通讯铁塔荷载计算

时间:2019-05-13 17:57:50下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《通讯铁塔荷载计算》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《通讯铁塔荷载计算》。

第一篇:通讯铁塔荷载计算

包西铁路通信工程

荷载计算书

通讯铁塔及基础的设计、制造及安装应符合下列中华人民共和国相关现行标准: 钢结构设计规范

GB50017-2003 建筑结构荷载规范

GB50009-2003 混凝土结构设计规范

GB50010-2002 建筑地基基础设计规范

GB50007-2002 建筑抗震设计规范

GB50011-2001 钢结构工程施工质量验收规范

GB 50205-2001 塔桅钢结构工程施工质量验收规程

CECS 80-2006 高耸结构设计规范

GB50l35-2006

一、45米角铁塔

1、使用条件:

1.1、45米角钢通讯塔,主材材质为Q345B。辅材材质为Q235-B型钢,设外爬梯,带护栏。1.2、设计风速: 30m/s;抗震: 8°;裹冰: 5mm;温度:-35~45℃; 1.3、防腐处理为热镀锌;

1.4、铁塔自地面以上6m范围内的连接螺栓全部采用防盗螺栓; 1.5、铁塔重量:140.98KN(14.098T)1.6、铁塔结构简图

2、荷载计算 2.1、设计结构图

2.2、风荷载计算

依据建设部发布的国家标准GB50l35-2006《高耸结构设计规范》对杆塔进行风荷载的计算,下面为引用标准部分:

2.2.1、垂直作用于结构表面单位面积上的风荷载标准值应按下式计算:

2.2.2、风压高度变化系数:

地面粗糙度可分为A、B、C、D四类:

A类指近海海面、海岛、海岸、湖岸及沙漠地区;

B类指田野、乡村、丛林、丘陵以及房屋比较稀疏的中小城市郊区; C类指有密集建筑群的中等城市市区;

D类指有密集建筑群但房屋较高的大城市市区。选用B类,1.25,1.56;

2.2.3、高耸结构的风荷载体型系数μS,按下列规定采用:

本次设计为塔架结构的形式,选用《高耸结构设计规范》中的表4.2.7所列体型部分,西面是该部分的内容:

风荷载体型系数μS选用最不利的风向②形式,μS=2.4; 2.2.4、自立式高耸结构在z高度处的风振系数 可按下式确定:

式中 ξ——脉动增大系数,1.73;

ε1——风压脉动和风压高度变化等的影响系数,0.63,0.55;

ε2——振型、结构外形的影响系数,0.88。

注:相关条款,参照GB50l35-2006《高耸结构设计规范》

2.2.5、杆塔荷载计算

根据设计铁塔的分段形式,把铁塔分为上下两部分以及平台部分,水平风荷载标准值分别为: W1=30*30/1600*1.25*2.4*(1+1.73*0.63*0.88)=3.3KN/m2 W2=W3=30*30/1600*1.56*2.4*(1+1.73*0.55*0.88)= 3.87KN/m2 塔体根部产生的弯矩:

M=【W1*(2.7+5.5)/2*22*22/2+ W2*(2.7+1)/2*23*(23/2+22)+ W2*(3.5*2*44+3*2*38)】*0.3

=3259.47 KN.m 2.2.6、杆塔强度计算

根据《技术规格书》中要求“铁塔的荷载应考虑至少2倍以上的余量,铁塔制造厂商在投标书中应详细说明。”本次设计根部选用等边角钢Q345B∠140×14主材,强度验算: 按照铁塔受外荷载时间,主材两腿受拉两腿抗压则:

选用Q345B∠140×14,截面积A=3760mm2,Q345B材质应力[σ]=310/2.5=124N/m m2,铁塔跟开为L=5.5米;

σ=M/(L*A*2)=3259.47*1000/(5.5*3760*2)=78.8<[σ]=310/2.5=124N/m m2 满足用户要求。辅材、基础计算略。

第二篇:结构设计荷载计算(重庆大学毕业设计)

3.荷载计算

砖:18KN/m3 加气砼砌块墙:4.9KN/m3 水泥砂浆:20KN/m3 钢筋砼:(24~25)KN/m3 素砼:(22~24)KN/m3 墙面:贴瓷砖墙面(25mm厚(包括水泥砂浆打底)0.5KN/m2 屋面:油毡防水层:一层油毡刷油两层:0.05KN/m2 活荷载:2.0KN/m2 3.1楼面荷载

3.1.1普通房间楼面恒载: 做法说明:

1,清水砼楼面板(100mm)2,20厚1:2水泥砂浆结合层(面刷水泥浆一道)(20mm)3,800*800地面砖(20mm)计算式:

0.1*25+0.02*20+0.02*22=3.34KN/m2 楼面活载:2.0KN/m2 3.1.2卫生间楼面恒载 做法说明:

1,清水砼楼面板(100mm)2,1:2mmJS防水涂膜(1.2mm)3,1:3水泥砂浆保护层。(20mm)4,炉渣回填(300mm)

5,1:3水泥砂浆找平(20mm)

6,1:2水泥砂浆结合层(面刷水泥砂浆一道)(20mm)7,300*300防滑地砖(13mm)计算式:

0.1*25+0.0012*4+0.02*20+0.30*15+0.02*20+0.02*20+0.013*22=8.49KN/m2 卫生间活载: 2.0KN/m2 3.2屋面荷载

