第一篇:先进封装技术
先进封装技术发展趋势
2009-09-27 | 编辑: | 【大 中 小】【打印】【关闭】
作者:Mahadevan Iyer, Texas Instruments, Dallas
随着电子产品在个人、医疗、家庭、汽车、环境和安防系统等领域得到应用,同时在日常生活中更加普及,对新型封装技术和封装材料的需求变得愈加迫切。
电子产品继续在个人、医疗、家庭、汽车、环境和安防系统等领域得到新的应用。为获得推动产业向前发展的创新型封装解决方案(图1),在封装协同设计、低成本材料和高可靠性互连技术方面的进步至关重要。
图1.封装技术的发展趋势也折射出应用和终端设备的变化。
在众多必需解决的封装挑战中,需要强大的协同设计工具的持续进步,这样可以缩短开发周期并增强性能和可靠性。节距的不断缩短,在单芯片和多芯片组件中三维封装互连的使用,以及将集成电路与传感器、能量收集和生物医学器件集成的需求,要求封装材料具有低成本并
易于加工。为支持晶圆级凸点加工,并可使用节距低于60μm凸点的低成本晶圆级芯片尺寸封装(WCSP),还需要突破一些技术挑战。最后,面对汽车、便携式手持设备、消费和医疗电子等领域中快速发展的MEMS器件带来的特殊封装挑战,我们也要有所准备。
封装设计和建模
建模设计工具已经在电子系统开发中得到长期的使用,这包括用于预测基本性能,以保证性能的电学和热学模型。借助热机械建模,可以验证是否满足制造可行性和可靠性的要求。分析的目标是获得第一次试制时就达到预期性能的设计。随着电子系统复杂性的增加以及设计周期的缩短,更多的注意力聚焦于如何将建模分析转换到设计工程开始时使用的协同设计工具之中,优化芯片的版图和架构并进行必要的拆分,以最低成本的付出获得最高的性能。
为实现全面的协同设计,需要突破现今商业化建模工具中存在的一些限制。目前的工具从CAD数据库获得输入,通常需要进行繁杂的操作来构建用于物理特性计算的网格。不同的工具使用不同IP的特定方法来划分网格,因而对于每种工具需要独立进行网格的重新划分。重复的网格划分会浪费宝贵的设计时间,也会增加建模成本。网格重新划分也限制了在这三种约束下进行多个参数折中分析的可行性。
图2.复杂的芯片叠层和互连方案需要谨慎的机械和电学建模
未来的工具必须通过访问同一个CAD数据库,在所有这三个约束下进行迭代分析,不需要用户干预就可自动进行网格划分,并通过合适参数的成本-功能最小化来优化设计。软件工具提供商要么考虑这些关键需求,要么去冒出局的风险(图2)。
电学建模的目标是精确地分析整个系统,包括从源芯片和封装体通过对应PCB板进入要接收的芯片内部。不断增加的系统性能和结构复杂性,给电学建模提出了很大挑战。在较高频率下,系统中较多的结构接近相当大比例的波长尺寸,将伴生有电磁干扰(EMI)的耦合风险。所用传输线或波导器件数目的增加,使得时序分析更加关键,也要求将诸如介质层厚度和连线宽度等制造误差包含进去。对于叠层芯片、叠层封装等三维封装以及穿透硅通孔(TSV)等互连技术,工程师必须考虑与芯片顶部和芯片底部结构的耦合。为应对这些新出现的复杂性,业界需要新型求解算法和问题分割来突破目前在求解速度和问题规模方面的限制。
工程师使用热学建模来优化芯片、封装和系统的功率承载能力,确保在使用过程中芯片不
会超过结温限制。热学问题通常是一个系统(甚至包括使用芯片的结构)问题,因为系统和结构是造成一个独立芯片热沉的原因。必须考虑空气流动、系统内部构造、外部环境、临近组件位置以及其他一些因素,以准确预测系统工作温度。三维封装将功率集中于更小体积之内,需要进行充分的测量来管理增加的功率密度,要在芯片热点分布的分辨率水平上进行分析。在这种系统复杂性水平上,进行热学建模面临很大挑战,业界正进行广泛合作来为不同等级的域开发合适的集总模型和边界条件。
热机械分析主要为了确保电子组件最优的制造可行性和可靠性,同时也指导新型TSV技术的可靠性研究和片上介质层的材料选择。系统设计则集中于冲击负荷和振动条件下如何提高可靠性。MEMS也需要协同设计,需要在各种封装应力下调节器件性能。最重要的是,工程师必须了解诸如热膨胀、模量、拉伸强度、粘性行为和疲劳行为等材料性能,来提供有效的可靠性预测。不仅要在室温条件下获取粘性和疲劳特性,还需要在焊球回流温度和温度循环极限条件下获取。
互连
传统的互连选择包括在成本敏感的高性能应用中的引线键合和焊球倒装芯片。随着电子产业更加转向消费类产品,即使对于高性能产品,成本也变得更加重要。消费类产品所需的便携性也增加了尺寸的重要性,推动了引线键合以及焊球倒装芯片互连节距的降低,也为新型互连技术的发展提供了动力。
在某些情况下节距低于150μm,传统的焊料凸点倒装芯片互连已不能提供足够的可制造性或可靠性,除了尺寸最小的芯片外。芯片与衬底的支起高度已经达到或低于凸点的半节距,影响了倒装芯片器件的可制造性和可靠性。在一些临界值下,由于邻近凸点以及芯片与衬底表面构成的通道非常小,芯片下填充物流动的阻力超过了毛细管效应提供的动力。
图3.图示铜柱拥有2.5:1的高宽比
实际应用中越来越多的采用带有焊料帽的铜柱来替代传统的焊球凸点,这种铜柱可提供与引线键合节距相同的倒装芯片方案。与焊球互连不同,基于铜柱的互连可以拥有大于1:1的高度直径比。对于给定的芯片节距,与焊球互连相比,铜柱之间以及芯片与衬底之间的间隙要大得多,从而可以获得更好的可制造性和可靠性。增加支起高度带来的不利影响是芯片与衬底间共面容差的降低,因为减小的焊料高度只能容许更小的接合高度变化。
铜柱互连技术的研究仍处于高校研发阶段。它的潜在好处包括:全铜结构(没有焊料或者金属间化合物)带来的较高的结构整体性,低于25μm的互连节距,以及因更高的高宽比(大于等于4:1)和互连强度而不需要进行底部填充。铜柱通过电镀的方式在芯片和/或衬底上制作,接合工艺使用化学镀铜的方式填充铜柱间或铜柱与焊盘间的空隙(图3)。它允许相对大的芯片和衬底间的共面容差。
材料
新材料推动不同的工艺相互作用,并改变互连、界面和可靠性等对应的物理特性。举例来说,在键合中转而使用铜线将带来新的现象,必须进行相应研究和表征。
绿色材料的引入大大影响了引线框架封装的可制造性、成本以及可靠性。其他的一些因素
包括,诸如汽车发动机腔体的高温环境,高电压(500-1000V)需求,用于高功率IC的高导电率芯片粘结材料,以及用于高电流承载的厚导体。在引线框架、模塑混合物和互连线中使用的传统材料的替代品正在出现,这包括铝引线框架、无金丝互连,以及与超薄芯片一起使用的低成本注模技术。
