第一篇:超精密加工与超高速加工技术
超精密加工与超高速加工技术
一、技术概述
超高速加工技术是指采用超硬材料的刃具,通过极大地提高切削速度和进给速度来提高材料切除率、加工精度和加工质量的现代加工技术。
超高速加工的切削速度范围因不同的工件材料、不同的切削方式而异。目前,一般认为,超高速切削各种材料的切速范围为:铝合金已超过1600m/min,铸铁为1500m/min,超耐热镍合金达300m/min,钛合金达150-1000m/min,纤维增强塑料为2000-9000m/min。各种切削工艺的切速范围为:车削700-7000m/min,铣削300-6000m/min,钻削200-1100m/min,磨削250m/s以上等等。
超高速加工技术主要包括:超高速切削与磨削机理研究,超高速主轴单元制造技术,超高速进给单元制造技术,超高速加工用刀具与磨具制造技术,超高速加工在线自动检测与控制技术等。
超精密加工当前是指被加工零件的尺寸精度高于0.1μ
m,表面粗糙度Ra小于0.025μ m,以及所用机床定位精度的分辨率和重复性高于0.01μ
m的加工技术,亦称之为亚微米级加工技术,且正在向纳米级加工技术发展。
超精密加工技术主要包括:超精密加工的机理研究,超精密加工的设备制造技术研究,超精密加工工具及刃磨技术研究,超精密测量技术和误差补偿技术研究,超精密加工工作环境条件研究。
二、现状及国内外发展趋势
1.超高速加工
工业发达国家对超高速加工的研究起步早,水平高。在此项技术中,处于领先地位的国家主要有德国、日本、美国、意大利等。
在超高速加工技术中,超硬材料工具是实现超高速加工的前提和先决条件,超高速切削磨削技术是现代超高速加工的工艺方法,而高速数控机床和加工中心则是实现超高速加工的关键设备。目前,刀具材料已从碳素钢和合金工具钢,经高速钢、硬质合金钢、陶瓷材料,发展到人造金刚石及聚晶金刚石(PCD)、立方氮化硼及聚晶立方氮化硼(CBN)。切削速度亦随着刀具材料创新而从以前的12m/min提高到1200m/min以上。砂轮材料过去主要是采用刚玉系、碳化硅系等,美国G.E公司50年代首先在金刚石人工合成方面取得成功,60年代又首先研制成功CBN。90年代陶瓷或树脂结合剂CBN砂轮、金刚石砂轮线速度可达125m/s,有的可达150m/s,而单层电镀CBN砂轮可达250m/s。因此有人认为,随着新刀具(磨具)材料的不断发展,每隔十年切削速度要提高一倍,亚音速乃至超声速加工的出现不会太遥远了。
在超高速切削技术方面,1976年美国的Vought公司研制了一台超高速铣床,最高转速达到了20000rpm。特别引人注目的是,联邦德国Darmstadt工业大学生产工程与机床研究所(PTW)从1978年开始系统地进行超高速切削机理研究,对各种金属和非金属材料进行高速切削试验,联邦德国组织了几十家企业并提供了2000多万马克支持该项研究工作,自八十年代中后期以来,商品化的超高速切削机床不断出现,超高速机床从单一的超高速铣床发展成为超高速车铣床、钻铣床乃至各种高速加工中心等。瑞士、英国、日本也相继推出自己的超高速机床。日本日立精机的HG400III型加工中心主轴最高转速达36000-40000r/min,工作台快速移动速度为36~40m/min。采用直线电机的美国Ingersoll公司的HVM800型高速加工中心进给移动速度为60m/min。
在高速和超高速磨削技术方面,人们开发了高速、超高速磨削、深切缓进给磨削、深切快进给磨削(即HEDG)、多片砂轮和多砂轮架磨削等许多高速高效率磨削,这些高速高效率磨削技术在近20年来得到长足的发展及应用。德国Guehring Automation公司1983年制造出了当时世界第一台最具威力的60kw强力CBN砂轮磨床,Vs达到140-160m/s。德国阿享工业大学、Bremen大学在高效深磨的研究方面取得了世界公认的高水平成果,并积极在铝合金、钛合金、因康镍合金等难加工材料方面进行高效深磨的研究。德国Bosch公司应用CBN砂轮高速磨削加工齿轮齿形,采用电镀CBN砂轮超高速磨削代替原须经滚齿及剃齿加工的工艺,加工16MnCr5材料的齿轮齿形,Vs=155m/s,其Q达到811mm3/mm.s,德国Kapp公司应用高速深磨加工泵类零件深槽,工件材料为100Cr6轴承钢,采用电镀CBN砂轮,Vs达到300m/s,其Q`=140mm3/mm.s,磨削加工中,可将淬火后的叶片泵转子10个一次装夹,一次磨出转子槽,磨削时工件进给速度为1.2m/min,平均每个转子加工工时只需10秒钟,槽宽精度可保证在2μ m,一个砂轮可加工1300个工件。目前日本工业实用磨削速度已达200m/s,美国Conneticut大学磨削研究中心,1996年其无心外圆高速磨床上,最高砂轮磨削速度达250m/s。
近年来,我国在高速超高速加工的各关键领域如大功率高速主轴单元、高加减速直线进给电机、陶瓷滚动轴承等方面也进行了较多的研究,但总体水平同国外尚有较大差距,必须急起直追。
2.超精密加工
超精密加工技术在国际上处于领先地位的国家有美国、英国和日本。这些国家的超精密加工技术不仅总体成套水平高,而且商品化的程度也非常高。
美国是开展超精密加工技术研究最早的国家,也是迄今处于世界领先地位的国家。早在50年代末,由于航天等尖端技术发展的需要,美国首先发展了金刚石刀具的超精密切削技术,称为“SPDT技术”(Single Point Diamond Turning)或“微英寸技术”(1微英寸=0.025μ m),并发展了相应的空气轴承主轴的超精密机床。用于加工激光核聚变反射镜、战术导弹及载人飞船用球面非球面大型零件等等。如美国LLL实验室和Y-12工厂在美国能源部支持下,于1983年7月研制成功大型超精密金刚石车床DTM-3型,该机床可加工最大零件?2100mm、重量4500kg的激光核聚变用的各种金属反射镜、红外装置用零件、大型天体望远镜(包括X光天体望远镜)等。该机床的加工精度可达到形状误差为28nm(半径),圆度和平面度为12.5nm,加工表面粗糙度为Ra4.2nm。该机床与该实验室1984年研制的LODTM大型超精密车床一起仍是现在世界上公认的技术水平最高、精度最高的大型金刚石超精密车床。
在超精密加工技术领域,英国克兰菲尔德技术学院所属的克兰菲尔德精密工程研究所(简称CUPE)享有较高声誉,它是当今世界上精密工程的研究中心之一,是英国超精密加工技术水平的独特代表。如CUPE生产的Nanocentre(纳米加工中心)既可进行超精密车削,又带有磨头,也可进行超精密磨削,加工工件的形状精度可达0.1μ m,表面粗糙度Ra<10nm。
日本对超精密加工技术的研究相对于美、英来说起步较晚,但是当今世界上超精密加工技术发展最快的国家。日本的研究重点不同于美国,前者是以民品应用为主要对象,后者则是以发展国防尖端技术为主要目标。所以日本在用于声、光、图象、办公设备中的小型、超小型电子和光学零件的超精密加工技术方面,是更加先进和具有优势的,甚至超过了美国。
