的可分为物理法,化学法及其他方法,物理法大致包括粉碎法和构筑法,化学法由气相反应法和液相法。物料的基本粉碎方式是压碎、剪碎、冲击粉碎和磨碎。常借助的外力有机械力、流能力、化学能、声能、热能等。一般的粉碎作用力都是几种力的组合,如球磨机和振动磨是磨碎和冲击粉碎的组合;雷蒙磨是压碎、剪碎和磨碎的组合;气流磨是冲击、磨碎与剪碎的组合。构筑法是由小极限原子或分子的集合体人工合成超微粒子。

气相法制备金属纳米微粒,主要有气相冷凝法、活性氢—熔融金属反应法、溅射法、流动液面上真空蒸镀法、通电加热蒸发法、混合等离子法、激光诱导化学气相沉积法、爆炸丝法、化学气相凝聚法和燃烧火焰—化学气相凝聚法。

液相法制备金属纳米微粒,主要有沉淀法、喷雾法、水热法、溶剂挥 发分解法、溶胶—凝胶法、辐射化学合成法。此外还包括物理气相沉积、化学气相沉积、微波等离子体、低压火焰燃烧、电化学沉积、溶液的热分解和沉淀等。

2.1块体材料制备

金属纳米块体材料制备加工技术:两种大块金属纳米材料的制备方法[6]-[8]。第一种是由小至大,即两步过程,先由机械球磨法、射频溅射、溶胶—凝胶法、惰性气体冷凝法等工艺制成纳米颗粒,再由激光压缩、原位加压、热等静压或热压制成大块金属纳米材料。凡能获得纳米粉末的方法一般都会通过后续加工得到大块金属纳米材料。第二种方法为由大变小,是将外部能量引入或作用于母体材料,使其产生相或结构转变,直接制备出块体纳米材料。诸如,非晶材料晶化、快速凝固、高能机械球磨、严重塑性形变、滑动磨损、高能粒子辐照和火花蚀刻等。使大块非晶变成大块纳米晶材料或利用各种沉积技术获得大块金属纳米材料。

大块金属纳米材料制备技术发展的目标是工艺简单,产量大及适应范围宽,能获得样品界面清洁且无微孔的大尺寸纳米材料制备技术。其发展方向是直接晶化法。实际上今后相当一段时间内块状纳米晶样品制备仍以非晶晶化法和机械合金化法为主[4]。现在需要克服的是机械合金化中微孔隙的大量产生,亦应注意其带来的杂质和应力的影响。今后纳米材料制备技术的研究重点将是高压高温固相淬火,脉冲电流及深过冷直接晶化法和与之相关的复合块状纳米材料制备及研究工作。

2.2 强烈塑性变形法(SPD技术)

强烈塑性变形法(SPD技术)是在不改变金属材料结构相变与成分的前提下,通过对金属材料施加很大的剪切应力而引入高密度位错,并经过位错增殖、运动、重排和湮灭等一系列过程,将平均晶粒尺寸细化到1μm以下,获得由均匀等轴晶组成、大角度晶界占多数的超细晶粒金属材料的一种工艺方法[9]。SPD是一种致力材料纳米化的方法,其特点是利用剧烈塑性变形的方式,在较低温度下(一般<0.4Tm, Tm为金属熔点)使常规金属材料粗晶整体细化为大角晶界纳米晶,无结构相变与成分改变,其主要的变形方式是剪切变形。它不仅是一种材料形状加工的手段,而且可以成为独立改变材料内部组织和性能的一种技术,在某些方面,甚至超过热处理的功效。它能充分破碎粗大增强相,尤其是在促使细小颗粒相均匀分布时比普通轧制、挤压效果更好,显著提高金属材料的延展性和可成形性。在应用方面,到目前为止,通过SPD法取得了纯金属、合金钢、金属间化合物、陶瓷基复合材料等的纳米结构,而且投入了实际应用并获得了认可[3]。譬如,通过SPD法制备的纳米Ti合金活塞,已用于小型内燃机上;通过SPD法制备的纳米Ti合金高强度螺栓,也已广泛应用于飞机和宇宙飞船上。这些零件可以满足高强度、高韧性、较高的疲劳性能的要求,从而大大提高了使用寿。