对于大多数倒装芯片封装来说,底部填充需使用另一种关键材料。目前的底部填充材料必须满足一些相互冲突的需求。它们必须在填充过程中表现良好,必须在不断缩小的空隙间迅速流动,必须可以保护焊球连接和有效电路免受热机械应力的影响,还必须在多次暴露于高温高湿环境之后保持性能。最新的底部填充材料使用尺寸分布较窄的亚微米填充物和多种添加剂,这些添加剂可以调节材料的粘性、模量、热膨胀系数(CTE)和玻璃转化温度(Tg),在保证使用超低k介质的有效电路叠层的低应力情况下成功增强新型硬质无铅焊料的性能。
在选择底部填充材料过程中,工程师们必须同时考虑在芯片粘结回流工艺中使用的助焊剂。无铅焊料使用的助焊剂比铅锡焊料使用的助焊剂更加有效,后者通常引起比较讨厌的回流后助焊剂残留物。这些残留物将与底部填充材料反应,形成性能不佳的混合物。一种潜在的解决方法是使用可清洁的助焊剂并在施加底部填充材料之前去除掉残留物。这一方法需要额外的设备和工艺步骤。如果使用免清洗助焊剂,将会存在一些残留物,在助焊剂残留物存在的情况下,必须对对应底部填充材料的表现进行表征(图4)。
图4.温度循环测试之后对应没有优化(上图)和最优化(下图)的助焊剂-底部填充材
料组合的剖面图。
窄节距凸点技术
部分游戏和无线领域使用或者正在考虑使用凸点节距低于60μm的倒装芯片封装,而标准的凸点节距为150μm。逐渐被采用的潜在解决方案包括缩小凸点的尺寸或者使用顶部覆盖一层焊料的较厚的钉头(stud)来提供芯片与衬底间的支撑高度。节距更密集的凸点以及提高电镀铜厚度的可能性为该领域材料和工艺的选择带来挑战和机遇。
对于通过电镀制作的凸点而言,首先面临的挑战是光刻胶材料的选择。制作这种节距范围的凸点,需要进行受控电镀,而非快速扩散的电镀,需采用较厚的光刻胶,高宽比可能超过3:1。采用正性和负性光刻胶都可以得到所需的厚度。正性光刻胶具有易控制形状和去胶方便的优势,而负性光刻胶具有易控制曝光能量和显影时间的优势。目前为止,选用的光刻胶已经可以将高宽比做到4:1,仅就图形的高宽比而言,已经得到了比预期更突出的能力。在化学浸润高的高宽比结构方面,一些材料表现出较强的能力或挑战。
高高宽比光刻胶开口给电化学带来了浸润性的挑战。而且,铜厚度的增加需要更高的电镀速度来保持产能。然而,电镀结构的均匀性趋于与电镀速度相关,需要电镀技术的进一步发展来获得令人满意的结果。
小尺寸结构还影响工具和化学组分的选择。在制作150μm或更大节距的凸点时,凸点结构为电镀工具和化学组分的选择保留了比较宽的工艺窗口。批量工具和强腐蚀的化学品会引起凸点结构较大的侧向钻蚀,如果特征尺寸由80μm减小到30μm时,这种钻蚀会严重影响质量。这些挑战可由使用单晶圆工具和反应不那么强烈的刻蚀化学品来解决。
更密集的凸点节距在大于60μm时,通过正确选择材料、工具和工艺优化可以获得重复性优异的高产能工艺。对于电镀工艺来说,优化时需要覆盖光刻工具和材料、电镀化学浸润性和
电镀速度,以及去胶和刻蚀工具与工艺等方面。
WCSP
晶圆级芯片尺寸封装(WCSP)应用范
围在不断扩展并进入新的领域,而且根据引脚数目和器件类型细分市场。无源器件、分立器件、RF和存储器件的份额不断提高,并开始进入逻辑IC和MEMS之中。随着芯片
尺寸和引脚数目的增加,板级可靠性成为一大挑战。
在过去的十年间,低引脚数目的WCSP部分已经变得非常成熟,众多厂家使用不同尺寸的晶圆不断推出高产量应用,并不断扩展面向不同市场的产品空间。随着基础设施建立的完成,并且也已经实现量产,下一个主要聚焦的方面是降低成本,这对于低引脚数目的器件来说尤为关键,同时对高数目引脚的器件来说也很重要,包括300mm晶圆。
较高引脚数目带来新的挑战,在一些因硅面积的限制导致扇入技术不能胜任的案例中,引入了扇出技术。这些技术存在制造和成本挑战,一个例子是在一个较大承载衬底上放置芯片的精度问题。扇出技术在系统级封装(SiP)中也存在应用潜力,而且可以是一个过渡性的方法,或者可以与诸如TSV叠层封装等替代性方案进行竞争。
简化现有结构可以实现成本节约,另一个节约的来源是与材料供应商合作开发下一代材料。
针对MEMS的特殊考虑
SiP技术已经开始集成MEMS器件,以及其他的一些逻辑和面向特定应用的电路。MEMS应用覆盖了惯性/物理、RF、光学和生物医学等领域,而且这些应用要求使用不同种类的封装,比如开腔封装、过模封装、晶圆级封装和一些特殊类型的密闭封装。这些微系统必须具备可以
在潮湿、盐渍、高温、有毒和其他恶劣环境中工作的能力(图5)。
图5.扇出技术使用再分布层或者其他替代物,有可能与使用TSV的叠层封装进行竞争
使用TSV的三维封装技术可以为MEMS器件与其他芯片的叠层提供解决方案。TSV与晶圆级封装的结合可以获得更小的填充因子。潜在的应用包括光学、微流体和电学开关器件等。
医疗、安防、汽车和环境应用是电子产业中出现的具备高增长潜力的领域。大多数的这些应用需要将传感器或MEMS与IC作为系统的一部分。独立系统通过使用电池或能量提取技术以很低的功率进行工作。这类器件在个人医疗中的广泛应用将依赖于它们的效用、使用方便性以及价格。
在医疗器件方面,MEMS具有很多机会,这包括体外诊断、芯片上实验室以及药物供给等。基于MEMS的微流体技术将是支撑这些应用的一项关键技术。其他的一些机遇包括三轴加速度计、压力传感器、能量收集器以及用于听觉器件的硅微麦克风。可植入器件同样需要特别的封装,以在人体内恶劣的环境下保持可靠的性能。
降低封装成本是MEMS器件面临的最大挑战,而这推动着更多的标准化和封装在填充因子方面通用性的发展。其他的一些关键性挑战包括应力管理(特别是对于压力和惯性传感器)、避免污染杂质、组装位置偏差、压力控制以及密闭性等。
结论
先进封装在推动更高性能、更低功耗、更低成本和更小形状因子的产品上发挥着至关重要的作用。在芯片-封装协同设计以及为满足各种可靠性要求而使用具成本效益的材料和工艺方面,还存在很多挑战。为满足当前需求并使设备具备高产量大产能的能力,业界还需要在技术和制造方面进行众多的创新研究。在能量效率、医疗护理、公共安全和更多领域,都需要创新的封装解决方案。
第二篇:8~12英寸先进封装技术专用匀胶设备
8~12英寸先进封装技术专用匀胶设备
沈阳芯源微电子设备有限公司研制的8~12英寸先进封装技术专用匀胶设备获得“2007年中国半导体创新产品和技术”奖,其中12英寸(×300mm)晶圆先进封装设备,于2007年7月在我国五大先进封装测试厂之一的江阴长电先进封装有限公司通过严格的工艺检测验收,成功投入生产使用。实现了国产首台IC装备在晶圆尺寸和新工艺应用上的重大突破。
