第一篇:精密与特种加工的发展现状与技术展望
精密与特种加工的发展现状与技术展望
班级:
姓名:
学号
精密与特种加工的发展现状与技术展望
精密与特种加工的发展现状
精密加工是指加工精度和表面质量达到极高精度的加工工艺,通常包括精密切削加工和精密磨削加工,加工精度的不断提高对提高机电产品的性能、质量和可靠性,提高装配效率等都有至关重要的作用。精密和超精密加工已成为当前国际经济竞争的关键技术。精密工程,微米工程和纳米技术已成为世界技术的制高点,是现代制造技术的前沿,也是明天技术的基础
特种加工是将电能、热能、光能、声能和磁能等物理能量或其组合乃至机械能组合直接施加到被加工的部位上,从而实现材料去除的加工方法,也被称为非传统加工技术。近半个多世纪以来,相继出现了数十种特种加工方法,如电解加工、超声波加工、放电成型加工、激光加工、电子束加工等。特种加工在难加工材料加工、磨具及复杂面加工、、零件精细加工等领域已成为重要的加工方法或仅有的加工方法。
随着航空航天、核能热能以及微电子工业的发展,产品向高精度、高速度、耐高温、耐高压、耐腐蚀、大功率、小型化和高可靠性方向发展,零件的特殊结构和新材料的应用对制造业提出了更高的要求,特种加工作为跨世纪的先进制造技术的重要组成部分将在21世纪人类社会进步及我国现代化建设中发挥重大作用。
精密加工
精密、超精密切削加工
所谓精密加工是指加工精度和表面质量达到极高程度的加工工艺。目前,在工业发达的国家中,一般工厂能掌握的加工精度是1微米,精密工程正在向其终极目标—原子级精度逼近,也就是实现“移动原子”。
精密加工总是与高加工成本联系在一起,在过去它主要应用于军事、航空航天等部门。近十几年来,随着科学技术发展和人们生活水平的提高,精密加工的产品已经入人民生活的各个领域,工业发达国家已将精密加工机床直接用于产品零件的精密加工,产生了显著的经济效益。正是精密加工具有优良的特性,因此得到了世界各地的高度重视。我国必须大力发展精密加工技术,使其为我国的国民经济创造出巨大的经济效益。
精密机床是实现精密加工的先决条件,随着加工精度的提高和精密加工技术的发展,机床的精度不断提高,精密机床获得了飞速发展。
我国在20世纪60年代起开始发展精密机床,经过40多年的努力,我国的精密机床已有相当规模,不仅品种上基本满足我国生产需求,而且精度和质量都达到一定水平。例如北京机床研究所已批量生产多种规格的三坐标测量机。我国超精密机床的生产和研究其比较晚,和国外的差距较大。由于涉及到许多保密技术,从国外引进超精密机床受到限制,我们必须加大力度研制性能更优越的超精密机床,为国防工业、尖端技术的发展创造条件。
超精密切削加工是20世纪60年代发展起来的新技术,它在国防和尖端技术的发展中起到了重要的作用。例如导弹的命中精度等等。另外,由于采用了超精密切削技术,一些民用产品其生产成本降低,生产率提高,产品性能得到极大的改善。超精密加工的尖端部分分担着支撑最新科学技术进步的重任,必须把分散在各个领域的技术成就集结在一起,把加工精度提高1~2个数量级。为此需要在国家的科学研究规划中投入大量的财力和人力。
根据我国当前的实际情况,参考国外的发展趋势,我国应该开展超精密加工技术的基础研究,其主要内容包括超精密加工的基本理论和工艺、环境控制技术、材料和超精密加工设备的精度、动特性及热稳定性。只要我们能对精密加工技术给与足够的重视,投入相当的人力财力进行研究,相信我国能在15~20年内达到美国等先进国家的水平,并在某些主要单项技术上达到国际先进水平。精密超精密磨削加工
磨削是一种常用的半精加工和精加工方法,砂轮是磨削的主要切削工具,磨削在切削加工中的比重日益增大。在工业发达的国家磨床在机床总数中的比重占到30%~40%,且有不断增长的趋势。磨削在机械制造业中将得到广泛的应用。
随着科学技术的不断发展,近年来电子工业、航天工业和核工业等领域给精密加工提出了更高的要求,为了达到这个目标,精密机械进一步朝着精密加工方向发展。因此超精密磨削是近年发展起来的最高加工精度、最小表面粗糙度值的砂轮磨削方法,这将进一步促进超精密磨削的发展。
特种加工
电火花加工
电火花加工又称放电加工,是一种电、热能加工方法,利用工具和工件两级间脉冲放电时局部瞬时产生的高温把金属腐蚀去除来对工件进行加工的一种方法。在20世纪50年代开始研究并逐步应用生产。
目前,电火花加工技术已广泛应用于宇航、航空、电子、原子能等行业,以及科学研究部门,主要以解决难切削加工及复杂形状工件的加工问题。加工范围小至几微米大到几十米的超大型磨具和工件中。
电化学加工
电化学加工是指通过电化学反应从工件上去除或在工件上镀覆金属材料的特种加工方法,近十几年来,借助高新技术,在精密电铸等方面取得较快发展。目前,电化学加工技术已成为一种不可缺少的去除或镀覆金属材料及进行微细加工的重要方法之一,并广泛应用于兵器、汽车、医疗器械、电子和模具行业之中,电化学加工在很多方面还有待进一步的发展和提高,如加工过程监测与自动化控制、工具设计、加工精度的提高,以及电化学作用产物的处理等。
高能束加工
激光加工、离子束加工和电子束加工是近几年来得到较大发展的新兴特种加工。我国20世纪60年代初期开始对电子束加工工艺进行研究,目前已经在仪器仪表、微电子工业、航天航空部门和化纤等工业中得到应用,激光的应用范围日趋广阔,在工业、商业、医疗、军事等研究等方面具有广泛的应用,而且用于各种精细加工。激光加工技术是实用化很高的技术,同时也是附加值很高的加工方法,对象的材质、形状。尺寸、加工环境的自由度都很大。
复合加工
特种加工可以解决传统加工难以或无法加工的难题,在加工范围、加工质量、生产效率等方面,显示了许多优越性和独到之处,但是,科学的发展,各种材料的应用,国防、航空、尖端工业生产的需求向其提出更新的问题,有许多问题是
不能用一种加工手段来解决的。人们既不能一味追求“以柔克刚”,发展某种特种加工加工方法;也不排斥“以硬对柔”的某些特点,从而从加工的可能性、方便性、经济性等因素综合考虑,探索研究新的加工方法。复合加工正是在这种前提下生产和发展起来的。
制造业是将制造资源通过制造过程转化为可供人们使用与利用的工业品和生活消费品的行业。制造业是国民经济的基础,它创造了人类社会财富的60﹪~80﹪。从某种意义上讲,制造技术水平的高低已成为衡量一个国家国民经济和综合国力的重要指标之一。
第二篇:Chapt.7_精密与特种加工技术(课件)
第一章
概
论
第一节
精密与特种加工的产生背景
机械制造面临着一系列严峻的任务:
⑴ 解决各种难切削材料的加工问题。
⑵ 解决各种特殊复杂型面的加工问题。
⑶ 解决各种超精密、光整零件的加工问题。
⑷ 特殊零件的加工问题。
第二节
精密与特种加工的特点 及其对机械制造领域的影响
精密与特种加工是一门多学科的综合高级技术;
精密加工包括微细加工、光整加工和精整加工等,与特种加工关系密切。
特种加工是指利用机、光、电、声、热、化学、磁、原子能等能源来进行加工的非传统加工方法(NTM,Non-Traditional Machining),它们与传统切削加工的不同特点主要有: ① 主要不是依靠机械能;
② 刀具的硬度可以低于被加工工件材料的硬度; ③ 在加工过程中,工具和工件之间不存在显著的 机械切削力作用。
精密与特种加工技术引起了机械制造领域内的许多变革:
⑴ 提高了材料的可加工性。
⑵ 改变了零件的典型工艺路线。
⑶ 大大缩短新产品试制周期。
⑷ 对产品零件的结构设计产生很大的影响。
⑸ 对传统的结构工艺性好与坏的衡量标准产生重要影响。
第三节
精密与特种加工的方法及分类
1.加工成形的原理
分为去除加工、结合加工、变形加工三大类。
去除加工又称为分离加工,是从工件上去除多余的材料。
结合加工是利用理化方法将不同材料结合在一起。
又可分为附着、注入、连接三种。
变形加工又称为流动加工,是利用力、热、分子运动等手段使工件产生变形,改变其尺寸、形状和性能。
2.加工方法机理
按机理精密与特种加工分为传统加工、非传统加工、复合加工。
第四节 精密与特种加工技术的地位和作用
先进制造技术已经是一个国家经济发展的重要手段之一。
发展先进制造技术是当前世界各国发展国民经济的主攻方向和战略决策,同时又是一个国家独立自主、繁荣富强、经济持续稳定发展、科技保持先进领先的长远大计。
从先进制造技术的技术实质而论,主要有精密、超精密加工技术和制造自动化两大领域。
精密与特种加工技术水平是一个国家制造工业水平的重要标志之一。
精密与特种加工技术已经成为国际竞争中取得成功的关键技术。产品的实际制造,必然要依靠精密加工技术。第二章
金刚石刀具精密切削加工
第一节
概
述
精密与超精密加工和制造自动化是先进制造技术的两大领域。
加工精度在0.1~1μm,表面粗糙度Ra在0.02~0.1μm之间的加工称为精密加工;加工精度高于0.1μm,表面粗糙度Ra小于0.01μm的加工称为超精密加工。
一、超精密加工的难点
精度难以控制; 刚度和热变形影响; 去除层薄,切应力大; 犹如对不连续体进行切削。
二、超精密加工的方法
按加工方式分:
切削加工、磨料加工、特种加工和复合加工 按加工机理和特点分:
去除加工、结合加工和变形加工 还可分为 传统加工、非传统加工和复合加工
三、超精密加工的实现条件
超精密加工是多学科交叉的综合性高新技术
① 超精密加工的机理与工艺方法; ② 超精密加工工艺装备; ③ 超精密加工工具;
④ 超精密加工中的工件材料; ⑤ 精密测量及误差补偿技术;
