精密模具工厂那些先进的加工设备与技术

时间:2019-05-13 02:23:38下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《精密模具工厂那些先进的加工设备与技术》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《精密模具工厂那些先进的加工设备与技术》。

第一篇:精密模具工厂那些先进的加工设备与技术

精密模具工厂那些先进的加工设备与技术(来源:前沿数控技术)

精密模具的制造离不开那些先进的加工设备。模具制造的主要工艺有CNC铣削、慢走丝线切割、电火花、磨、车、测量、自动化等等。本文介绍了这些工艺的先进设备与技术,一起来看看吧。

一、CNC铣削加工

可以说塑胶模具制造行业的迅猛发展主要得益于CNC铣削技术的革新。从传统的普通铣床到三轴加工中心,再发展到如今的五轴高速铣削,使得再怎么复杂的三维型面零件的加工几乎都可成为现实,材料的硬度也不再是局限问题。塑胶模具的主要型腔、型面都由CNC铣削加工来完成。

高速铣加工采用小径铣刀(典型刀具是整体硬质合金球头铣刀,端铣刀和波纹铣刀),高转速(主轴转速可达40,000 rpm)、小周期进给量,使得生产效率大幅度提高,精度能稳定达到5μm;同时由于铣削力低,工件热变形减少,铣削深度较小,而进给较快(直线电机,高达80m/min的快移速度,高达2g的加速度),表面光洁度可达 Ra<0.15 μm。高速铣可加工60HRC的淬硬模具钢件,因此高速铣加工允许在热处理以后再进行切削加工,使模具制造工艺大大简化。

国外先进的CNC铣削设备制造商有瑞士GF加工方案、德国DMG、德国哈默、日本牧野、德国罗德斯、德国OPS、德国巨浪、德国因代克斯、日本山崎马扎克、日本大偎、美国哈斯等等。

二、慢走丝线割加工

慢走丝线割加工主要用于各种冲模、塑料模、粉末冶金模等二维及三维直纹面零件的加工。其中加工冲压模所占的比例要数最大,冲压模的凸模、凸模固定板、凹模及卸料板等众多精密型孔的加工,慢走丝线割加工是不可缺少的关键技术。在注塑模具制造中,常见应用有镶件孔、顶针孔、斜顶孔、型腔清角及滑块等加工,一般来说加工精度要求没有冲压模具那么高。

慢走丝加工是一种高精密的加工方法,高端的机床可达到小于3μm的加工精度,表面粗糙度可达Ra0.05μm。目前已可实现0.02~0.03㎜的电极丝的自动穿丝切割,实用的切割效率可达200㎜2/min左右。

国外先进的慢走丝设备制造商有瑞士GF加工方案、日本三菱、日本西部、日本沙迪克、日本牧野、日本法兰克等等。

三、电火花加工

电火花加工适用于精密小型腔、窄缝、沟槽、拐角等复杂部件的加工。当刀具难于够到复杂表面时,在需要深度切削的地方,在长径比特别高的地方,电火花加工工艺优于铣削加工。对于高技术零件的加工,铣削电极再放电可提高成功率,相比高昂贵的刀具费用相比,放电加工更合适。另外,在规定了要作电火花精加工的地方,用电火花加工来提供火花纹表面。

在高速铣加工迅速发展的今天,电火花加工发展空间受到了一定的挤压。在此同时,高速铣也给电火花加工带来了更大的技术进步。如:采用高速铣来制造电极,由于狭小区域加工的实现和高质量的表面结果,让电极的设计数量大大降低。另外用高速铣来制造电极也可以使生产效率提高到一个新的层次,并能保证电极的高精度,这样使电火花加工的精度也提高了。如果型腔的大部分加工由高速铣来完成,则电火花加工只作为辅助手段去清角修边,这样留量更均匀、更少。

精密放电机在加工面积小于20平方厘米的情况下,可实现Ra<0.1μm的镜面电火花加工,及实现均匀一致的亚光表面及各级纹面加工。对于微细零件,如连接器,可实现清角小于0.02mm、加工精度在5μm以内的结果。机床的工艺专家系统,针对大众化的加工情况,智能生成的放电参数即可实现优异的加工结果,对于特殊、复杂零件的放电,提供了专用的工艺模块,如IC、LED、连接器、大型腔、窄缝、RSM纹面等,这些优化的工艺是专家经验的集成。在机床配以快速装夹定位夹具与电极自动更换装置的情况下,即可长时间的无人化自动放电加工。

国外先进的电火花加工设备制造商有瑞士GF加工方案、日本牧野、德国OPS、日本沙迪克、日本三菱、德国艾克索、西班牙欧纳等等。

四、磨床加工

磨床是对零件表面进行精加工的精密设备,尤其是淬硬工件。模具加工使用的磨床主要是平面磨床、万能内外圆磨床、坐标磨(PG光学曲线磨床)。

小平磨床主要用来加工小尺寸的模具零件,如精密镶件、精密模仁、滑块等。大水磨床常用于较大尺寸的模板加工。现在,平面磨床砂轮线速度和工作台运动高速化已成为普遍潮流,由于采用了直线导轨、直线电机、静压丝杠等先进的功能部件技术,运动速度有很大进步,另外还不断完善了砂轮修整技术。磨头的垂直进给量最小可达到0.1μm,磨削表面粗糙度Ra<0.05μm,加工精度可控制在1μm以内,实现了超精磨削加工。

国外先进的磨床设备制造商以斯来福临集团为代表,它先后并购了许多世界顶级的磨床制造商,包括斯图特(STUDER)、保宁(BLOHM)、美盖勒(MAEGERLE)、琼格(JUNG)公司、肖特(SCHAUD)、米克罗莎(MIKROSA)、伊瓦格(EWAG)和瓦尔特(WALTER)。斯来福临旗下各知名企业生产不同种类的磨床,能提供全面的磨削解决方案。国内精密模具厂在平面磨削方面,大多使用日本的平面磨床,例如日本冈本磨床。

模具回转体零件,并且精度要求高,表面光洁度要好的情况,甚至是复杂的曲面零件,就需要使用高精度外圆磨床来完成,比如瓶胚注塑模具的哈夫镶块零件。使用高速旋转砂轮进行磨削加工,可加工硬度较高材料,如淬硬模具钢、硬质合金等。瑞士斯图特万能内外圆磨床为中型单一部件和批量工件磨削所设计的,适用于为个性化需求定制方案(外圆磨削,非圆成型磨削,螺纹磨削,内圆磨削)。

光学曲线磨床可以磨削孔距精度很高的孔以及各种轮廓形状。用绘图仪配合加工,绘图仪刻画出所需加工的图形在胶片上,胶片贴在投影幕上并校正,加工者将根据胶片上的成型来进行成型加工。光学投影研磨适合高硬度材料的成型研磨,例如材质为钨钢件或硬质合金的工件,偶尔也加工一些高速钢工件。一般加工连接器冲模用刀口及冲头,端子,精密的半行程冲子,下模入块和脱料板入子等之类的工件。

比较有名的光学曲线磨床有瑞士HAUSER、美国MOORE、日本AMADA。日本AMADA光学曲线磨床机其主轴最高转速可达到30000转,加工的精度在2μm以內,加工的最小內R角为R0.03mm,外R角为R0.02mm,加工异形冲子最薄处可达到0.06mm,其加工的沟槽深径比在2:1左右,表面粗糙度Ra可达0.025μm。

五、数控车床

数控车床也是模具车间常用的加工设备。其加工范围是所有回转体零件。由于数控技术的高度发展,复杂形状的回转体可以通过编程来简易实现,并且机床可以自动更换刀具,大幅度提高了生产效率。数控车床的加工精度与制造技术日趋完善,甚至有以车代磨的趋势。常用来加工模具中的圆形镶件、撑头、定位环等零件,在笔模、瓶口模具中应用广泛。事实上,先进的数控车床其功能已不再局限于“车”,已拓展为车铣复合一体机床,一个复杂、多工序的零件,甚至可以一次性全部加工搞定。

国外先进的数控车削机床制造商有德国DMG、瑞士托纳斯、日本山崎马扎克、德国舒特、美国哈挺、美国哈斯等等。

六、测量

从模具设计初期所涉及的数字化测绘,到模具加工工序测量,到模具验收测量和后期的模具修复测量,高精密测量设备发挥着重要的作用。主要有三坐标测量机、影像测量仪,还有适合大型模具现场测量的便携式关节臂测量机等等。