由中科院沈阳自动化所投资兴办的沈阳芯源微电子设备有限公司是跻身于集成电路装备行业的后起之秀。公司成立于2002年底,几年来,通过广泛的国际合作加快了自主知识产权的IC装备研发进程,目前已申请与技术产品相关技术专利45项,其中发明专利19项,已授权实用新型专利11项、软件著作权1项。芯源公司在引进国际先进技术基础上,消化吸收,创新提高,在匀胶显影整体技术和单元技术创新改进方面取得了多项关键技术突破,成功实现了技术的跨越式发展,使我国在集成电路制造领域的匀胶显影技术提升了三个产品代,与国际最先进技术的差距缩短了15年。
同时,依托沈阳良好的装备制造业基础,建立了稳定的供应链,设备国产化率达70%以上,成本降低超过20%;产品从前工序专用的匀胶显影机,拓展到擦片机、清洗机、后道封装等不同领域。产品已销往多家客户并在稳定生产中,企业和产品在同行业形成了品牌影响。
在我国IC 产业中,封装业占有重要地位,目前我国已经成为世界第一封装大国。随着IC封装技术不断革新,倒装芯片,球栅阵列,芯片和圆片级封装技术已成为先进封装技术的主流。先进封装技术的基石是凸点工艺。而该工艺的核心技术是高粘度厚胶涂敷。沈阳芯源研制的8~12英寸先进封装技术专用匀胶设备成功地突破了这一技术难题。
1创新性
(1)理论创新
本项目技术和产品在国内均属空白,理论创新有:
1)改善厚胶和边沿胶膜的均匀性的空气动力学模型;
2)深孔刻蚀的化学反应机理和工艺过程。
(2)应用创新
1)单片全自动传送去胶/刻蚀系统(此前国内均为槽式浸泡,工艺等级和精度受限),结合Robot精度自动传送+化学腐蚀液特殊?+离心机高精度旋转;
2)对粘度高达20000CP的厚胶及粘贴玻璃片产生的翘曲撞片刮版等设计的特殊检测夹板传送尺寸。
(3)技术创新
1)自主开发的多分区高精度渐进式烘焙热盘,保证烘焙温度、梯度控制,避免胶膜破裂和气泡产生;
2)大圆片、大负载下高速离心机的轴向跳动的解决;
3)模块式全封闭单片全自动设备总体
(4)结构创新
采用全封闭结构,各功能单元立体交叉布局,相同或相似的功能模块分区域集中布置,与辅助系统MFC、FFU相配和实现局域小环境调节和系统环境的优化。
2应用范围
(1)产品适用于最先进的高端封装技术(如COG、TBA和砷化镓FC工艺)
(2)还可推广应用于前工序制造的单片旋转湿法刻蚀设备、清洗设备、晶片擦片机等,该技术还可应用于大型平板显示器的生产、太阳能电池和其它领域。
3用户情况
该产品与国外相同档次设备相比价格低1/3;而且能同时适用于先进封装生产线的PR/PI高粘度厚胶涂敷,而国外设备只适用于单一涂胶;芯源公司售后服务、维修备件成本大大优于国外公司,是国内生产线的首选设备供应商,可替代进口,节约外汇。社会经济效益可观。
芯源产品已销售到中芯国际、江阴长电、中电13所等企业,产品在线运行稳定。
2005年9月,国内五大先进封装企业之一的江阴长电集团采购芯源公司8英寸BUMPING(凸起接点)匀胶设备,使用取得成功,芯源是国内第一个将国产设备推入集成电路8英寸主流生产线的企业。
2006年4月交付到国内最大、全球第三大芯片制造企业中芯国际的8英寸BUMPING匀胶显影设备,经过半年的在线运行,通过了全面验收;2007年初,芯源公司被中芯国际授予“最佳供应商”称号。
2007年初自主研制生产12英寸BUMPING封装工艺匀胶样机,在江阴长电先进封装现场测试成功,并于2007年7月正式投入生产线使用,是国产IC装备在关键领域取得的重大突破。
4市场前景
BUMPING工艺是新兴工艺的高增长型产品。先进封装模式正在取代传统的封装方式。
我国目前有封装企业60余家,其中10%的厂家在近期内考虑转型应用BUMPING工艺封装技术。
本项目产品用于最先进的高端封装技术(如9vk COGTBA和砷化镓FC工艺)。目前,12英寸晶圆的后道封装70%已采用先进的Bumping工艺,全球有70%的Bumping线在中国台湾,正在向中国大陆转移。本项目这些设备完全可以销往中国台湾、新加坡等市场;中国大陆、中国台湾、东南亚对Bumping 设备的市场需求保守预测每年有30亿元人民币,并以每年33%的速度增长。
本项目产品可推广的应用领域广泛,拥有更广阔的市场前景,可占领国内市场20~30%的市场份额,并出口到中国台湾等海外市场。
第三篇:封装材料
封装材料
在组件封装过程中,聚合物可以使电池片、背板和玻璃很好地粘合在一起,与此同时,聚合物需要确保组件高透光率、抵御恶劣潮湿寒冷气候----例如防潮----柔韧。聚合物火焰传播指数要低于100,要通过防火UL960Class C, 认证测试。此外,还要遵守其他规则,包括登记、评估、批准还有化学物质限制条令和危险品限制条令。
用于封装材料的聚合物有EVA(乙烯醋酸乙烯酯),PVB(聚乙烯醇缩丁醛),Polyethylene Ionomers(离聚物),Polyolefines(聚烯烃),silicones(硅)和TPD(热塑性聚氨酯)。传统的EVA制造商
EVA是乙烯醋酸乙烯酯聚合物,EVA的优点有清晰、坚韧、灵活、御低温。EVA的透光率取决于VA(乙酸乙烯酯)的含量---VA(乙酸乙烯酯)含量越高,透光率就越好。不过,需要交联来实现必要的韧性和强度,这是个不可逆现象。
EVA可以通过两种方法获取---快速固化法与标准固化法。通常制作EVA需要固化剂、紫外线吸收器、光抗氧化剂,其中固化剂的品种直接决定是采用何种固化法---快速固化或标准固化。
今年的市场调查覆盖了18款产品,14家EVA制造商,其中包括3家新公司,8款新产品。其中仅有6家公司生产标准固化EVA,这种迹象也意味着大家倾向于生产快速固化产品,因为快速固化EVA层压时间可以降低40%,可以提高生产效率。
另一家光伏组件封装材料大供应商是美国的Solutia Inc.公司,该集团旗下的Saflex Photovoltaics是一家供应PVB产品的公司。据Saflex商务总监Chiristopher Reed 称,该公司市场占有率达20%,并且对EVA, PVB和TPU封装材料可以提供一站式解决方案。他们的EVA,TPU太阳能产品是由他们公司在今年6月份在德国收购的Etimex Solar 有限责任公司生产的。Solutia 供应的快速固化产品有VISTASOLAR 486.xx和VISTASOLAR496.xx,供应的超快速固化产品有VISTASOALR 520.43。快速固化产品宽度为400mm到1650mm,超快固化产品的宽度为500mm到1650mm,他们也可以根据客户要求生产更宽的产品。Solutia生产的快速固化EVA透光率可达90%,超快固化EVA透光率达95%以上。