经过近年的快速发展,人们对采用SPD技术制备金属纳米/超细晶材料已经有了一定的认识。但是,不管是何种SPD法制备纳米材料,目前,还处在工艺可行性分析及材料局部纳米化的实验探索阶段,存在诸如成形效率低、变形过程中出现疲劳裂纹、工件尺寸小、显微组织不均匀、材料纳米化不彻底等问题,对SPD制备纳米/超细晶金属材料的成形机理没有统一的定论。

2.3胶束法

胶束法是控制金属纳米颗粒形状的另一个重要方法[10]。胶束以一小部分增溶的疏水物质或亲水物质形式存在。如果表面活性剂的浓度进一步增大,增溶程度会相应提高。胶束尺寸可增大到一定的范围,此时胶束尺寸比表面活性剂的单分子层厚度要大很多,这是因为内池中的水或者油的量增大的缘故。如果表面活性剂的浓度进一步增大,胶束则会被破坏而形成各种形状,这也为合成不同形状的纳米粒子提供了可能。合成各种形貌的金属纳米颗粒的方法还包括高温分解法、水热法、气相沉积法、电化学法等。其中,高温分解法是在高温下分解前驱体;水热法是一种在高温高压下从过饱和水溶液中进行结晶的方法;气相沉积法是将前驱体用气体带入反应器中,在高温衬底上反应分解形成晶体。这3种方法均可以得到纯度高、粒径可控的纳米粒子,但是制备工艺相对复杂,设备比较昂贵。电化学方法中可采用石墨、硅等作阴极材料,在水相中还原制备不同金属纳米颗粒,也可采用模板电化学法制备金属纳米管、纳米线等不同形貌的纳米材料。这种方法的优点是反应条件温和、设备简单,但目前还没有大规模合成方面的应用。

2.4双模板法制纳米点阵[11]

采用先后自组装、沉积和溶解的方法,制成2种模板,然后在其中空球模板中电化学沉积得到纳米粒子点阵,溶去另外一种模板后得到纳米粒子点阵。这是目前获得粒子均匀排列有序纳米粒子点阵的最有效的方法,关键是如何控制粒子的大小和获得较窄且均匀的粒度分布。

3金属纳米材料的现状分析

纳米技术在生产方式和工作方式的变革中正在发挥重要作用,它对社会发展、经济繁荣、国家安定和人类生活质量的提高所产生的影响无法估量。鉴于纳米技术及纳米材料特别是金属纳米材料在未来科技中的重要地位及产业化的前景一片光明,目前世界上各国特别是发达国家非常重视金属纳米材料,从战略高度部署纳米技术研究,以提高未来10年至20年在国际上的竞争能力。

诺贝尔奖获得者罗雷尔说过:20世纪70年代重视微米研究的国家如今都成为发达国家,现今重视纳米技术和纳米材料的国家极可能成为下世纪的先进国家。最近美国在国家科学技术理事会的主持下,提出“国家纳米技术倡议”:纳米技术将对21世纪的经济、国防和社会产生重大影响,可能与信息及生物技术一样,引导下一个工业革命,应该置其于科技的最优先位置。世界各国制定纳米技术和纳米材料的战略是:以未来的经济振兴和国家的实际需求为目标,牵引纳米材料的基础研究和应用开发研究;组织多学科的科技人员交叉创举,重视基础和应用研究的衔接,重视技术集成;重视纳米材料和技术改造传统产品,提高高技术含量,同时部署纳米技术和纳米材料在环境、能源和信息等重要领域的应用,实现跨越式发展。我国纳米技术和纳米材料始于20世纪80年代末。“八五”期间,纳米材料科学列入国家攀登项目。纳米材料的应用研究自1996年以后在准一维纳米丝纳米电缆的制备等几个方面取得了重大成果。我国约有1万人从事纳米研究与发展,拥有20多条生产能力在吨级以上的纳米材料粉体生产线。生产的纳米金属与合金的种类有:银、钯、铜、铁、钴、镍、铝、钽、银-铜合金、银-锡合金、铟-锡合金、铜-镍合金、镍-铝合金、镍-铁合金、镍-钴合金[4]。