3.2.1屋面恒载: 做法说明:

1,现浇砼屋面板(100mm)

2,1:6水泥礁渣找坡(平均厚度50mm)3,1:3水泥砂浆找平层(20mm)4,泡沫砼碎块保温层(100mm)5,1:3水泥砂浆找平层(20mm)6,SBS改性沥青防水卷材(4mm)7,1:3水泥砂浆保护层(20mm)8,刚性屋面(60mm)计算式: 0.1*25+0.05*15+0.02*20+0.1*8+0.02*20+0.004*12+0.02*20+0.06*25=6.798KN/m2 屋面活载:2.0KN/m2 3.3梁上线荷载 3.3.1清水墙面

加气混凝土砌块墙(200mm): 0.2*3.6*4.9=3.53KN/m 实心砖墙(卫生间)(200mm)0.2*3.6*18=12.96KN/m 3.3.2抹灰面(单面水泥砂浆20mm)0.02*3.6*20=1.44KN/m 3.3.3外墙涂料 做法说明: 1,基层墙体

2,界面砂浆(2mm)3,无机保温砂浆(8mm)

4,满挂玻纤网(5mm抗裂砂浆复合)5,柔性耐水腻子(1.5mm)6,外墙涂料(二遍3mm)计算式:

(0.002+0.008+0.005)*3.6*20+(0.0015+0.003)*3.6*9.8=1.24KN/m 3.4屋面梁线荷载 3.4.1梁宽350mm 6.798KN/m3*0.35m2=2.8kn/m 3.4.2梁宽200 6.798KN/m3*0.2=1.34kn/m 3.4.3墙高2.4米下梁荷载

0.2*4.9*2.4+(0.02*2.4*20)*2=4.272KN/m

第三篇:高压线防护方案包含荷载计算

高压线路防护施工方案

一、编制依据

《建设工程施工现场供用电安全规范》(GB50194-93); 《施工现场临时用电安全技术规范》(JGJ46-2005); 《建筑施工安全检查标准》(JG59-99);

《北京市建筑施工安全技术操作规程》(DBJ01-62-2002); 本公司有关安全生产的管理规定。

二、工程概况

1、根据施工需求,本工程需安装二台塔吊,一台H6021,作业半径为60m,一台好H5015, 作业半径为50m。

2、楼西侧现场围墙外有一台变压器,且有10KV高压线通过,处在塔吊作业半径内(具体位置详见平面图),为保证施工安全及高压线的正常供电,需搭设防护棚。变压器位是顺实兴东路布置的,高度低于高压线,因此变压器的防护与高压线防护一同考虑。

3、高压线下情况:高压线杆在实兴东路人行便道外侧,紧贴实兴东路,内侧为人行便道,人行便道内侧是绿化带和现场围墙。高压线下是国槐树,树的高度低于高压线。

4、现场两台塔吊交叉覆盖高压线,覆盖长度143m。详见高压线防护平面图。

5、高压线防护棚在塔吊安装完成后正式使用前搭设完成。

三、防护棚设计

1、防护棚架构造均按高压线上部防砸,侧面防刮碰设计。立杆内侧满挂大眼网,顶部满铺50mm厚脚手板;防护棚架材料选用杉篙原木。

高压线路防护施工方案

2、高压线距地高度约为10 m,两线之间距离1.2m,防护架搭设设计宽度为4.8m,高度为12m,顶部距高压线2m。

3、由于高压线杆在实兴东路人行便道一侧,防护棚无法在实兴东路的路上搭设,同时考虑行人的通行安全,只能考虑采用悬挑形式。

4、架体外侧立杆长向间距1.8m;立杆短向间距1.8m;立杆下部埋入地坪以下1100mm;水平杆间距为1.8m;架体每道均设斜撑,外立面设置竖向剪刀撑,并与地面呈60度夹角;立杆与水平杆交接处设小横杆。架体顶部设外挑横木,外挑长度3.0m,外挑横木间距1.8m,横木下设斜撑,支撑点宽度2.0m, 斜撑间距1.8m,外挑横木及架体上部满铺50mm厚脚手板。详见高压线防护棚剖面图。

5、高压线防护棚设置在绿化带内,与现场围墙紧邻,围墙垛与架体相邻部位。

四、施工部署

现场总指挥:负责高压线防护架子搭、拆施工现场总体策划、组织、指挥与协调工作。

现场安全负责人:参与编制高压线防护架子搭、拆施工专项安全方案及安全技术交底,对施工操作人员进行安全教育工作,并在操作过程对现场进行安全检查、落实各项安全措施。

现场技术负责人:负责编制高压线防护架子搭、拆施工专项安全方案,负责为高压线防护架子的搭、拆施工提供技术支持。

物资供应负责人:根据高压线防护架子搭、拆施工专项安全方案,做好物资准备,并在护线架子搭设过程中了解现场各项物资的需求情况,保

高压线路防护施工方案 证物资充足。

现场负责人:负责对施工现场进行巡视检查,禁止闲杂人员进入施工现场;确保高压线防护架子搭、拆施工专项安全方案及安全技术交底能落实到位。

搭设作业班组长:负责操作人员劳动力的组织与协调工作,协助监督,确保安全生产。

现场临电负责人:负责临时用电的接线工作,处理在高压电附近施工所涉及到的各类问题。

现场急救负责人:负责对施工现场有可能发生的高处坠落、物体打击、触电事故等伤员患者的现场急救及向外界社会呼救等方面事宜。

五、施工准备

3.1技术准备

搭设脚手架之前,勘察作业现场,全面熟悉现场情况,做好防护架子搭设的安全施工组织设计;脚手架作业人员经过相应安全、技术培训,操作人员经考试合格持证上岗,严格贯彻执行脚手架支搭工艺标准及操作规程,确保脚手架安全。对操作人员做好安全技术交底,确保安全施工。3.2物资准备