现在光伏行业内在讨论EVA产品时,通常说到一个词:紫外临界值。Solutia公司生产的快速固化和超快速固化EVA的紫外临界值均为360nm,厚度为460um到500um,张力强度为25N/n㎡,是本次调查中张力强度最高的。根据不同的保质期,快速固化EVA保修期是6个月,超快速固化EVA保修期为4个月。另一家美国公司是Stevens Urethane Inc.该公司供应的超快速固化与标准固化EVA,保修期为12个月。不过,据该公司市场与产品开发部副总裁James Galica说,他们的客户在将产品保存了2年后使用都没有任何问题。Stevens Urethane供应的标准和超快速固化EVA有PV-130和PV-135, 宽度最大可达2082mm以上。据Galica讲,超快速固化EVA的市场需求比标准固化EVA市场需求大。两种产品的熔点为60℃,最小张力强度为10N/n㎡,最少订单不能低于100㎡,产品一般在2到4周就可以交货,是在这次调查中从订货到交货用时最短的公司。
西班牙的Evasa也是一家新进入EVA生产领域的公司,供应三款产品,分别是SC100011E/A,FC100011E/A和UC100011E/A,FC100011E/A和UC100011E/A属于快速固化与超快速固化EVA产品。Evasa公司所有产品都很清晰,透光率为91%。超快速固化与标准固化EVA热损耗率为5%,听说快速固化EVA的热损耗率非常低,仅有1%。宽度最大可达2100mm,厚度为100um到1200um。这三款产品在下订单2周内可以生产出来,也是本次调查中交货用时最短的公司。
Toppan Printing英国有限责任公司供应的EVA产品是EF1001, 他们公司既可以生产快速固化产品,也可以生产标准固化产品。据Toppan公司销售与市场总监Mitsuharu Tsuda介绍,大多数客户倾向于买快速固化EVA,但是日本客户还在买标准固化EVA。Toppan公司供应的EVA产品宽度最大可达1100mm,厚度为300um到600um。Toppan公司的交货时间是4到6个月,他们只接大于150㎡的订单。
另一家新进入EVA生产领域的美国公司SKC Inc.在尺寸要求上与众不同,SKC公司只接大于10000㎡的单子。SKC公司供应一款标准固化EVA:ES2N和两款快速固化EVA:EF2N和EF3N。这三款产品宽度为400mm到2200mm,厚度为400um到800um。ES2N和EF2N的熔点是70℃,EF3N熔点为60℃。据SKC公司声称,这三款产品的黏结性都很好,强度大于60N/nm。保修期为6个月,交货期是4到8周。
法国Saint Gobian集团有许多子公司都活跃在太阳能行业内,从玻璃到GIGS组件再到碳化硅。其在美国的子公司Saint Gobian Performance Plastics 生产用于光伏市场的含氟聚化物前板。在2009年,这家美国公司首次推出快速固化EVA :Solar Bond E。Solar Bond E最宽是2000mm,厚度为300到1200mm。尽管Saimt Gobian没有透露张力强度指数,但是具体指出了与玻璃的黏性大于70N/nm,这一数据是本次调查中最高的。Saint Gobian 公司生产的EVA在100℃度的环境下热损耗率在仅有1%到3%,订量不能少于100m ,交货时间为4到6周。据公司产品经理Phoebe kuan介绍,产品既可以标准包装也可以特别包装。如果使用标准包装,贮存时间可以确保6个月,如果采用另外付费的特别包装贮存时间可以确保9个月。
接下来的几家EVA供应商是在去年接受了调查,在今年的调查中他们都没有更新产品信息。日本厂家Bridge stone还在供应Evasky 产品,既包括标准固化EVA,也包括快速固化EVA。Evasky宽度在500mm到2400mm,厚度为300mm到800mm,透光率90%,也是在这次调查中最低的。Evasky清晰白净,熔点在70℃到80℃。尽管本次调查中也有其他厂家讲他们的产品在20℃的环境下超过24小时吸水率为0.1%,但是Bridgcstoue称他们的吸水率为0.01%,低了10倍,是本次调查中最好的。订量最少不低于1000m,保质期为6个月,交货时间为3到6 周。很有趣的是,STR没有提供任何标准固化EVA数据,仅提供了快速固化与超快速固化产品,分别是15435P/UF和FC290P/UF,厚度为100um到1000um之间,熔点不一样,15435P/UF的熔点为63℃, FC290P/UF熔点为70℃。两种产品的交货时间都为6周,根据标准包装与特制包装的不同保修期分别为6个月到7个月,主要要看选择哪种包装了。
日本的Mitsui chemical Fab20/ nc提供标准固化EVA :SolAR EVA SC52B和一款快速固化EVA产品:SOLAR EVA RC02B。DuPont-Mitsui Polychemica 有限责任公司,在DuPont经验的基础上联合开发出了SOLAR EVA 的组分。两款产品宽度为800mm到2000mm,厚度为400um到800um,透光率为91%,属玻璃白色,保修期为了6个月,交货期是4到8周。
另一家日本公司是Sanvic Inc.,这家公司是通过其在德国的贸易公Mitsui&co,Deutschland 有限责任公司销售EVA的。该公司核心业务是塑料片生产,但是在与日本国家先进工业科技学院(AIST)合作于2008年开发出了第一款EVA产品。今年Sanvic提供了与去年同一款产品信息,标准固化K-系列与快速固化F系列产品。透光率为92%。清晰,可根据客户要求制作出不同颜色的产品。
西班牙公司Novogenio SL供应的快速固化EVA 产品有Novosolan FCLV NovoGenio,这家公司也为晶体硅组件供应标准固化产品Novosolar NC和快速固化产品Novosolar FC。NC和FC都很清晰,透光率为99.5%,因为公司无人答复我们的求证,所以我们猜测这是无玻璃的透光率。Novogenio公司所供应的产品宽度都是多达2200mm,厚度为200um到800um。一般标准包装贮存期为6个月,特别包装贮存期为12 个月。产品唯一的缺点是热损耗高达5%到8%,排在本次调查的首位。
比利时公司Novopolymers NV从2009年开始供应EVA产品。Novopolymers NV 与比利时化学公司Proviron Industry NV公司建立了战略合作关系。Novopolymers 供应的快速固化EVA产品Novo Vellum FC3和超快速固化EVA产品Novo Vellum UFC4宽度可达1450mm,厚度为200um到1100um。FC3和UFC4都很清晰,透光率为91%。含胶量88.5%,温度150℃的情况下,FC3EVA的层压时间需要16.5分钟。含胶量87.5%,温度150℃,UFC4层压时间需要12分钟即可。这两款产品张力强度都大于6N/n㎡,保修期6个月,交货时间大约需要4周。