我国的超精密加工技术在70年代末期有了长足进步,80年代中期出现了具有世界水平的超精密机床和部件。北京机床研究所是国内进行超精密加工技术研究的主要单位之一,研制出了多种不同类型的超精密机床、部件和相关的高精度测试仪器等,如精度达0.025μ m的精密轴承、JCS-027超精密车床、JCS-031超精密铣床、JCS-035超精密车床、超精密车床数控系统、复印机感光鼓加工机床、红外大功率激光反射镜、超精密振动-位移测微仪等,达到了国内领先、国际先进水平。航空航天工业部三零三所在超精密主轴、花岗岩坐标测量机等方面进行了深入研究及产品生产。哈尔滨工业大学在金刚石超精密切削、金刚石刀具晶体定向和刃磨、金刚石微粉砂轮电解在线修整技术等方面进行了卓有成效的研究。清华大学在集成电路超精密加工设备、磁盘加工及检测设备、微位移工作台、超精密砂带磨削和研抛、金刚石微粉砂轮超精密磨削、非圆截面超精密切削等方面进行了深入研究,并有相应产品问世。此外中科院长春光学精密机械研究所、华中理工大学、沈阳第一机床厂、成都工具研究所、国防科技大学等都进行了这一领域的研究,成绩显著。但总的来说,我国在超精密加工的效率、精度可靠性,特别是规格(大尺寸)和技术配套性方面与国外比,与生产实际要求比,还有相当大的差距。
超精密加工技术发展趋势是:向更高精度、更高效率方向发展;向大型化、微型化方向发展;向加工检测一体化方向发展;机床向多功能模块化方向发展;不断探讨适合于超精密加工的新原理、新方法、新材料。21世纪初十年将是超精密加工技术达到和完成纳米加工技术的关键十年。
三、“十五”目标及主要研究内容
1.目标
超高速加工到2005年基本实现工业应用,主轴最高转速达15000r/min,进给速度达40-60m/min,砂轮磨削速度达100-150m/s;超精密加工基本实现亚微米级加工,加强纳米级加工技术应用研究,达到国际九十年代初期水平。
2.主要研究内容
(1)超高速切削、磨削机理研究。对超高速切削和磨削加工过程、各种切削磨削现象、各种被加工材料和各种刀具磨具材料的超高速切削磨削性能以及超高速切削磨削的工艺参数优化等进行系统研究。
(2)超高速主轴单元制造技术研究。主轴材料、结构、轴承的研究与开发;主轴系统动态特性及热态性研究;柔性主轴及其轴承的弹性支承技术研究;主轴系统的润滑与冷却技术研究;主轴的多目标优化设计技术、虚拟设计技术研究;主轴换刀技术研究。
(3)超高速进给单元制造技术研究。高速位置芯片环的研制;精密交流伺服系统及电机的研究;系统惯量与伺服电机参数匹配关系的研究;机械传动链静、动刚度研究;加减速控制技术研究;精密滚珠丝杠副及大导程丝杠副的研制等。
(4)超高速加工用刀具磨具及材料研究。研究开发各种超高速加工(包括难加工材料)用刀具磨具材料及制备技术,使刀具的切削速度达到国外工业发达国家90年代末的水平,磨具的磨削速度达到150m/s以上。
(5)超高速加工测试技术研究。对超高速加工机床主轴单元、进给单元系统和机床支承及辅助单元系统等功能部位和驱动控制系统的监控技术,对超高速加工用刀具磨具的磨损和破损、磨具的修整等状态以及超高速加工过程中工件加工精度、加工表面质量等在线监控技术进行研究。
(6)超精密加工的加工机理研究。“进化加工”及“超越性加工”机理研究;微观表面完整性研究;在超精密范畴内的对各种材料(包括被加工材料和刀具磨具材料)的加工过程、现象、性能以及工艺参数进行提示性研究。
(7)超精密加工设备制造技术研究。纳米级超精密车床工程化研究;超精密磨床研究;关键基础件,如轴系、导轨副、数控伺服系统、微位移装置等研究;超精密机床总成制造技术研究。
(8)超精密加工刀具、磨具及刃磨技术研究。金刚石刀具及刃磨技术、金刚石微粉砂轮及其修整技术研究。
(9)精密测量技术及误差补偿技术研究。纳米级基准与传递系统建立;纳米级测量仪器研究;空间误差补偿技术研究;测量集成技术研究。
(10)超精密加工工作环境条件研究。超精密测量、控温系统、消振技术研究;超精密净化设备,新型特种排屑装置及相关技术的研究
第二篇:精密和超精密加工技术课程教学设计
《精密和超精密加工技术》课程教学设计
(一)基本描述
课程名称:精密和超精密加工技术
英文译名:Precision and Ultraprecision Machining Technology 课程学时:30 讲课:28
实验:2
上机:0 适用专业:机械设计制造及其自动化 开课教研室:机械制造及其自动化系 开课时间:第七学期
先修课程:机械制造技术基础、测试技术与仪器、机械制造装备设计 主要教材及参考书:
1.袁哲俊、王先逵主编《精密和超精密加工技术》,机械工业出版社,1999年
2.王先逵编《精密加工技术实用手册》,机械工业出版社,2001年 3.刘贺云、柳世传编《精密加工技术》,华中理工大学出版社,1991年
(二)课程的性质、研究对象及任务
精密和超精密加工技术是机械制造学科的专业课。本课程研究对象是精密和超精密加工技术的基本理论、加工工艺、加工设备、测量技术及环境技术等。本课程的主要任务是培养学生:
1、建立起精密和超精密加工技术的基本概念,了解精密和超精密加工技术的应用范围。
2、掌握精密和超精密加工技术的基本理论和基本技术,具有选择和应用精密和超精密加工工艺和设备的基本能力。
3、了解精密和超精密加工技术的最新发展趋势,新理论和新技术。培养学生在相关技术领域从事精密和超精密加工工作和研究的能力。
(三)教材的选择与分析
精密和超精密加工技术是一门正在不断发展的新技术,国内外有关的教材和书籍不是很多,一些专著也不完全适合作教材。目前国内可供选择的教材有:袁哲俊、王先逵主编《精密和超精密加工技术》,机械工业出版社;王先逵编《精密加工技术实用手册》,机械工业出版社;刘贺云、柳世传编《精密加工技术》,华中理工大学出版社。
1.袁哲俊、王先逵主编《精密和超精密加工技术》一书,是目前国内现有精密和超精密加工技术教材中比较权威和使用广泛的教材,该书比较系统地总结了国内外精密和超精密加工技术,涉及的面较广,其内容有相当的深度和权威性,被许多其它学校使用,并多次再版。在目前情况下是一本比较合适的教材,但不足之处是编写的时间较早,未能反映精密和超精密加工技术最新的发展情况,有些内容不够系统,需要在讲课时补充部分内容。根据现在的情况和我校的特点,我们选择该书作为教材。
2.王先逵编《精密加工技术实用手册》涉及内容较多,适合作为参考工具书使用,由于我们讲课学时所限,不适合作为教材,可以作为学生的课外参考书。
3.刘贺云、柳世传编《精密加工技术》教材于1991年由华中理工大学出版社出版,出版时间较早,不能反映精密和超精密加工技术的新发展,内容基本上被袁哲俊、王先逵主编《精密和超精密加工技术》一书所包括,可以作为学生的课外参考书使用。
(四)本课程各章的主要内容与基本要求、重点与难点、学时分配
第1章 精密和超精密加工技术及其发展展望(2学时)
精密和超精密加工技术的重要性、现状及技术发展展望。基本要求:
搞清楚本课程学习的目的、主要内容和方法;了解精密和超精密加工技术的基本概念、应用范围和重要意义、精密和超精密加工技术的现状及发展趋势。
重点与难点: 精密和超精密加工技术的基本概念及研究、应用范围。第2章 超精密切削与金刚石刀具(4学时)
切削参数选择,金刚石刀具的性能、设计与制造,切削变形和加工质量的影响因素。
基本要求:
了解使用金刚石刀具进行超精密切削的基本规律、超精密切削对刀具的要求及金刚石刀具的性能、设计与制造,单晶金刚石刀具的磨损破损机理。
重点: 1)使用金刚石刀具进行超精密切削的特点和基本规律。2)超精密切削的机理和对金刚石刀具性能的要求。3)金刚石刀具的设计制造。4)金刚石刀具的磨损破损机理。难点: 1)切削参数对加工表面质量的影响规律。2)金刚石的晶体结构及刀具晶向的选择。第3章 精密和超精密磨削(4学时)