4结束语及展望

随着金属纳米科技的发展,金属纳米材料的制备已日渐成熟,并广泛应用于我们生活的各个方面,金属纳米科学也将成为受人瞩目的学科。但目前还存在一些不足,如在对复杂化学反应过程与机理的探索、金属纳米材料的规模化生产与应用等方面还需要我们进行更加深入和系统的研究。不过,我们有理由相信随着科学技术的不断发展进步,上述金属纳米材料化学制备的新技术和新方法将会得到不断创新与发展完善并将产生新的突破,它们将极大地推动金属纳米材料的规模制备与广泛实际应用,并最终在不久的将来产生较大的社会和经济效益。

今后金属纳米的发展趋势: 1在制备方面,大量的新方法、新工艺不断出现,希望找到产量大、成本低、无污染、尺寸可控的制备方法,为产业化服务。

2实用化研究提到日程上,出现基础研究和应用并行发展的问题,对传统金属材料进行纳米改性,以期获得优良性能。

3日益体现出多学科交叉的特点。纳米结构材料的研究不仅依赖于物理、化学等学科的发展,而且同电子学、生物学、测量学等产生越来越紧密的联系。

参考文献:

[1]GleiterH.Nanocrystalline materials [J].Progress in Materials Science, 1989, 33(4): 223-315.[2]王军丽,史庆南.纳米超细晶材料的制备方法[J].材料导报, 2005, 19(5): 15-19.[3]杨保健,夏琴香,张 鹏.SPD制备纳米/超细晶金属材料的成形方法[J].锻压技术,2011,36(2):48-51.[4]张代东,王钦清.金属纳米材料的发展动态研究[J].科技情报开发与经济,2002,12(5):89-91.[5] 姚素薇,邹毅,张卫国.金纳米粒子的特性、制备及应用研究进展[J].化工进展,2007,26(3):310-313.[6] 田春霞.金属纳米块体材料制备加工技术及应用[J].材料科学与

工程,2001,19(4):127-131.[7] 李景新,黄因慧,沈以赴.纳米材料的加工技术[J].材料科学与工

程,2001,19(4):117-121.[8] 刘建军,王爱民,张海峰.高压原位合成块体纳米镁-锌合金[J].材料研究学报,2001,15(3):299-302.[9] Valiev R Z, Islamgaliev R K, Alexandrov I V.Bulk nano-structured materials from severe plastic deformation [J].Prog.Mater.Sci., 2000, 45(2): 103-189 [10] 刘惠玉,陈 东,高继宁.贵金属纳米材料的液相合成及其表面等离子体共振性质应用[J].化学进展,2006,18(7/8):890-894.[11] 曹立新,屠振密,李宁.电沉积法制备单金属纳米晶材料的研究进展[J].材料保护,2009,42(6):47-52.

第四篇:材料先进制备技术课程论文

材料先进制备技术课程论文

微胶囊相变储能材料及其制备技术研究进展评述

摘要:相变材料是利用物质发生相变时需要吸收或放出大量热量的性质来储热。微胶囊相变材料(Microencapsulated Phase Change Material,MCPCM)是应用微胶囊技术在固—液相变材料微粒表面包覆一层性能稳定的高分子膜而构成的具有核壳结构的新型复合材料。在固液相变材料表面包覆一层性能稳定的高分子膜而构成的具有核壳结构的复合材料。本文介绍了微胶囊相变材料及其结构组成、性能;综述了微胶囊相变材料的制备工艺、研究进展和应用领域;分析了各种制备方法的优缺点,并指出了制备微胶囊相变材料中存在的问题及今后的发展方向。

关键词:相变材料;微胶囊;复合材料;制备工艺 概述

1.1相变储能材料简介

1.1.1相变材料的含义

相变材料主要利用其在相变过程中吸收或放出的热能,在物相变化过程中与外界环境进行能量交换(从外界环境吸收热量或向外界环境放出热量),从而达到能量利用和控制环境温度的目的。物质的存在状态通常有三相:固相、液相和气相。当物质从一种相态变化到另一种相态叫相变。相变的形式主要有四种:固一固相变;固一液相变;液一气相变;固一气相变。当一种物质能够发生四种相变中的任意一种相变时,都可称为相变材料。如果从发生相变的过程来看,这种相变材料在吸热和放热的过程中,能够把热能储存起来,并对其周围环境温度调节控制[1]。1.1.2相变材料的特点