三坐标检测是检验工件的一种精密测量方法。运用三坐标测量机,基于空间点坐标的采集和计算,对工件进行形位公差的检验和测量,判断该工件的误差是不是在公差范围之内。探测系统一般由测头和接触式探针构成,探针与被测工件的表面轻微接触,获得测量点的坐标。

在测量过程中,坐标测量机将工件的各种几何元素的测量转化为这些几何元素上点的坐标位置,再由软件根据相应几何形状的数学模型计算出这些几何元素的尺寸、形状、相对位置等参数。坐标测量机很容易与CAD连接,把测量结果实时反馈给设计及生产部门,借以改进产品设计或生产流程。三坐标检测有时也运用到逆向工程设计。国外典型的设备制造商有瑞典海克斯康、德国蔡司、德国莱兹、日本三丰等等。

影像测量仪利用影像测头采集工件的影像,通过数位图像处理技术提取各种复杂形状工件表面的坐标点,再利用坐标变换和资料处理技术转换成坐标测量空间中的各种几何要素,从而计算得到被测工件的实际尺寸、形状和相互位置关系,可以对复杂的工件轮廓和表面形状进行精密测量。典型的设备有瑞典海克斯康、日本尼康、日本三丰等。

七、快速装夹定位系统与自动化

以上介绍了六种模具制造的工艺。事实上,一个模具零件往往需要使用多种工艺才能得以制造完成。这个过程中,零件要进行不断的装夹与校正,花费了大量的时间,机床也是处于闲置状态,昂贵的设备其加工能力并未得到充分的利用。随着制造业领域的竞争日益激烈。更短的生产周期是这一发展趋势。

国外的夹具制作商,采用一套稳定而精确的基准系统,实现了铣削、车、测量、电火花加工等工艺的统一基准互换,在机床上只需一分钟左右快速完成电极的装夹与找正,重复定位精度在3μm以内,最大限度地缩短了设定时间,大幅度提高了机床的实际运行时间。事实证明,这是现代化生产的一项必不可少的条件。

国外先进的快速装夹定位系统制造商主要有瑞士GF加工方案System 3R夹具、瑞士EROWA夹具等等。

在使用了快速装夹定位系统时,已经具备了自动化的基础。先进的模具车间通过配备机器人与柔性系统管理软件,形成了模具加工中心自动化单元。国外先进的制造商已开始从单纯的设备提供商,发展为成套解决方案的供应商。从目前来看,无人化的模具制造成套方案还只能适应专业类模具制造厂商,对于品种繁多,各式各样的复杂模具的制造,由于需要花费更多的前期预调与准备时间,还未得以很好的推广,但自动化发展是一个趋势,一定会有更完善的发展。

第二篇:超精密加工与超高速加工技术

超精密加工与超高速加工技术

一、技术概述

超高速加工技术是指采用超硬材料的刃具,通过极大地提高切削速度和进给速度来提高材料切除率、加工精度和加工质量的现代加工技术。

超高速加工的切削速度范围因不同的工件材料、不同的切削方式而异。目前,一般认为,超高速切削各种材料的切速范围为:铝合金已超过1600m/min,铸铁为1500m/min,超耐热镍合金达300m/min,钛合金达150-1000m/min,纤维增强塑料为2000-9000m/min。各种切削工艺的切速范围为:车削700-7000m/min,铣削300-6000m/min,钻削200-1100m/min,磨削250m/s以上等等。

超高速加工技术主要包括:超高速切削与磨削机理研究,超高速主轴单元制造技术,超高速进给单元制造技术,超高速加工用刀具与磨具制造技术,超高速加工在线自动检测与控制技术等。

超精密加工当前是指被加工零件的尺寸精度高于0.1μ

m,表面粗糙度Ra小于0.025μ m,以及所用机床定位精度的分辨率和重复性高于0.01μ

m的加工技术,亦称之为亚微米级加工技术,且正在向纳米级加工技术发展。

超精密加工技术主要包括:超精密加工的机理研究,超精密加工的设备制造技术研究,超精密加工工具及刃磨技术研究,超精密测量技术和误差补偿技术研究,超精密加工工作环境条件研究。

二、现状及国内外发展趋势

1.超高速加工

工业发达国家对超高速加工的研究起步早,水平高。在此项技术中,处于领先地位的国家主要有德国、日本、美国、意大利等。

在超高速加工技术中,超硬材料工具是实现超高速加工的前提和先决条件,超高速切削磨削技术是现代超高速加工的工艺方法,而高速数控机床和加工中心则是实现超高速加工的关键设备。目前,刀具材料已从碳素钢和合金工具钢,经高速钢、硬质合金钢、陶瓷材料,发展到人造金刚石及聚晶金刚石(PCD)、立方氮化硼及聚晶立方氮化硼(CBN)。切削速度亦随着刀具材料创新而从以前的12m/min提高到1200m/min以上。砂轮材料过去主要是采用刚玉系、碳化硅系等,美国G.E公司50年代首先在金刚石人工合成方面取得成功,60年代又首先研制成功CBN。90年代陶瓷或树脂结合剂CBN砂轮、金刚石砂轮线速度可达125m/s,有的可达150m/s,而单层电镀CBN砂轮可达250m/s。因此有人认为,随着新刀具(磨具)材料的不断发展,每隔十年切削速度要提高一倍,亚音速乃至超声速加工的出现不会太遥远了。

在超高速切削技术方面,1976年美国的Vought公司研制了一台超高速铣床,最高转速达到了20000rpm。特别引人注目的是,联邦德国Darmstadt工业大学生产工程与机床研究所(PTW)从1978年开始系统地进行超高速切削机理研究,对各种金属和非金属材料进行高速切削试验,联邦德国组织了几十家企业并提供了2000多万马克支持该项研究工作,自八十年代中后期以来,商品化的超高速切削机床不断出现,超高速机床从单一的超高速铣床发展成为超高速车铣床、钻铣床乃至各种高速加工中心等。瑞士、英国、日本也相继推出自己的超高速机床。日本日立精机的HG400III型加工中心主轴最高转速达36000-40000r/min,工作台快速移动速度为36~40m/min。采用直线电机的美国Ingersoll公司的HVM800型高速加工中心进给移动速度为60m/min。

在高速和超高速磨削技术方面,人们开发了高速、超高速磨削、深切缓进给磨削、深切快进给磨削(即HEDG)、多片砂轮和多砂轮架磨削等许多高速高效率磨削,这些高速高效率磨削技术在近20年来得到长足的发展及应用。德国Guehring Automation公司1983年制造出了当时世界第一台最具威力的60kw强力CBN砂轮磨床,Vs达到140-160m/s。德国阿享工业大学、Bremen大学在高效深磨的研究方面取得了世界公认的高水平成果,并积极在铝合金、钛合金、因康镍合金等难加工材料方面进行高效深磨的研究。德国Bosch公司应用CBN砂轮高速磨削加工齿轮齿形,采用电镀CBN砂轮超高速磨削代替原须经滚齿及剃齿加工的工艺,加工16MnCr5材料的齿轮齿形,Vs=155m/s,其Q达到811mm3/mm.s,德国Kapp公司应用高速深磨加工泵类零件深槽,工件材料为100Cr6轴承钢,采用电镀CBN砂轮,Vs达到300m/s,其Q`=140mm3/mm.s,磨削加工中,可将淬火后的叶片泵转子10个一次装夹,一次磨出转子槽,磨削时工件进给速度为1.2m/min,平均每个转子加工工时只需10秒钟,槽宽精度可保证在2μ m,一个砂轮可加工1300个工件。目前日本工业实用磨削速度已达200m/s,美国Conneticut大学磨削研究中心,1996年其无心外圆高速磨床上,最高砂轮磨削速度达250m/s。

近年来,我国在高速超高速加工的各关键领域如大功率高速主轴单元、高加减速直线进给电机、陶瓷滚动轴承等方面也进行了较多的研究,但总体水平同国外尚有较大差距,必须急起直追。

2.超精密加工

超精密加工技术在国际上处于领先地位的国家有美国、英国和日本。这些国家的超精密加工技术不仅总体成套水平高,而且商品化的程度也非常高。

美国是开展超精密加工技术研究最早的国家,也是迄今处于世界领先地位的国家。早在50年代末,由于航天等尖端技术发展的需要,美国首先发展了金刚石刀具的超精密切削技术,称为“SPDT技术”(Single Point Diamond Turning)或“微英寸技术”(1微英寸=0.025μ m),并发展了相应的空气轴承主轴的超精密机床。用于加工激光核聚变反射镜、战术导弹及载人飞船用球面非球面大型零件等等。如美国LLL实验室和Y-12工厂在美国能源部支持下,于1983年7月研制成功大型超精密金刚石车床DTM-3型,该机床可加工最大零件?2100mm、重量4500kg的激光核聚变用的各种金属反射镜、红外装置用零件、大型天体望远镜(包括X光天体望远镜)等。该机床的加工精度可达到形状误差为28nm(半径),圆度和平面度为12.5nm,加工表面粗糙度为Ra4.2nm。该机床与该实验室1984年研制的LODTM大型超精密车床一起仍是现在世界上公认的技术水平最高、精度最高的大型金刚石超精密车床。