3.2.1杉槁

(1)立杆:小头直径不小于80mm,大头直径不大于150mm,长度不小于6m。

(2)大横杆:杉杆小头直径不小于80mm,长度不小于6m。(3)小横杆:杉杆小头直径不小于80mm,长度为4m。

高压线路防护施工方案(4)斜撑、剪刀撑等斜杆,小头直径不小于70mm,长度不小于6m。(5)质量标准

所使用的木质杆件不容许有腐朽;在构件任何150mm长度上沿周长所有木节尺寸的总和,不得大于所测部位原木周长的1/3,每个木节的最大尺寸,不得大于所测部位原木周长的1/6。扭纹:小头1m材长倾斜刚度不得大于120mm。虫蛀:容许有表面虫沟,不得有虫眼。

3.2.2木板

所使用的木板,板宽为200~250mm,板长4m。在距脚手架两端80mm处,用10号铁丝加两道紧箍,防止端板劈裂。

质量标准:不容许腐朽;在木脚手板任一面任何150mm长度所有木节尺寸总和不得大于所在面宽的1/3;斜纹在任何1m材长上平均倾斜高度,不得大80mm;不容许有髓心现象;不容许在连接部位的受剪面及其附近有裂缝;容许有表面虫沟,不得有虫眼。3.2.3镀锌铁丝

本方案木脚手架使用的绑扎材料主要采用10号镀锌铁丝,直径为3.5mm;镀锌铁丝使用时不允许用火烧,次品和锈蚀严重的镀锌铁丝不得使用。

3.2.4 附件

安全网及操作人员劳保用品等均应有出厂合格证、质量检测报告等,严禁使用损坏或腐朽的安全网。警告标示牌按标准规范采取现场制作或购买成品。

3.3 现场准备

高压线路防护施工方案 组织人员对现场进行清除,提前对现场各种材料、管线进行转移,同时对操作工人进行安全教育,重点讲解木架子搭设过程中需要注意的安全事项,为防护架搭设做好充分准备。

六、主要搭设方法

1、施工流程如下:

按设计尺寸撒轮廓线→按立杆间距挖孔→埋设杉槁立杆→绑大横杆→绑斜撑→绑横木(拉杆)→绑斜撑→绑棚架顶部横木→绑棚架下部斜撑→铺设架板→绑侧立面剪刀撑→绑扎斜撑及缆风绳→挂安全网→挂警示牌

6.1按防护棚的长宽尺寸,用白灰撒出轮廓线。

6.2沿灰线内侧长向按1.8m间距,拉小线用尖锹挖坑,坑径为300mm,深度为1100mm左右,并要求挖至老土。

6.3杉槁根部1100mm范围内,刷木材防腐漆两道后,按长短错开(错开长度大于2米)栽入孔内,用混凝土掩埋,振捣浇实。

6.4距地200mm,绑第一道横杆(扫地杆),要求使用双股铅丝,拧紧的力度要合适。然后按1.8m间距绑上部横杆,绑至第二道时,在两侧单片架体间,及外侧加设临时支撑,水平方向不大于4档。

6.5支撑绑完后,随即绑扎上部横杆,并将立杆向上接长,搭接长度不小于1500mm(绑扣不少于3道),高度超过高压线2.0米;同时在架体内绑扎小横木(拉杆),间距为1.8m。

6.6在小横木所在层面,绑扎斜撑。

6.7架体搭设至设计高度后,在单片架体侧绑扎剪刀撑,剪刀撑杉篙与地面呈现45,与架体接触部位全数绑扎。

高压线路防护施工方案 6.8搭设防护棚架顶部水平横木,与大横杆绑牢,横木外挑长度3.0m,间距不大于1.8m。内端头伸出架体不短于300mm。顶部横木与外侧立杆设置斜撑,支撑点在2.0m位置,斜撑纵向间距1.8米;然后上部满铺架板,并用铅丝与横木绑牢。

6.9在人道侧绑扎斜撑,间距5.4m一道,在同侧固定缆风绳,间距5.4m,缆风绳固定位置与对面斜撑固定位置要相对应。

6.10防护棚架体搭完后,满挂大眼网,网与网连接均用专用尼龙绑绳作可靠连接,并与架体绑牢。

6.11 在架体朝向塔吊面,挂设安全警示标志,标示严禁靠近、碰撞等内容。在防护棚顶部绑扎红旗及安装红色警示灯,间距20m一个。

七、质量要求

1、材料要求

(1)杉槁要求顺直,粗细较均匀,无较大差别,大头直径不小于150mm,小头直径不小于80mm。材质无裂纹、无腐蚀、虫蛀、硬痂等现象。

(2)绑扎丝为10#铅丝,要求为正规厂家产品,严禁使用伪劣产品。(3)安全网必须为局指定产品认证产品。

2、搭设要求

(1)要求间距均匀,偏差不大于50mm。

(2)立杆与架体垂直度偏差控制20mm,架体水平平整度不大于100mm。(3)铅丝拧紧度要合适,每股铅丝均需持力,不得单根受力。(4)架体剪力撑,内部斜撑,及外侧抛撑,必须满足要求。