精密和超精密磨削概述,精密磨削,超硬砂轮磨削,超精密磨削,精密和超精密砂带磨削简介。
基本要求:
1)了解和掌握精密和超精密磨削的基本原理。
2)掌握超硬磨料砂轮磨削的特点、砂轮修整方法和磨削工艺。
3)掌握超精密磨削的机理及对工艺系统的要求。4)了解砂带磨削的特点和基本原理。重点: 1)精密和超精密磨削的机理及工艺特点。2)超硬磨料砂轮磨削的特点及砂轮修整方法。3)超精密磨削对工艺系统的要求。难点: 1)精密和超精密磨削的机理。2)超硬磨料砂轮修整方法。第4章 精密研磨和抛光(4学时)
研磨抛光机理、工艺因素,采用新原理的研抛工艺方法。基本要求:
1)了解和掌握研磨和抛光加工的机理及工艺特点。2)了解影响研磨和抛光加工的主要工艺因素。
3)了解各种新原理的研磨抛光加工方法的机理、工艺特点及应用范围等。
重点:
1)研磨和抛光加工的机理及工艺特点。2)各种新原理的研磨抛光加工方法 难点: 1)研磨和抛光加工的机理。
2)新原理的研磨抛光加工方法的机理。第5章 精密和超精密加工的机床设备(4学时)
精密和超精密加工机床发展概述,典型超精密机床简介,超精密机床的主要部件及关键技术。
基本要求:
1)超精密加工对机床的技术要求、超精密机床的基本概念。2)了解超精密机床的技术特点。
3)掌握超精密机床主轴、床身和导轨、进給驱动系统等的工作原理和性能特点。
重点:
1)超精密机床的技术要求和结构特点。
2)超精密机床主轴、床身和导轨、进給驱动系统等的工作原理和性能特点。
难点:
不同工作原理的机床主要部件的性能特点及选用。第6章 精密加工中的测量技术(2学时)
精密加工中长度、直线度、圆度的测量方法,激光测量技术。基本要求:
1)了解长度、直线度、圆度的测量方法。2)了解和掌握激光测量原理和特点。重点:
1)长度、直线度、圆度的测量原理。2)激光干涉测量原理。难点:
激光干涉测量原理。
第7章 在线检测与误差补偿技术(2学时)在线检测与误差补偿方法,微位移技术。基本要求:
1)了解和掌握在线检测与误差补偿方法的原理和特点。2)了解和掌握微位移技术的原理和应用特点。重点:
1)在线检测与误差补偿方法的原理。2)各种微位移装置的工作原理 难点:
在线检测与误差补偿方法的原理。
第8章 精密和超精密加工的环境技术(2学时)
空气环境和热环境,振动环境,噪声和其它环境,精密和超精密加工的环境要求及技术设施。
基本要求:
1)了解和掌握精密和超精密加工对环境的要求。2)了解和掌握振动、温度等环境对超精密加工的影响。重点:
1)精密和超精密加工对环境的要求及措施。2)振动、温度等环境对超精密加工的影响。难点:
振动、温度等环境对超精密加工的影响。
第9章 典型零件的精密和超精密加工技术(2学时)
典型精密件的加工工艺,半导体基片、光学非球面等器件加工技术。基本要求:
了解和掌握半导体基片、光学非球面等典型器件加工技术。重点:
精密和超精密加工技术在半导体基片、光学非球面等重要器件加工中的应用。
难点:
超精密加工新工艺的综合应用。
第10章 微细加工和纳米加工技术简介(2学时)
微细加工技术的概念、加工机理及方法简介,纳米和纳米加工技术 5 概述,微机械及微机电系统简介。
基本要求:
1)了解和掌握微细加工技术的概念、加工机理及方法 2)了解纳米加工技术和微机械及微机电系统的基本概念。重点:
1)微细加工技术的概念及加工机理。
2)纳米加工技术和微机械及微机电系统的基本概念。难点:
微细加工的机理。
(五)教学环节
1.课堂讲授(28学时)任课教师必须做到下面几点:
1)认真备课,做好教案,熟练掌握课程的基本内容。
2)采用启发式、讨论式的教学方法,以学生为中心,活跃课堂气氛,调动学生学习的主动性、积极性,培养学生逻辑思维能力、分析问题能力和解决问题能力。
3)讲课思路要清晰,包括:问题的提出、解决问题的条件、建立模型、分析解决问题的思路、解题和总结等;
概念要准确,重点要突出,理论联系实际,要适时反映本学科发展的前沿理论和技术,特别是将本单位的科研成果引入课堂。
4)教学手段要完备,根据教学内容的要求,恰当运用图片、挂图、CAI课件和多媒体等。
5)教书育人,为人师表,上课精神饱满,以人格的魅力和精神气质激发学生的求知欲和思维活动。
教学组要开展以下教学活动:
1)集体备课。2)制作CAI课件。3)试讲。4)相互听课。
5)组织课堂教学检查,教学讲评。6)教学研讨,撰写教研论文。2.实验(2学时)
实验教学是培养学生的动手能力和创新精神的重要教学环节,由于条件和学时限制,安排了2学时的超精密车削和磨削实验。
实验时每组人数10人,任课教师要指导实验,并且批改实验报告,写出评语,评出成绩。
(六)考核办法
1.采用累加式考试方法
平时成绩(包括作业、实验考核)20﹪,期末考试成绩80﹪。2.期末考试,以考基本理论、基本知识、考综合运用所学知识解决问题的能力为主,防止死记硬背,培养创新精神和实践能力。
第三篇:超高速加工技术的现状及发展趋势
目录
摘 要.......................................................................1 1 引言......................................................................1 2 超高速加工技术简介........................................................1 2.1 超高速加工技术概况......................................................1 2.2 超高速加工技术分类......................................................2 2.3 超高速加工技术特点......................................................2 3 超高速加工技术现状........................................................3 3.1 超高速加工技术现状简述..................................................3 3.2 国外超高速加工技术发展..................................................4 3.3 国内发展情况............................................................5 4 超高速加工技术发展趋势....................................................5 谢 辞......................................................................8
超高速加工技术的应用和发展趋势
摘 要:本文介绍了超高速加工技术的概念、内容和发展现状,并分析了其发展动向。关键词:高速加工技术、机械制造、应用、发展 引言