在超精密加工技术领域,英国克兰菲尔德技术学院所属的克兰菲尔德精密工程研究所(简称CUPE)享有较高声誉,它是当今世界上精密工程的研究中心之一,是英国超精密加工技术水平的独特代表。如CUPE生产的Nanocentre(纳米加工中心)既可进行超精密车削,又带有磨头,也可进行超精密磨削,加工工件的形状精度可达0.1μ m,表面粗糙度Ra<10nm。

日本对超精密加工技术的研究相对于美、英来说起步较晚,但是当今世界上超精密加工技术发展最快的国家。日本的研究重点不同于美国,前者是以民品应用为主要对象,后者则是以发展国防尖端技术为主要目标。所以日本在用于声、光、图象、办公设备中的小型、超小型电子和光学零件的超精密加工技术方面,是更加先进和具有优势的,甚至超过了美国。

我国的超精密加工技术在70年代末期有了长足进步,80年代中期出现了具有世界水平的超精密机床和部件。北京机床研究所是国内进行超精密加工技术研究的主要单位之一,研制出了多种不同类型的超精密机床、部件和相关的高精度测试仪器等,如精度达0.025μ m的精密轴承、JCS-027超精密车床、JCS-031超精密铣床、JCS-035超精密车床、超精密车床数控系统、复印机感光鼓加工机床、红外大功率激光反射镜、超精密振动-位移测微仪等,达到了国内领先、国际先进水平。航空航天工业部三零三所在超精密主轴、花岗岩坐标测量机等方面进行了深入研究及产品生产。哈尔滨工业大学在金刚石超精密切削、金刚石刀具晶体定向和刃磨、金刚石微粉砂轮电解在线修整技术等方面进行了卓有成效的研究。清华大学在集成电路超精密加工设备、磁盘加工及检测设备、微位移工作台、超精密砂带磨削和研抛、金刚石微粉砂轮超精密磨削、非圆截面超精密切削等方面进行了深入研究,并有相应产品问世。此外中科院长春光学精密机械研究所、华中理工大学、沈阳第一机床厂、成都工具研究所、国防科技大学等都进行了这一领域的研究,成绩显著。但总的来说,我国在超精密加工的效率、精度可靠性,特别是规格(大尺寸)和技术配套性方面与国外比,与生产实际要求比,还有相当大的差距。

超精密加工技术发展趋势是:向更高精度、更高效率方向发展;向大型化、微型化方向发展;向加工检测一体化方向发展;机床向多功能模块化方向发展;不断探讨适合于超精密加工的新原理、新方法、新材料。21世纪初十年将是超精密加工技术达到和完成纳米加工技术的关键十年。

三、“十五”目标及主要研究内容

1.目标

超高速加工到2005年基本实现工业应用,主轴最高转速达15000r/min,进给速度达40-60m/min,砂轮磨削速度达100-150m/s;超精密加工基本实现亚微米级加工,加强纳米级加工技术应用研究,达到国际九十年代初期水平。

2.主要研究内容

(1)超高速切削、磨削机理研究。对超高速切削和磨削加工过程、各种切削磨削现象、各种被加工材料和各种刀具磨具材料的超高速切削磨削性能以及超高速切削磨削的工艺参数优化等进行系统研究。

(2)超高速主轴单元制造技术研究。主轴材料、结构、轴承的研究与开发;主轴系统动态特性及热态性研究;柔性主轴及其轴承的弹性支承技术研究;主轴系统的润滑与冷却技术研究;主轴的多目标优化设计技术、虚拟设计技术研究;主轴换刀技术研究。

(3)超高速进给单元制造技术研究。高速位置芯片环的研制;精密交流伺服系统及电机的研究;系统惯量与伺服电机参数匹配关系的研究;机械传动链静、动刚度研究;加减速控制技术研究;精密滚珠丝杠副及大导程丝杠副的研制等。

(4)超高速加工用刀具磨具及材料研究。研究开发各种超高速加工(包括难加工材料)用刀具磨具材料及制备技术,使刀具的切削速度达到国外工业发达国家90年代末的水平,磨具的磨削速度达到150m/s以上。

(5)超高速加工测试技术研究。对超高速加工机床主轴单元、进给单元系统和机床支承及辅助单元系统等功能部位和驱动控制系统的监控技术,对超高速加工用刀具磨具的磨损和破损、磨具的修整等状态以及超高速加工过程中工件加工精度、加工表面质量等在线监控技术进行研究。

(6)超精密加工的加工机理研究。“进化加工”及“超越性加工”机理研究;微观表面完整性研究;在超精密范畴内的对各种材料(包括被加工材料和刀具磨具材料)的加工过程、现象、性能以及工艺参数进行提示性研究。

(7)超精密加工设备制造技术研究。纳米级超精密车床工程化研究;超精密磨床研究;关键基础件,如轴系、导轨副、数控伺服系统、微位移装置等研究;超精密机床总成制造技术研究。

(8)超精密加工刀具、磨具及刃磨技术研究。金刚石刀具及刃磨技术、金刚石微粉砂轮及其修整技术研究。

(9)精密测量技术及误差补偿技术研究。纳米级基准与传递系统建立;纳米级测量仪器研究;空间误差补偿技术研究;测量集成技术研究。

(10)超精密加工工作环境条件研究。超精密测量、控温系统、消振技术研究;超精密净化设备,新型特种排屑装置及相关技术的研究

第三篇:Chapt.7_精密与特种加工技术(课件)

第一章

第一节

精密与特种加工的产生背景

机械制造面临着一系列严峻的任务:

⑴ 解决各种难切削材料的加工问题。

⑵ 解决各种特殊复杂型面的加工问题。

⑶ 解决各种超精密、光整零件的加工问题。

⑷ 特殊零件的加工问题。

第二节

精密与特种加工的特点 及其对机械制造领域的影响

精密与特种加工是一门多学科的综合高级技术;

精密加工包括微细加工、光整加工和精整加工等,与特种加工关系密切。

特种加工是指利用机、光、电、声、热、化学、磁、原子能等能源来进行加工的非传统加工方法(NTM,Non-Traditional Machining),它们与传统切削加工的不同特点主要有: ① 主要不是依靠机械能;

② 刀具的硬度可以低于被加工工件材料的硬度; ③ 在加工过程中,工具和工件之间不存在显著的 机械切削力作用。

精密与特种加工技术引起了机械制造领域内的许多变革:

⑴ 提高了材料的可加工性。

⑵ 改变了零件的典型工艺路线。

⑶ 大大缩短新产品试制周期。

⑷ 对产品零件的结构设计产生很大的影响。

⑸ 对传统的结构工艺性好与坏的衡量标准产生重要影响。

第三节

精密与特种加工的方法及分类

1.加工成形的原理

分为去除加工、结合加工、变形加工三大类。

去除加工又称为分离加工,是从工件上去除多余的材料。

结合加工是利用理化方法将不同材料结合在一起。

又可分为附着、注入、连接三种。

变形加工又称为流动加工,是利用力、热、分子运动等手段使工件产生变形,改变其尺寸、形状和性能。

2.加工方法机理

按机理精密与特种加工分为传统加工、非传统加工、复合加工。

第四节 精密与特种加工技术的地位和作用

先进制造技术已经是一个国家经济发展的重要手段之一。

发展先进制造技术是当前世界各国发展国民经济的主攻方向和战略决策,同时又是一个国家独立自主、繁荣富强、经济持续稳定发展、科技保持先进领先的长远大计。

从先进制造技术的技术实质而论,主要有精密、超精密加工技术和制造自动化两大领域。

精密与特种加工技术水平是一个国家制造工业水平的重要标志之一。

精密与特种加工技术已经成为国际竞争中取得成功的关键技术。产品的实际制造,必然要依靠精密加工技术。第二章

金刚石刀具精密切削加工

第一节

精密与超精密加工和制造自动化是先进制造技术的两大领域。

加工精度在0.1~1μm,表面粗糙度Ra在0.02~0.1μm之间的加工称为精密加工;加工精度高于0.1μm,表面粗糙度Ra小于0.01μm的加工称为超精密加工。