⑥ 超精密加工工作环境、条件等。
在超精密加工的中,必须综合考虑以上因素。
第二节
超精密机床及其关键部件
一、典型超精密机床
超精密加工对机床的基本要求:
⑴ 高精度 ⑵ 高刚度 ⑶ 高稳定性 ⑷ 高自动化
大型光学金刚石车床 ——LODTM
FG-001超精密机床
OAGM 2500大型超精密机床
AHNIO型高效专用车削、磨削超精密机床
二、超精密机床的主轴部件
主轴部件是保证超精密机床加工精度的核心。超精密加工对主轴的要求是极高的回转精度,转动平稳,无振动。
液体静压轴承主轴
空气静压轴承主轴
⑴ 双半球空气轴承主轴
⑵ 径向—推力空气静压轴承主轴
⑶ 球形—径向空气轴承主轴
⑷ 立式空气轴承主轴
主轴的驱动方式
⑴ 柔性联轴器驱动
⑵ 内装式同轴电动机驱动
超精密机床主轴和轴承的材料
应考虑以下主要因素:① 耐磨损;② 不易生锈腐蚀;③ 热膨胀系数小;④ 材料的稳定性好。
制造空气主轴和轴承的材料主要有: ① 经表面氮化和低温稳定处理的38CrMoAl氮化钢;
② 不锈钢;
③ 多孔石墨和轴承钢。
另外还有铟钢、花岗岩、微晶玻璃和陶瓷等。
三、精密导轨部件
超精密机床的总体布局
T形布局
十字形布局
R-θ 布局
立式结构布局
常用的导轨部件 ⑴ 液体静压导轨
花岗岩静压导轨
⑵ 空气静压导轨和气浮导轨
空气静压导轨
气浮导轨
床身及导轨的材料
常用的床身及导轨材料有优质耐磨铸铁、花岗岩、人造花岗岩等。
微量进给装置
超精密机床的进给系统—般采用精密滚珠丝杠副、液体静压和空气静压丝杠副。
高精度微量进给装置则有电致伸缩式、弹性变形式、机械传动或液压传动式、热变形式、流体膜变形式、磁致伸缩式等。
目前高精度微量进给装置的分辨力可达到0.001~0.01μm。
精密和超精密微位移机构应满足以下设计要求:
① 精微进给和粗进给分开。
② 运动部分必须是低摩擦和高稳定度的。
③ 末级传动元件必须有很高的刚度。
④ 内部连接必须可靠,尽量采用整体结构或刚性连接。
⑤ 工艺性好,容易制造。
⑥ 具有好的动特性。
⑦ 能实现微进给的自动控制。
⑴ 压电和电致伸缩微进给装置
⑵ 摩擦驱动装置
⑶ 机械结构弹性变形微量进给装置
第五节
金刚石刀具的结构
衡量金刚石刀具质量的标准:
① 能否加工出高质量的超光滑表面;
② 能否有较长的切削时间保持刀刃锋锐。设计金刚石刀具时最主要问题有三个: ① 确定切削部分的几何形状;
② 选择合适的晶面作为刀具的前后面;
③ 确定金刚石在刀具上的固定方法和刀具结构。
一、金刚石刀具切削部分的几何形状
⑴ 刀头形式
金刚石刀具刀头一般采用在主切削刃和副切削刃之间加过渡刃。国内多采用直线修光刃,国外标准的金刚石刀具,推荐的修光刃圆弧半径R=0.5~3mm。
金刚石刀具的主偏角一般为30˚~90˚,以45˚主偏角应用最为广泛。
⑵ 前角和后角
根据加工材料不同,金刚石刀具的前角可取0˚~5˚,后角一般可取5˚~6˚。
美国EI Contour精密刀具公司的标准金刚石车刀结构如上图所示。该车刀采用圆弧修光刃,修光刃圆弧半径R=0.5~1.5mm。后角采用10˚,刀具前角可根据加工材料由用户选定。
一种可用于车削铝合金、铜、黄铜的通用金刚石车刀结构如右图所示。可获得粗糙度Ra < 0.02~ 0.005μm的表面。
二、选择合适的晶面作为金刚石刀具前、后面
三、金刚石刀具上的金刚石固定方法 ⑴ 机械夹固
⑵ 用粉末冶金法固定 ⑶ 使用粘结或钎焊固定
国内外的金刚石刀具使用者一般都不自己磨刀;
Sumitomo公司推出一次性使用不重磨的精密金刚石刀具。
第三章
精密与超精密磨料加工
黑色金属、硬脆材料的精密与超精密加工,主要是应用精密和超精密磨料加工。
所谓精密和超精密磨料加工,就是利用细粒度的磨粒和微粉对黑色金属、硬脆材料等进行加工,以得到高加工精度和低表面粗糙度值。
精密和超精密磨料加工可分为固结磨料和游离磨料加工两大类。
第一节
精密磨削
精密磨削是指加工精度为1~0.1μm、表面粗糙度为Ra0.2~0.025μm的磨削方法。
一、精密磨削机理
靠砂轮的具有微刃性和等高性的磨粒实现的。⑴ 微刃的微切削作用
⑵ 微刃的等高切削作用
⑶ 微刃的滑挤、摩擦、抛光作用
二、磨削用量
三、精密磨削砂轮
1.砂轮磨料
精密磨削时所用砂轮的磨料以易于产生和保持微刃及其等高性为原则。
钢件及铸铁件,以采用刚玉磨料为宜。碳化硅磨料主要应用于有色金属加工。
2.砂轮粒度
粗粒度的微切削作用;细粒度的摩擦抛光作用。
3.砂轮结合剂
超精密加工用金属类、陶瓷类结合剂
四、精密磨削中的砂轮修整
有单粒金刚石修整、金刚石粉末烧结型修整器修整和金刚石超声波修整等。
修整用量有:修整导程、修整深度、修整次数和光修次数。
五、超精密磨削
超精密磨削是指加工精度达到或高于0.1μm、表面粗糙度低于Ra0.025μm的砂轮磨削方法,适宜于对钢、铁材料及陶瓷、玻璃等硬脆材料的加工。
镜面磨削是属于精密磨削和超精密磨削范畴的加工,是指加工表面粗糙度达到Ra0.02~0.01μm、表面光泽如镜的磨削方法。
影响超精密磨削的因素有:超精密磨削机理、被加工材料、砂轮及其修整、超精密磨床、工件的定位夹紧、检测及误差补偿、工作环境、操作水平等。超精密磨削需要—个高稳定性的工艺系统,对力、热、振动、材料组织、工作环境的温度和净化等都有稳定性的要求,并有较强的抗击来自系统内外的各种干扰的能力。
1.超精密磨削机理
单颗粒磨削的切入模型如图所示。说明:
① 可视为一弹性系统
②平面磨削的切屑形状如图所示
③ 磨削过程分为弹性区、塑性区、切削区、塑性区,最后为弹性区
④ 存在微切削作用、塑性流动、弹性破坏作用和滑擦作用
磨削状态与磨削系统的刚度密切相关。2.超精密磨削工艺
超精密磨削的砂轮选择、砂轮修整、磨削液选择等问题与精密磨削和超硬磨料砂轮磨削有关问题类同。
超精密磨削的磨削用量。
六、超硬磨料砂轮磨削
超硬磨料砂轮磨削主要是指用金刚石砂轮和立方氮化硼砂轮加工硬质合金、陶瓷、玻璃、半导体材料及石材等高硬度、高脆性材料。其突出特点为: ① 磨削能力强,耐磨性好,耐用度高,易于控制加工尺寸及实现加工自动化。② 磨削力小,磨削温度低,加工表面质量好,无烧伤、裂纹和组织变化。③ 磨削效率高。④ 加工成本低。
1.超硬磨料砂轮磨削工艺
⑴ 磨削用量 ⑵ 磨削液:要求磨削液有良好的润滑性、冷却性、清洗性和渗透性。
2.超硬磨料砂轮修整
修整是整形和修锐的总称。
整形是使砂轮具有—定精度要求的几何形状; 修锐是去除磨粒间的结合剂,使磨粒突出结合剂一定高度,形成良好的切削刃和足够的容屑空间。
超硬磨料砂轮修整的方法:① 车削法;② 磨削法;③ 滚压挤轧法;④ 喷射法;⑤ 电加工法;⑥ 超声波振动修整法。
第二节
精密研磨与抛光
一、研磨加工机理
精密研磨属于游离磨粒切削加工,是在刚性研具上注入磨料,在—定压力下,通过研具与工件的相对运动,借助磨粒的微切削作用,除去微量的工件材料,以达到高级几何精度和优良表面粗糙度的加工方法。
1.硬脆材料的研磨
硬脆材料研磨的加工模型如图所示。
研磨磨粒为1μm的氧化铝和碳化硅等。
2.金属材料的研磨
金属材料研磨相当于普通切削和磨削的切削深度极小时的状态。
二、抛光加工机理
抛光是指用低速旋转的软质弹性或粘弹性材料抛光盘,或高速旋转的低弹性材料抛光盘,加抛光剂,具有一定研磨性质地获得光滑表面的加工方法。
抛光使用的磨粒是1μm以下的微细磨粒。
抛光加工模型如图3-9所示。
抛光加工是磨粒的微小塑性切削作用和加工液的化学性溶析作用的结合。
三、精密研磨、抛光的主要工艺因素
精密研磨抛光的主要工艺因素如表3-5所示。
在一定的范围内,增加研磨压力可提高研磨效率。
超精密研磨对研磨运动轨迹有以下基本要求: ① 工件相对研磨盘作平面平行运动,使工件上各点具有相同或相近的研磨行程。
② 工件上任一点不出现运动轨迹的周期性重复。
③ 避免曲率过大的运动转角,保证研磨运动平稳。
④ 保证工件走遍整个研磨盘表面,以使研磨盘磨损均匀,进而保证工件表面的平面度。
⑤ 及时变换工件的运动方向,以减小表面粗糙度值并保证表面均匀一致。
四、研磨盘与抛光盘
1.研磨盘
研磨盘是涂敷或嵌入磨料的载体。
研磨对研磨盘加工面的几何精度要求很高。
研磨盘材料硬度要低于工件材料硬度,且组织均匀致密、无杂质、无异物、无裂纹和无缺陷,并有一定的磨料嵌入性和浸含性。
常用的研磨盘材料有铸铁、黄铜、玻璃等。
研磨盘的结构要具有良好的刚性、精度保持性、耐磨性、排屑性和散热性。为了获得良好的研磨表面,常在研磨盘面上开槽。开槽的目的为:
① 存储多余的磨粒;
② 作为向工件供给磨粒的通道;
③ 作为及时排屑的通道。
固着磨料研磨盘是一种适用于陶瓷、硅片、水晶等脆性材料精密研磨的研具,具有表面精度保持性好、研磨效率高的优点。
2.抛光盘
抛光盘平面精度及其精度保持性是实现高精度平面抛光的关键。
五、研磨剂与抛光剂
对研磨用磨粒的基本要求: ① 形状、尺寸均匀一致;
② 能适当地破碎,以使切削刃锋利; ③ 熔点高于工件熔点; ④ 在研磨液中容易分散。
对于抛光粉用磨粒,除上述要求外,还要考虑与工件材料作用的化学活性。
研磨抛光加工液主要作用是冷却、润滑、均布研磨盘表面磨粒及排屑。对研磨抛光液的要求: ① 有效地散热,以防止研磨盘和工件热变形; ② 粘附低,以保证磨料的流动性; ③ 不污染工件;
④ 物理、化学性能稳定,不分解变质; ⑤ 能较好地分散磨粒。
六、非接触抛光