当前机械制造业为实现高生产率和追求利润,先进制造技术的应用越来越广泛而深入。超高速加工技术作为先进制造技术的重要组成部分,也已被积极地推广使用。20世纪20年代德国人Saloman最早提出高速加工(High Speed Cutting, 简称HSC)的概念,并1931 年申请了专利。50年代末及60年代初,美国和日本开始涉足此领域,在此期间德国已针对不同的超高速切削加工过程及有效的机械结构进行了许多基础性研究工作。随着超高速加工主轴技术的发展,使得刀具切削速度得到很大提高,70年代诞生了第一台HSC机床。真正将HSC技术应用于实践是在80年代初期,因飞机制造业为降低加工时间以及对一些小型特殊零件的薄壁加工而提出了快速铣削的要求。自80年代中后期以来, 商品化的超高速切削机床不断出现,超高速机床从单一的超高速铣床发展成为超高速车铣床、钻铣床乃至各种高速加工中心等。超高速磨削技术在近20年来也得到长足的发展及应用。德国Guehring Automation公司在1983年制造出了当时世界第一台最具威力的60kW强力立方氮化硼(CBN)砂轮磨床,Vs达到140~ 160m/s。当今, 超高速加工已经在汽车、航空航天等领域获得应用。超高速加工技术简介
2.1 超高速加工技术概况
超高速加工技术是指采用超硬材料的刃具,通过极大地提高切削速度和进给速度来提高材料切除率、加工精度和加工质量的现代加工技术。
超高速加工是实现高效率制造的核心技术,工序的集约化和设备的通用化使之具有很高的生产效率。可以说,超高速加工是一种不增加设备数量而大幅度提高加工效率所必不可少的技术。超高速加工的切削速度范围因不同的工件材料、不同的切削方式而异。目前,一般认为,超高速切削各种材料的切速范围为:铝合金已超过1600m/min,铸铁为1500m/min,超耐热镍合金达300m/min,钛合金达150~1000m/min,纤维增强塑料为2000~9000m/min。各种切削工艺的切速范围为:车削700~7000m/min,铣削 300~6000m/min,钻削200~1100m/min,磨削250m/s以上等等。
2.2 超高速加工技术分类
超高速加工技术主要包括以下内容:
(1)超高速切削、磨削机理研究。对超高速切削和磨削加工过程、各种切削磨削现象、各种被加工材料和各种刀具磨具材料的超高速切削磨削性能以及超高速切削磨削的工艺参数优化等进行系统研究。
(2)超高速主轴单元制造技术研究。主轴材料、结构、轴承的研究与开发;主轴系统动态特性及热态性研究;柔性主轴及其轴承的弹性支承技术研究;主轴系统的润滑与冷却技术研究;主轴的多目标优化设计技术、虚拟设计技术研究;主轴换刀技术研究。
(3)超高速进给单元制造技术研究。高速位置芯片环的研制;精密交流伺服系统及电机的研究;系统惯量与伺服电机参数匹配关系的研究;机械传动链静、动刚度研究;加减速控制技术研究;精密滚珠丝杠副及大导程丝杠副的研制等。
(4)超高速加工用刀具磨具及材料研究。研究开发各种超高速加工(包括难加工材料)用刀具磨具材料及制备技术。
(5)高速CNC控制系统:超高速加工要求CNC控制系统具有快速数据处理能力和高功能化特性,以保证加工复杂曲面轮廓时,具有良好的加工性能。还要具有高速插补及超前处理能力,防止刀具轨迹偏移和突发事故。
(6)超高速加工在线检测与控制技术研究。对超高速加工机床主轴单元、进给单元系统和机床支承及辅助单元系统等功能部位和驱动控制系统的监控技术,对超高速加工用刀具磨具的磨损和破损、磨具的修整等状态以及超高速加工过程中工件加工精度、加工表面质量等在线监控技术进行研究。
2.3 超高速加工技术特点
超高速磨削可以对硬脆材料实现延性域磨削加工,对高塑性等难磨材料也有良好的磨削表现。与普通磨削相比,超高速磨削显示出极大的优越性
(1)切削力降低30%左右,特别适合刚性差的工件。
(2)能实现对硬脆材料的延性域磨削,对高塑 性和难磨材料获得良好的磨削效果。由于加工时对刀具和工件进行了冷却润滑,减少了切削热对工件的影响,特别适合加工易热变形的工件。
(3)降低加工工件表面粗糙度值,易获得高光洁的加工表面。激振频率远远高于机床和工艺系统的固有频率,加工平稳,振动小,加工表面质量好。
(4)能极大地提高生产效率。但是,高速切削采用的高压大流量冷却方式会增加环境污染、提高生产成本、减少刀具的耐用度、加大机床腐蚀等一系列问题。
(5)明显降低磨削力,提高零件加工精度.(6)砂轮耐用度提高,使用寿命延长。(7)具有巨大的经济效益。超高速加工技术现状
3.1 超高速加工技术现状简述
(1)高速主轴系统:高性能的电主轴是实现超高速加工的基础, 要求具有很高的转速及相应的功率和扭矩。新近开发的加工中心主轴Dn值(主轴直径与每分钟转速之积)大都已超过100万。在主轴系统中主要采用重量轻于钢制品的陶瓷球轴承,轴承润滑方式大都采用油气混合润滑方式。在高速加工领域,目前已开发出空气轴承和磁轴承以及由磁轴承和空气轴合并构成的磁气/空气混合主轴。
(2)高速进给机构:超高速加工要求进给系统能够完成高速进给运动,所用的进给驱动机构通常都为大导程滚珠丝杠或直线电机,其最高加速度在2G以上, 最高进给速度可超过160m/min。
(3)高速切削刀具:超高速切削的代表性刀具材料是立方氮化硼(CBN), 端面铣削使用CBN 刀具时,其切削速度可高达5000m/min。用金刚石刀具端面铣削铝合金时, 5000m/min的切削速度已达到实用化水平。CBN和金刚石刀具只能用于一定的加工领域, 尚不能取得非常理想的降低加工成本的效果。目前, 涂层技术是一项既能作到价格低廉、性能优异, 又可有效降低加工成本的技术。现在超高速加工用的立铣刀, 大都采用TiAIN 系的复合多层涂镀技术进行处理。如在对铝合金或有色金属材料进行干式切削时,DLC(Diamond Like Carbon)涂层刀具就受到人们极大的关注, 预计其市场前景十分可观。
(4)刀具夹持系统:刀具的夹持系统是支撑高速切削的重要技术, 目前使用最为广泛的是两面夹紧式工具系统。作为商品正式投放市场的两面夹紧式工具系统主要有: HSK、KM、Bigplus、NC5、AHO 等系统。在高速切削的情况下, 刀具与夹具回转平衡性能的优劣, 不仅影响到加工精度和刀具寿命,而且也会影响到机床的使用寿命。因此,在选择工具系统时,应尽量选用平衡性能良好的产品。
(5)安全保护措施:进行高速切削时,由于刀具高速回转, 切屑的速度也相当高。在对钢材或铸件进行高速铣削时, 其切屑带着火花四处飞溅, 因此, 必须采取措施, 使切屑
沿着一定的方向排出。目前,三菱综合材料公司已开发出一种“ Q-ing 铣刀”, 可控制排屑方向, 大大提高了高速铣削加工的安全性。
3.2 国外超高速加工技术发展
3.2.1 欧洲的发展情况
欧洲高速超高速磨削技术的发展起步比较早。1979年德国 Bremen大学的Werner P G教授撰文预言了高效深磨区存在的合理性,由此开创了高效深磨的概念。1983年德国 Bremen大学出资由德国Guhring Automation公司制造了当时世界上第一台高效深磨的磨床,砂轮圆周速度达到了209 m/ s。德国 Guhring Automation公司于1992 年成功制造出砂轮线速度为140~160m/s的CBN 磨床,并正在试制线速度达180m/ s 的样机。德国Aachen大学、Bremen大学在高效深磨的研究方面取得了世界公认的高水平成果。据Aachen工业大学实验室的Koeing和Ferlemann 宣称,该实验室已经采用了圆周速度达到 500 m/s的超高速砂轮,这一速度已突破了当前机床与砂轮的工作极限。瑞士Studer公司开发的CBN砂轮线速度在60m/s 以上, 并向120~130m/s方向发展。目前在试验室内正用改装的S45型外圆 磨床进行线速度280m/s的磨削试验。3.2.2 美国的发展情况