一、超精密加工的难点

精度难以控制; 刚度和热变形影响; 去除层薄,切应力大; 犹如对不连续体进行切削。

二、超精密加工的方法

按加工方式分:

切削加工、磨料加工、特种加工和复合加工 按加工机理和特点分:

去除加工、结合加工和变形加工 还可分为 传统加工、非传统加工和复合加工

三、超精密加工的实现条件

超精密加工是多学科交叉的综合性高新技术

① 超精密加工的机理与工艺方法; ② 超精密加工工艺装备; ③ 超精密加工工具;

④ 超精密加工中的工件材料; ⑤ 精密测量及误差补偿技术;

⑥ 超精密加工工作环境、条件等。

在超精密加工的中,必须综合考虑以上因素。

第二节

超精密机床及其关键部件

一、典型超精密机床

超精密加工对机床的基本要求:

⑴ 高精度 ⑵ 高刚度 ⑶ 高稳定性 ⑷ 高自动化

大型光学金刚石车床 ——LODTM

FG-001超精密机床

OAGM 2500大型超精密机床

AHNIO型高效专用车削、磨削超精密机床

二、超精密机床的主轴部件

主轴部件是保证超精密机床加工精度的核心。超精密加工对主轴的要求是极高的回转精度,转动平稳,无振动。

液体静压轴承主轴

空气静压轴承主轴

⑴ 双半球空气轴承主轴

⑵ 径向—推力空气静压轴承主轴

⑶ 球形—径向空气轴承主轴

⑷ 立式空气轴承主轴

主轴的驱动方式

⑴ 柔性联轴器驱动

⑵ 内装式同轴电动机驱动

超精密机床主轴和轴承的材料

应考虑以下主要因素:① 耐磨损;② 不易生锈腐蚀;③ 热膨胀系数小;④ 材料的稳定性好。

制造空气主轴和轴承的材料主要有: ① 经表面氮化和低温稳定处理的38CrMoAl氮化钢;

② 不锈钢;

③ 多孔石墨和轴承钢。

另外还有铟钢、花岗岩、微晶玻璃和陶瓷等。

三、精密导轨部件

超精密机床的总体布局

T形布局

十字形布局

R-θ 布局

立式结构布局

常用的导轨部件 ⑴ 液体静压导轨

花岗岩静压导轨

⑵ 空气静压导轨和气浮导轨

空气静压导轨

气浮导轨

床身及导轨的材料

常用的床身及导轨材料有优质耐磨铸铁、花岗岩、人造花岗岩等。

微量进给装置

超精密机床的进给系统—般采用精密滚珠丝杠副、液体静压和空气静压丝杠副。

高精度微量进给装置则有电致伸缩式、弹性变形式、机械传动或液压传动式、热变形式、流体膜变形式、磁致伸缩式等。

目前高精度微量进给装置的分辨力可达到0.001~0.01μm。

精密和超精密微位移机构应满足以下设计要求:

① 精微进给和粗进给分开。

② 运动部分必须是低摩擦和高稳定度的。

③ 末级传动元件必须有很高的刚度。

④ 内部连接必须可靠,尽量采用整体结构或刚性连接。

⑤ 工艺性好,容易制造。

⑥ 具有好的动特性。

⑦ 能实现微进给的自动控制。

⑴ 压电和电致伸缩微进给装置

⑵ 摩擦驱动装置

⑶ 机械结构弹性变形微量进给装置

第五节

金刚石刀具的结构

衡量金刚石刀具质量的标准:

① 能否加工出高质量的超光滑表面;

② 能否有较长的切削时间保持刀刃锋锐。设计金刚石刀具时最主要问题有三个: ① 确定切削部分的几何形状;

② 选择合适的晶面作为刀具的前后面;

③ 确定金刚石在刀具上的固定方法和刀具结构。

一、金刚石刀具切削部分的几何形状

⑴ 刀头形式

金刚石刀具刀头一般采用在主切削刃和副切削刃之间加过渡刃。国内多采用直线修光刃,国外标准的金刚石刀具,推荐的修光刃圆弧半径R=0.5~3mm。

金刚石刀具的主偏角一般为30˚~90˚,以45˚主偏角应用最为广泛。

⑵ 前角和后角

根据加工材料不同,金刚石刀具的前角可取0˚~5˚,后角一般可取5˚~6˚。

美国EI Contour精密刀具公司的标准金刚石车刀结构如上图所示。该车刀采用圆弧修光刃,修光刃圆弧半径R=0.5~1.5mm。后角采用10˚,刀具前角可根据加工材料由用户选定。

一种可用于车削铝合金、铜、黄铜的通用金刚石车刀结构如右图所示。可获得粗糙度Ra < 0.02~ 0.005μm的表面。

二、选择合适的晶面作为金刚石刀具前、后面

三、金刚石刀具上的金刚石固定方法 ⑴ 机械夹固

⑵ 用粉末冶金法固定 ⑶ 使用粘结或钎焊固定

国内外的金刚石刀具使用者一般都不自己磨刀;

Sumitomo公司推出一次性使用不重磨的精密金刚石刀具。

第三章

精密与超精密磨料加工

黑色金属、硬脆材料的精密与超精密加工,主要是应用精密和超精密磨料加工。

所谓精密和超精密磨料加工,就是利用细粒度的磨粒和微粉对黑色金属、硬脆材料等进行加工,以得到高加工精度和低表面粗糙度值。

精密和超精密磨料加工可分为固结磨料和游离磨料加工两大类。

第一节

精密磨削

精密磨削是指加工精度为1~0.1μm、表面粗糙度为Ra0.2~0.025μm的磨削方法。

一、精密磨削机理

靠砂轮的具有微刃性和等高性的磨粒实现的。⑴ 微刃的微切削作用

⑵ 微刃的等高切削作用

⑶ 微刃的滑挤、摩擦、抛光作用

二、磨削用量

三、精密磨削砂轮

1.砂轮磨料

精密磨削时所用砂轮的磨料以易于产生和保持微刃及其等高性为原则。

钢件及铸铁件,以采用刚玉磨料为宜。碳化硅磨料主要应用于有色金属加工。

2.砂轮粒度

粗粒度的微切削作用;细粒度的摩擦抛光作用。

3.砂轮结合剂

超精密加工用金属类、陶瓷类结合剂

四、精密磨削中的砂轮修整

有单粒金刚石修整、金刚石粉末烧结型修整器修整和金刚石超声波修整等。

修整用量有:修整导程、修整深度、修整次数和光修次数。

五、超精密磨削

超精密磨削是指加工精度达到或高于0.1μm、表面粗糙度低于Ra0.025μm的砂轮磨削方法,适宜于对钢、铁材料及陶瓷、玻璃等硬脆材料的加工。

镜面磨削是属于精密磨削和超精密磨削范畴的加工,是指加工表面粗糙度达到Ra0.02~0.01μm、表面光泽如镜的磨削方法。

影响超精密磨削的因素有:超精密磨削机理、被加工材料、砂轮及其修整、超精密磨床、工件的定位夹紧、检测及误差补偿、工作环境、操作水平等。超精密磨削需要—个高稳定性的工艺系统,对力、热、振动、材料组织、工作环境的温度和净化等都有稳定性的要求,并有较强的抗击来自系统内外的各种干扰的能力。

1.超精密磨削机理

单颗粒磨削的切入模型如图所示。说明:

① 可视为一弹性系统

②平面磨削的切屑形状如图所示

③ 磨削过程分为弹性区、塑性区、切削区、塑性区,最后为弹性区

④ 存在微切削作用、塑性流动、弹性破坏作用和滑擦作用

磨削状态与磨削系统的刚度密切相关。2.超精密磨削工艺

超精密磨削的砂轮选择、砂轮修整、磨削液选择等问题与精密磨削和超硬磨料砂轮磨削有关问题类同。

超精密磨削的磨削用量。

六、超硬磨料砂轮磨削

超硬磨料砂轮磨削主要是指用金刚石砂轮和立方氮化硼砂轮加工硬质合金、陶瓷、玻璃、半导体材料及石材等高硬度、高脆性材料。其突出特点为: ① 磨削能力强,耐磨性好,耐用度高,易于控制加工尺寸及实现加工自动化。② 磨削力小,磨削温度低,加工表面质量好,无烧伤、裂纹和组织变化。③ 磨削效率高。④ 加工成本低。