非接触抛光是指在抛光中工件与抛光盘互不接触,依靠抛光剂冲击工件表面,以获得加工表面完美结晶性和精确形状的抛光方法,其去除量仅为几个到十几个原子级。
1.弹性发射加工
弹性发射加工是指加工时研具与工件互不接触,通过微粒子冲击工件表面,对物质的原子结合产生弹性破坏,以原子级的加工单位去除工件材料,从而获得无损伤的加工表面。
弹性发射加工原理
弹性发射加工方法如图所示
对加工头和工作台实施数控,可实现曲面加工。EEM的数控加工装置如图3-11所示。
2.浮动抛光
浮动抛光装置如图所示 抛光机理
超精密抛光盘的制作是实现浮动抛光加工的关键。
3.动压浮离抛光 动压浮离抛光平面非接触抛光装置如图所示
工作原理
加工过程中无摩擦热和工具磨损,标准平面不会变化
该方法主要用于半导体基片和各种功能陶瓷材料及光学玻璃平晶的抛光,可同时进行多片加工。4.非接触化学抛光
通过向抛光盘面供给化学抛光液,使其与被加工面作相对滑动,用抛光盘面来去除被加工件面上产生的化学反应生成物。这种以化学腐蚀作用为主,机械作用为辅的加工,又称为化学机械抛光。水面滑行抛光借助于流体压力使工件基片从抛光盘面上浮起,利用具有腐蚀作用的液体作加工液完成抛光。
5.切断、开槽及端面抛光 采用非接触端面抛光可实现对沟槽的壁面、垂直柱状轴断面进行镜面加工。
端面非接触镜面抛光装置示意图如图所示。
该方法可用于直径0.1mm左右的光导纤维线路零件的端面镜面抛光以及精密元件的切断。
第三篇:精密加工技术_电火花加工现状与发展
电火花加工现状与发展
电火花加工现状与发展
张杰
(上海理工大学 机械工程学院,上海)
摘要:首先简要地说明了电火花加工的原理、特点、分类和其在机械制造领域内的应用,继而详细地论述了近年来电火花加工的国内外研究现状,最后通过对一些资料的查阅对电火花加工的发展方向以及进一步深入研究时所需要注意的问题进行了初步的探讨。关键词:电火花加工,电火花成形加工,电火花线切割加工,发展现状,发展方向
Present Situation and Development of EDM
ZhangJie(School of Mechanical Engineering ,University of Shanghai for Science and
Technology,Shanghai)
Abstract : The principles ,features ,classifications of EDM and its applications in the fields of mechanical manufacturing are briefly stated, and then the research at home and abroad are presented in detail.Finally ,by the reference of several documents, some problems in need of a further investigation are proposed.Key words :EDM, Electric spark forming, wire-cut electrical discharge machining,present situation, future direction.1.概述
电火花加工是特种加工的一种。早在前苏联,拉扎林科夫妇研究开关触点受火花放电腐蚀损坏的现象和原因时,发现电火花的瞬时高温可以使局部的金属熔化、氧化而被腐蚀掉,从而开创和发明了电火花加工方法。
1.1电火花加工原理
电火花加工现状与发展
进行电火花加工时,工具电极和工件分别接脉冲电源的两极,并浸入工作液中,或将工作液充入放电间隙。通过间隙自动控制系统控制工具电极向工件进给,当两电极间的间隙达到一定距离时,两电极上施加的脉冲电压将工作液击穿,产生火花放电。
其工作原理图如下:
1.2电火花加工特点
电火花加工是与机械加工完全不同的一种新工艺。随着工业生产的发展和科学技术的进步,具有高熔点、高硬度、高强度、高脆性,高粘性和高纯度等性能的新材料不断出现,具有各种复杂结构与特殊工艺要求的工件越来越多。电火花加工法能够适应生产发展的需要,并在应用中显示出很多优异性能,电火花加工的特点概括如下:
(1)直接利用电脑进行加工,便于实现自动化,适于特殊材料和复杂形状的加工。脉冲放电的能量密度高,便于加工用普通的机械加工方法难于加工或无法加工的特殊材料和复杂形状的工件。不受材料硬度影响,不受热处理状况影响。
(2)适用的材料范围广。脉冲放电持续时间极短,放电时产生的热量传导扩散范围小,材料受热影响范围较小,可以加工任何高强度、高硬度、高韧性、高脆性以及高纯度的导电材料。
(3)工具电极制造容易。加工时,工具电极与工件材料不接触,两者之间宏观作用力极校工具电极材料不需比工件材料硬,因此,工具电极制造容易。
(4)可以再同一台机床连续进行粗,半精及精加工。脉冲参数可依据需要调节,可在同一台机床上进行粗加工、半精加工和精加工。可以改革工件结构,简化加工工艺,提高工件使用寿命,降低工人劳动强度。
1.3电火花加工分类
按工具电极和工件相对运动的方式和用途的不同,大致可分为电火花成形加工、电火花线切割、电火花磨削和镗磨、电火花同步共轭回转加工、电火花高速小孔加工、电火花表面强化与刻字六大类。前五类属电火花成形、尺寸加工,是用于改变零件形状或尺寸的加工方法;后者则属表面加工方法,用于改善或改变零件表面性质。以上方法中以电火花成形加工和电火花线切割应用最为广泛。
1.3.1电火花成形加工
该方法是通过工具电极相对于工件作进给运动,将工件电极的形状和尺寸复制在工件上,从而加工出所需要的零件。它包括电火花型腔加工和穿孔加工两种。
电火花型腔加工主要用于加工各类热锻模、压铸模、挤压模、塑料模和胶木膜的型腔。
电火花加工现状与发展
电火花穿孔加工主要用于型孔(圆孔、方孔、多边形孔、异形孔)、曲线孔(弯孔、螺旋孔)、小孔和微孔的加工。近年来,为了解决小孔加工中电极截面小、易变形、孔的深径比大、排屑困难等问题,在电火花穿孔加工中发展了高速小孔加工,取得良好的社会经济效益。典型机床有D7125,D7140等电火花穿孔成形机床。
1.3.2电火花线切割加工
该方法是利用移动的细金属丝作工具电极,按预定的轨迹进行脉冲放电切割。按金属丝电极移动的速度大小分为高速走丝和低速走丝线切割。我国普通采用高速走丝线切割,近年来正在发展低速走丝线切割,高速走丝时,金属丝电极是直径为φ0.02~φ0.3mm的高强度钼丝,往复运动速度为8~10m/s。低速走丝时,多采用铜丝,线电极以小于0.2m/s的速度作单方向低速运动。线切割时,电极丝不断移动,其损耗很小,因而加工精度较高。其平均加工精度可达 0.0lmm,大大高于电火花成形加工。表面粗糙度Ra值可达1.6 或更小。
目前电火花线切割广泛用于加工各种冲裁模(冲孔和落料用)、样板以及各种形状复杂型孔、型面和窄缝、凸轮、成形刀具、精密细小零件和特殊材料,试制电机、电器等产品等。典型机床有DK7725,DK7740数控电火花线切割机床。
1.3.3其他电火花加工方式
剩下的电火花加工方式应用较少,不是主流。包括:
电火花内孔、外圆和成形磨削:用于加工高精度、表面粗糙度值小的小孔,如拉丝模、挤压模、微型轴承内环、钻套等和加工外圆、小模数滚刀等。典型机床有D6310电火花小孔内圆磨床等。
(2)电火花同步共轭回转加工:用于加工各种复杂型面的零件,如高精度的异形齿轮,精密螺纹环规,高精度、高对称度、表面粗糙度值小的内、外回转体表面等。典型机床有JN-2,JN-8内外螺纹加工机床。
(3)电火花高速小孔加工:用于加工线切割穿丝预孔,深径比很大的小孔,如喷嘴等。典型机床有D703G电火花高速小孔加工机床。
(4)电火花表面强化、刻字:用于电火花刻字、打印记。典型设备有D9105电火花强化机等。
1.4电火花加工用途
目前电火花加工已广泛应用于模具制造、航天航空、电子、电机电器、精密机械、仪器仪表、汽车、轻工业等行业,以解决难加工材料及复杂形状零件的加工问题,加工范围已达到小到几微米的小孔、轴、缝,大到几米的超大型模具和零件。电火花加工的主要用途可以概括为以下几项:
(1)用于模具生产中的型孔、型腔加工,已成为模具制造业的主导加工方法,推动了模具行业的技术进步。可以用于制造冲模、塑料模、锻模和压铸模。(2)加工小孔、畸形孔以及在硬质合金上加工螺纹螺孔。(3)在金属板材上切割出零件。(4)加工窄缝。
(5)磨削平面和圆面。
(6)其它(如强化金属表面,取出折断的工具,在淬火件上穿孔,直接加工型面复杂的零件等)。
2.发展历程及技术成果
2,1电火花加工发展历程
早在十九世纪,人们就发现了电器开关的触点开闭时,因为放电,使接触部位烧蚀,造成接触面的损坏。这种放电引起的电极烧蚀现象叫做电腐蚀。
电火花加工现状与发展
二十世纪四十年代初,人们进一步认识到,在液体介质中进行重复性脉冲放电时,能够对导电材料进行尺寸加工,因此,创立了“电火花加工法”。
五十年代,改进为电阻-电感-电容等回路。同时,还采用脉冲发电机之类的所谓长脉冲电源,使蚀除效率提高,工具电极相对损耗降低,随后又出现了大功率电子管、闸流管等高频脉冲电源,使在同样表面粗糙度条件下的生产率得以提高。
六十年代出现了晶体管和可控硅脉冲电源,提高了能源利用效率和降低了工具电极损耗,并扩大了粗精加工的可调范围。