热能储存的方式一般有显热、潜热和化学反应热只种。相变材料是利用自身在发生相变过程中吸收或释放一定的热量来进行潜热储能的物质,该材料是通过材料自身的相态变

材料先进制备技术课程论文

透。MariaTelkes博士从1950年就着手对相变材料进行研究,他发现化学物质硼砂可以把十水硫酸钠过冷度降低将近3℃,并预计测出了该材料的相变次数可以达到2000次。在工程建筑应用方面,美国科学实验室已成功研制一种利用十水硫酸钠共熔混合物做相变芯材的太阳能建筑板,并进行了试验性应用,取得了较好的效果。美国的Dayton大学的J.K.Kssock等人将十八烷做为自己的实验相变材料,采用了浸泡法制成相变墙板,然后建筑一广一个相变墙实验房和一个普通墙实验房进行比较,试验显示出相变墙板房内的温度相对来说比较平稳,如果将相变墙应用在实际建筑物中,可以适当的提高居住的舒适性、削减电力的高峰负荷。

目前在研究的发展趋势中,相变材料的研究主要表现为:开发复合储热材料;研发复合相变材料的多种工艺技术;纳米技术在复合相变材料领域的深入应用。

1.2相变材料的微胶囊化

如何将相变材料进行有效的包装,一直是相变材料研究领域的研究热点。较为先进的纳米复合法是将纳米材料的界面效应和较大的比表而积与相变材料的优点结合在一起,可制得高传热效率的复合相变材料。目前,微胶囊可以较好解决相变材料在流出和外渗方面的问题。目前,在微胶囊相变材料的制备过程中,很多人选用了三聚氰胺甲醛树脂(MF)、脲醛树脂(UF)作为壁材,所制备的微胶囊在某些性能方有较好的表现:强度较高、耐热性能好。

1.2.1微胶囊技术

把固体或液体用某种膜材料包覆起来,然后形成微小粒子的技术,称之为微胶囊封装技术。球形微粒芯材在升温时,由固态时转变为液态,但外层包封的高分子薄膜层仍保持其固态,因此材料的外貌形态仍为固态颗粒。微胶囊包覆芯材,外层的壳物质称壁材;被外层壳材包覆的囊心物质称芯材。芯材可以是由单一物质组成,也可以是由混合物质组成;它的形态可以是固体、溶液、水分散液或油剂,也可以是一些特定的气体。微胶囊的粒径大小在l~1000微米范围内,它的微观形貌通常需要借助电子显微镜才能观察到。相变微胶囊技术是一种新工艺,它在化下、民药、农业等领域己经有了较大的发展,并且在科研领域中得到了越来越多科研人员的重视。微胶囊技术的应用前豪非常广阔,主要表现为以下

材料先进制备技术课程论文

潜热型功能热流体的基础研究工作,包括其制备、性能及传热机理目前受到关注。周建伟、黄建新等[2]在相变微胶囊的制备以及潜热型功能流体流动与传热的实验研究和理论模型等进行了探索,为潜热型功能流体的应用提供了材料的制备方法、基础实验数据和理论指导。

1.3.2纺织服装领域

自20世纪80年代,美国国家航空航天局(NASA)研究开发了微胶囊相变材料在热调节防护服装上的应用技术,微胶囊相变材料越来越广泛地应用于服装领域中,可以制成含有微纳米胶囊相变材料的调温纤维以调节服装及周边的温度,减少皮肤温度的变化,延长穿着的舒适感。鄢瑛[3]制备的以石蜡为芯材、脉醛树脂为壳材的微胶囊相变材料,通过丝网印刷技术,结合热固性聚氨醋网印粘合剂,将微胶囊涂布于棉布表面,以MCPCM在服装领域中的适用性为出发点考察其性能,同时考察人工汗液对MCPCM性能的影响和经涂布的棉布的热性能。将制得的聚脉型相变微胶囊和海藻酸钠共混纺丝,制备出相变调温海藻纤维,把海藻纤维制成透气且随外界温度变化的调温医用敷料等,对伤口的愈合速度与效果都有很好的辅助作用。张兴祥等[4]自1997年开始对相变材料微胶囊进行研究,将自行研制的MicroPCMS用于现有织物的涂层整理,得到在室温上下具有热能吸收和释放功能的织物,使用融熔复合纺丝工艺将直径为3μm左右的MicroPCMS添加到纤维内部,研制出含12%(质量分数)以上微胶囊的丙纶纤维,该纤维在人体感到舒适的温度范围内具有温度调节功能。1.3.3建筑领域