八、防护架拆除

高压线路防护施工方案 拆除的危险大于搭设的危险

1、拆除顺序

按照自上而下、先搭后拆的原则,逐步、逐跨的拆除(即先拆剪刀撑、斜撑,后拆小横杆、大横杆、立杆等,并按一步一清的原则依次进行,严禁上下同时进行拆除作业)。

2、拆除前必须制定拆除顺序,并对拆除人员进行安全技术交底,非专业人员不得上架从事拆除作业。

3、架子拆除时应划分作业区,周围竖立警戒标志,地面设专人监护。

4、拆除时要统一指挥,上下左右呼应,动作协调。

5、拆除下来的材料应用绳索拴住,徐徐下运,严禁抛掷。

九、成品保护

架体搭设完毕后,应设专人负责,防止私拆乱卸,并且定期维护,检查架体稳定性。

十、安全措施

1、高压线防护棚搭设及拆除施工期间,高压线应断电。

2、高空作业要戴安全帽和安全带,衣着要灵便,禁止穿硬底和带钉易滑的鞋。

3、高空作业所用材料要堆放平稳,工具应随手放入工具袋内,上下传递物体禁止抛掷,遇有恶劣气候(如风力在五级以上影响施工安全时,应停止施工)。

4、木脚手立杆,有效部分的小头直径不得小于8cm,大横杆、小横杆(排木)有效部分的小头直径不得小于8cm,绑扎材料不应小于10#镀锌铁

高压线路防护施工方案 丝。

5、架子工必须持证上岗,提前一天进行技术交底。

6、项目部安全负责人、安全员现场监督检查,指导施工,及时制止违章作业。

7、雨、雪、大风天气安全员巡视每天(昼夜)不少于4次,正常情况每天巡视一次,并留有检查记录,发现寻常情况及时报有关领导并立即采取补救措施。

8、当塔吊旋转至垂直于防护架上空时,应先收小车绳吊,重物与防护架的水平距离不得小于5m,严禁在防护架上空吊物运行塔吊。

十一、附图

1、高压线防护平面图

2、高压线防护棚详图

十一、计算(参考)

1、抗风计算: 1.1风荷载

风压标准值ωk=gzzs0

1.1.1考虑本结构对风荷载比较敏感,属于轻体结构,靠近高压线,属于比较重要的结构,根据规范要求对基本风压提高到0.5KN/㎡

即00.5KN/m2

1.1.2本工程所在地属于城市,地面类型为B类,主体高10m,z=1.0

1.1.3根据规范s=1.3

1.1.4根据规范7.5.1取边缘(2m范围内)阵风系数为1.88~1.78

高压线路防护施工方案 k10.51.881.31.01.22KN/mk20.51.781.31.01.16KN/m

2k30.51.01.31.00.65KN/m2 1.2 风力计算

F风kA1.4F风11.222621.440.99KN F风21.162541.4175.392KN

F风30.655061.4273KNF风40.99175.392273489.38KN 1.3脚手架的风荷载

作用于脚手架的风荷载为k0.7zs0

1.3.1脚手高压线防护架型系数,根据荷载规范GB50009—2006(7.1.1-2)表7.1.3,确定脚手架的风荷载体型系数为0.493 k0.70.4930.50.17KN/m2 1.3.2 脚手架所承受的风荷载

主高压线防护架:0.17×513×1.4×0.2=24.42KN 最上部:0.17×216×1.4×0.2=10.28KN 1.4风荷载作用的倾覆力矩

1.4.1脚手架主体24.42×6=146.52KNm 1.4.2上部脚手架10.28×12=123.36KNm 总倾覆力矩为146.52+123.36=269.88KNm 2.抗倾覆演算

高压线防护架由木杆绑制,木杆采用东北落叶松,平均直径取80mm,6m/根,干容量为6KN/m3,(0.038KN/m)2.1木脚手架自重

11×6×18+12×6×19+14×54=3312m 支撑共146根 146×6=876m 木杆总长为4188m 木杆总重为4188×0.038=159.14KN 2.2由高压线防护架自重产生的抗倾覆力矩为

高压线路防护施工方案 159.14×2.4×0.9=343.74 2.2 抗倾覆演算通过343.74>269.88KN 3.木杆强度计算

杉篙原木的抗弯强度应力为17N/mm2,直径取70mm。

直接承受风荷载作用的木杆按三跨连续梁计算,每延长米的风压为Q=0.5×1.5×1.4=1.05KN/m,最不利界面为中间支座,M=0.1QL2=0.42KNm。

木材弯曲应力为12.47N/<17N/mm2 木材抗弯曲强度满足要求。4.水平推力演算

迎风面每1.5m设置6m长木杆作为水平支撑,水平推力全部由支撑来承担。支撑所承受的水平力为0.5×1.5×1.46=12.69KN 投影到木杆所承受的轴力为5.9KN 每根木杆设置4点绑扎,计算长度取1.5m,计算半径取最小值50mm,回转半径i=D/4=12.5,长细比=1500/12.5=120 满足要求。