杭州福斯特光伏材料有限责任公司供应三款产品,分别是F406,F806和Su-806,其中Su-806是2010年新推出的产品,F系列属快速固化产品,Su-806属于超快速固化EVA产品。据福斯特全球销售经理Grace Sun介绍,Su-806是应客户要求特别订制的,层压时间仅需10分钟,这款产品将成为公司的核心业务,不过Grace 说层压温度需要高达155℃到160℃。F406是款老产品,F806是它的升级版。在不久的将来,福斯特将停止生产F406。福斯特所有产品的宽度为250mm到2200mm,厚度为200um到800um。
台湾地区Yangyi科技有限责任公司既供应标准固化EVA产品,也供应快速固化EVA产品,产品宽度为650mm到1030mm,透光率为91%到93%。据这家公司自己称他们的产品紫外临界值只有340nm,是市场上最低的,如果成事实的话,是可以有效提高组件转换效率的。产品保修期6个月,交货时间4到6周。PVB,TPU和Ionomers(离聚物)
光伏行业目前比较热衷于晶硅电池生产,所以使得EVA成为了唯一必要的封装材料。但是随着薄膜技术的出现,玻璃/玻璃封装技术开始崭露头角,人们开始采用安全的玻璃技术进行生产,在玻璃行业有一个非常有名的胶囊密封材料叫PVB就是这样一种技术。在本次调查中有三家生产PVB的公司。
有一家在PVB生产行业里处于领先位置的公司是Kuraray欧洲有限责任公司,这家公司供应的PVB产品品牌是TROSIFOL,投入市场已经有55年的历史了。据Kuraray技术市场部经理Bernd Koll介绍,该公司是在2004年首次为光伏行业生产供应PVB产品。尽管也有其他EVA替代产品,但是PVB是最佳选择,其次是TPU,不过太贵了,再有就是硅,刚刚进入市场。
Kuraray生产的TROSIFOL SOLAR R40可用于玻璃/玻璃基和玻璃/聚合物基组件生产,升级版TROSIFOL SOLAR 2g是专门为光伏行业量身定制的,可以有效提高组件在电阻、真空层压低压电、低静电荷载、高防腐蚀、透明导电氧化层和水扩散率方面的性能。
尽管目前薄膜技术还没有像晶硅技术那么成功,据Koll讲,这没什么可担心的,随着BIPV应用方面的需求增大,PVB将会成为EVA非常强大的竞争对手。Kuraray公司这两款产品宽度是300mm到3210mm,透光率仅有91%,黏着力强度很厉害,大于20N/mm。Kuraray公司的产品主要优点在于可以存放长达48个月,公司要求订单不能低于一卷,可在3周内交货。
另一家供应PVB产品的公司是Solutia,这家公司同时也供应EVA。他们供应的PVB产品有Saflex PA41, 高流动性,Saflex PG41,具脐状突起的,Saflex PS41,多重接面,和最近升级版Saflex PA27,亮白。
Saflex PA27是一层薄膜,正如全称所蕴含的意思一样,是白色的,专门为薄膜行业应用开发的,透光率仅有3%,是理想的反射层替代品。Solutia公司其他PVB产品的透光率均为91.2%,厚度为762um,也可根据客户需要供应其他厚度的产品,定量不低于一卷,交货时间为三周。
美国的杜邦公司也开发出了三款PVB产品,分别是PV 5212, PV 5215和PV 5217。各个产品的厚度都不一样,宽度可达3210mm,透光率为91.2%,张力强度非常棒,可达28.1%,可6周交货,交货时间比其他那两家长了一倍。除了EVA、PVB外,另一个组件封装材料聚合物便是TPU了。据Solutia公司的Reed说,TPU产品价格昂贵,只有产能足够大才可以抵消高出的那部分费用。不过,在我们的调查中,还没发现有哪家公司大规模采用这种材料呢。Solutia公司供应的VISTASOLAR 517.84透光率为91.8%,紫外临界值高于EVA,是400nm,张力强度指数大于15N/mm,宽度为400mm到990mm,厚度为300um到650um。VISTASOLAR 517.84最小定量是一托盘,保修期6个月。
Stevens Urethane公司也供应了两款TPU产品,分别是PV-251和PV-301,透光率为91%和92%,紫外临界值均比Solutia公司产品低,张力强度指数高,在45N/mm到48N/mm之间,是Solutia公司的三倍。
另外一种封装材料是Ionomers(离聚物),虽然价格昂贵,但是凭借其坚硬的特性,成为了很适合全自动层压生产线的封装材料。另外,Ionomers(离聚物)比PVB防潮能力强。杜邦公司生产的Ionomers(离聚物)有:PV5316和PV5319, 根据客户的要求,宽度可达2500mm,厚度可达3000um。标准厚度是890um和1520um。透光率非常好,可达94.3%,紫外临界值为370nm。张力强度也很棒,达34.5N/mm。根据订单大小,交货时间为3到10周。在本次调查中,另一家生产Ionomers(离聚物)材料的公司是Jura-Plast有限责任公司。据这家公司产品经理Jurgen Neumann说,他们生产的DG3 Ionomers已经被中国公司GS-Solar'大规模使用,DG2被德国的肖特太阳能公司使用,主要是用于双层玻璃组件。DG3透光率大于90%,紫外临界值是380nm。DG3可在4周时间交货。另外,Jura-plast也供应热塑性塑料产品DG CIS,这款产品更加灵活,可以与对水蒸气敏感的CIGS电池兼容。DG CIS透光率低,紫外临界值与DG3相同,交货时间为6周。硅及其他材料在争一席之地
除了以上介绍的封装材料外,还有像Polyolefine(聚烯烃),硅和Thermoplastics(热塑性塑料)都想在市场上争一席之地。在本次调查中,供应硅封装材料的公司--有的是液体硅,有的是固体硅---有两家,分别是美国的道康宁和德国的瓦克。
瓦克公司供应的产品TECTOSIL是热塑性塑料硅合成橡胶。据这家化学巨头公司称,这款产品不包含任何催化剂或腐蚀成分能使材料产生化学反应,而且丰富的硅成分可以使产品永久性灵活,尽管在零下100℃也可保持很高的弹性。这种材料的另一个显著特点是93%到94%的透光率和370nm到1200nm的波长。宽度为600mm到1400mm,厚度是200um到700um。瓦克公司认为,硅在层压过程中是非常难控制的,所以要将其与热塑性塑料复合在一起,这样不管什么形式的层压都不会有什么问题的。
不过,道康宁的观点是不一样的,他们采用的是液体硅封装材料。据道康宁公司Donald Buchalsky讲,硅由于其化学属性和寿命长,自然可以抗紫外线,而且硅加工比EVA加工要快四、五倍。道康宁公司与德国的Reis Robotics公司合作共同提供这方面的交钥方案。