将微胶囊相变材料混人砖瓦、墙板及天花板等建筑结构材料中,可以进行太阳能储存,因此适合在温差较大的地区使用[5]。同时通过电力“移峰填谷”,也可以有效的缓解用电紧张。通过对相变墙板的储热性能进行研究,发现用95%的十八烷和5%的十六烷作相变材料,通过把装有PCM的聚乙烯小球加到石膏板中制备相变墙板,并对其传热性能进行了测试,在有该种相变墙板的实验房和普通石膏板实验房上作对比试验,得出了相变墙板的使用使得热负荷更平缓,辐射域更舒适,用电量下降,有削减尖峰负荷的可能的结论。美国研制成功一种利用十水硫酸钠低共熔混合物作储热芯料的太阳能天花板砖块,它不用普通的水泥而用聚脂粘接剂和甲基丙烯酸甲脂添加剂组成的高分子混凝土组成,并在麻省理工学院建筑系实验楼进行了试验性应用。同济大学建筑材料研究所采用正十二醇吸附有机

材料先进制备技术课程论文

体的原料配比要求不严。但是生产条件比较苛刻,难以实现工业化,且制备的纳米胶囊不可避免地夹杂有少量未反应的单体。界面聚合形成的壁膜一般可透性较高,不适于包覆要求严格密封的芯材。

2.2原位聚合法

原位聚合法制备微胶囊时,囊芯必须被分散成细粒,并在形成的分散体系中以分散相状态存在。此时,发生原位聚合反应的单体与引发剂在分散体系中的位置可能有两种情况,即在连续相介质中或在分散相囊芯中。虽然单体在体系中可溶,但生成的聚合物不可溶,故随着聚合的进行,聚合物沉积到芯材上,形成核壳结构。在原位聚合法制备胶囊的过程中,由于单体只由一相提供,反应速率不是很大。原位聚合法是合成MCPCM的较好方法。采用这种方法制备的MCPCM在形貌、热性能和胶囊致密性等方面都能达到使用要求,能合成得到1μm以下的相变胶囊。

北京航空航天大学饶宇及东华大学罗燕等人[7]采用原位聚合法工艺22烷微胶囊相变储能材料,通过该方法可以制备出密封性以及机械强度均较好的微胶囊。在芯材液滴表面上,相对低分子量的预聚体通过缩聚反应,尺寸逐渐增大后,沉积在芯材液滴表面,由于交联及聚合的不断进行,最终形成固态的微胶囊壁。

石蜡是一种常用的相变材料,熔点为45~75.9℃,熔化热为150~250kJ/kg,具有储热能力,强、相变温度能通过分子量控制、相变行为稳定、价格低廉等优点。北京航空航天大学章文等人[8]以石蜡为囊芯,眼醛树脂为囊壳,通过原位聚合法制得了微胶囊。研究了腮醛预聚体的生成和脉醛预聚体的固化2个阶段的工艺条件对微胶囊形成的影响。显微观察微胶囊形貌完整。涂膜隔热性能测试结果表明,该种微胶囊具有明显吸热性能,可作为隔热添加剂使用。通过原位聚合法制备了石蜡相变微胶囊,可以有效地防止石蜡的泄漏,同时可以将石蜡的完全亲油性转变为具有一定的亲水性,改善了石蜡的使用性能,为石蜡作为相变材料的使用提供了试验基础。

2.3复凝聚法

复凝聚法是以两种或多种带有相反电荷的线性无规聚合物作为壁材,然后将芯材分散与其水溶液中,在适当的pH值、温度和稀浓度条件下,使带相反电荷的高分子材料之间发生静电作用而相互吸引,导致芯材的溶解度降低并分成两组,即贫相和富相,其中富相

材料先进制备技术课程论文

Maria等人[10]短链脂肪酸为芯材,阿拉伯胶和麦芽糖糊精为囊壁,用喷雾干燥法制备了MCPCM,由于乳化不均匀导致产物粒径分布较宽,在0.05~550微米之间,部分微胶囊表面有明显的下陷。

2.6溶胶—凝胶法

溶胶一凝胶法主要用于制备以金属氧化物或非金属氧化物为囊壁的MCPCM。可采用溶胶一凝胶法制备MCPCM,在相变材料表面包覆金属氧化物或非金属氧化物的凝胶,从而提高了该类相变材料的机械强度和阻燃性。