七十年代出现了高低压复合脉冲、多回路脉冲、等幅脉冲和可调波形脉冲等电源,在加工表面粗糙度、加工精度和降低工具电极损耗等方面又有了新的进展。在控制系统方面,从最初简单地保持放电间隙,控制工具电极的进退,逐步发展到利用微型计算机,对电参数和非电参数等各种因素进行适时控制。
电火花加工技术经历了手动电火花加工、液压伺服、直流电机、步进电机、交流伺服电机等一系列过程。控制系统也越来越复杂,从单轴数控到3轴数控、再到多轴联动。20世纪90年代初期,3轴电火花机在国内还是空白,主要是从日本和瑞士引进。直到90年代中期,我国才开始步入国内电火花加工机的真正快速发展轨道,后来在此基础上又生产研发了4轴4联动电火花加工机。
2,2电火花加工技术成果
2.2.1对电火花加工优缺点的总结
电火花加工属于电脉冲放电腐蚀类,被加工的工件是好的导电材料,而且最好是优良的导电材料且不含杂质。
电火花加工的优点:
(1)电火花加工,最擅长对付那些高硬度的(一般的机械加工难以实现的)金属的加工(2)电火花加工尤其适合细、窄缝类(普通机械加工难以做到的)、清角位等的加工。
电化花加工的缺点:
(1)不能加工不导电的材料;
(2)加工过程中,有因为使用控制不良,引起火灾的安全隐患;(3)加工效率较低(相对机械加工来讲);
(4)加工过程造成被加工件的内应力增加而变形,加工尺寸精度不高。
2.2.2影响其加工精度的因素的总结
与传统的机械加工一样,机床本身的各种误差,工件和工具电极的定位、安装误差都会影响到电火花加工的精度。另外,与电火花加工工艺有关的主要因素是放电间隙的大小及其一致性、工具电极的损耗及其稳定等。概括为以下几个方面:(1)表面粗糙度
电火花加工表面的粗糙度取决于放电蚀坑的深度及其分布的均匀程度,只有在加工表面产生浅而分布均匀的放电蚀坑,才能保证加工表面有较小的粗糙度值。(2)加工间隙(侧面间隙)的影响
加工间隙的大小及其一致性直接影响电火花成形加工的加工精度。只有掌握每个规准的加工间隙和表面粗糙度的数值,才能正确设计电极的尺寸,决定收缩量,确定加工过程中的规准转换。
(3)加工斜度的影响
在加工中,不论型孔还是型腔,侧壁都有斜度,形成斜度的原因,除电极侧壁本身在技术要求或制造中原有的斜度外,一般都是由电极的损耗不均匀,以及“二次放电”等因素造成的。这些因素包括电极损耗、工作液脏污程度、冲油或抽油、加工深度等。(4)楞角倒圆的原因及规律
电火花加工现状与发展
电极尖角和楞边的损耗,比端面和侧面的损耗严重,所以随着电极楞角的损耗导致楞角倒圆,加工出的工件不可能得到清楞。而且,随着加工深度的增加,电极楞角倒圆的半径增大。但超过一定加工深度,其增大的趋势逐渐缓慢,最后停留在某一最大值上。楞角倒圆的原因除电极的损耗外,还有放电间隙的等距离性。
2.2.3影响其加工后表面粗糙度的因素的总结
(1)脉冲能量越大,加工速度越高,Ra值越大。(2)工件材料越硬、熔点越高,Ra值越小。
(3)工件电极的表面粗糙度越大,工件的Ra值越大。
3.电火花加工的国内外研究基本现状
近年来电火花线切割加工无论在加工过程控制,还是改进加工工艺方面都取得了许多新的进展。主要表现在突破了许多传统观念的束缚,产生了一些新的加工方法,以及一些新的控制和检测方式。
往复走丝电火花线切割机床的走丝速度为6~12 m/s,是我国独创的机种。自1970年9月由
电火花加工现状与发展
微电子、数控、电力半导体、机械技术、电气技术等,是多方面、多学科集成的产品,是比较复杂的高科技产品。国内现在显然还没有一个能够独立进行原始创新的团队,因此注定要经历一个长时间痛苦的积淀过程,电火花加工技术正不断向精密化、自动化、智能化、高效化等方向发展。我国务必要紧跟电火花加工技术发展步伐,才能立足世界。如今新型数控电火花机床层出不穷,如瑞士阿奇、瑞士夏米尔、日本沙迪克、日本牧野、日本三菱等机床在这方面技术都有了全面的提高。(1)电火花加工的精密化核心主要体现在对尺寸精度、仿形精度、表面质量的要求。时下数控电火花机床加工的精度已有全面提高,尺寸加工要求可达±2-3μm、底面拐角R值可小于0.03mm,最佳加工表面粗糙度可低于Ra0.3μm。
(2)自动化指目前最先进的数控电火花机床在配有电极库和标准电极夹具的情况下,只要在加工前将电极装入刀库,编制好加工程序,整个电火花加工过程便能日以赴继地自动运转,几乎无需人工操作。机床的自动化运转降低了操作人员的劳动强度、提高生产效率。但自动装置配件的价格比较昂贵,大多模具企业的数控电火花机床的配置并不齐全。数控电火花机床具备的自动测量找正、自动定位、多工件的连续加工等功能已较好地发挥了它的自动化性能。自动操作过程不需人工干预,可以提高加工精度、效率。
(3)智能化:智能控制技术的出现把数控电火花加工推向了新的发展高度。新型数控电火花机床采用了智能控制技术。专家系统是数控电火花机床智能化的重要体现,它的智能性体现在精确的检测技术和模糊控制技术两方面。专家系统采用人机对话方式,根据加工的条件、要求,合理输入设定值后便能自动创建加工程序,选用最佳加工条件组合来进行加工。在线自动监测、调整加工过程,实现加工过程的最优化控制。目前智能化技术不断地升级,使得智能控制技术的应用范围更加的广泛。随着市场对电加工要求的提升,智能化技术将获得更为广阔的发展空间。
(4)高效化:现代加工的要求为数控电火花加工技术提供了最佳的加工模式,即要求在保证加工精度的前提下大幅提高粗、精加工效率。如这不但缩短了加工时间且省却后处理的麻烦,同时提升了模具品质,使用粉末加工设备可达到要求。另外减少辅助时间(如编程时间、电极与工件定位时间等),这就需要增强机床的自动编程功能,配置电极与工件定位的夹具、装置。若在大工件的粗加工中选用石墨电极材料也是提高加工效率的好方法。
4.未来发展方向
先进制造技术的快速发展和制造业市场竞争的加剧对电火花成形加工技术提出了更高要求,同时也为电火花成形加工技术加工理论的研究和工艺开发、设备更新提供了新的动力。
今后电火花成形加工的加工对象应主要面向传统切削加工不易实现的难加工材料、复杂型面等加工,其中精细加工、精密加工、窄槽加工、深腔加工等将成为发展重点。同时,还应注意与其它特种加工技术或传统切削加工技术的复合应用,充分发挥各种加工方法在难加工材料加工中的优势,取得联合增值效应。相对于切削加工技术而言,电火花成形加工技术仍是一门较年轻的技术,因此在今后的发展中,应借鉴切削加工技术发展过程中取得的经验与成果,根据电火花成形加工自身的技术特点,选用适当的加工理论、控制原理和工艺方法,并在己有成果的基础上不断完善、创新。电火花成形加工机床向数控化方向发展的趋势已不可逆转,但应注意不可盲目追求“大而全”,应以市场为导向,建立具有开放性的数控体系。总体而言,电火花成形加工技术今后的发展趋势应是高效率、高精度、低损耗、微细化、自动化、安全、环保等。
对电火花加工而言,电火花成形机下一步的发展空间在精密微细和特殊材料两个方面。特殊材料(如航空航天领域用的材料)专机,窄槽窄缝、异型腔的加工,精密模具等领域都是发展重点。在精加工方面,曾经有过高速铣要代替电火花的传言,现在证明这是不现实的。
电火花加工现状与发展
现在粗加工、大电流的火花机又有回头的趋势,在家电、汽车很多行业中应用。人类新开发出来的导电的特殊材料都可进行放电加工,而高速铣通常很难实现。精密微细加工比如喷丝板等微小型零件都离不开电火花加工;航空航天领域中很多零部件需要多轴联动电火花加工。我们国家在专用机型上有创新的能力,有很大的空间。
5.需要进一步研究的问题
电火花加工虽然发展迅速,但仍然存在一些问题,经过对一些资料的查阅,这些问题可以总结为以下几条:
(1)一般加工速度较慢,生产率低于切削加工 安排工艺时可采用机械加工去除大部分余量,然后再进行电火花加工以求提高生产率。最近新的研究成果表明,采用特殊水基不燃性工作液进行电火花加工,其生产率甚至高于切削加工。
(2)存在电极损耗和二次放电 电极损耗多集中在尖角或底面,最近的机床产品已能将电极相对损耗比降至0.1%,甚至更小;电蚀产物在排除过程中与工具电极距离太小时会引起二次放电,形成加工斜度,影响成型精度,(3)工作液的净化和加工中产生的烟雾污染处理比较麻烦。
(4)由于电级丝是往复使用,所以会造成电极丝损耗,加工精度和表面质量降低。(5)放电过程有部分能量消耗在工具电极上,导致电极损耗,影响成形精度。(6)电极之间需要始终保持确定的距离。(7)电火花需要达到足够高的电流密度。(8)脉冲性放电是一个难题。
(9)如何及时有效的排除电蚀产物值得进一步的研究。
近年来随着特种加工技术在现代制造技术中的发展和广泛应用,国家很重视特种加工行业发展,我国的特种加工机床拥有量较高,也具有很大的生产规模,但在高端机床装备方面,与发达国家还有明显的差距,在加工精度、加工质量以及自动化程度等方面都有很大的提升空间。电火花加工技术中遇到的难题也将在这一趋势中不断被解决。我们相信,电火花加工技术将会不断成熟,并为我们带来巨大的价值。
参考资料:卢秉恒.机械制造技术基础.北京.机械工业出版社,2007. 王贵成,张银喜.精密与特种加工.武汉.武汉理工大学出版社,2009.
刘志东,高长水.电火花加工工艺及应用.北京.国防工业出版社,2011.
汤传建.液中喷气电火花加工试验及机理研究.上海.上海交通大学机械与动力工程学院,2008. 徐安阳,刘志东等.功能电极电火花诱导烧蚀加工模具钢Cr12实验研究.南京.南京航空航天大学机电学院,2012.