2、悬挑脚手板受力演算:

2.1等效受力简图

2.2 f均布荷载力分为两部分,一部分为脚手板自重,另一部分是雪荷载。q自=0.6×0.5×10=0.3KN/m 北方地区取雪荷载q雪=0.35KN/m 均布力q= q自+q雪=0.65KN/m

5ql450.6524 其最大挠度为W==8.7mm,最不利假设下,挠度满

384EI384151.04103足要求。

第四篇:通讯及电力铁塔在线监测系统设计方案

通讯及电力铁塔在线监测系统设计方案

通讯及电力铁塔在线监测系统设计方案

目 录

1.项目的必要性.............................................................2 2.产品概况.................................................................3 3.产品优势分析.............................................................4 4.主要内容.................................................................5 4.1 监测方式和内容........................................................5 4.1.1监测方式.......................................................5 4.1.2监测内容.......................................................5 4.2 监测装置安装位置......................................................5 4.2.1安装原则.......................................................5 4.2.2安装位置.......................................................6 5.技术方案.................................................................6 5.1 系统结构原理图........................................................6 5.2 监测系统组成及运行环境................................................7 5.2.1监测装置.......................................................7 5.2.2系统软件.......................................................8 5.3 主要技术参数..........................................................8 5.4 监测系统特点..........................................................8 5.4.1监测装置特点...................................................8 5.4.2 综合分析软件系统特点...........................................9 5.5 监测系统通信、供电和运行方式.........................................10 5.5.1 通信方式......................................................10 5.5.2 供电方式......................................................10 5.5.3 运行方式......................................................10 6.项目意义................................................................11

地址:武汉市东湖新技术开发区大学园路18号领航园4号楼1单元6层 电话:027-87774437

通讯及电力铁塔在线监测系统设计方案

1.项目的必要性

近年来,随着无线通信技术的飞速发展,铁塔越来越多的应用于通信和电力。2014年7月,经国资委大力推动,在新一轮的大规模网络建设开始的时刻,中国“铁塔公司” 快速成立,同时,“铁塔公司”宣布将于2016年中期,完成向“通信基础服务公司”的转变,如此发展态势对通讯铁塔的安全运行及监测维护提出了更高标准的要求。

当下国内铁塔数量已经突破200万,目前仍在保持强劲的势头增长。这可能是全球各行各业中最庞大却又最难管理和维护的资产之一。例如,在自然环境和外界条件的作用下,地震、雷击、滑坡、恶劣气候、老化氧化、潜在的人为偷盗破坏等因素,都会给铁塔带来一定的安全隐患,铁塔地基容易发生滑移、倾斜、开裂等现象,从而引起导致铁塔变形、倾斜、甚至倒塔等。目前,传统的通信铁塔维护主要靠定期巡检、人为观测,这些是非常必要的安全防护手段。但上述手段存在一定主观性,某些参数人工实测困难,且不易及时发现问题,无法满足铁塔实时监测的需求。

为了消除铁塔安全隐患,避免出现倾斜、倒塌以及雷击损坏等危及通信安全的事件发生,需要采用先进的技术和设备对铁塔进行实时的安全监测,同时为铁塔的集中修理整治提供基础参考依据,具体分析如下:

1、通过对雷击电流幅值、极性和雷击频度的监测,为防治雷击危害,尤其是二次感应雷的危害提供解决依据,尤其是与我公司“场控无晕避雷针”配合使用效果更佳;针对电力铁塔我们还增加工频闪络电力传感器,准确定位故障点。

2、通过对杆塔三轴振动加速度的监测,对地震、台风、建筑机械碰撞等外力破坏提供准确的事件报警和严重性评估;

3、通过双轴倾角监测,对雨水导致杆塔基础塌陷、外力导致杆塔倾斜做出早期的报警,为及时解决倒塔故障的发生争取时间4、5、通过对环境温、湿度的监测,辅助判断设备故障的环境因素 通过无线通信和主站软件管理系统把数据信息集中汇总,通过大数据模型分析,给出设备故障的分析判断,提供大概率的解决问题的方法

通讯及电力铁塔在线监测系统设计方案

2.产品概况

通讯及电力铁塔在线监测系统(以下简称铁塔监测)采用先进成熟的信号采集、控制网络通信等技术,结合光纤传感技术、电子测量技术、太阳能新能源技术、智能数据分析技术,对铁塔安全信息——如环境温湿度、双轴倾斜角度、雷击电流与频度、三轴振动加速度的实时监测并及时预警和报警。系统兼具智能化、云模式、高精度等多重优势。该监测系统既是专门为通讯企业和铁塔公司对小气候观测、流动气象观测哨、季节性生态监测等开发生产的多要素自动气象站,又能实时监测通讯铁塔的倾斜、雷击电流及振幅频率等情况,及时了解运行通讯铁塔的安全、可靠状况,根据监测数据发展趋势,对超标铁塔状况及时进行多种方式预报警,指导检修和维护,提醒运行维护人员加固地基,防止倒塔事故发生。

铁塔监测系统主要包括通讯铁塔在线监测装置和后台综合分析软件两部分,系统通过对通讯铁塔的各再种状态量进行测量和报告,将数据通过3G/GPRS/CDMA等通讯方式传送到后台综合分析软件系统进行分析和决策,准确反映出通讯铁塔当前的各种状态,使通讯系统管理人员把握通讯运行的实际情况,帮助其进行决策和安全评估,对防止通讯铁塔事故的发生具有重要意义。