2.7电镀法

电镀法主要用于制备以金属薄膜作为囊壁的MCPCM。以粒径为0.5~4.0 mm的金属铅粒为相变材料,用电镀法在其表面镀上厚度约为10~100μm的镍膜,具体是将铅粒置于旋转的电解槽中进行电镀,根据法拉第定律,囊壁即镀层的厚度可以通过电镀的时间来控制。

2.8新型制备方法

由于普遍采川有机高分子为胶囊壁材,其导热率低,且与其它建筑材料相容性较差,给实际应用造成了一定困难。武汉理工大学马保国,金磊等人[11]介绍了一种新型有机一无机相变储能微胶囊的制备方法,即采用无机层状硅酸盐材料和碱性硅酸盐溶液为壁材、有机相变材料十八烷酸为基材,先制备半包覆结构的相变胶囊,再加人碱性硅酸盐溶液进行第2次包裹。结果表明:采用无机层状硅酸盐材料、相变材料、碱性硅酸盐溶液比例为1:2:4时,其包裹效果较好,经无水乙:醇溶解实验后,其有效相变材料损失量为4.37%热失重实验结果表明其中相变材料有效含量为37.4%,而DSI实验结果表明微胶囊中有效相变材料35.04%,存在差异的原因可能在于碱性溶液与相变材料的酸碱反应所致。

材料先进制备技术课程论文

参考文献

[1]Wang L X, Su J F,Ren L.Preparation of thermal energy.storage microcapsule by phase change[J].Polymeric Materials Science and Engineering,2011.21(1);276-279.[2]周建伟,黄艳芹,黄建新,等.纳米胶囊相变材料的制备及性能研究[J].化学工程师,2010,21(8):3-6.[3]鄢瑛,张会平,刘剑.微胶囊相变材料的制备与特性研究[J].材料导报,2011,23(2):49-52.[4]樊耀峰,张兴祥,王学晨,等.相变材料纳米胶囊的制备与性能[J].高分子材料科学与工程,2010,21(1);288-292.[5]Eltouney H M.Alatiqi I,Sahali M.etal.Heat Transfer enhancement by metal screens and metal spheres in phase change energy storage systems[J].Renewable Energy.2012,29(6):841-86.[6]Lan X Z,Yang C C,Tan Z C,etal.Microencapsulation of n--eicosane as Energy Storage Material Synthesized by Interfacial Polymerization[J].Aeta PhYs.-Chim.Sin,2012, 23(4): 581-584.[7]饶宇,林贵平,罗燕,等.应用于强化传热的相变材料微胶囊的制备及特性[J].航空动力学报.,2009,20(4):651-655.[8]章文,郑天亮,东栋,等.石蜡相变微胶囊的制备及其隔热性的研究[J].新技术新工艺2010,16(12):82-83.[9]刘太奇.操彬彬,张成,等.物理法制备微胶囊无机芯相变材料及其表征[J].新技术新工艺,2010,19(3):81-84.[10]Maria I T.Leonardo R A, Farina M,etal.Mater Sci and Engin[J],2011,24:653-658.[11]马保国,金磊,等.有机一无机相变储能微胶囊的制备与表征[J].武汉理工大学学报2010,31(11):5-7.1-

第五篇:金属材料的先进制备技术

金属材料的先进制备技术

本课程为材料系硕士研究生学位课,共计32学时,2学分。

考试方式采用专题报告形式,研究生可在教师开列的专题中选择一个题目,然后收集资料,阅读中外文献(不少于10篇),并撰写报告(综述性报告,每篇不少于5000字),期末要在班上进行口头报告(报告15分钟,回答问题5分钟)。

研究生在学期结束前提交报告,教师批阅报告后,并结合平时情况给出本课程的成绩。成绩由三部分组成,平时出勤率占20%,课堂讨论20%,期末报告(书面+口头)占60%。

本课程主要介绍金属材料(为基体)的一些最新制备技术,包括原理、方法及其应用简介。

第一讲:绪论(康飞宇,2学时)

1、现代工业对材料的要求及其材料开发的方法

2、材料性能的不断提高对制备技术的要求

3、用途不断扩大对制备技术的要求

4、金属材料的改性趋势:极限化,复合化,数值化等

5、金属材料制备的新思路

第二讲:纳米材料及其制备技术(康飞宇,2学时,含讨论)