1.超硬磨料砂轮磨削工艺

⑴ 磨削用量 ⑵ 磨削液:要求磨削液有良好的润滑性、冷却性、清洗性和渗透性。

2.超硬磨料砂轮修整

修整是整形和修锐的总称。

整形是使砂轮具有—定精度要求的几何形状; 修锐是去除磨粒间的结合剂,使磨粒突出结合剂一定高度,形成良好的切削刃和足够的容屑空间。

超硬磨料砂轮修整的方法:① 车削法;② 磨削法;③ 滚压挤轧法;④ 喷射法;⑤ 电加工法;⑥ 超声波振动修整法。

第二节

精密研磨与抛光

一、研磨加工机理

精密研磨属于游离磨粒切削加工,是在刚性研具上注入磨料,在—定压力下,通过研具与工件的相对运动,借助磨粒的微切削作用,除去微量的工件材料,以达到高级几何精度和优良表面粗糙度的加工方法。

1.硬脆材料的研磨

硬脆材料研磨的加工模型如图所示。

研磨磨粒为1μm的氧化铝和碳化硅等。

2.金属材料的研磨

金属材料研磨相当于普通切削和磨削的切削深度极小时的状态。

二、抛光加工机理

抛光是指用低速旋转的软质弹性或粘弹性材料抛光盘,或高速旋转的低弹性材料抛光盘,加抛光剂,具有一定研磨性质地获得光滑表面的加工方法。

抛光使用的磨粒是1μm以下的微细磨粒。

抛光加工模型如图3-9所示。

抛光加工是磨粒的微小塑性切削作用和加工液的化学性溶析作用的结合。

三、精密研磨、抛光的主要工艺因素

精密研磨抛光的主要工艺因素如表3-5所示。

在一定的范围内,增加研磨压力可提高研磨效率。

超精密研磨对研磨运动轨迹有以下基本要求: ① 工件相对研磨盘作平面平行运动,使工件上各点具有相同或相近的研磨行程。

② 工件上任一点不出现运动轨迹的周期性重复。

③ 避免曲率过大的运动转角,保证研磨运动平稳。

④ 保证工件走遍整个研磨盘表面,以使研磨盘磨损均匀,进而保证工件表面的平面度。

⑤ 及时变换工件的运动方向,以减小表面粗糙度值并保证表面均匀一致。

四、研磨盘与抛光盘

1.研磨盘

研磨盘是涂敷或嵌入磨料的载体。

研磨对研磨盘加工面的几何精度要求很高。

研磨盘材料硬度要低于工件材料硬度,且组织均匀致密、无杂质、无异物、无裂纹和无缺陷,并有一定的磨料嵌入性和浸含性。

常用的研磨盘材料有铸铁、黄铜、玻璃等。

研磨盘的结构要具有良好的刚性、精度保持性、耐磨性、排屑性和散热性。为了获得良好的研磨表面,常在研磨盘面上开槽。开槽的目的为:

① 存储多余的磨粒;

② 作为向工件供给磨粒的通道;

③ 作为及时排屑的通道。

固着磨料研磨盘是一种适用于陶瓷、硅片、水晶等脆性材料精密研磨的研具,具有表面精度保持性好、研磨效率高的优点。

2.抛光盘

抛光盘平面精度及其精度保持性是实现高精度平面抛光的关键。

五、研磨剂与抛光剂

对研磨用磨粒的基本要求: ① 形状、尺寸均匀一致;

② 能适当地破碎,以使切削刃锋利; ③ 熔点高于工件熔点; ④ 在研磨液中容易分散。

对于抛光粉用磨粒,除上述要求外,还要考虑与工件材料作用的化学活性。

研磨抛光加工液主要作用是冷却、润滑、均布研磨盘表面磨粒及排屑。对研磨抛光液的要求: ① 有效地散热,以防止研磨盘和工件热变形; ② 粘附低,以保证磨料的流动性; ③ 不污染工件;

④ 物理、化学性能稳定,不分解变质; ⑤ 能较好地分散磨粒。

六、非接触抛光

非接触抛光是指在抛光中工件与抛光盘互不接触,依靠抛光剂冲击工件表面,以获得加工表面完美结晶性和精确形状的抛光方法,其去除量仅为几个到十几个原子级。

1.弹性发射加工

弹性发射加工是指加工时研具与工件互不接触,通过微粒子冲击工件表面,对物质的原子结合产生弹性破坏,以原子级的加工单位去除工件材料,从而获得无损伤的加工表面。

弹性发射加工原理

弹性发射加工方法如图所示

对加工头和工作台实施数控,可实现曲面加工。EEM的数控加工装置如图3-11所示。

2.浮动抛光

浮动抛光装置如图所示 抛光机理

超精密抛光盘的制作是实现浮动抛光加工的关键。

3.动压浮离抛光 动压浮离抛光平面非接触抛光装置如图所示

工作原理

加工过程中无摩擦热和工具磨损,标准平面不会变化

该方法主要用于半导体基片和各种功能陶瓷材料及光学玻璃平晶的抛光,可同时进行多片加工。4.非接触化学抛光

通过向抛光盘面供给化学抛光液,使其与被加工面作相对滑动,用抛光盘面来去除被加工件面上产生的化学反应生成物。这种以化学腐蚀作用为主,机械作用为辅的加工,又称为化学机械抛光。水面滑行抛光借助于流体压力使工件基片从抛光盘面上浮起,利用具有腐蚀作用的液体作加工液完成抛光。

5.切断、开槽及端面抛光 采用非接触端面抛光可实现对沟槽的壁面、垂直柱状轴断面进行镜面加工。

端面非接触镜面抛光装置示意图如图所示。

该方法可用于直径0.1mm左右的光导纤维线路零件的端面镜面抛光以及精密元件的切断。

第四篇:先进加工技术

工程训练报告

先进加工技术----3D打印

学院:机械与汽车工程学院

班级:机械13--4 姓名:姜晖

学号:201301011215

先进加工技术--------3D打印

众所周知,传统的打印技术及其所配套的打印设备只能进行简单或者稍微复杂的二维平面打印。然而,随着时代的发展,特别是对于加工效率,加工精度的要求日益增长的情况下,传统的二维打印越来越力不从心,在一次次高科技革命的推动下,3D打印应运而生。

3D打印,也称为3D立体打印技术,即快速成型技术的一种,它是一种以数字模型文件为基础,运用粉末状金属或塑料等可粘合材料,通过逐层打印的方式来构造物体的技术。

3D打印技术最早出现于20世纪90年代,是利用光固化和纸层叠等技术的最新快速成型装置。原理方面与传统的二维打印机相同,打印盒内装有粉末等打印材料与电脑连接后,通过电脑控制把“打印材料”一层层叠加起来,最终把计算机上的蓝图变成实物的一种快速成型技术。

相对于传统打印机,3D打印机所用原理基本相同,但是所用的原料并不相同,传统打印机所用的材料是墨粉和各种纸张,而3D打印机内装有金属、陶瓷、塑料、砂等不同的“打印材料”,是实实在在的原材料,当打印机与电脑连接后,在电脑进行控制下,按照设计人员设定的三维立体模型,将原材料一层一层叠加起来,将计算机的立体模型变为一个实实在在的立体产品。

3D打印存在着许多不同的技术。它们的不同之处在于以可用的材料的方式,并以不同层构建创建部件。3D打印常用材料有尼龙玻纤、耐用性尼龙材料、石膏材料、铝材料、钛合金、不锈钢、镀银、镀金、橡胶类材料。

介绍了3D打印技术,就不得不介绍3D打印的工作过程.3D打印最重要的一个过程就是设计过程,3D打印的设计过程是:先通过计算机建模软件建模,再将建成的三维模型“分区”成逐层的截面,即切片,从而指导打印机逐层打印。

其次便是相切面包一样,对模型进行切片处理:打印机通过读取文件中的横截面信息,用液体状、粉状或片状的材料将这些截面逐层地打印出来,再将各层截面以各种方式粘合起来从而制造出一个实体。这种技术的特点在于其几乎可以造出任何形状的物品。

打印机打出的截面的厚度(即Z方向)以及平面方向即X-Y方向的分辨率是以dpi(像素每英寸)或者微米来计算的。一般的厚度为100微米,即0.1毫米,也有部分打印机如ObjetConnex 系列还有三维 Systems' ProJet 系列可以打印出16微米薄的一层。而平面方向则可以打印出跟激光打印机相近的分辨率。打印出来的“墨水滴”的直径通常为50到100个微米。用传统方法制造出一个模型通常需要数小时到数天,根据模型的尺寸以及复杂程度而定。而用三维打印的技术则可以将时间缩短为数个小时,当然其是由打印机的性能以及模型的尺寸和复杂程度而定的。