通讯及电力铁塔在线监测系统设计方案

3.产品优势分析

3.1 自动数据采集和测量,铁塔状态实时掌控

为实现无人值守,系统二十四小时无间断的采集被监测铁塔的运行状态,进行处理、存储和上报,并且可随时接收并响应监测中心的查询命令,通过监测模块对相应监测指标进行查询和向监测中心传送。

系统集无线通信、嵌入式系统、压缩、DSP等多种先进技术于一身,用户可以通过各种途径查看现场的实时照片,无论用户身处何方,都可以随时随地获取现场信息。

3.2 核心数据收集和分析,铁塔安全时刻保障

由于大风,地震等外力因素,近年来安全事故频发,系统监测铁塔的倾斜度变化,根据通信工程验收规范,考虑风荷载等外力的作用下,当铁塔的倾斜度超过预设门限值时,系统会立即产生报警信号。

监测铁塔塔基的不均匀沉降情况,当不均匀沉降值超过预设门限值时,系统会立即产生报警信号。

3.3 安全报警全过程覆盖,维护人员省时省心

作为维护的好帮手,系统采取分级报警的方式,及时在监测中心维护管理终端上发出分级报警信号,具有多地点、多事件的并发报警功能。在维护终端界面固定区域明显标示出报警信息,以声光报警的方式提示值班人员。同时可根据铁塔的运行情况及相关监测数据,综合历史监测数据,分析出铁塔的健康状态并准确的判断对通信的影响及危害程度,为运用维护提供预警信息。3.4 数据云端建模和分析,铁塔系统智慧管理

作为智慧城市的组成部分,系统具有根据报警时间、报警地点、报警类型、报警等级等对历史数据进行多条件查询、统计分析的功能。可按照单个铁塔、多个铁塔等多种组合方式生成监测数据的日、月、年统计报表和变化曲线。

监测设备可以通过授权用户进行远程控制、管理、维护,无需人员到基站进行现场设置,节约时间和运输成本。且配置方法简单,无须记忆复杂的操作方法或指令。铁塔安全监测系统建立在3G/GPRS/CDMA无线通信平台上,监测设备具备在恶劣环境(狂风、暴雨、冰雪)下持续正常工作的能力,整机可长时间连续工作(≥10000小时),比传统有线监控成本造价低,技术更先进,且技术延续 4

通讯及电力铁塔在线监测系统设计方案

性和升级性更强。

3.5 绿色资源节能和环保,铁塔资源高效利用

为共建绿色城市,系统采用太阳能电池供电的方式。配置的太阳能板在天气晴好的时候存储电量,可以保证即使在阴雨天气也能为系统提供足够的电能,节能高效,可持续性好。

3.6铁塔监测系统具有体积小、精度高、安装方便、功能完备等优势,可对铁塔进行全天候实时的安全监测,可有效地保障铁塔安全,提高通信铁塔资产的信息化管理水平。

4.主要内容

4.1 监测方式和内容 4.1.1监测方式

铁塔监测装置安装在铁塔的立柱上,保证与其它监测仪的监测点处于同一现场,实现对通讯铁塔运行状态的实时在线监测、预警与分析决策。4.1.2监测内容

环境温湿度、双轴倾斜角度、雷击电流与频度、三轴振动加速度的实时监测。

4.2 监测装置安装位置 4.2.1安装原则

(1)选择的安装位置及装置外观结构应不影响正常的通讯铁塔检修维护工作。(2)装置的安装应整齐、牢固,有必要的防护措施和防锈处理。(3)传感器和数据集中器装置用专用电缆连接,避免干扰。(4)塔上安装点方便监测单元的固定和整体角度调整。

(5)安装时,采用标准角度测量工具对装置安装角度进行预调整。(6)传感器在防雷设施的有效保护范围内。(7)装置的机壳通过铁塔接地。4.2.2安装位置

安装在铁塔的立柱上。

通讯及电力铁塔在线监测系统设计方案

铁塔在线监测系统安装位置示意图

5.技术方案

5.1 系统结构原理图

整个系统由铁塔在线监测装置和后台综合分析软件系统组成,详见下图:

(1)通讯铁塔在线监测装置

通讯铁塔在线监测装置安装在铁塔横担上,由温度和湿度采集单元、倾斜探测单元、雷击电流监测单元、振动监测单元、数据集中器,以及电源组成。温度、湿度、倾斜探测、雷击监测、振动监测采集单元连接电缆直接与数据集中器相连,采集到的数据先传输到数据集中器,数据集中器再将汇总来的综合数据通过无线 6

通讯及电力铁塔在线监测系统设计方案

通信网络或远距离无线通信接口传输到后台的综合分析软件系统。

(2)综合分析软件系统由数据通信模块,数据处理服务器,客户端,不间断电源,以及综合分析软件组成。

综合分析软件可以统一接收来自铁塔监测装置的数据,统一显示、统一分析和管理,可以查询、统计历史数据,生成报表,作出决策辅助分析。系统能与其它MIS系统进行接口,共享数据。

5.2 监测系统组成及运行环境 5.2.1监测装置 ◆硬件组成:

(1)温、湿度传感器:一套;(2)倾角传感器:一套;(3)振动传感器:一套;

(4)雷击传感器(电力杆塔包括工频闪络电流):一套;(5)数据转换模块:一套;

(6)电源系统:太阳能板、充电控制器、电池;(7)子站通信系统:无线数据传输模块和手机卡;

(8)主机箱;

(9)前端设备数据通讯连接电缆、接头及屏蔽;(10)前端设备配套安装固定夹具; ◆运行环境:

环境温度:-25°C ~ +45°C

工作温度:-40°C ~ +85°C

相对湿度:5%RH ~ 100%RH 大气压力:550hPa ~ 1060hPa

5.2.2系统软件 ◆硬件配置:

服务器(主机能存储10年以上监测数据),数据通信模块,客户机,不间断电源;

通讯及电力铁塔在线监测系统设计方案

◆软件配置:

服务器操作系统Windows Server 2000;

数据库管理系统SQL Server 2000;

客户端操作系统Windows XP / Windows2005等,IE浏览器;

综合分析软件。5.3 主要技术参数

◆监测数据量:环境温度、湿度、铁塔双轴倾角、雷击电流(电力杆塔包括工频闪络电流)、振动幅度、三轴振动加速度;

◆温度测量范围:-40℃~+120℃ ; 温度测量精度:±0.2℃; ◆湿度测量范围:0%RH~100%RH ; 湿度测量精度:±2%RH; ◆倾斜探测单元角度范围:-90°~+90°;测量灵敏度:±0.01°; ◆振动加速度测量范围:±2g;测量灵敏度:±0.05g;响应频率:0-100Hz ◆太阳能电池功率:20W;

◆监测单元运行环境温度:-40℃~+85℃; ◆监测单元运行环境湿度:不大于99%; ◆监测单元防护等级:IP65; ◆蓄电池使用寿命:5年以上; ◆太阳能电池板使用寿命:10年以上; ◆软件系统:终身免费升级。

5.4 监测系统特点 5.4.1监测装置特点

(1)抗干扰:防电磁、防水、防雷击,确保系统运行稳定可靠;(2)测量精度高:高精度、高分辨率、高可靠性数字倾斜传感器;(3)具有数据采集、测量和通信功能,通过通信网络将测量结果传输到后端综合分析软件系统;(4)加电自启动功能;(5)具有在线自诊断功能;

(6)设备采用休眠、待机、定时传输相结合的低功耗模式设计,测量精度高;(7)数据采集前端采用多层屏蔽、抗干扰、抗雷击技术、确保系统运行稳定 8

通讯及电力铁塔在线监测系统设计方案

可靠;

(8)时间同步功能,能接收综合分析软件系统的对时命令,每天对时一次,误差不大于5s;

(9)数据暂存功能,可以在通讯异常时能存储30天以上的数据;(10)整体结构设计,安装方便快捷,安装后不会对铁塔后期运行维护造成安全隐患;

(11)具有适当的接口,供本地调试;

(12)具有对大气温度、环境湿度、铁塔双轴倾角、雷击电流和频度、三轴振动加速度等进行数据采集、测量和通信功能,通过通信网络将测量结果传输到后端综合分析软件系统;

(13)装置主机采用太阳能加蓄电池或市电供电的模式,铁塔倾斜角度采集单元采用太阳能加锂电池供电模式,在持续阴雨条件下,装置主机能够正常工作至少30天,铁塔倾斜角度采集单元能够正常工作至少1年以上;

5.4.2 综合分析软件系统特点

(1)能定时自动接收数据采集单元的数据;

(2)具有远程设置采集方式(自控方式或受控方式)、自动采集时间的功能;(3)后台软件根据用户需求,系统运行参数、报警参数、数据采集密度等可以远程设置;

(4)能向数据采集单元发送对时命令;

(5)能远程修改数据采集单元的IP地址和端口号;

(6)对监测的数据进行统计、分析和输出,以数字列表、曲线和图表的形式显示相关参数;能对历史数据进行查询、分析,自动生成报表;

(7)具备报警提示功能;

(8)可以从其它MIS系统进行接口;(9)可终身免费升级;

(10)采用智能化大范围远程分布式数据实时监测在线传输方式,不受距离限制,系统组网方便,并提供监测中心多级管理功能,实现在不同位置同时对多个监测点数据的监控。

通讯及电力铁塔在线监测系统设计方案

5.5 监测系统通信、供电和运行方式 5.5.1 通信方式

铁塔监测装置采用3G/GPRS/CDMA通信方式传输数据。

5.5.2 供电方式

(1)设备采用太阳能加蓄电池或市电供电的模式,在持续阴雨、无光照情况下,设备能正常工作30天以上;

(2)太阳能电池板采用单晶硅太阳能电池板。

(3)设备能够远程实时采集电池电压数据,在后台能够实时了解现场设备电源供应情况;

(4)供电管理模块应具有低电压保护功能;(5)采用免维护蓄电池,蓄电池使用寿命大于5年。

5.5.3 运行方式

系统可采用自动采集方式或者受控采集方式。

自动采集方式,是它根据预先设定报警工作模式进行现场数据采集,然后自动将采集数据上传到后台服务器上,客户端可以连接上服务器下载监测数据;