1、纳米材料概念

2、纳米材料制备技术

第三讲:极限材料和极端条件下材料的制备技术(康飞宇,学时,含讨论)

1、超纯材料、超高强材料、超高温材料

2、超高压条件

3、微重力条件

4、真空条件

第四讲:金属材料加工新技术(2学时,康飞宇,含讨论)

1、新型压力加工、焊接和铸造工艺

第五讲:金属基复合材料的制备技术(4学时,邓海金)

1、固态制备

2、液相制备

3、原位制备

4、喷射喷涂

第六讲:高能束技术及其应用(杨志刚,4学时)

1、激光束与材料的作用

2、离子束与表面改性

3、电子束

4、物理化学气相沉积

第七讲:凝固技术及其应用(4学时,杨志刚)

1、快速凝固技术: 非晶态合金和准晶制备

2、定向凝固技术:定向凝固共晶合金制备

3、单晶材料制备技术

4、新型大块非晶及纳米晶材料制备技术

第八讲:其它材料特殊制备技术(4学时,杨志刚)

1、自蔓延高温合成技术

2、金属雾化喷射沉积技术

3、半导体芯片的制造技术

4、光纤的制造技术

5、超导材料加工工艺

第九讲:期末专题报告(8学时,康飞宇,含讨论)

专题报告题目(每人限选一个)

 金属的超塑性和超塑性加工

 快速成型及其制造技术

 先进焊接技术

 铸造新技术

 压力加工新技术

 定向凝固技术

 雾化成型技术

 金属的半固态加工技术

 高压条件下材料的制备

 低温条件下材料的制备

 真空条件下材料的制备  微重力条件下材料的制备

 超细金属颗粒制备

 金属纤维与晶须的制备

 超纯金属材料的制备

 粉末冶金新技术

 自蔓延高温合成技术

 纳米复合材料的制备

 计算机技术在材料中的应用

 “三束”在金属材料制备和改性中的应用

 极限材料及其制备技术

 自选题目,必须事先征得老师同意。

下载先进金属材料制备科学与技术考试要点(北航)word格式文档
下载先进金属材料制备科学与技术考试要点(北航).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    金属材料的先进制备技术[推荐阅读]

    金属材料的先进制备技术 金属材料热处理表面强化技术研究 l引言 随着工业现代化工业的快速发展,对各种机械设备零件的表面性能要求越来越高。一些在特殊条件下工作的零部件,往......

    材料制备原理与技术-教学大纲

    《材料制备原理与技术》教学大纲 《材料制备原理与技术》是研究无机非金属材料的合成与制备、组成与结构、性能、使用效能之间的关系与规律的科学。本课程由陶瓷工艺原理、......

    N.材料先进制备加工技术-2011中国材料研讨会

    2011中国材料研讨会 5.17-5.20 北京国家会议中心N.材料先进制备加工技术 分会主席:谢建新、曲选辉、刘雪峰 单元N1:5月19日上午 主持人:谢建新,李元元 08:30---09:00am *N1 多场......

    光纤通信技术考试要点

    SCU 1. 光纤损耗包括哪几种?并叙述其机理。 2. 光的辐射包括哪两种形式?并比较二者的差别。 3. 用同质结做成激光器时阈值电流很大,不能连续工作。若做成双异质结,则 可实现室温......

    科学与技术

    论科学与技术的关系 摘 要:科学与技术是推动人类社会发展的两大力量.正确认识和处理它们之间的关系,往往关系一个民族、国家的荣辱兴衰,无论是社会更迭,跨时代的王朝更替,它......

    1000米跑技术要点及训练与考试

    1000米跑技术要点及训练与考试 第一部分 技术要点 一、呼吸 呼吸是中长跑一项重要的技术。许多人在慢跑时不注意呼吸的深度,所以在较长时间运动时,就会出现呼吸表浅而急促,从而......

    《先进材料成形技术与理论》考试大纲

    华中科技大学博士研究生入学考试 《先进材料成形技术与理论》考试大纲 一、《先进材料成形技术及理论》课程概述 编 号:MB11001 学时数:40 学 分:2.5 教学方式:讲课30、研讨6、......

    先进材料与技术论文

    这学期我选了《先进材料与技术》这门选修课,虽然说只是一门选修课,但我从几位老师的授课中学到了不少,对材料有了一个新的认识,因为我也是学材料的,这对我以后学材料定会有更多......