在本次调查中,唯一供应Polyolefine(聚烯烃)的公司是Dai Nippon Printing有限责任公司(DNP)。这家日本公司供应两款产品:CVF1和Z68。两款产品宽度都可达2300mm,白色。Z68是款老产品,透光率只有86%。CVF1的透光率是92%,据这家公司自己讲,CVF1防水蒸气的能力是EVA的10倍。保修期是18个月,是EVA的3倍,在层压过程中不释放任何酸性气体。
另一种EVA替代品是由STR公司供应的,这种产品叫热塑性塑料。宽度为2100mm,厚度为100um到1000um,材料半透明,透光率为75%,用在电池的后面。这款25539产品交货期为4到6周,根据采用的包装形式,保修期为6到9月。背板确保持久而耐用
背板是光伏组件一个非常重要的组成部分,用来抵御恶劣环境对组件造成伤害,确保组件使用寿命。背板的核心成分是Polyethylene terephthalate 聚对苯二甲酸乙二醇酯(PET),是用来保证绝缘与强度的。PET与含氟聚化物结合可以阻止水解和紫外线,含氟聚化物的传统性能有持久耐用、低火焰传播。背板的市场曾经一度主要被杜邦占有,因为杜邦是Tedlar制造商,Tedlar是一种聚氟乙烯(PVF)。可是当市场需求一路飙升的时候,杜邦公司却无法供应足够多的Tedlar产品,所以组件制造商不得不转向其他合适的替代产品。法国的Arkena公司就在进行这方面的研发,他们开发出一种产品叫Kynar,是一种聚偏二氟乙烯(PVDF)膜,可确保热、磨损和辐射的稳定性。
今年的调查中,有9家公司供应了49款Tedlar基产品,14家公司供应了46款非Tedlar基产品,而且大多数生产Tedlar基产品的公司也在开发非Tedlar产品。Tedlar基产品技术有保证
杜邦公司的Tedlar主导了整个光伏背板市场,第一款进入光伏市场的产品是PVF2001,后来进入市场的是PVF2111。
美国盾膜公司将Tedlar、PET和PE(Polyethylene聚乙烯)结合起来开发出了七种背板产品。在TPT系列产品中,PET被夹在Tedlar夹层里。背板的强度取决于夹层的厚度。TPE系列产品是PET层在中间,一面是Tedlar,另一面是PE。据盾膜公司技术销售经理Lee Smith讲,TPT系列与TPE系列倾向于用在晶硅电池组件上。用于CIGS组件的TAPE系列产品是PVF、AL(铝)、PET、PE的复合体,其中铝层是用来防水蒸气的,这也是该产品的一个优点。据Smith讲,也有晶硅组件和非晶硅组件制造商找他们买TAPE产品。盾膜公司所有产品都有12个月的保修期,可在1.5个月交货。
德国公司August Krempel Soehne有限责任公司供应八款Tedlar基产品。这家公司的技术经理Karlheinz Brust 对含氟聚化物很感兴趣。据他讲,背板没有氟是不行的。该公司有四款产品,是PET和Tedlar相夹的。为了满足客户需求更加便宜的产品,August Krempel也推出了双层背板:PTL3 HR 750V,不过Brust对这款产品没有谈很多,只是说封装材料的成本只占到组件总成本的3%到4%,意思是并不建议客户选择这么便宜的产品。August Krempel公司也供应TAPL HR1000 V ww和TPCL 38-50-70,这两款产品是PVFcast/AL/PET和PVFextr/PET/AL的复合体,水蒸气吸收功能强大。
背板市场领军企业Isovolta今年正式更名为Isovoltaic有限责任公司,像Krempel公司一样,Isovoltaic公司也为薄膜组件特别设计封装材料:Icosolar 2116,PVF与PET之间夹着AL,在PET外又有一层底层涂料,是为了增加黏着力。Isovoltaic大多数产品都是PVF和PET复合体。这家公司也供应价格便宜的Icosolar T2823,是PVFPET底的层涂料复合体。Isovoltaic公司Icosolar 2482和Icosolar 0711都是PVF/PET/PVF复合体,不过,Icosolar 2482一侧表面做了处理,为了增加对EVA的黏着力。因为杜邦公司的Tedlar材料供应有限,所以Isovoltaic公司也开发了非Tedlar基材料,也很耐用。
Coveme SpA公司供应四款Tedlar基材料。这家意大利公司供应的材料颜色有白色、蓝色
和透明色,还可以根据客户需求定制其他令客户喜欢的颜色。他们供应的dyMatT是PVF2001/PET/PVF2001复合体,厚度分别是175mm、350mm和450mm,相应的张力强度是18N/mm、48N/mm和60N/mm。DyMat T和 dyMat cT都是PVF2001与PVF2111的复合体,保修期是6个月,而dyMat TE和dyMat cTE在PET 一侧是PVF2001或PVF2111,另一侧是EVA,保修期是12个月。
韩国公司SFC有限责任公司供应七款材料,中间是被隔离的PET(或PTI)。这家公司供应的大多数材料是Tedlar基的。据SFC公司销售经理Hosik Son介绍,像TPE-
35、PA301E等材料一侧是用Tedlar,另一侧是用氟化聚酯。SFC所有产品都可以抵抗1000伏系统高压。据Son讲,公司还可以根据客户要求为BIPV应用设计生产不同颜色的背板。
Toppan公司除了供应封装材料外,也供应Tedlar基背板,有四款。BS-TX和BS-ST中间是PET,两侧是Tedlar PV2400和Tedlar PV 2111。据Toppan公司销售与市场部经理Mitsuharu Tsuda介绍,他们公司的背板年产能达2000万㎡,相当于生产2.4GW组件需要的背板量。如果客户需要价格便宜点的产品,他们就提供BS-ST-VW和BS-ST-VB,属于PVF2111/PET/底层涂料复合体。
美国公司Flexcon Inc.供应TPT W12背板,是TedlarPV2111、PET和TPE W12复合体,一侧是Tedlar,另一侧是EVA,这样安排是为了降低成本,交货时间是1个月。
美国公司Madio Inc.供应TPE HD和TPE专利产品,是PVF/PET/EVA复合体,材料颜色有蓝色、绿色、棕色和白色。TPE HD 与TPE相比,更耐用,密度和厚度更高。
日本公司MA包装有限责任公司供应三款背板:PTD75,PTD250和PTD250 SP。厚度分别是160um,335um和310um。这家公司也供应水敏感薄膜组件用的ALTD与PVF/AL/PVF复合体背板。