受控采集方式,是远程数据采集终端一直等待客户端发送采集监测数据的命令或者其它控制命令,只有接收到控制命令,它才会进行相应的动作,这种模式可用于客户即时获取现场监测数据和实时设置工作状态。

6.项目意义

电力及通讯铁塔在线监测系统属于前沿技术,项目实施后,可从技术上保证铁塔通讯的安全运行,也极大地提升了铁塔通讯运行管理水平,为通讯铁塔的巡视及状态检修开辟一条新的思路,有着巨大的经济效益和社会效益。

随着无线通信技术的迅猛推进以及国家政策的积极响应,通讯铁塔在线监测 10

通讯及电力铁塔在线监测系统设计方案

系统处在逐步发展和升温阶段中,相信不久将会达到国内领先技术水平。

提高铁塔通讯运行和维护管理的自动化和信息化水平具有非常重要的社会意义和经济效益。

第五篇:现浇箱梁荷载预压方案计算实例

现浇箱梁荷载预压方案(修改补充)

一、加载方案:拟采用袋装砂土及蓄水混合加载方案,三跨同时,逐步加载,最终荷载达到设计自重荷载的100%以上。

二、加载计算:

1、应加荷载:661.3 m3×25KN/m3=16532.5KN

2、沙土荷载:11301.05 KN

3、水 荷 载:6752.59KN

4、实际加载总量:18053.64 KN

三、堆荷及加水荷载计算:

1、堆沙土荷载:

①、8×1.2×2.1×2=40.32 m3 ②、8×4.0×2.1×2=134.4 m3 ③、(21.8+26+21.8)×(1×2.1+1.2×0.6)×2=392.54 m3 ④、(21.8+26+21.8)×(0.8+1.3)÷2×2.1=153.47 m3 ①+②+③+④=720.73 m3 堆沙荷载总重:720.73×1.6×9.8=11301.05KN

2、加水荷载:

1×9.8×2.0×(2.35+2.6)÷2×2×(21.8+26+21.8)=6752.59KN

3、加载总重:

11301.05+6752.59=18053.64KN

四、加载顺序及荷载量:

第一次:全部沙土荷载

11301.05KN

68% 第二次:加 水 荷

载:

6752.59KN

高度:2.0 m 累计荷载18053.64KN

达到设计自重荷载的110%

五、预压变形观测:

1、按实际施工的荷载分布进行加载预压;

2、对加载情况作好详细记录,重视在加载过程中对支架构件的检查,发现问题及时分析处置,在发现预料之外的变化时应暂停加载,在问题得到解决后再继续加载;

3、在加载前对基础、变形较大的关键部位(如支架墩位、弯矩最大的跨中、悬臂等)做好观测规划,布设好测点,加强事前、加载过程中及事后的观察,应重视在加载过程中对观察数据的分析。及时发现问题。

4、加强对竖向支架的竖直度、变形的观测。

5、在预压完成后及时统计、汇总观测成果。并及时上报项目部监理工程师,以便对预压情况作出评价。

下载通讯铁塔荷载计算word格式文档
下载通讯铁塔荷载计算.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    风荷载的计算例题高层建筑结构(共5篇)

    建筑荷载的计算 三大力学:理论力学,材料力学,结构力学。 三大力学是设计建筑结构的理基础。只有熟练的学习好三大力学才能灵活运用到建筑结构设计方面。 以下为计算试题,仅供参......

    荷载试验合同

    合同文(20130308)号甲方 乙方 荷 载 试 验 合重庆佳维建设工程质量检测有限公司 2013年月同 :: 荷载试验合同甲方:(以下简称甲方) 乙方:重庆佳维建设工程质量检测有限公司(以下简称乙......

    《建筑结构荷载规范》

    《建筑结构荷载规范》(GB50009-2001)新内容有关调整部分:新规范于2002年3月1日启用,原规范(GBJ9-87)于2002年12月31日废止;新规范规定必须严格执行的强制性条文共13条,具体分配为:第1......

    铁塔基础知识

    - 1 分歧塔:适用于双回路的分叉处。 跨越塔:设置在跨越较宽的河流和峡谷处。 换位塔:设置在线路中倒相用。 直线转角塔:设置在线路转向0~5度的转角处。 6.按铁塔形状分几种?采用什......

    铁塔基本知识

    铁塔基本知识 (北京齐天盛达电力科技有限公司)。 第一节基本概念 1.铁塔 为实现承受某一空中载荷或通讯功能而架设的独立式的钢结构物通称为铁塔。现在的铁塔一般都采用角钢、......

    铁塔知识

    第一篇 1.请简单介绍下自己? 我叫XXX,来自XX公司XX部门,我大学学的是XX专业,参加工作有XX年的时间,这次竞聘的是咱们铁塔公司XX部门,我XX年参加工作,第一个部门是XXX,主要是从事计算......

    通信铁塔

    通信铁塔基础、组塔工程试题答案 单项选择题(每题1分) 1、粗骨料应采用碎石,尺寸为( C ) A、1-2cm B、2-3cm C、2-4cm 2、监理工程师应监督承包单位严格按( C )中的安全技术措施......

    铁塔方案(范文)

    矩形基础分坑操作 你再仔细检查检查,说不定什么地方您疏忽了。 什么是斜插式电力铁塔基础? 斜插式电力铁塔基础作为一种新型基础,因其受力合理,能节省大量的材料,在输电线路......