第四篇:特种加工技术的发展和展望
《特种加工》课程论文
题 目:特种加工技术的发展和展望
姓 名:郭健朗
学 号:1 3 4 1 1 0 1 0 8 6
院 系: 机 械 与 能 源 工 程 系
专 业:机 械 设 计 制 造 及 其自 动 化
指导老师:雷先明
特种加工技术的发展和展望
摘 要: 全面介绍了特种加工技术的类型及发展现状, 指出了其优势和存在的问题;阐述了电火花加工、电解加工、电子束加工、超声波加工、激光加工、化学机械复合加工、水喷射加工等加工方法;探讨了各种加工方法的工作要素、加工特点及应用;最后, 指出了特种加工的发展趋势。
Abstract: the author introduces the types and current situation of the development of special processing technology, points out its advantages and problems;describes the electrical discharge machining, electrochemical machining, electron beam machining, ultrasonic machining, laser processing, chemical mechanical processing, water jet machining processing method;discusses the processing characteristics and application of work elements, all kinds of processing methods;finally, points out the development trend of special machining 关键词: 特种加工;电火花加工;电解加工;电子束加工;超声波加工
Key words: special machining;EDM;electrochemical machining;electron beam machining;ultrasonic machining 1.引言
特种加工(又称非传统加工)是二次世界大战后发展起来的一类有别于传统切削与磨削加工方法的总称。特种加工方法将电、磁、声、光等物理量及化学能量或其组合直接施加在工件被加工的部位上,从而使材料被去除、累加、变形或改变性能等;特种加工 方法可以完成传统加工方法难以实现的加工, 如高强度、高韧性、高硬度、高脆性、耐高温材料和工程陶瓷、磁性材料等难加工材料的加工以及精密、微细、复杂形状零件的加工等。
特种加工技术有以下几个特点:⑴加工方法主要不是依靠机械能, 而是用其他能量(如电能、光能、声能、热能、化学能等)去除材料。⑵传统加工方法要求刀具的硬度必须大于工件的硬度, 即“以硬切软;而对于特种加工,由于工具不受显著切削力的作用,特种加工对工具和工件的强度、硬度和刚度均没有严格要求。⑶加工没有明显的切削力作用,一般不会产生加工硬化现象, 又由于工件加工部位变形小,发热少,或发热仅局限于工件表层加工部位,工件热变形小,由加工产生的应力也小,易于获得好的加工质量,且可在一次安装中完成工件的粗、精加工。⑷特种加工中能量易于转换和控制,有利于保证加工精度和提高效率。⑸特种加工方法的材料去除速度一般低于常规加工方法,这也是目前常规加工方法在机械加工中仍占主导地位的主要原因。
2.特种加工技术
特种加工有多种分类方法:如按加工过程材料增减可分为去除加工、结合加工和变形加工等;按作用能源可分为机械能、热能、化学能、复合能等。
2.1 电火花加工
电火花加工的工作原理;是利用工具电极与工件电极之间的火花放电:产生瞬时高温将金属熔化,电火花加工过程可分为四个阶段: ①介质电离、被击穿, 形成放电通路;②形成火花放电,工件电极产生熔化、气化;热膨胀;③抛出蚀除物;④间隙介质消电离(恢复绝缘状态)。电火花加工的工作要素包括电极材料、工作液、放电间隙、脉冲宽度与间隔等。对工具电极的基本要求是导电、损耗小、易加工。常用的工具电极材料有紫铜、石墨、铸铁、钢、黄铜等,其中又以紫铜和石墨最为常用。工作液是电火花加工中必不可少的介质,其主要功用是压缩放电通道区域,提高放电能量密度和加速蚀除物的排出。常用的工作液有煤油、机油、去离子水、乳化液等。合理的放电间隙是保证火花放电的必要条件。为保持适当的放电间隙, 在加工过程中, 需采用自动调节器控制机床进给系统,并带动工具电极缓慢向工件进给。
电火花加工特点是:① 电火花加工不受加工材料硬度限制,可加工任何硬、脆、韧、软的导电材料。②加工时无显著作用力,发热小(发热仅局限于放电区极小范围内),适于加工小孔、薄壁、窄槽、形面、型腔及曲线孔等,且加工质量好。精加工时,加工尺寸
精度可达0.005~0.01mm, 表面粗糙度可达Ra 为0.1~0.05um。③脉冲参数调整方便,可一次安装完成粗、精加工。④易于实现自动化。目前,实际应用的电火花加工主要有两种类型,即电火花成形加工和电火花线切割。2.1.1电火花成形加工
主要指孔加工和型腔加工。电火花打孔常用于加工冷冲模、拉丝模、喷嘴、喷丝孔等。型腔加工包括锻模、压铸模、挤压模、塑料模等型腔加工,以及叶轮、叶片等曲面加工。
2.1.2 电火花线切割
用连续移动的钼丝(或铜丝)做工具阴极,工件为阳极。机床工作台带动工件在水平面内做互相垂直方向的移动,可切割出二维图形。丝架也可做小角度摆动,可切割出斜 面。电火花线切割广泛用于加工各种硬质合金和淬硬钢的冲模、样板、各种形状复杂的板类零件、窄缝、栅网等。电火花线切割加工按走丝速度可分为快走丝和慢走丝两类。快走丝速度一般为l0m/s, 电极丝可往复移动,并可以循环反复使用(使用一段时问后需进行更换).慢走丝速度为2~8m/min,单向运动,电极丝一次性使用。慢走丝线切割走丝平稳,无振动,电极丝损耗小,加工精度高。
2.2 电解加工
电解加工的工作原理 是工件接阳极,工具(铜或不锈钢)接阴极,两极间加6~24V 的直流电压,极间保持0.1~1mm的间隙。在间隙处通以6~60m/s高速流动的电解液,形成极间导电通路,工件表面材料不断溶解,其溶解物及时被电解液冲走。工具电极不断进给,以保持极间间隙。
电解加工的特点是:①不受材料硬度的限制,能加工出任何高硬度、高韧性的导电材料, 并能以简单的进给运动一次加工出形状复杂的形面和型腔。②电解加工比电火花加工的形面和型腔效率高5~10倍。③加工过程中阴极损耗小。加工表面质量好,无毛刺、无残余应力和变形层。④加工设备投资较大, 有污染, 需防护。
电解加工广泛应用于模具的型腔加工,枪炮的膛线加工,发电机的叶片加工,花键孔、内齿轮、深孔加工,以及电解抛光、倒棱、去毛刺等。
电解磨削是利用电解作用与机械磨削相结合的一种复合加工方法。工件接直流电源正极, 高速回转的导电磨轮接负极,两者保持一定的接触压力,导电磨轮表面突出的磨料使磨轮导电基体与工件之间有一定的间隙。当电解液从问隙中流过并接通电源后,工件产生阳极溶解, 工件表面上生成一层称为阳极膜的氧化膜, 其硬度远比金属本身低, 极易被高速回转的磨轮刮除,使新的金属表面露出,继续进行电解。电解作用与磨削作用交替进行,电解产物被流动的电解液带走,使加工继续进行,直至达到加工要求。
电解磨削效率比机械磨削高,且导电磨轮损耗远比机械磨削小,特别是磨削硬质合金时, 效果更明显。
2.3 电子束加工
电子束加工的工作原理是在真空条件下,利用电流加热阴极发射电子束,经控制栅极初步聚焦后, 由加速阳极加速, 通过透镜聚焦系统进一步聚焦, 使能量密度集中在直5~10um 的斑点内。高速而能量密集的电子束冲击到工件上,被冲击点处形成瞬时高温(在几分之一微秒时间内升高至几千摄氏度),工件表面局部熔化、气化直至被蒸发去除。电子束加工的特点及应用是: ①电子束束径最小可达0.01~0.005 mm,长度可达束径的几十倍,故可加工微细深孔和窄缝。②材料适应性广,原则上各种材料均可加工,特别适用于加工特硬、难熔金属和非金属材料。③加工速度较高,切割1mm 厚的钢板, 切割速度可达240mm/min。④在真空中加工,无氧化,特别适于加工高纯度半导体材料和易氧化的金属及合金。⑤加工设备较复杂,投资较大,多用于微细加工。
2.4 超声波加工
超声波加工的工作原理;是利用超声波发生器将工频交流电能转变为有一定功率输出的超声频电振荡, 通过换能器将超声频电振荡转变为超声机械振动。此时振幅一般较小,再通过振幅扩大棒(变幅杆),使固定在变幅杆端部的工具振幅增大到0.01~0.15mm。利用工具端面的超声(16~25kHz)振动,使工作液(普通水)中的悬浮磨粒(碳化硅、氧化铝、碳化硼或金刚石粉)对工件表面产生撞击抛磨,实现加工。超声波加工的特点及应用:①适用于加工各种脆性金属材料和非金属材料, 如玻璃、陶瓷、半导体、宝石、金刚石等。②可加工各种复杂形状的型孔、型腔、形面。③被加工表面无残余应力, 无破坏层, 加工精度较高, 尺寸精度可达0.01~0.05 mm。④加工过程受力小, 热影响小,可加工薄壁、薄片等易变形零件。⑤单纯的超声波加工,加工效率较低。采用超声复合加工(如超声车削、超声磨削、超声电解加工、超声线切割等),可显著提高加工效率。
2.5 激光加工
激光是一种受激辐射而得到的加强光。其基本特征是: 强度高,亮度大;波长频率确定, 单色性好,相于性好, 相干长度长, 方向性好,几乎是一束平行光。由激光器发出的激光, 经光学系统聚焦后,照射到工件表面上,光能被吸收,转化为热能,使照射斑点处局部区域温度迅速升高,此处材料被熔化、气化而形成小坑。由于热扩散,使斑点周围材料熔化,小坑内材料蒸气迅速膨胀, 产生微型爆炸,将熔融物高速喷出并产生一个方向性很强的反冲击波,于是在加工表面上打出一个上大下小的孔。
激光加工的特点及应用:①加工材料范围广,可加工各种金属和非金属材料,特别适用于加工高熔点材料、耐热合金及陶瓷、宝石、金刚石等硬脆材料。②激光可透过透明材料进行加工。③激光加工为非接触加工,工件无受力变形,受热区域小,工件热变形小,加工精度高。④可进行微细加工。激光聚焦后焦点直径理论上可小至0.001mm 以下,实际上可实现0.01mm 的小孔加工和窄缝切割。激光切割广泛用于切割复杂形状的零件、栅网等。在大规模集成电路的制作中, 可用激光进行切片。⑤ 加工速度快。例如在宝石上打孔,加工时间仅为机械方法的1%。⑥激光加工不仅可以打孔和切割,也可进行焊 接、热处理等工作。⑦激光加工可控性好,易于实现加工自动化,但加工设备昂贵。
2.6 化学机械复合加工
化学加工是利用酸、碱和盐等化学溶液对金属或某些非金属工件表面产生化学反应, 腐蚀溶解而改变工件尺寸和形状的加工方法。如果仅进行局部有选择性的加工,则需对工件上的非加工表面用耐腐蚀性涂层覆盖保护起来,而仅露出需加工的部位。化学机械复合加工是指化学加工和机械加工的复合。化学机械复合加工是一种超精密的精整加工方法, 可有效地加工陶瓷、单晶蓝宝石和半导体晶片,化学机械复合加工可防止通常机械加工用硬磨料引