传统的制造技术如注塑法可以以较低的成本大量制造聚合物产品,而三维打印技术则可以以更快,更有弹性以及更低成本的办法生产数量相对较少的产品。一个桌面尺寸的三维打印机就可以满足设计者或概念开发小组制造模型的需要。

完成以上步骤后,便只剩下完成打印了:三维打印机的分辨率对大多数应用来说已经足够(在弯曲的表面可能会比较粗糙,像图像上的锯齿一样),要获得更高分辨率的物品可以通过如下方法:先用当前的三维打印机打出稍大一点的物体,再稍微经过表面打磨即可得到表面光滑的“高分辨率”物品。

有些技术可以同时使用多种材料进行打印。有些技术在打印的过程中还会用到支撑物,比如在打印出一些有倒挂状的物体时就需要用到一些易于除去的东西(如可溶的东西)作为支撑物。

现行的3D打印有多种成型方法,每项各有利弊:

电子束是3D金属打印成型最快方法电子束快速成型技术目前还有一些技术难点尚待进一步研究,比如成型过程中废热高,金属构件中金相结构控制较为困难,特别是成型时间长,先凝固的部分经受的高温时间长,对金属晶态成长控制困难,进而引起大尺度构件应力复杂等等。

电子束成型对复杂腔体,扭转体,薄壁腔体等成型效果不佳,他的成形点阵精度在毫米级,所以成型以后仍然需要传统的精密机械加工,也需要传统的热处理,甚至锻造等等。

但电子束快速成型速度快,是目前3D金属打印类打印速度最快的,可达15KG/小时,设备工业化成熟度高,基本可由货架产品组合,生产线构建成本低,具有很强的工业普及基础,同时,电子束快速成型设备同时还能具有一定的焊接能力和金属构件表面修复能力,应用前景广泛。在发动机领域,目前美国和中国在电子束控制单晶金属近净形成型技术方面正积极研究,一旦获得突破,传统的单晶涡轮叶片生产困难和生产成本高的问题将获得极大的改善,从而大大提高航空发动机的性能,并对发动机研制改进等提供了极大的助力。

由于电子束成形精度受到电子束聚焦和扫描控制能力的限制,激光作为更高精度的能量介质引起高度重视,激光成形技术几乎是和电子束成形技术同步起步发展,但是,由于稳定的10KW以上级的大功率激光器到2008年才开始逐步工业化,所以激光成形技术在最近才出现喷涌的盛况。

激光数字成型技术主要有两个类别,一是激光近净成形制造(LENS)、金属直接沉积(DMD),这个类别的技术和电子束快速成型类似,也是利用控制扫描区域形成控制的熔融区,用金属丝或金属粉同步扫描点添加,金属熔融沉积,这项技术算电子束快速成型的高精度的进化成果,激光的扫描点阵精度可以比电子束高一个数量级,可以得到更高精度的零件,从而进一步减少材料的耗量和机械加工的需求,同时它还能保留电子束快速成型的打印速度快的优势。

这类区域熔融的技术需要大尺度的腔体提供零件加工所需的真空环境,这限制了加工零件的尺寸,激光熔融区的大小和功率直接相关,越大形的构件加工能力要求越高,由于电子束对金属的热效应深度比较大,而激光热效应深度较小,激光成形时胚体受热和散热状况要好于电子束,因此它能形成很薄的熔化区和更细密均匀的沉积构造,凝固过程中的金相结构更容易控制,热应力复杂度要低很多,可以制造更精确的形状和更复杂零件,也能制造较薄壁的零件类型。美DRAPA,洛克希德先进制造技术中心,和飞利浦、宾州大学等于2013年演示的先进制造

DM概念,就是基于这类技术基础。

激光3D打印几乎可直接加工出工业零件

目前主流的激光打印机是利用硒鼓静电吸附墨粉,激光扫描熔融墨粉形成图像的,这种打印方式精度可达300PPI,利用激光打印和粉末冶金技术结合,新一代的最有希望的最精密成型的技术是以直接金属激光烧结(Direct metal laser sintering,DMLS)和选区激光(selective laser sintering,SLS)为代表的激光精密数字成形。这两者都是在基底铺设金属粉末,由激光扫瞄烧结,所不同的是,直接烧结是边铺粉边烧,而选区烧结是先铺整层粉末,然后激光扫描烧结,这种烧结每次沉积厚度约20-100微米,通过反复多次的沉积最终获得三维立体的零件。

激光精密成形的优点是精度高,成形点阵可以小于0.01毫米,可以得到近似平滑的表面,能够处理空腔,薄壁等复杂空间扭转体,和相互交叉穿透的复杂空腔和管路,几乎可以加工出直接应用的工业零件。

激光3D打印零件强度略小于锻造机加件

高精度激光烧结对激光的功率要求中等,烧结点温度虽然高,但是点阵小,每点阵金属熔融凝固量很少,全过程热释放低,材料胚体温度接近常温区,较少形成复杂的热应力情况,金属凝固形成的金相较为均匀细密,大多为细小的晶格态,类似于经过锻造的金属构件,获得金属零件强度略小于锻造机加件。

美国德州大学奥斯汀分院最早于1986年提出SLS的专利,由DTM公司提供商用设备,美国麻省理工1988年提出DMLS的概念和专利,但目前商用化设备主要的供应商都来源于欧洲,德国EOS略占优势,MTT 公司和 Concept Laser 公司也具有很强的竞争力。中国于1998年以后开始开展SLS方面的研究,2000年以后,随着商品化光纤激光器的成熟,国内在SLS方面取得一定成果,2004年起,有至少3家公司和单位提出SLS技术应用化的专利,在航空领域因材料强度方面的问题,早期的应用主要在快速建立冶金应用模具方面。

作为一种主流的高新技术,3D打印有着非常广阔的应用领域:军工,航天,医学,甚至于建筑行业,均存在着3D打印技术的影子.3D打印技术目前在全球也是前沿技术和前沿应用,最尖端的航空工业对这种技术最为关注也最严谨,美国90年代中期就获得这类技术的工业尝试,但是他们一直称为近净成型加工技术,F-22,F-35都有应用,不过因为一些加工工艺等原因,美国也没有能大规模应用,但美国将这一技术一直作为先进制造技术而由美国国防高级研究计划局(DRAPA)牵头,组织美国30多家企业对这一技术长期研究。

美国如此重视,我国自然也不甘落后。最近几年,中国航空工业捷报频传,先进战斗机歼-20,歼-31,舰载机歼-15,运输机运-20一大批高新机不断诞生,接踵而出,最为引人关注的是,在2013年全球3D打印热潮中,以北航和西工大两个科研主体带动,沈飞、成飞、西飞等数家航空制造企业为主体,成为全球第二个能够在实际应用中利用3D打印技术制造飞机零件的国家。

与其他的高新技术一样,3D打印技术也有着自身的缺点和不足之处。

3D打印零件强度还难以作为飞机受力构件

3D打印概念的出现是一种制造工业领域革命性的新技术,目前的诸多成形手段和方法都有各自的具体优点和缺陷,在航空领域,选择烧结SLS技术看起来潜力最大,应用前景最广泛,它的材料适应范围最广,从铝合金、钛合金、高强度钢、高温合金到陶瓷都能处理,但是它属于微观粉末冶金的范畴,快速成形中,粉末冶金技术中因熔融——凝固过程过快,成形体中容易夹杂空穴,未完全熔融的粉末,胚体缺陷还有可能包括激光扫描线方向形成的熔融——凝固不均匀金相微观线状晶格排列,这些都会严重影响了成形件的强度。

目前激光选区成形的构件大多都只能达到同牌号金属铸造的强度水平,虽然这已经能让构件进入正常的应用领域,但显然要承担象飞机这样的主要结构受力构件还是有很大限制的。

3D金属打印零件表面还需进一步机械加工直接金属激光烧结DMLS技术因为直接用激光熔融金属丝沉积,金属本身是致密体重熔,不易产生粉末冶金那样的成形时的空穴,这个技术生产的构件致密度可达99%以上,接近锻造的材料胚体,目前国际国内都主要利用这种技术制造高受力构件,它能达到同牌号金属最 高强度的90~95%左右的水平,接近一般锻造构件。