台湾公司Taiflex科学有限责任公司供应Solmate/BTNT和Solmate/VTP10D, 属于标准的PVF/PET/PVF和PVFcast/PET/PVF复合体。价格便宜些的产品有Solmate/BTNE和Solmate/VEP05A,一面是Tedlar,另一面是有黏着性的底层涂料。
放弃Tedlar是为了降低成本
虽然大家对Tedlar的需求渴望并没有因其供应紧缺而受下降,但是背板生产商似乎也在致力于开发新的不含Tedlar的背板材料,这样做事为了使背板价格降下来,并且也是为了降低大家对杜邦公司的依赖。德国公司Bayer材料科学集团供应一种聚碳酸酯混合物背板,称作Makrofol。据Bayer公司区域销售经理Birgit Hubertus介绍,这种产品还在市场引入阶段。他们公司选择了几家客户评估这种背板的性能,并准备好根据客户要求改善产品。据她讲,Bayer公司为小组件做了潮热测试和温度测试,并希望不久后能够得到客户的认可。Mokrofol是单层材料,要比Tedlar便宜。因为Bayer公司是聚碳酸酯制造商,所以可以迅速满足市场需求。主要缺点是不能与PVB一起用,水蒸气渗漏指数为9g/㎡d,属于本次调查中指数最高的。
美国公司BioSolar Inc.供应BB-6,是用蓖麻子制成的。据BioSolar公司CTO Stanley Levy介绍,有一部分小客户不久将采用本产品进行生产。据Levy讲,这款产品对于传统组件背板来说起到了彻底替代的作用,成本至少下降20%,不会有任何寿命问题。
Coveme公司也将dyMat系列产品进行了改造,开发出了非Tedlar基材料,这种材料是两层PET和EVA复合体,其中PET夹在一层PET和一层EVA之间,另一层PET起到了隔离作用。这类产品不仅价格便宜而且耐用。据Coveme讲dyMat PYE3000经过3000个小时的潮湿测试后完好无损。dyMat PYE供应给对水敏感的薄膜组件制造商,是属于PET/AL/PET/EVA复合体,厚度为9um,20um和50um。
Madio公司也制造出了自己的非Tedlar基专利产品,Protekt系列,里层是EVA,外层是PET。Madio也可以给CIGS组件供应和铝结合得复合体:Protekt/AL/PET/EVA。
盾膜公司供应的产品有:Dun-Solar 1050 KPE 和Dun-Solar 1100 FPE,是F/PET/PE和K/PET/PE复合体,其中F代表双层氟化聚合物,K代表Arkena公司的Kynar(PVDF)。据Smith介绍,他们的KPE和FPE产品都做过室内测试,均比Tedlar好。不过盾膜公司有一款基于PET/PE/PET开发出来的产品,Dun-Solar 1360 PPE +,通过了德国弗劳恩霍夫太阳能系统研究所的测试,证实是一款合格耐用的背板产品。对于这些新产品,盾膜公司可以供应任何大小的尺寸,这也使得这种产品比Tedlar更加便宜,因为Tedlar只卖固定的宽度,在切割时会给客户带来损失。Dun-Solar 1300 EPE和Dun-Solar 1000 EPE比较适合在层压时覆盖汇流条,因为他们没有FPE和KPE耐用。盾膜公司与一些薄膜组件企业联合,也可以为CIGS组件特别设计背板材料。
Isovoltaic公司供应的非Tedlar基材料有Polymides聚醯化物(PA)与PET复合体,其中以PET作为中间层。产品有:Icosolar AAA 3554,Icosolar APA 3552。另外也供应Icosolar FPA 3572和Icosolar FPA3585,用氟化聚合物增加背板的抗紫外性能。为了满足薄膜组件客户的需求,Isovoltaic公司在PA和PET之间增加了一层AL,可以完全清除水蒸气渗漏。
另一家供应PET基产品的公司是Toppan,这家公司供应的BS-SP-GV是基于PET/隔离层PET/PET,外加一层底层涂料来提高与EVA的黏着力。BS-TA-PV是由PET/AL/PET/与底层涂料组成,铝层是用来防止水蒸气渗漏的。August Krempel公司仅有两款非Tedlar基产品:PVL2 1000 V 和PVL 1000 V,两款产品都可抵抗1000伏系统电压,是基于PVDF和PET的复合体。PVL 1000是由三层成分组成:PVDF/PET/PVDF。PVL2 1000 V 是两层:PVDF/PET。两款产品水蒸气渗漏指数均为0.9g/㎡d,交货时间为1个月。
Flexcon公司生产了一款非Tedlar基产品:KPK W 12,属于PVDF/PET/PVDF复合体,与PVL1000V厚度相仿(323um),水蒸气渗漏指数为3g/㎡d,是August Krempel公司的三倍,交货时间为3周。中国公司冠日科技供应的产品与August Krempel产品类似,分别是DDF3253B和DFB325B,是PVDF/PET/PVDF和PVDF/PET/EVA的复合体,水蒸气渗漏指数分别是1.3g/㎡d和少于2g/㎡d。
瑞典公司Skultuna Flexible AB供应五款产品,包含两款专利背板,各有三层:Polyolefine(聚烯烃)、PET和紫外切割涂层,厚度不同,SF07S是235mm,SF09S是285mm,水蒸气渗漏指数低于1.4g/㎡d和1g/㎡d,可在15天交货。
德国的3M Deutschland有限责任公司认为氟化聚合物与PET复合体持久耐用,可以防止紫外线、热河潮湿等环境。3M公司供应材料有:Scotchshield Film 17,Scotchshield Film17T和Scotchshield Film 15T。15T的厚度为360um,17T的厚度为400um。
德国公司Honeywell供应了两款产品。其中,PV325是PET层夹在两层乙烯与三氟氯乙烯共聚物(E-CTFE)之间,另一款PV270,PET层夹在乙烯与三氟氯乙烯共聚物(E-CTFE)和EVA之间。
日本公司DNP也供应非Tedlar基背板,分别是PV-BS WFPE, PV-BS WFPE-S 和PV-BS WFPE-C,属于PET与乙烯与三氟乙烯共聚物(ETFE)和Polyolefine(聚烯烃)复合体。三款产品只在厚度上不同。便宜的产品有PV-BS VPEW,组成成分是PET/PET/olefin,与其他产品一样耐用。
随着行业的发展,人们也在寻找一种合适的产品可以替代传统的聚合物,来减低组件封装材料花费的成本。不过,一些组件制造商还是比较信任EVA和Tedlar基背板,在下一年的调查里,我们相信您会看到这些新材料是否可以与传统的材料一较高下。(大美光伏采编中心 斯勒夫 编译)
第四篇:面向照明用光源的LED封装技术探讨
面向照明用光源的LED封装技术探讨