美国20世纪60年代中期开始提高陶瓷砂轮的线速度。辛辛那提-米拉克隆公司到1969 年已生产了100多台高速磨床,其中有80m/s的无心磨床。本迪克斯公司1970年生产了91 m/s的切入式高速磨床。1971年,美国Carnegie-Mellon大学制造了一种无中心孔的钢质 轮,在其周边上镶有砂瓦,其试验速度可达185m/s,工作速度达到125m/s,用于磨削不锈钢锭和切断,也可用于外圆磨削。1993年,美国的 Edgetek Machine 公司首次推出的超高速磨床,采用单层CBN砂轮,圆周速度达到203m/s ,用以加工淬硬锯齿等可以达到很高的金属切除率。美国Connecticut大学磨削研究与发展中心的无心外圆磨床,最高磨削速度可达 250m/。2000年美国马萨诸塞州立大学的Malkin S等人,以149m/s砂轮速度,使用电镀金刚石砂轮通过磨削氮化硅研究砂轮的地貌和磨削机理。3.2.3 日本的发展情况
日本在20世纪70年代中期,不少工厂生产磨削速度为45m/s和60m/s的磨床,三井精机于1972年生产了磨削速度为80m/s的高速磨床,切入成型磨铸铁工件,加工时间仅为59s。1985年前后,在凸轮和曲轴磨床上,磨削速度达到了80m/s。1990年10月底在第五届“日本国际机床展览会”上,日本推出了磨削速度为120m/s的高速磨床。之后,开始开发 160m/s 以上的超高速磨床。1993年前后,使用单颗粒金刚石进行了250m/s超高速磨削试
验研究。1996年日本又推出了125m/s CBN砂轮平面磨床。至2000年,日本已进行500m/s 超高速磨削试验。Shinizu等人为了获得超高磨削速度,利用改制的磨床,将两根主轴并列在一起;一根作为砂轮轴,另一根作为工件主轴,并使其在磨削点切向速度相反,取得了相对磨削速度为VS + V W的结果,砂轮和工件间的磨削线速度实际接近1000m/s。
3.3 国内发展情况
国内高速超高速磨削的发展自1958年,我国开始推广高速磨削技术。1964年,磨料磨具磨削(三磨)研究所和洛阳拖拉机厂合作进行了50m/s高速磨削试验,在机床改装和工艺 等方面获得一定成果。1975年10月,河南省南阳机床厂试制成功了MS132型80m/s高速外圆磨床。1976年,上海机床厂、上海砂轮厂、郑州磨料磨具磨削研究所等组成高速磨削试验小组对80、100m/s 高速磨削工艺进行了试验研究。1982年10月,湖南大学进行了60 m/s高速强力凸轮磨削工艺试验研究,为发展高速强力磨削凸轮轴磨床和高速强力磨削砂轮提供了实验数据。至1995年,汉江机床厂使用陶瓷CBN砂轮,进行了200m/s的超高速磨削试验。广西大学于1997年前后开展了80m/s的高速低表面粗糙度的磨削试验研究工作。在 2000年中国数控机床展览会上,湖南大学推出了最高线速度达120m/s的数控凸轮轴磨床。从2002年开始,湖南大学开始针对一台250m/s超高速磨床主轴系统进行高速超高速研究,并在国内首次进行了磁浮轴承设计。20世纪90年代至今,东北大学一直在开展超高速磨削技术的研究,并首先研制成功了我国第一台圆周速度200m/s、额定功率55kW、最高砂轮线 速度达250m/s的超高速试验磨床。东北大学先后进行超高速磨削热传递机制研究,高速单颗粒磨削机理研究,200m/s电镀CBN超高速砂轮设计与制造,超高速磨削温度场研究,磨削摩擦系数的研究,超高速磨削砂轮表面气流的研究,超高速磨削机理分子动力学的仿真等,取得了可喜的研究成果,部分研究成果达到国际先进水平。超高速加工技术发展趋势
(1)难加工材料的超高速加工。难加工材料的使用越来越广泛,由于材料的切削加工性能极低,导热性差,刀具磨损快,为此只能采用很低的切削速度。通过深入研究这类材料的切削特性,提高刀具稳定性,研制新型刀具材料及制作工艺,开发出相应的刀具系统,将使切削速度范围有较大的提高。
(2)刀具夹紧机构设计。对于安装在超高速主轴上的旋转类刀具来说,刀具夹紧机构的安全可靠性是至关重要的。在高速端面铣削加工时,由于离心力作用,可转位刀片有可能被甩出,因此,应采取相应措施加以预防。最近,工具厂家正在开发可转位刀片的新型夹紧
装置,刀片甩出问题有望得到妥善解决。
(3)相关工艺设计。主轴加速时间和快速进给的动作时间、ATC时间对整个生产周期均有很大的影响。为了最大限度地发挥设备的加工能力,必须妥善解决包含上述因素的工艺编制问题。由于各类产品从开发到生产的各个环节都将实现高效率化,因此,应在更短的时间内编制出正确而合理的工艺流程。
(4)节省能源,实现绿色加工。当前,许多机床都配置了高速钻削加工所必需的高压冷却液泵。冷却装置所需电力约占设备运转所需电力的20%~30%;而生产线上所耗用的能源并不包括此项内容。采用干式切削方式,会从根本上改善切削的环境状态,节省对切削液的直接投资和废液处理及环保费用。因此,希望开发出更加节省能源的机床,开发出更加实用的干式切削加工技术。
(5)高精度定位系统。采用立铣刀或螺纹刀具加工零部件或加工模具时,机床的运动性能将直接影响到其加工精度。因此,要求机床在大进给速度条件下,应具有高精度定位功能和高精度插补功能。
参考文献
[1]宋贵亮,巩亚东,蔡光起.超高速磨削及应用[J].航空精密制造技术,2000,36(3):16-20.[2]荣烈润.高速磨削技术的现状及发展前景[J].机电一体化,2003,(1):6-10.54第4 期
高兴军等.高速超高速磨削加工技术的发展及现状 © 1994-2010 China Academic Journal Electronic Publishing House.All rights reserved.http://www.cnki.net [3]赵恒华,冯宝富,高贯斌,蔡光起.超高速磨削技术在机械制造领域中的应用[J].东北大学学报:自然科学版,2003,24(6):564-568.[4]冯宝富,蔡光起,邱长伍.超高速磨削的发展及关键技术[J].机械工程师,2002,(1):5-9.[5]蔡光起,冯宝富,赵恒华.磨削磨料加工技术的最新进展[J].航空制造技术,2003,(4):31-40.Application and Development Trend of Ultra-high Speed
Machining Technology
Sun Ying(Mechanical and Electronic Engineering Department of Dezhou University, Dezhou Shandong, 253023)Abstract: In this paper, the concept, content and status of ultra-high speed machining technology are introduced, and its developmenttrend is analyzed.Keywords: Ultra-high speed machining technology;Machinery;Development trend
谢
辞