目前的金属3D打印构件都不能直接形成符合要求的零件表面,它都必须经过表面的机械加工,去除表面多余的,不连续的,不光滑的金属,才能作为最终使用的零件,因此,尽管3D打印可以获得复杂的空间结构和一些复杂的管路和腔体,但是这些管路和腔体的机械加工很有可能无法进行,其零件的重量效率,管路流动效率等方面不一定能够满足实际需求,因此,尽管3D打印可能能一步直接完成很多复杂零件的成形,但其还不具备直接取代传统机械加工的能力。

3D打印对飞机大型构件制造还存在问题

直接成形的金属零件在生产过程中因为反复经受局部接近熔点温度受热,内部热应力状态复杂,在成形某些大型细长体,薄壁体金属构件时,应力处理和控制还不能满足要求,实际上到目前为止一直影响3D打印在航空业的应用也正是因为这个原因。

美国从1992年开始就不断利用这类技术希望能够直接生产飞机用的大型框架,粱绗,整体壁板等,正是因为应力复杂,大型构件成形过程中或成形后会产生严重变形,严重到无法使用。所以3D打印技术尽管很早就出现了,但国外航空工业界还持有相当的保守态度也是有原因的。激光3D打印工业化面临精细度难题目前激光成形技术面临工业化的两个方向相互间有矛盾,一是打印精细度,目前的打印精细度SLS最高,基本在1~0.1毫米左右,而其他技术加工生成的零件表面精度则在0.8~5毫米之间,目前市场销售的2D激光打印机点阵精度在1200DPI左右即0.02毫米,这个精度可以获得近似光滑的曲面,提高精度受到打印耗材粉末的粒径粗细和激光熔融金属液态滴状表面张力影响,要把精度提高到0.1毫米以下还有很大困难,不过铺粉预处理、激光超快速融化——凝固等技术的出现会为提高激光成形的精度有很大帮助。

激光3D打印工业化面临打印速度难题另一个发展方向则是提高打印速度,目前激光打印的速度还是较慢的,每小时印重量大多都在1公斤以下,最好水平也只有9公斤/小时左右,要实现工业化生产,特别是大规模化生产,这个速度是不够的,现在的激光成形基本还是单光头单层铺粉作业,未来为了提高打印速度和应对超大型构件打印,已经有多光头多层铺粉同步打印的设计出现。

激光成形目前尚属于单一技术应用,但是在工业界,激光冲击强化在冶金方面应用已经有10几年的历史了,激光打印成形实际上很有希望能够直接集成激光冲击强化,激光淬火等技术,它能让激光成形的构件更加致密,且具有高级别的强度,实际上激光3D打印机都能简单的通过软件控制来实现激光冲击强化的功能。

现在3D打印技术还只是露出第一缕曙光

新的制造方法需要新的一系列处理工艺配合,3D打印目前只能算一丝曙光,真正达到大规模应用产生效益,还需要很长的时间发展和积累。

3D打印技术的出现是信息革命在攻克传统工业的最后堡垒的终结的冲锋号,因而引发了一系列的科学技术领域研究的新课题,激光粉末冶金,微沉积金相学,微观淬火、锻造,激光冲击强化等一系列机械制造,冶金等领域的课题将会让已经暮气沉沉的传统冶金科学,和制造科学领域重新充满发展的动力,在未来的数十年间,谁在这些技术领域获得应用化的实际成果,可能会影响和颠覆现有的制造工业的基本面貌,未来可谓潜力无限。

第五篇:材料先进加工技术

1.快速凝固

快速凝固技术的发展,把液态成型加工推进到远离平衡的状态,极大地推动了非晶、细晶、微晶等非平衡新材料的发展。传统的快速凝固追求高的冷却速度而限于低维材料的制备,非晶丝材、箔材的制备。近年来快速凝固技术主要在两个方面得到发展:①利用喷射成型、超高压、深过冷,结合适当的成分设计,发展体材料直接成型的快速凝固技术;②在近快速凝固条件下,制备具有特殊取向和组织结构的新材料。目前快速凝固技术被广泛地用于非晶或超细组织的线材、带材和体材料的制备与成型。2.半固态成型

半固态成型是利用凝固组织控制的技术.20世纪70年代初期,美国麻省理工学院的Flemings教授等首先提出了半固态加工技术,打破了传统的枝晶凝固式,开辟了强制均匀凝固的先河。半固态成型包括半固态流变成型和半固态触变成形两类:前者是将制备的半固态浆料直接成型,如压铸成型(称为半固态流变压铸);后者是对制备好的半固态坯料进行重新加热,使其达到半熔融状态,然后进行成型,如挤压成型(称为半固态触变挤压)3.无模成型

为了解决复杂形状或深壳件产品冲压、拉深成型设备规模大、模具成本高、生产工艺复杂、灵活度低等缺点,满足社会发展对产品多样性(多品种、小规模)的需求,20世纪80年代以来,柔性加工技术的开发受到工业发达国家的重视。典型的无模成型技术有增量成型、无摸拉拔、无模多点成型、激光冲击成型等。4.超塑性成型技术

超塑性成型加工技术具有成型压力低、产品尺寸与形状精度高等特点,近年来发展方向主要包括两个方面:一是大型结构件、复杂结构件、精密薄壁件的超塑性成型,如铝合金汽车覆盖件、大型球罐结构、飞机舱门,与盥洗盆等;二是难加工材料的精确成形加工,如钛合金、镁合金、高温合金结构件的成形加工等。5.金属粉末材料成型加工

粉末材料的成型加工是一种典型的近终形、短流程制备加工技术,可以实现材料设计、制备预成型一体化;可自由组装材料结构从而精确调控材料性能;既可用于制备陶瓷、金属材料,也可制备各种复合材料。它是近20年来材料先进制备与成型加工技术的热点与主要发展方向之一。自1990年以来,世界粉末冶金年销售量增加了近2倍。2003年北美铁基粉末。相关的模具、工艺设备和最终零件产品的销售额已达到91亿美元,其中粉末冶金零件的销售为64亿美元。美国企业生产的粉末冶金产品占全球市场的一半以上。可以预见,在较长一段时间内,粉末冶金工业仍将保持较高的增长速率。粉末材料成型加工技术的研究重点包括粉末注射成型胶态成型、温压成型及微波、等离子辅助低温强化烧结等。6.陶瓷胶态成型

20世纪80年代中期,为了避免在注射成型工艺中使用大量的有机体所造成的脱脂排胶困难以及引发环境问题,传统的注浆成型因其几乎不需要添加有机物、工艺成本低、易于操作制等特点而再度受到重视,但由于其胚体密度低、强度差等原因,他并不适合制备高性能的陶瓷材料。进入90年代之后,围绕着提高陶瓷胚体均匀性和解决陶瓷材料可靠性的问题,开发了多种原位凝固成型工艺,凝胶注模成型工艺、温度诱导絮凝成形、胶态振动注模成形、直接凝固注模成形等相继出现,受到严重重视。原位凝固成形工艺被认为是提高胚体的均匀性,进而提高陶瓷材料可靠性的唯一途径,得到了迅速的发展,已逐步获得实际应用。

7.激光快速成型

激光快速成形技术,是20实际90年代中期由现代材料技术、激光技术和快速原型制造术相结合的近终形快速制备新技术。采用该技术的成形件完全致密且具有细小均匀的内部组织,从而具有优越的力学性能和物理化学性能,同时零件的复杂程度基本不受限制,并且可以缩短加工周期,降低成本。目前发达国家已进入实际应用阶段,主要应用于国防高科技领域。国内激光快速成形起步稍晚于发达国家,在应用基础研究和相关设备建设方面已有较好的前期工作,具备了通过进一步研究形成自身特色的激光快速成形技术的条件。8.电磁场附加制备与成型技术

在材料的制备与成形加工过程中,通过施加附加外场(如温度场、磁场、电场、力场等),可以显著改善材料的组织,提高材料的性能,提高生产效率。典型的温度场附加制备与形加工技术有熔体过热处理、定向凝固技术等;典型的力场附加制备与成形技术有半固态加工等;典型的电磁场附加制备与成形加工技术有电磁铸轧技术、电磁连铸技术、磁场附加热处理技术、电磁振动注射成形技术等。近年来,有关电磁场附加制备与成形加工技术的研究在国际上已形成一门新的材料科学分支——材料电磁处理,并且得到迅速发展。9.先进连接技术