照明就是为人类用眼睛感知世界和辨识物体提供光线。太阳是天然廉价的最佳照明光源,在太阳光照射不到的地方,人类需要借助人工光源进行照明。人类对照明光源的使用,经历了从蜡烛、油灯、煤气灯等简单光源,到爱迪生发明的白炽灯,再到荧光灯、卤素灯、高压钠灯、金属卤素化灯、三基色荧光灯等电光源。各种电光源的出现,在给世界带来了越来越多光明的同时,也带来了越来越多的节能环保方面的问题。20世纪 90年代后期,白光LED的出现,使节能环保的固态照明成为可能。
led具有高效节能、绿色环保、使用寿命长、响应速度快、安全可靠和使用灵活等显著特点,已被公众广泛认可为继煤油灯、白炽灯、气体放电灯之后的第四代革命性照明光源。
从1962年第一只LED问世至今的四十多年的时间里,LED的封装形态发生了多次的演变。从60年代的玻壳封装,到70年代的环氧树脂封装,到90年代中后期的四脚食人鱼封装、贴片式SMD封装、大功率封装、芯片集成式COB封装等。随着大功率LED在半导体照明应用的不断深入,其封装形态在短短的几年里已发生了多次的变化。
表1 各种照明光源的主要性能指标的比较
一、发展新型LED光源封装形式,保证性能的前提下降低封装、应用成本
led封装形态的每一次变化,都是因其应用领域需求的不同而做出的。走向未来照明的LED光源将会是什么样子的?现有的LED封装能否走向照明?要回答这个问题,得弄清楚半导体照明对LED光源的需求。
从现阶段的性能指标来看,LED已经初步具备了进入照明领域的能力。尽管目前的性能优势并不明显,但随着外延、芯片技术的快速突破和封装技术的不断进步,LED作为照明光源的性能将远优于传统光源的性能,这一前景是可以期待的。
LED光源要进入照明领域,性能的优劣只是前提,成本的高低才是真正的决定因素。在半导体照明发展的初期,着力于追求性能是必须的;在半导体照明发展到一定阶段,我们应将注意力转移到如何在保证性能的前提下大幅度降低成本。因为我们要做的不只是小资们欣赏的艺术品,而是普通大众都能接受的大宗商品。成品的高低决定着LED作为光源对照明领域渗透率的高低。
商品成本的降低,一般有以下途径:
材料降成本——在原有产品方案上压供应商的材料价、降低材料等级或选用替代材料,最直接有效,但幅度有限,且存在一定的品质风险;
技术降成本——采用新的技术路线,改变原有产品方案,减少用料和制造环节,幅度客观;
效率降成本——有赖于技术、设备和管理的进步。
要降低LED光源的成本,以上途径都要考虑,但首要考虑的是如何因应半导体照明的特点,打破传统封装观念的约束,以新的技术方案来降低LED的封装成本。
对传统照明而言,一般都是采用“光源+灯具”的模式,光源的制造相对独立于灯具。由于LED光源具有体积小、发强光和易于控制等的特点,故在应用中一般可根据照明效果的要求做出灵活的变化和选择。对于半导体照明而言,LED光源与灯具的制造没有明显的界限,LED光源成本的降低应与照明系统的要求整体考虑。因此,LED光源的封装方案应根据照明系统的驱动电路、热量管理、光学设计和结构设计等要求而做出,目的就是发展新型的LED光源封装形式,在保证整体性能的前提下大幅度降低封装和应用成本。
二、芯片集成COB光源模块个性化封装可能成为半导体照明未来主流封装形式
LED有分立和集成两种封装形式。LED分立器件属于传统封装,广泛应用于各个相关的领域,经过四十多年的发展,已形成了一系列的主流产品形式。芯片集成COB模块目前属于个性化封装,主要为一些个案性的应用产品而设计和生产,尚未形成主流产品形式。
传统的LED灯具做法是:LED分源分立器件→MCPCB光源模组→LED灯具,主要是由于没有现成合适的核心光源组件而采取的做法,不但耗工费时,而且成本较高。实际上,我们可以将“LED光源分立器件→MCPCB光源模组”合二为一,直接将LED芯片集成在MCPCB(或其它基板)上做成COB光源模块,走“COB光源模块→LED灯具”的路线,不但省工省时,而且可以节省器件封装的成本。
与分立LED器件相比,COB光源模块在照明应用中可以节省LED的一次封装成本、光引擎模组制作成本和二次配光成本。在相同功能的照明灯具系统中,实际测算可以降低30%左右的光源成本,这对于半导体照明的应用推广有着十分重大的意义。在性能上,通过合理的设计和微透镜模造,COB光源模块可以有效地避免分立光源器件组合存在的点光、眩光等弊端;还可以通过加入适当的红色芯片组合,在不明显降低光源效率和寿命的前提下,有效地提高光源的显色性(目前已经可以做到90以上)。在应用上,COB光源模块可以使照明灯具厂的安装生产更简单和方便,有效地降低了应用成本。在生产上,现有的工艺技术和设备完全可以支持高良品率的
OB光源模块的大规模制造。随着LED照明市场的拓展,灯具需求量在快速增长,我们完全可以根据不同灯具应用的需求,逐步形成系列COB光源模块主流产品,以便大规模生产。
三、小型化贴片式LED也将是LED光源的另外一大主流产品
除了芯片集成的COB光源模块有可能成为未来的半导体照明的主流封装形式外,高性能、低成本、方便于大规模生产制造和安装应用的小型化贴片式LED也将是LED光源的另外一大主流产品。个人认为,未来半导体照明的主要表现形式为:
平面照明——办公场所或背光照明;
带状照明——装饰照明;
灯具照明——替代传统照明。
在平面照明产品中,芯片集成的COB光源模块和贴片式LED的应用将并存;在带状照明产品中,贴片式LED将独领风骚;在灯具照明产品中,芯片集成的COB光源模块的应用将成为主流。
总之,走向照明的LED光源将形成两大主流形态——功能化的芯片集成COB光源模块额小型化 LED器件,低成本将是永恒的主题。谁能率先打破传统封装的约束,开发出符合半导体照明需求的LED光源,谁就能占得产品的先机;谁能够在保证性能的前提下将成本做到极致,谁就能把握未来LED光源的市场。
第五篇:封装阳台承诺书
封装阳台承诺书
本人出于生活及使用的需要,欲自行联系商家对本人所属位于成都市温江区“锦秀城”
栋
单元
楼
号阳台进行窗户封闭,为确保小区整体美观和协调,本人作如下承诺:
一、严格按照物业服务中心的管理规定制作窗户,包括:外形尺寸、样式、和规格、配件、颜色及制作工艺等(五层以下住户封装窗户材料采用塑钢或彩色铝合金,五层以上住户封装窗户材料采用彩色铝合金,玻璃颜色均为无色)。
二、同意不使用大玻璃封闭阳台。
三、同意不拆除阳台与飘窗的防护栏杆。
四、本人对因阳台进行窗户封闭造成的一切事故及后果承担全部法律责任。包括但不仅限于:因封装窗户材料(整体或零件)坠落造成人员伤亡及公共设施设备损害等。
五、遵守物业服务中心规定,接受物业服务中心对封装阳台的监督,对物业服务中心提出的意见进行及时整改。
六、如因政府相关部门要求拆除,一切责任由本人承担。
特此承诺
业主(承诺人)签字:
****年**月**日