起的表面脆性裂纹和凹痕,避免磨粒的耕犁引起的隆起以及擦划引起的划痕,可获得光滑无缺陷的表面。
化学机械复合加工中常用的方法有机械化学抛光和化学机械抛光。机械化学抛光使用比工件材料软的磨料(如对Si3N4 陶瓷用Cr2O3 ,对Si 片用SiO2),靠运动磨粒本身的活性以及因磨粒与工件间的摩擦, 在微观接触区产生的高压、高温, 使很短的接触时间内出现固
相反应。随后这种反应生成物被运动的磨粒的机械摩擦作用去除,其去除量可小至0.1nm 级。化学机械抛光的工作原理是由溶液的腐蚀作用形成化学反应薄层,然后由磨粒的机械摩擦作用去除。
2.7水喷射加工
水喷射加工(Water Jet Machining)又称水射流加工或水刀加工,它是利用超高压水射流及混合于其中的磨料对材料进行切割、穿孔和表面材料去除等加工。其加工机理综 合了由超高速液流冲击产生的穿透割裂作用和由悬浮于液流中磨料的游离磨削作用。
水喷射加工具有如下特点: ①可加工各种金属和非金属材料;②切口平整,无毛边和飞刺,可用于去除阀体、孔缘、沟槽、螺纹、交叉孔上的毛刺;③切削时无火花,无热效应产生, 也不会引起工件材料组织变化, 适于易燃易爆物件加工;④加工洁净,不产生烟尘或有毒气体。
水刀加工基本可对各种材料进行处理及切割,非金属物质,如木材、纸类、塑料、纤维、海绵等;对切割金属或较硬的材质时,如各种石材、玻璃、陶瓷、砖等材质时,可以将80 目左右, 较细颗粒的石英砂料与水箭混流在一起, 以增强其切割能力,此种高速加砂的水刀几乎可以切割任何材质,为此在家具制造过程中,可以用来对原木的分割和实木成型材料的分切, 使得在用料方面取得更为精确。为节约用材提供很好的途径。
水刀加工在下料开片的切割加工中,比起与它拥有同样功能的“ 前辈”--电锯、电弧切割和激光切割来它有着许多优越性, 它无尘、无烟、没有火光,在作业时,切割面上的温度能保持不变(电弧、激光切割和钢锯则办不到这一点),它不会产生强光而灼伤人眼;更不用担心因高温而引发火灾,十分安全。然而它具有强大的“威力”,可以随心所欲地切割加工各种工件和不同口径的管材。对于机械制造加工,由于水刀的加入,也使得在消防防火方面得到更好的保证。
水刀自动化系统已应用于汽车内饰件加工甚至对空中客车A380 大型航空件、飞机外壳等, 高强度的碳素纤维的复杂零件表面上进行的切割、修边、开孔等加工任务。为制造领域开辟了新的天地,而且它可以在几乎完全自然的条件下加工, 因此对已完成的上道工序, 基本不会产生任何影响。更没有任何粉尘的危害,也不会有刀刃磨损的缺点。水刀还可以做水下作业,对沉船的切割、修理可以得到绝无仅有的效果。可能在未来对潜水艇的自救也能开辟一种新的可能。
水刀切割加工速度极高, 尺寸精度、加工的质量较高,不需要第二次加工。同样也可以不用担心水的加工影响材料的含水量,极高的速度几乎不能让水分留下。操作程序简单易行, 编辑程序可以随时调用, 有记忆功能。水刀的一般零配件使用寿命较长,机械可使用时间长, 相对成本较低。水刀切割时不会产生灰尘及有毒气体, 可提供一个较为清洁及安全的工作环境, 更重要的是,水刀是以水作为切割的刀具,不用像其它的切削刀具需要刃磨,它是一把永不磨损型的刀具, 因此水刀以其独特的优势,在未来的各种加工制造中, 一定会有更广泛的应用前景。
3.特种加工技术的展望
特种加工技术是先进制造技术的重要组成部分, 随着难加工材料、特殊结构零件需求的日益增加, 特种加工技术近十几年来得到了快速发展,在世界范围内越来越受到人们的重视, 发挥的作用也越来越大。特种加工采用不同的能量形式加工零件,相对于传统的切削加工技术, 特种加工普遍具有以柔克刚、加工力影响较小等优势。为进一步提高特种加工技术水平及扩大其应用范围,当前特种加工技术的发展趋势主要包括以下几点:1)采用自动化技术。2)趋向精密化研究。3)开发新工艺方法及复合工艺。4)污染问题是影响和限制有些特种加工应用、发展的严重障碍。5)进一步开拓特种加工技术。细微化是特种加工技术发展的重要趋势,由于当前的工业产品越来越追求小型化和微型化,微细结构和微细零件的加工需求不断增长,同时带动了各种制造技术向小型化、微细化发展。比如细微的电火花加工、微细电化学加工、微细的激光加工、微细离子束加工 等技术可以实现很小尺度内的加工, 这些技术在国内外都发展得很快而且得到越来越广泛的应用。
4.结束语
特种加工技术集成了机械、电子、信息、材料技术和计算机等技术,发展异常迅速。现代特种加工技术主要是伴着高硬度、高强度、高韧性、高脆性等难切削材料的额出现,以及制造精密细小 形状复杂和结构特殊的零件 的需要而产生的,具有其他常规加工技术无法比拟的优点,已成为航空航天、汽车、仪器、仪表、微型机械、轻工、模具等行业的支撑技术和关键技术 随着科学技术和现代工业的 发展,特种加工技术必将不断完善和迅速发展,反过来又必将推动科学技术和现代工业的发展,并发挥越来越重要的作用。
参考文献
[1] 孔庆华.特种加工[M].上海: 同济大学出版社, 2003.[2] 刘振辉, 杨嘉楷.特种加工[M].重庆: 重庆大学出版社, 2000.[3] 余承业.特种加工新技术[M].北京: 国防工业出版社, 2003.[4] 张广文, 曾庆良, 陈玉良.绿色切削加工技术的研究[J].轻工机械, 2004(2): 55-57.[5] 刘晋春, 赵家齐, 赵万生.特种加工[M].北京: 机械工业出版社, 2004.[6] 赵万生.特种加工技术[M].北京: 高等教育出版社, 2001.[7] 苏士达, 黄晨华, 蔡小梦, 等.超声波加工与放电加工的几种复合加工方式[J].轻工机械, 2004(3): 75-77.
第五篇:《精密与特种加工技术》课后答案
《精密与特种加工技术》课后答案
第一章
1.精密与特种加工技术在机械制造领域的作用与地位如何?
答:目前,精密和特种加工技术已经成为机械制造领域不可缺少的重要手段,在难切削材料、复杂型面、精细零件、低刚度零件、模具加工、快速原形制造以及大规模集成电路等领域发挥着越来越重要的作用,尤其在国防工业、尖端技术、微电子工业方面作用尤为明显。由于精密与特种加工技术的特点以及逐渐被广泛应用,已引起了机械制造领域内的许多变革,已经成为先进制造技术的重要组成部分,是在国际竞争中取得成功的关键技术。精密与特种加工技术水平是一个国家制造工业水平的重要标志之一。
2.精密与特种加工技术的逐渐广泛应用引起的机械制造领域的那些变革? 答:⑴ 提高了材料的可加工性。
⑵ 改变了零件的典型工艺路线。
⑶ 大大缩短新产品试制周期。
⑷ 对产品零件的结构设计产生很大的影响。
⑸ 对传统的结构工艺性好与坏的衡量标准产生重要影响。
3.特种加工工艺与常规加工工艺之间有何关系?应该改如何正确处理特种加工与常规加工之间的关系?
答:常规工艺是在切削、磨削、研磨等技术进步中形成和发展起来的行之有效的实用工艺,而且今后也始终是主流工艺。但是随着难加工的新材料、复杂表面和有特殊要求的零件越来越多,常规传统工艺必然难以适应。所以可以认为特种加工工艺是常规加工工艺的补充和发展,特种加工工艺可以在特定的条件下取代一部分常规加工工艺,但不可能取代和排斥主流的常规加工工艺。
4.特种加工对材料的可加工性以及产品的结构工艺性有何影响?举例说明.答:工件材料的可加工性不再与其硬度,强度,韧性,脆性,等有直接的关系,对于电火花,线切割等加工技术而言,淬火钢比未淬火钢更容易加工。
对传统的结构工艺性好与坏的衡量标准产生重要影响,以往普遍认为方孔,小孔,弯孔,窄缝等是工艺性差的典型,但对于电火花穿孔加工,电火花线切割加工来说,加工方孔和加工圆孔的难以程度是一样的,相反现在有时为了避免淬火产生开裂,变形等缺陷,故意把钻孔开槽,等工艺安排在淬火处理之后,使工艺路线安排更为灵活。
第二章
1.简述超精密加工的方法,难点和实现条件? 答:超微量去除技术是实现超精密加工的关键,其难度比常规的大尺寸去除加工技术大的多,因为:工具和工件表面微观的弹性变形和塑性变形是随即的。精度难以控制,工艺系统的刚度和热变形对加工精度有很大的影响,去除层越薄,被加工便面所受的切应力越大,材料就 1 越不易去除。
超精密加工按加工方法不同可以分为切削加工,磨料加工,特种加工和复合加工四类。
2.超精密加工对刀具材料有那些要求?
答:1)极高的硬度,极高的耐磨性,和极高的弹性模量,以保证刀具有很高的尺寸耐用度。2)刃口能磨得极其锋锐,即刃口半径ρ值很小,以实现超薄切削。3)刀刃无缺陷,切削是将刃形变制在被加工表面上,从而铸得超光滑的镜面。
4)与工件材料的抗粘结合性很好。化学亲和性很小,摩擦因数低,以得到极好的加工表面完整性。
3.单晶金刚石有哪些个主要晶面?
立方晶系的金刚石《单晶金刚石》主要有三个主要晶面,:即100.111.110晶面
4试述金刚石晶体的各向异性和不同晶面研磨时的好磨难磨方向。
答:金刚石具有很高的硬度。较高的导热系数,与有色金属间的摩擦因数低,开始氧化的温度较高等特性。这些都有利于超精密加工的进行,而且单晶金刚石可以研磨达到极锋利的刃口,没有其他材料可以磨到这样锋锐,并且能长期切削而磨损很小,因此金刚石是理想的不能替代的超精密切削的刀具材料。《110晶面的磨削率最高,最易磨损,100晶面的磨削次之.111的磨削率最低,最不易磨损。
5试述金刚石晶体的激光定向原理和方法?
答:金刚石晶体的激光定向是利用金刚石在不同结晶方向上,因此晶体的结构不同,而对激光反射形成不同的衍射图像进行的激光晶体方向的原理,由氦氖激光管产生的激光束通过屏幕上的小孔射到金刚石表面,若被激光照射的金刚石使被测晶面与激光束相垂直时,激光被反射的图形即可知道被激光照射的晶面为何种晶面。
6.金刚石车刀的刀头形式有哪几种?各自有何特点?
答:刀头形式:金刚石刀具刀头一般采用在主切削刃和副切削刃直接加工渡刃--修光刃的形式,修光刃有小圆弧修光刃,直线修光刃和圆弧修光刃之分。
7.典型的超精密机床有那些?
答:典型的超精密机床有~1.大型光学金刚石车床—LODTM。FG-OO超精密机床《德》。OAGM500大型超精密机床《英》4.AHNTO型高效专用车削,磨削超精密机床。
8.精密主轴不见有那几种形式?说明各自的优缺点。
答:空气静压轴承具有很高的回转精度,在高速转动时温升很小,基本达到恒温状态,因此造成的热变形误差很小,缺点:空气轴承刚度低,承受载荷很小,由于超精密加工的切削力很小,所以空气轴承可以满足相关要求。
液体静压轴承的油温随着转速的升高而升高,温度升高将造成热变形,影响主轴精度。静压回油时将空气带入油源。形成微小气泡悬浮在油中,不易排除,因而降低了液体静压轴承的刚度和动特性。优点:回转精度高《0.1微米》刚度较高,转动平稳,无震动的特点。
9.超精密机床有哪几种总体布局形式?各自有何特点?