另外,感谢学校给予我这样一次机会,能够独立地完成一个课题,并在这个过程当中,给予我们各种方便,使我们在即将离校的最后一段时间里,能够更多学习一些实践应用知识,增强了我们实践操作和动手应用能力,提高了独立思考的能力。再一次对我的母校表示感谢。
第四篇:Chapt.7_精密与特种加工技术(课件)
第一章
概
论
第一节
精密与特种加工的产生背景
机械制造面临着一系列严峻的任务:
⑴ 解决各种难切削材料的加工问题。
⑵ 解决各种特殊复杂型面的加工问题。
⑶ 解决各种超精密、光整零件的加工问题。
⑷ 特殊零件的加工问题。
第二节
精密与特种加工的特点 及其对机械制造领域的影响
精密与特种加工是一门多学科的综合高级技术;
精密加工包括微细加工、光整加工和精整加工等,与特种加工关系密切。
特种加工是指利用机、光、电、声、热、化学、磁、原子能等能源来进行加工的非传统加工方法(NTM,Non-Traditional Machining),它们与传统切削加工的不同特点主要有: ① 主要不是依靠机械能;
② 刀具的硬度可以低于被加工工件材料的硬度; ③ 在加工过程中,工具和工件之间不存在显著的 机械切削力作用。
精密与特种加工技术引起了机械制造领域内的许多变革:
⑴ 提高了材料的可加工性。
⑵ 改变了零件的典型工艺路线。
⑶ 大大缩短新产品试制周期。
⑷ 对产品零件的结构设计产生很大的影响。
⑸ 对传统的结构工艺性好与坏的衡量标准产生重要影响。
第三节
精密与特种加工的方法及分类
1.加工成形的原理
分为去除加工、结合加工、变形加工三大类。
去除加工又称为分离加工,是从工件上去除多余的材料。
结合加工是利用理化方法将不同材料结合在一起。
又可分为附着、注入、连接三种。
变形加工又称为流动加工,是利用力、热、分子运动等手段使工件产生变形,改变其尺寸、形状和性能。
2.加工方法机理
按机理精密与特种加工分为传统加工、非传统加工、复合加工。
第四节 精密与特种加工技术的地位和作用
先进制造技术已经是一个国家经济发展的重要手段之一。
发展先进制造技术是当前世界各国发展国民经济的主攻方向和战略决策,同时又是一个国家独立自主、繁荣富强、经济持续稳定发展、科技保持先进领先的长远大计。
从先进制造技术的技术实质而论,主要有精密、超精密加工技术和制造自动化两大领域。
精密与特种加工技术水平是一个国家制造工业水平的重要标志之一。
精密与特种加工技术已经成为国际竞争中取得成功的关键技术。产品的实际制造,必然要依靠精密加工技术。第二章
金刚石刀具精密切削加工
第一节
概
述
精密与超精密加工和制造自动化是先进制造技术的两大领域。
加工精度在0.1~1μm,表面粗糙度Ra在0.02~0.1μm之间的加工称为精密加工;加工精度高于0.1μm,表面粗糙度Ra小于0.01μm的加工称为超精密加工。
一、超精密加工的难点
精度难以控制; 刚度和热变形影响; 去除层薄,切应力大; 犹如对不连续体进行切削。
二、超精密加工的方法
按加工方式分:
切削加工、磨料加工、特种加工和复合加工 按加工机理和特点分:
去除加工、结合加工和变形加工 还可分为 传统加工、非传统加工和复合加工
三、超精密加工的实现条件
超精密加工是多学科交叉的综合性高新技术
① 超精密加工的机理与工艺方法; ② 超精密加工工艺装备; ③ 超精密加工工具;
④ 超精密加工中的工件材料; ⑤ 精密测量及误差补偿技术;
⑥ 超精密加工工作环境、条件等。
在超精密加工的中,必须综合考虑以上因素。
第二节
超精密机床及其关键部件
一、典型超精密机床
超精密加工对机床的基本要求:
⑴ 高精度 ⑵ 高刚度 ⑶ 高稳定性 ⑷ 高自动化
大型光学金刚石车床 ——LODTM
FG-001超精密机床
OAGM 2500大型超精密机床
AHNIO型高效专用车削、磨削超精密机床
二、超精密机床的主轴部件
主轴部件是保证超精密机床加工精度的核心。超精密加工对主轴的要求是极高的回转精度,转动平稳,无振动。
液体静压轴承主轴
空气静压轴承主轴
⑴ 双半球空气轴承主轴
⑵ 径向—推力空气静压轴承主轴
⑶ 球形—径向空气轴承主轴
⑷ 立式空气轴承主轴
主轴的驱动方式
⑴ 柔性联轴器驱动
⑵ 内装式同轴电动机驱动
超精密机床主轴和轴承的材料
应考虑以下主要因素:① 耐磨损;② 不易生锈腐蚀;③ 热膨胀系数小;④ 材料的稳定性好。
制造空气主轴和轴承的材料主要有: ① 经表面氮化和低温稳定处理的38CrMoAl氮化钢;
② 不锈钢;
③ 多孔石墨和轴承钢。
另外还有铟钢、花岗岩、微晶玻璃和陶瓷等。
三、精密导轨部件
超精密机床的总体布局
T形布局
十字形布局
R-θ 布局
立式结构布局
常用的导轨部件 ⑴ 液体静压导轨
花岗岩静压导轨
⑵ 空气静压导轨和气浮导轨
空气静压导轨
气浮导轨
床身及导轨的材料
常用的床身及导轨材料有优质耐磨铸铁、花岗岩、人造花岗岩等。
微量进给装置
超精密机床的进给系统—般采用精密滚珠丝杠副、液体静压和空气静压丝杠副。
高精度微量进给装置则有电致伸缩式、弹性变形式、机械传动或液压传动式、热变形式、流体膜变形式、磁致伸缩式等。
目前高精度微量进给装置的分辨力可达到0.001~0.01μm。
精密和超精密微位移机构应满足以下设计要求:
① 精微进给和粗进给分开。
② 运动部分必须是低摩擦和高稳定度的。
③ 末级传动元件必须有很高的刚度。
④ 内部连接必须可靠,尽量采用整体结构或刚性连接。
⑤ 工艺性好,容易制造。
⑥ 具有好的动特性。
⑦ 能实现微进给的自动控制。
⑴ 压电和电致伸缩微进给装置
⑵ 摩擦驱动装置
⑶ 机械结构弹性变形微量进给装置
第五节
金刚石刀具的结构
衡量金刚石刀具质量的标准:
① 能否加工出高质量的超光滑表面;
② 能否有较长的切削时间保持刀刃锋锐。设计金刚石刀具时最主要问题有三个: ① 确定切削部分的几何形状;
② 选择合适的晶面作为刀具的前后面;
③ 确定金刚石在刀具上的固定方法和刀具结构。
一、金刚石刀具切削部分的几何形状
⑴ 刀头形式
金刚石刀具刀头一般采用在主切削刃和副切削刃之间加过渡刃。国内多采用直线修光刃,国外标准的金刚石刀具,推荐的修光刃圆弧半径R=0.5~3mm。
金刚石刀具的主偏角一般为30˚~90˚,以45˚主偏角应用最为广泛。
⑵ 前角和后角
根据加工材料不同,金刚石刀具的前角可取0˚~5˚,后角一般可取5˚~6˚。
美国EI Contour精密刀具公司的标准金刚石车刀结构如上图所示。该车刀采用圆弧修光刃,修光刃圆弧半径R=0.5~1.5mm。后角采用10˚,刀具前角可根据加工材料由用户选定。
一种可用于车削铝合金、铜、黄铜的通用金刚石车刀结构如右图所示。可获得粗糙度Ra < 0.02~ 0.005μm的表面。
二、选择合适的晶面作为金刚石刀具前、后面
三、金刚石刀具上的金刚石固定方法 ⑴ 机械夹固
⑵ 用粉末冶金法固定 ⑶ 使用粘结或钎焊固定
国内外的金刚石刀具使用者一般都不自己磨刀;
Sumitomo公司推出一次性使用不重磨的精密金刚石刀具。
第三章
精密与超精密磨料加工
黑色金属、硬脆材料的精密与超精密加工,主要是应用精密和超精密磨料加工。
所谓精密和超精密磨料加工,就是利用细粒度的磨粒和微粉对黑色金属、硬脆材料等进行加工,以得到高加工精度和低表面粗糙度值。
精密和超精密磨料加工可分为固结磨料和游离磨料加工两大类。
第一节
精密磨削
精密磨削是指加工精度为1~0.1μm、表面粗糙度为Ra0.2~0.025μm的磨削方法。