①铝合金激光焊接 ②镁合金激光焊接

③机器人智能焊接 10.表面改质改性

在材料的使用过程中,材料的表面性质和功能非常重要,许多体材料的失效也往往是从表面开始的。通过涂覆(或沉积、外延生长)表面薄层材料或特殊能量手段改变原材料表面的结构(即对处理进行表面改性),赋予较廉价的体材料以高性能、高功能的表面,可以大大提高材料的使用价值和产品的附加值,是数十年来材料表面加工处理研究领域的主要努力方向。

材料加工技术的总体发展趋势,可以概括为三个综合,即过程综合、技术综合、学科综合。由于上述材料加工技术的总体发展趋势,可以预见,在今后较长一段时间内,材料制备、成型与加工技术的发展将具有以下两个主要特征:(1)性能设计与工艺设计的一体化。(2)在材料设计、制备、成型与加工处理的全过程中对材料的组织性能和形状尺寸进行精确控制。

实际上,第一个特征实现材料技术的第五次革命、进入新材料设计与制备加工工艺时代的标志。实现第二个特征则要求具备两个基本条件:一是计算机模拟仿真技术的高度发展;二是材料数据库的高度完备化。基于上述材料加工技术的总体发展趋势和特征,金属材料加工技术的主要发展方向包括以下几个方面。1)常规材料加工工艺的短流程化和高效化。

打破传统材料成形与加工模式,工艺环节,实现近终形、短流程的连续化生产提高生产效率。例如,半固态流变成形、连续铸轧、连续铸挤等是将凝固与成形两个过程合二为一,实行精确控制,形成以节能、降耗、提高生产效率为主要特征的新技术和新工艺。

目前国外铝合金和镁合金半固态加工技术已经进入较大规模工业应用阶段。铝合金半固态成型方法主要有流变压铸

2)发展先进的成形加工技术,实现组织与性能的精确控制

例如,非平衡凝固技术、电磁铸轧技术、电磁连铸技术、等温成形技术、低温强加工技术、先进层状复合材料成形、先进超塑性成形、激光焊接、电子束焊接、复合热源焊接、扩散焊接、摩擦焊接等先进技术,实现组织与性能的精确控制,不仅可以提高传统材料的使用性能,还有利于改善难加工材料的加工性能,开发高附加值材料。

3)材料设计(包括成分设计、性能设计与工艺设计)、制备与成形加工一体化

发展材料设计、制备与成型加工一体化技术,可以实现先进材料和零部件的高效,近终形,短流程成型。典型的技术有喷射技术、粉末注射成形、激光快速成型等,是不锈钢、高温合金、钛合金、难熔金属及金属间化合物、陶瓷材料、复合材料、梯度功能材料零部件制备成型加工的研究热点。材料设计、制备与成形加工的一体化,是实现真正意义上的全过程的组织性能精确控制的前提和基础。

4)开发新型制备与成形加工技术,发展新材料和新产品

块体非晶合金制备和应用技术、连续定向凝固成形技术、电磁约束成型技术、双结晶器连铸与充芯连铸复合技术、多坯料挤压技术、微成形加工技术等,是近年来开发的新型制备与成形加工技术。这些技术在特种高性能材料或制品的制备与成形技术加工方面具有各自的特色,受到国内外的广泛关注。

5)发展计算机数值模拟与过程仿真技术,构建完善的材料数据库 随着计算机技术的发展,计算材料科学已成为一门新兴的交学科,是除实验和理论外解决材料科学中实际问题的第3个重要研究方法。它可以比理论和实验做得更深刻、更全面、更细致,可以进行一些理论和实验暂时还做不到的研究。因此,基于知识的材料成形工艺模拟仿真是材料科学与制造科学的前沿领域和研究热点。根据美国科学研究院工程技术委员会的测算, 模拟仿真可提高产品质量5~15倍,增加材料出品率25%,降低工程技术成本13%~30%,降低人工成本5%~20%,提高投入设备利用率30%~60%,缩短产品设计和试制周期30% ~60%等。目前,模拟仿真技术已能用在压力铸造、熔模铸造等精确成形加工工艺中,而焊 接过程的模拟仿真研究也取得了可喜的进展。高性能、高保真、高效率、多学科及多尺度是模拟仿真技术的努力目标,而微观组织模拟(从mm、μm到nm尺度)则是近年来研究的新热点课题。通过计算机模拟,可深入研究材料的结构、组成及其各物理化学过程中宏观、微观变化机制,并由材料成分、结构及制备参数的最佳组合进行材料设计。计算材料科学的研究范围包括从埃量级的量子力学计算到连续介质层次的有限元或有限差分模型分析,此范围可分为4个层次:纳米级、微观、介观及宏观层次。在国外,多尺度模拟已在汽车及航天工业中得到应用。铸件凝固过程的微观组织模拟以晶粒尺度从凝固热力学与结晶动力学两方 面研究材料的组织和性能。20世纪90年代铸造微观模拟开始由试验研究向实际应用发展,国内的研究虽处于起步阶段,但在用相场法研究铝合金枝晶生长、用Cellular Automaton 法研究铝合金组织演变和汽车球墨铸铁件微观组织与性能预测等方面均已取得重要进展。锻造过程的三维晶粒度预测也有进展。6)材料的智能化制备与成形加工技术

材料的智能化制备与成形加工技术是1986年由美国材料科学界提出的“第三代”材料成形加工技术,20世纪90年代以来受到日本等先进工业国家的重视它通过综合利用计算机技术、人工智能技术、数据库技术和先进控制技术等,以成分、性能、工艺一体化设计与工艺控制方法,实现材料组织性能与成形加工质量,同时达到缩短研制周期、降低生产成本、减少环境负荷的目的。

材料的智能化制备与成形加工技术的研究尚处于概念形成与探索阶段,被认为是21世纪前期材料成形加工新技术中最富潜力的前沿研究方向之一。其他的材料先进制备与成形加工前沿技术

电磁软接触连铸、钛合金连铸连轧技术、高性能金属材料喷射成形技术、轻合金半固态加工技术、泡沫铝材料制备、钢质蜂窝夹芯板扩散-轧制复合、金属超细丝材制备技术、超细陶瓷粉末燃烧合成、模具表面渗注镀复合强化、金属管件内壁等离子体强化技术、钛合金激光熔覆技术、非纳米晶复合涂层制备技术等。

下载精密模具工厂那些先进的加工设备与技术word格式文档
下载精密模具工厂那些先进的加工设备与技术.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    精密加工技术_电火花加工现状与发展(5篇范文)

    电火花加工现状与发展 电火花加工现状与发展 张杰 (上海理工大学 机械工程学院,上海) 摘要:首先简要地说明了电火花加工的原理、特点、分类和其在机械制造领域内的应用,继而详细......

    《精密与特种加工技术》课后答案(大全五篇)

    《精密与特种加工技术》课后答案 第一章 1.精密与特种加工技术在机械制造领域的作用与地位如何? 答:目前,精密和特种加工技术已经成为机械制造领域不可缺少的重要手段,在难切削......

    精密模具加工行业崛起之六项精进

    精密模具加工行业崛起之六项精进 现在国内精密模具加工行业的发展方向是怎样,没人能具体说出个所以然来。由宜泽最近发生的一些改革学习从侧面进行分析也是可行方式之一。 上......

    高速精密冲压技术现状及模具发展趋势

    高速精密冲压技术现状及模具发展趋势 高速精密冲压技术涉及到机械、电子、材料、光学、计算机、精密检测、信息网络和管理技术等诸多领域,是多学科的系统工程。多工位与多功......

    精密与特种加工技术期末复习总结(5篇材料)

    单选(10分)判断(10分)填空(25分) 概念(15分5个)分析解答(24分4个)线切割(16分) 1 精密加工机床目前的研究方向? 答提高机床主轴的回转精度,工作台的直线运动精度以及刀具的微量进给精度。......

    精密与特种加工技术课后习题解答(精选五篇)

    精密与特种加工技术复习资料 第一章 1.精密与特种加工技术在机械制造领域的作用与地位如何? 答:目前,精密和特种加工技术已经成为机械制造领域不可缺少的重要手段,在难切削材料......

    精密与特种加工的发展现状与技术展望

    精密与特种加工的发展现状与技术展望班级: 姓名: 学号精密与特种加工的发展现状与技术展望 精密与特种加工的发展现状 精密加工是指加工精度和表面质量达到极高精度的加工工艺......

    精密电火花加工机的共性技术

    精密电火花加工机的共性技术 标签:精密电火花机|电火花加工 鼎亿精密电火花机厂家为您解说精密精密电火花加工机的共性技术 1、自动化技术 如今国内人力资源丰富,自动化似乎是......