答:1)双半球空气轴承主轴,优点:球面具有自动调心,因此可以提高前后轴承的同心度,回转精度,缺点:电动机的转子直接与主轴刚性连接。所以电动机转子的回转精度将对主轴的回转精度产生影响。
2)径向-推力空气静压轴承主轴:1.可以提高前后轴承的同心度,从而保证主轴的回转精度,即使轴承发生少量旋转,也不会因和轴承咬住而损坏主轴。缺点:这种主轴要求所用的多孔石墨组织均匀,各处透气率相同,同时制造难度大。
3)球形-径向空气轴承主轴:同上,自动调心,保证同心度,回转精度。缺点:主轴的刚度和承载能力不高,4)立式--空气轴承主轴,主要用于大型超精密车床,以保证加工系统具有较高的刚度且便于装夹,其圆弧面的径向轴承起自动调心,提高精度作用。
10.简述超精密机床导轨的结构形式,并说明各自的优缺点。
答:1)液体静压导轨,优点:刚度高,承载能力大,直线运动精度高,且无爬行,运动平稳。缺点:导轨运动速度低。
2)空气静压导轨和气浮导轨,优点:它可以达到很高的直线运动精度,运动平稳,无爬行,且摩擦因数接近于0,不发热。
11.简述摩擦驱动的工作原理。
答:摩擦驱动装置原理:俩个摩擦轮均由静压轴承支承,可以无摩擦运动,上摩擦轮由弹簧压板在驱动杆上,当弹簧压板压力足够时,摩擦轮和驱动杆之间无相对滑动,直流电动机驱动下摩擦轮,靠摩擦力带动驱动杆做非常平稳的直线运动。
12.精密加工对微进给装置的性能有何要求?
答:1)精微进给和粗进给分开,以提高微位移的精度,分辨率和稳定性。2)运动部分必须是低摩擦和高稳定度以实现很高的重复精度。3)末级传动元件必须有很高的刚度,即夹持金刚石刀具必须是高刚度的。4)内部连接必须可靠,尽量采用整体结构或刚性连接,否则微量进给机构,很难实现很高的重复精度。5)工艺性好,容易制造。6)具有好的动特性,即既有高的频响。7)能实现微进给的自动控制。
第三章
1.精密和超精密磨料加工分为哪俩大类?各自有何特点
答:固结磨料加工:具有表面精度保持性好,研磨效率高的优点。2.游离磨料加工:优点是抛光面加工变质层和表面粗糙度值都很小,缺点:不易保持平面度。
2.试述精密磨削机理。
答:微刃的微切削作用:应用较小的修整导程和休整深度对砂轮实施精细休整,其效果等同于砂轮磨粒的粒度变细。2.微刃的等高切削作用3.微刃的滑挤,摩擦,抛光作用
3.分析超硬磨料砂轮修正方法的机理和特点。
答:超硬磨料砂轮磨削主要指用金刚石砂轮和立方氮化硼砂轮加工硬质合金,陶瓷,剥离,半导体材料及石材等高硬度,高脆性材料。
特点:1)磨削能力强,耐磨性好,耐用度高,易于控制加工及实现自动化。2)削力小。,温度低,加工质量好,不烧伤,裂纹和组织变化。3)削率高。4)加工成本低
5.试述超精密磨削的磨削机理。
答:超精密磨削机理,理想磨削轨迹是从接触点开始至接触终点结束,但由于磨削系统存在一定的弹性,实际磨削轨迹与理想磨削轨迹发生偏离。
6.试述精密研磨与抛光的机理。
答:研磨加工机理:精密研磨属于游离磨粒切削加工是在刚性研具上注入磨料在一定压力下,通过研具与工件的相对运动,借助磨粒的微切削作用,除去微量的工件材料,以达到高级几何精度和优良表面粗糙度2.抛光是指用低速旋转的软质弹性或粘弹性材料抛光盘,或高速旋转的低弹性材料。抛光盘加抛光剂具有一定研磨性质的获得光滑表面的加工方法。
7.影响精密研磨抛光的主要工艺因素有哪些?
答:研磨方法:加工方式,运动,驱动方式。2.研具的材料,形状,表面状态。3.磨粒的种类,材质,形状,粒径4.加工液的水质,油质5加工参数的研磨速度,压力,时间,6.环境,温度,尘埃
8.试述各种非接触抛光的加工原理。
答:1.弹性发射加工:通过微粒子冲击工件,以原子级的加工单位去除工件材料,从而无损伤的技工表面2.浮动抛光:抛光液覆盖在整个抛光盘表面上,抛光盘及工件高速回转时,在二者之间的抛光液主动压流体状态,形成一层液膜,从而使工件在浮起状态下进行抛光3.动压浮离抛光:保持环中的工件浮离圆盘表面,由浮动间隙中的粉末颗粒对工件进行抛光4.非接触化学抛光:通过向抛光盘面供给化学抛光液,使其与被加工面做相对滑动,用抛光盘面来夹持被加工件面上产生的化学反应生成物。
第四章
1.电火花加工时,间隙液体介质的击穿机理?
答:通常所用的工作介质是煤油,水,皂化油水溶液及多种介质合成的专用工作液,用分光度计观察电火花加工过程中放电现象,显示放电时产生氧气,氢气泡的电离膨胀导致了间隙介质的击穿
2.电火花加工的基本要求?
答:材料的可加工性主要取决与材料的热学特性,如熔点,沸点,比热容,导热系数等。几乎与其力学性能《硬度,强度》无关。
3.电火花加工机床的自动进给系统与传统加工机床的自动进给系统有什么不同?为什么会引起这种不同?
答:电火花加工时,放电间隙很小,电蚀量放电间隙在瞬间都不是长值而在一定范围内随即变化,人工进给或恒速的“机动”进给很难满足要求,必须采用自动进给和调节装置。自动进给调节系统的作用是维持某一稳定的放电间隙。保证电火花加工正常而稳定的进行获得较好的加工效果。
4分析伺服参考电压对加工稳定性的影响。
答:脉冲电源又称为脉冲发生器,起作用是把220V或380V的50HZ工频交流电转换成一定形式的单向脉冲电流,供给电极放电间隙,产生火花所需要的能量来蚀除金属。
5.功率VDMOS开关式脉冲电源的特点。
答:VDMOS技术的发展,是高频大功率开关技术日趋成熟,为提高大功率MOS管功率晶体管脉冲电源的开关冲击性能,采用多管分组的方法来提高输出功率。
6.极间能量分配分析。
答:电源向放电通道释放的能量分配在阳极,阴极和放电通道上,能量分配系数的大小主要取决与被加工材料的特性,通过前面分析可知,电极主要通过高速运动粒子的轰击,光辐射,热辐射,三种形式得到能量,在一定的条件下,光辐射与热辐射起决定性的作用,电极表面局部得到高能,就能发生了融化,气化的相变过程,电极表面出现了微观相变区。
7.电火花加工时,油杯的作用? 答:工作液循环过滤
第五章
1.电火花线切割加工的工艺和机理与电火花成形加工有那些相同点和不同点?
答:电火花线切割加工与电火花成形加工的基本原理一样都是基于电极间脉冲放电时电火花腐蚀原理,实现零部件的加工,所不同的是电火花切割加工不需要制造复杂的成形电极,而是利用移动的金属丝《钢丝,铜丝》作为工具电极,工件接照预定的轨迹运动,切割出所需的各种尺寸和形状。《基本原理》
1)需要制造复杂的成形电极。2)方便快捷的加工薄壁,宅槽,异型孔等复杂结构零件。3)一般采用精准规一次加工成形,在加工过程中大都不需要转换加工规准。4)由于采用移动的电极丝进行加工,单位长度损耗较小,从而对加工精度影响较小。5)工作液多采用水基乳化液,很少使用煤油,不易引燃起火。容易实现安全,无人操作。6)没有稳定的拉弧放 5 电状态。7)脉冲电源的加工电流较小,脉冲宽度较窄,属于中,精加工范畴。采用正极性加工方式。
2.线切割加工的生产率和脉冲电源的功率。输出电流大小等有关。用什么方法,标准来衡量和判断脉冲电源加工性能的好坏,《绝对性能和相对性能》?
答:受电极丝直径的限制《一般在0.08-0.025mm》脉冲电源的脉冲峰值电流不能太大,与此相反,由于工件具有一定厚度,欲维持稳定加工,放电峰值电流,又不能太小,否则加工将不稳定或者根本不能加工,放电峰值,电流一般在5-25A范围,为获得较高的加工精度系数小的表面粗糙度值,应控制单个脉冲能量,尽量减小脉冲宽度,一般在0.5-64ps,所以,总采用正极性加工方式。
3.电火花线切割加工的主要工艺指标及其影响因素。
答:1.加工对象:使用与各种形式的冲裁模及挤压模,粉末合金模,塑压模,等带锥度的模具2.高硬度材料零件3.特殊形状零件4.加工电火花形成加工用的铜,钢钨,银钨合金等材料电极。
4.试论述线切割加工的主要工艺指标及其影响因素。
答:切割速度,加工表面粗糙度,加工精度,电参数,对线切割加工工艺指标的影响最为主要,放电脉冲宽度增加,脉冲间隔减小脉冲电压幅值增加《电压增加》峰值电流增大《功效管增多》都会提高切割加工速度。但加工表面粗糙度和精度则会下降,反之则可改善加工精度和粗糙度。
第六章
1.电化学加工从加工原理上共分为多少类?从原理,机理上来分析,电化学加工有无可能发展成为原子级的加工技术?
答:利用阳极金属的溶解作用去除材料2.利用阴极金属的沉积作用进行镀覆加工3.电化学加工与其他加工方法结合完成的电化学复合加工
由于加工精度一般不如电火花加工,一般不舍和与单间和小批量生产。不能发展成为原子级加工技术。
2.点解加工中的阳极和阴极与蓄电池中的正,负极有何区别?二者的电流方向相同么? 答:以工件为阳极《接直流电源正极》,工具为阴极《接直流电源负极》
3.请分析阳极钝化现象在点解加工中及在电化学机械加工中的优缺点,电化学机械加工与纯电化学加工及纯机械加工各有什么优缺点?