一、精密磨削机理
靠砂轮的具有微刃性和等高性的磨粒实现的。⑴ 微刃的微切削作用
⑵ 微刃的等高切削作用
⑶ 微刃的滑挤、摩擦、抛光作用
二、磨削用量
三、精密磨削砂轮
1.砂轮磨料
精密磨削时所用砂轮的磨料以易于产生和保持微刃及其等高性为原则。
钢件及铸铁件,以采用刚玉磨料为宜。碳化硅磨料主要应用于有色金属加工。
2.砂轮粒度
粗粒度的微切削作用;细粒度的摩擦抛光作用。
3.砂轮结合剂
超精密加工用金属类、陶瓷类结合剂
四、精密磨削中的砂轮修整
有单粒金刚石修整、金刚石粉末烧结型修整器修整和金刚石超声波修整等。
修整用量有:修整导程、修整深度、修整次数和光修次数。
五、超精密磨削
超精密磨削是指加工精度达到或高于0.1μm、表面粗糙度低于Ra0.025μm的砂轮磨削方法,适宜于对钢、铁材料及陶瓷、玻璃等硬脆材料的加工。
镜面磨削是属于精密磨削和超精密磨削范畴的加工,是指加工表面粗糙度达到Ra0.02~0.01μm、表面光泽如镜的磨削方法。
影响超精密磨削的因素有:超精密磨削机理、被加工材料、砂轮及其修整、超精密磨床、工件的定位夹紧、检测及误差补偿、工作环境、操作水平等。超精密磨削需要—个高稳定性的工艺系统,对力、热、振动、材料组织、工作环境的温度和净化等都有稳定性的要求,并有较强的抗击来自系统内外的各种干扰的能力。
1.超精密磨削机理
单颗粒磨削的切入模型如图所示。说明:
① 可视为一弹性系统
②平面磨削的切屑形状如图所示
③ 磨削过程分为弹性区、塑性区、切削区、塑性区,最后为弹性区
④ 存在微切削作用、塑性流动、弹性破坏作用和滑擦作用
磨削状态与磨削系统的刚度密切相关。2.超精密磨削工艺
超精密磨削的砂轮选择、砂轮修整、磨削液选择等问题与精密磨削和超硬磨料砂轮磨削有关问题类同。
超精密磨削的磨削用量。
六、超硬磨料砂轮磨削
超硬磨料砂轮磨削主要是指用金刚石砂轮和立方氮化硼砂轮加工硬质合金、陶瓷、玻璃、半导体材料及石材等高硬度、高脆性材料。其突出特点为: ① 磨削能力强,耐磨性好,耐用度高,易于控制加工尺寸及实现加工自动化。② 磨削力小,磨削温度低,加工表面质量好,无烧伤、裂纹和组织变化。③ 磨削效率高。④ 加工成本低。
1.超硬磨料砂轮磨削工艺
⑴ 磨削用量 ⑵ 磨削液:要求磨削液有良好的润滑性、冷却性、清洗性和渗透性。
2.超硬磨料砂轮修整
修整是整形和修锐的总称。
整形是使砂轮具有—定精度要求的几何形状; 修锐是去除磨粒间的结合剂,使磨粒突出结合剂一定高度,形成良好的切削刃和足够的容屑空间。
超硬磨料砂轮修整的方法:① 车削法;② 磨削法;③ 滚压挤轧法;④ 喷射法;⑤ 电加工法;⑥ 超声波振动修整法。
第二节
精密研磨与抛光
一、研磨加工机理
精密研磨属于游离磨粒切削加工,是在刚性研具上注入磨料,在—定压力下,通过研具与工件的相对运动,借助磨粒的微切削作用,除去微量的工件材料,以达到高级几何精度和优良表面粗糙度的加工方法。
1.硬脆材料的研磨
硬脆材料研磨的加工模型如图所示。
研磨磨粒为1μm的氧化铝和碳化硅等。
2.金属材料的研磨
金属材料研磨相当于普通切削和磨削的切削深度极小时的状态。
二、抛光加工机理
抛光是指用低速旋转的软质弹性或粘弹性材料抛光盘,或高速旋转的低弹性材料抛光盘,加抛光剂,具有一定研磨性质地获得光滑表面的加工方法。
抛光使用的磨粒是1μm以下的微细磨粒。
抛光加工模型如图3-9所示。
抛光加工是磨粒的微小塑性切削作用和加工液的化学性溶析作用的结合。
三、精密研磨、抛光的主要工艺因素
精密研磨抛光的主要工艺因素如表3-5所示。
在一定的范围内,增加研磨压力可提高研磨效率。
超精密研磨对研磨运动轨迹有以下基本要求: ① 工件相对研磨盘作平面平行运动,使工件上各点具有相同或相近的研磨行程。
② 工件上任一点不出现运动轨迹的周期性重复。
③ 避免曲率过大的运动转角,保证研磨运动平稳。
④ 保证工件走遍整个研磨盘表面,以使研磨盘磨损均匀,进而保证工件表面的平面度。
⑤ 及时变换工件的运动方向,以减小表面粗糙度值并保证表面均匀一致。
四、研磨盘与抛光盘
1.研磨盘
研磨盘是涂敷或嵌入磨料的载体。
研磨对研磨盘加工面的几何精度要求很高。
研磨盘材料硬度要低于工件材料硬度,且组织均匀致密、无杂质、无异物、无裂纹和无缺陷,并有一定的磨料嵌入性和浸含性。
常用的研磨盘材料有铸铁、黄铜、玻璃等。
研磨盘的结构要具有良好的刚性、精度保持性、耐磨性、排屑性和散热性。为了获得良好的研磨表面,常在研磨盘面上开槽。开槽的目的为:
① 存储多余的磨粒;
② 作为向工件供给磨粒的通道;
③ 作为及时排屑的通道。
固着磨料研磨盘是一种适用于陶瓷、硅片、水晶等脆性材料精密研磨的研具,具有表面精度保持性好、研磨效率高的优点。
2.抛光盘
抛光盘平面精度及其精度保持性是实现高精度平面抛光的关键。
五、研磨剂与抛光剂
对研磨用磨粒的基本要求: ① 形状、尺寸均匀一致;
② 能适当地破碎,以使切削刃锋利; ③ 熔点高于工件熔点; ④ 在研磨液中容易分散。
对于抛光粉用磨粒,除上述要求外,还要考虑与工件材料作用的化学活性。
研磨抛光加工液主要作用是冷却、润滑、均布研磨盘表面磨粒及排屑。对研磨抛光液的要求: ① 有效地散热,以防止研磨盘和工件热变形; ② 粘附低,以保证磨料的流动性; ③ 不污染工件;
④ 物理、化学性能稳定,不分解变质; ⑤ 能较好地分散磨粒。
六、非接触抛光
非接触抛光是指在抛光中工件与抛光盘互不接触,依靠抛光剂冲击工件表面,以获得加工表面完美结晶性和精确形状的抛光方法,其去除量仅为几个到十几个原子级。
1.弹性发射加工
弹性发射加工是指加工时研具与工件互不接触,通过微粒子冲击工件表面,对物质的原子结合产生弹性破坏,以原子级的加工单位去除工件材料,从而获得无损伤的加工表面。
弹性发射加工原理
弹性发射加工方法如图所示
对加工头和工作台实施数控,可实现曲面加工。EEM的数控加工装置如图3-11所示。
2.浮动抛光
浮动抛光装置如图所示 抛光机理
超精密抛光盘的制作是实现浮动抛光加工的关键。
3.动压浮离抛光 动压浮离抛光平面非接触抛光装置如图所示
工作原理
加工过程中无摩擦热和工具磨损,标准平面不会变化
该方法主要用于半导体基片和各种功能陶瓷材料及光学玻璃平晶的抛光,可同时进行多片加工。4.非接触化学抛光
通过向抛光盘面供给化学抛光液,使其与被加工面作相对滑动,用抛光盘面来去除被加工件面上产生的化学反应生成物。这种以化学腐蚀作用为主,机械作用为辅的加工,又称为化学机械抛光。水面滑行抛光借助于流体压力使工件基片从抛光盘面上浮起,利用具有腐蚀作用的液体作加工液完成抛光。
5.切断、开槽及端面抛光 采用非接触端面抛光可实现对沟槽的壁面、垂直柱状轴断面进行镜面加工。
端面非接触镜面抛光装置示意图如图所示。
该方法可用于直径0.1mm左右的光导纤维线路零件的端面镜面抛光以及精密元件的切断。
第五篇:精密加工技术_电火花加工现状与发展
电火花加工现状与发展
电火花加工现状与发展
张杰
(上海理工大学 机械工程学院,上海)
摘要:首先简要地说明了电火花加工的原理、特点、分类和其在机械制造领域内的应用,继而详细地论述了近年来电火花加工的国内外研究现状,最后通过对一些资料的查阅对电火花加工的发展方向以及进一步深入研究时所需要注意的问题进行了初步的探讨。关键词:电火花加工,电火花成形加工,电火花线切割加工,发展现状,发展方向