答:在点解加工中,钝化膜缺点是阻止阳极溶解,优点是当侧面间隙大到一定程度后就基本保持不变,孔壁的锥度小,成形精度高。复合加工同上。
电解加工的特点:1)能以简单的直线进给运动一次加工出复杂的型面和型腔。2)可以加工 6 高硬度,高强度和高韧性等难以切削加工的金属材料3)加工过程中无切削力和切削热,工件不产生内应力和变形。适合加工易变形和薄壁零件。4)加工后的两件无毛刺和残余应力5)与其他加工方法相比生产率较高6)加工过程中工具电极不损耗。
缺点:1)加工精度不如电火花与超声波加工2)加工复杂型腔时,费用较高3)占地面积大,附属设备多,投资大。4)电解溶液的处理和回收有难度,有污染。
电化学机械复合加工优点:1)加工范围广,生产率高2)加工精度和表面质量优良3)机械磨具磨损小4)控制条件好,通过控制点参量实现自动控制5)成本低6)对机床精度要求低,腐蚀性小。
缺点:电化学机械复合加工需要增加一套电化学加工系统。如直流电源,循环装置等,另外,机床采取一定的防腐防锈措施。
第七章
1.试述激光加工中材料蚀除的微观物理过程。
答:1.材料对激光的吸收和能量转换。首先产生的是某些质点的过量能量然后碰撞产生热。2.材料的加热熔化,汽化,吸收激光能后,并转化为热能后,其温度升高,材料先气化然后才熔化蚀除。3.蚀除产物的抛出,由于瞬时急剧熔化,压力迅速增加,并产生爆炸冲击波,使金属蚀除物抛出。
2.激光与普通光相比有何特点?为什么激光可直接用于材料的蚀除加工,而普通光则不能? 答:激光除具有普通光的共性,还具有单色性好,相干性好,和能量密度高等特性。拥有其他光源的光所难以达到的极高的单色性,光线的发散度小,相干性是区别激光和普通光源的重要特性
3.简述影响激光打孔质量的因数,并举例说明采用什么措施可以提高激光打孔的工艺质量? 答:1)光打孔工艺规律:若激光照射能量大,照射时间长,工件表面所获得的能量多,则所加工的孔大而深。但时间过长,不仅损耗大,加工面积变大,使得能量密度降低,精度降低。
2)聚焦与发散角:发散角小的激光束,经短焦距聚焦后可以获得较高的功率,穿透力大,不仅深而且锥度小,要设法减小激光的发散角,并尽可能采用短焦距加工。但短焦距不适合加工深孔。
3)焦点的位置:当焦点的位置何地时,通过工件表面的光斑面积很大,若提高焦点位置,由于光斑直径变小,能量密度增加,孔的深度得到加深。
4)光斑内能量的分布:激光束经聚焦后光斑内各部分的光强是不同的,若光强以焦点中心对称分布。称为基模光束。这时光强最大,打出的孔是圆形的。
5)激光照射次数:激光束照射一次,加工深度大约为孔径的五倍左右,但如多次加工后,加工可以大大增加《比例接近20:1》但多次加工后加工量将逐渐减小。
6)工件材料。工件的热学物理常数对加工有有影响。如熔点沸点,导热系数高的难以加工,另工件表面粗糙度值越小,其吸收率就越低,加工出的深度状态明显。
4.激光切割,激光焊接和激光处理的原理有何不同?
答:激光切割:是利用经焦距的高功率激光照射工件,在超过阀值高功率的前提下,由此引起材料熔化和汽化,形成孔洞,光束移动仅可行切缝。
焊接过程属于传导焊接。即激光辐照加工工件表面,产生的热量通过热传导向内部传递,通过控制在工件上形成一定深度的熔池,而表面又无明显的气化。
激光相变硬化的原理:激光相变硬化是利用激光束作热源照射待强化的工件表面,使工件表层材料产生相变或熔化,随着激光束离开工件表面,工件表面的热量迅速向内部传递,形成极高冷却速度,使表面硬化,从而提高工件表面的耐磨性,腐蚀性,疲劳强度。
5.常用的激光器有那些?各有何特点?并说明其各自的应用范围。
答:红宝石激光器:机械强度大,能够承受高功率密度,寿命长,大能量单模输出。主要用于激光打孔。
掺钕钇铝石榴晶体激光器:量子效率高,辐射截面大,良好的热稳定性,热导率高,热膨胀系数小,用于打孔,焊接,热处理,打标记,书写,动平衡。
钕玻璃激光器:高功率激光,制造的零件工作物质形状,尺寸有较大的自由度。氦-氖激光器:频率稳定性好,寿命长,价格低。适用于全息照相,准直测量和激光干涉测量。
第八章
1.超声波加工设备的进给系统有何特点?超声波加工时,工具系统的振动有何特点? 答:超声波的机械振动经变幅杆放大后传递给工具,使磨料和工作液以一定的能量冲击工件,加工出需要的尺寸和形状。
超声波加工时并不是整个变幅杆和工具都在作上下高频振动和低频或工频振动的概念完全不一样。超声波在金属棒内主要以纵波形式传播,引起杆内各点沿波的前进方向,一般接正弦规律在原地作往复振动,并以声速传导到工具端面,使工具端面作超声波振动
2为什么超声波加工技术特别适合于加工硬脆材料?
答:空化作用:是指当工具端面以很大的加速度离开工具表面时,加工间隙内形成负压和局部真空,在工作液体内形成很多微空腔。促使工作液钻入被加工工作表面材料的微裂纹处,当工具端面以很大加速度接近工件表面时,空腔闭合引起极强冲击波,加速了磨料对表面的破碎作用。
综上所述:超声波加工是磨料在超声振动作用下的机械撞击和抛磨作用,其中磨粒撞击作用是主要的,由此不难理解,超声波加工特别适合加工硬脆材料。
3试举例说明超声波在工业,农业或其他行业中的应用情况。
答:1.超声波加工型腔,型孔,具有精度高表面质量好的优点.2.切割脆硬的半导体材料3.超声波就清洗,精密零件中的细小孔,窄缝夹缝中的脏物。4超声波焊接,电子电器元件和集成电路的接引线,包装线。5.超声波镀锡,挂银及涂覆熔化的金属薄层。
第九章
1.何谓电子束加工?试说明电子束加工的分类,特点及应用范围。
答:电子束加工是在真空条件下,利用聚焦后能量密度极高的电子束,以极高的速度冲击到工件表面的极小面积上,在极短的时间内,其能量的大部分转变为热能,使被冲击部分的工件材料达到几千摄氏度以上的高温,从而引起材料的局部熔化和气化,从而加工目的。电子束加工分为电子束热加工和电子束非热加工,特点:1.加工面积小2.电子束能量密度高3.能量密度高,而且能量利用率可达百分之九十以上,因而生产率高4.可以通过磁场或电场对电子束的强度位置,聚焦进行控制,从而实现自动化5.由于在真空中进行,因而污染小,加工表面不氧化6.电子束加工因需要一套专用设备,所以费用昂贵。
应用:1.电子束打孔,在航天,电子,化纤及制革上应用2.电子束可焊接的材料范围广,有利于焊接熔点更高的金属和活泼金属。3.电子束热处理4.电子束曝光。
2.试述离子束加工的基本原理和应用范围,并比较它与电子束技工的优缺点。
答:离子束加工是利用离子束对材料进行成形或表面改进的方法。在真空条件下,将由离子源产生的离子。经过加速,投射到材料表面,产生溅射和注入效应。它是靠微观的机械撞击能量束加工的。
主要应用在:利用离子撞击和溅射效应的离子束刻蚀,离子溅射镀膜和离子镀,以及离子注入效应的离子注入。相比较电子束加工,便宜。
第十章
1.试述超高压水射流切割技术的原理和特点。
答:超高压水射流本身具有较高的刚性,在于工件发生碰撞时会产生极高的冲击动压和涡流。从微观上看:相对于射流平均速度存在着超高速区与低速区。表面虽为圆柱形,而内部实际存在着刚性高和刚性低的部分。刚性高的宏观上起到快速碶劈作用,而低刚度部分碶吸屑,排屑作用,俩者结合,正好像锯刀一样,切割材料。
超高压水射流切割具有切缝窄,切口平整,无热变形,无边缘毛刺,切割速度快,效率高,加工成本低,无尘,无味,无毒,无火花,振动小,噪声低等特点。尤其适合于恶劣的工作环境和防燥要求的危险环境工作。
2.试述纯水高压水切割与磨料高压水切割之间的异同及应用。
答:纯水切割喷嘴用于切割密度较小,硬度较低的非金属软质材料,喷嘴内孔的直径范围为0.08-0.5mm,切割喷嘴的直径范围为0.5-1.65mm。
3.试述往复式增压器的工作原理。
答:增压器交替往复运动,不断输出超高压水,直至达到切割工艺要求的水压,即可开始加工。
4.试述影响超高压水射流切割速度,切割精度的因素。
答:影响超高压水射流切割深度的工艺因数较多,包括射流的工作介质,喷射的压力,作用面积,切割时间,工件的材质,以及喷嘴离工件表面的距离等。
切割速度与被加工的材料性质有关,并与射流的功率或压力成正比,与切割速度和工件厚度成反比
第十一章
1.在等离子体加工过程中,为什么可以获得极高的能量密度?
答:等离子体具有极高的能量密度,其原有有以下三个方面:1.机械压缩效应,电弧在被迫通过喷嘴喷出时,通道对电弧产生机械压缩作用2.热收缩效应。喷嘴的内部通入冷却水。喷嘴内壁受到冷却,温度降低,靠近内壁的气体电离度急剧下降,使电流的有效截面积缩小,电流密度大大增加3.磁收缩效应。由于电弧电流周围磁场的作用,迫使电弧产生强烈的收缩作用,使电弧变得更细,电弧区中心的电流密度更大,使电弧更稳定。
以上三种压缩效应的综合作用下,等离子体的能量高度集中,电流密度,等离子体电弧的温度都很高。
2.在挤压洐磨技术有那些特点?举例说明其实际应用情况。
答:挤压洐磨的工艺特点:1.使用范围广,几乎能加工所有的金属材料,同时也能加工陶瓷,硬塑料等2.加工效果好3.加工效率高4.加工精度高
应用与边缘光整,倒圆角,去毛刺,抛光和少量的表面材料去除,3.说明磨料喷射加工的过程中,影响加工质量的因数主要有那些?
答:磨料喷射加工是利用磨料与压缩气体混合后经过喷嘴形成的高速束流,通过对工件的高速冲击和抛磨作用来去除工件上多余的材料,达到加工目的。
加工的设备主要包括1.储藏,混合和载运磨料装置2.工作室3.粉尘集收器4.干燥气体供应装置。
4在磁性磨料研磨加工过程中,影响加工质量的因素主要有哪些? 答:1.强度的影响2.加工间隙的影响3.磁极形状的影响。
5.光刻加工技术的基本过程通常包括哪些步骤?如何提高其加工精度? 答:1.涂胶2。曝光3.显影4.腐蚀5.去胶
6如何理解纳米级加工的物理实质?
答:欲得到1nm的加工精度,加工的最小单位必然在亚微米级。由于原子间的距离为0.1-0.3nm,纳米级加工实际上以及到了加工精度的极限。