Present Situation and Development of EDM
ZhangJie(School of Mechanical Engineering ,University of Shanghai for Science and
Technology,Shanghai)
Abstract : The principles ,features ,classifications of EDM and its applications in the fields of mechanical manufacturing are briefly stated, and then the research at home and abroad are presented in detail.Finally ,by the reference of several documents, some problems in need of a further investigation are proposed.Key words :EDM, Electric spark forming, wire-cut electrical discharge machining,present situation, future direction.1.概述
电火花加工是特种加工的一种。早在前苏联,拉扎林科夫妇研究开关触点受火花放电腐蚀损坏的现象和原因时,发现电火花的瞬时高温可以使局部的金属熔化、氧化而被腐蚀掉,从而开创和发明了电火花加工方法。
1.1电火花加工原理
电火花加工现状与发展
进行电火花加工时,工具电极和工件分别接脉冲电源的两极,并浸入工作液中,或将工作液充入放电间隙。通过间隙自动控制系统控制工具电极向工件进给,当两电极间的间隙达到一定距离时,两电极上施加的脉冲电压将工作液击穿,产生火花放电。
其工作原理图如下:
1.2电火花加工特点
电火花加工是与机械加工完全不同的一种新工艺。随着工业生产的发展和科学技术的进步,具有高熔点、高硬度、高强度、高脆性,高粘性和高纯度等性能的新材料不断出现,具有各种复杂结构与特殊工艺要求的工件越来越多。电火花加工法能够适应生产发展的需要,并在应用中显示出很多优异性能,电火花加工的特点概括如下:
(1)直接利用电脑进行加工,便于实现自动化,适于特殊材料和复杂形状的加工。脉冲放电的能量密度高,便于加工用普通的机械加工方法难于加工或无法加工的特殊材料和复杂形状的工件。不受材料硬度影响,不受热处理状况影响。
(2)适用的材料范围广。脉冲放电持续时间极短,放电时产生的热量传导扩散范围小,材料受热影响范围较小,可以加工任何高强度、高硬度、高韧性、高脆性以及高纯度的导电材料。
(3)工具电极制造容易。加工时,工具电极与工件材料不接触,两者之间宏观作用力极校工具电极材料不需比工件材料硬,因此,工具电极制造容易。
(4)可以再同一台机床连续进行粗,半精及精加工。脉冲参数可依据需要调节,可在同一台机床上进行粗加工、半精加工和精加工。可以改革工件结构,简化加工工艺,提高工件使用寿命,降低工人劳动强度。
1.3电火花加工分类
按工具电极和工件相对运动的方式和用途的不同,大致可分为电火花成形加工、电火花线切割、电火花磨削和镗磨、电火花同步共轭回转加工、电火花高速小孔加工、电火花表面强化与刻字六大类。前五类属电火花成形、尺寸加工,是用于改变零件形状或尺寸的加工方法;后者则属表面加工方法,用于改善或改变零件表面性质。以上方法中以电火花成形加工和电火花线切割应用最为广泛。
1.3.1电火花成形加工
该方法是通过工具电极相对于工件作进给运动,将工件电极的形状和尺寸复制在工件上,从而加工出所需要的零件。它包括电火花型腔加工和穿孔加工两种。
电火花型腔加工主要用于加工各类热锻模、压铸模、挤压模、塑料模和胶木膜的型腔。
电火花加工现状与发展
电火花穿孔加工主要用于型孔(圆孔、方孔、多边形孔、异形孔)、曲线孔(弯孔、螺旋孔)、小孔和微孔的加工。近年来,为了解决小孔加工中电极截面小、易变形、孔的深径比大、排屑困难等问题,在电火花穿孔加工中发展了高速小孔加工,取得良好的社会经济效益。典型机床有D7125,D7140等电火花穿孔成形机床。
1.3.2电火花线切割加工
该方法是利用移动的细金属丝作工具电极,按预定的轨迹进行脉冲放电切割。按金属丝电极移动的速度大小分为高速走丝和低速走丝线切割。我国普通采用高速走丝线切割,近年来正在发展低速走丝线切割,高速走丝时,金属丝电极是直径为φ0.02~φ0.3mm的高强度钼丝,往复运动速度为8~10m/s。低速走丝时,多采用铜丝,线电极以小于0.2m/s的速度作单方向低速运动。线切割时,电极丝不断移动,其损耗很小,因而加工精度较高。其平均加工精度可达 0.0lmm,大大高于电火花成形加工。表面粗糙度Ra值可达1.6 或更小。
目前电火花线切割广泛用于加工各种冲裁模(冲孔和落料用)、样板以及各种形状复杂型孔、型面和窄缝、凸轮、成形刀具、精密细小零件和特殊材料,试制电机、电器等产品等。典型机床有DK7725,DK7740数控电火花线切割机床。
1.3.3其他电火花加工方式
剩下的电火花加工方式应用较少,不是主流。包括:
电火花内孔、外圆和成形磨削:用于加工高精度、表面粗糙度值小的小孔,如拉丝模、挤压模、微型轴承内环、钻套等和加工外圆、小模数滚刀等。典型机床有D6310电火花小孔内圆磨床等。
(2)电火花同步共轭回转加工:用于加工各种复杂型面的零件,如高精度的异形齿轮,精密螺纹环规,高精度、高对称度、表面粗糙度值小的内、外回转体表面等。典型机床有JN-2,JN-8内外螺纹加工机床。
(3)电火花高速小孔加工:用于加工线切割穿丝预孔,深径比很大的小孔,如喷嘴等。典型机床有D703G电火花高速小孔加工机床。
(4)电火花表面强化、刻字:用于电火花刻字、打印记。典型设备有D9105电火花强化机等。
1.4电火花加工用途
目前电火花加工已广泛应用于模具制造、航天航空、电子、电机电器、精密机械、仪器仪表、汽车、轻工业等行业,以解决难加工材料及复杂形状零件的加工问题,加工范围已达到小到几微米的小孔、轴、缝,大到几米的超大型模具和零件。电火花加工的主要用途可以概括为以下几项:
(1)用于模具生产中的型孔、型腔加工,已成为模具制造业的主导加工方法,推动了模具行业的技术进步。可以用于制造冲模、塑料模、锻模和压铸模。(2)加工小孔、畸形孔以及在硬质合金上加工螺纹螺孔。(3)在金属板材上切割出零件。(4)加工窄缝。
(5)磨削平面和圆面。
(6)其它(如强化金属表面,取出折断的工具,在淬火件上穿孔,直接加工型面复杂的零件等)。
2.发展历程及技术成果
2,1电火花加工发展历程
早在十九世纪,人们就发现了电器开关的触点开闭时,因为放电,使接触部位烧蚀,造成接触面的损坏。这种放电引起的电极烧蚀现象叫做电腐蚀。
电火花加工现状与发展
二十世纪四十年代初,人们进一步认识到,在液体介质中进行重复性脉冲放电时,能够对导电材料进行尺寸加工,因此,创立了“电火花加工法”。
五十年代,改进为电阻-电感-电容等回路。同时,还采用脉冲发电机之类的所谓长脉冲电源,使蚀除效率提高,工具电极相对损耗降低,随后又出现了大功率电子管、闸流管等高频脉冲电源,使在同样表面粗糙度条件下的生产率得以提高。
六十年代出现了晶体管和可控硅脉冲电源,提高了能源利用效率和降低了工具电极损耗,并扩大了粗精加工的可调范围。
七十年代出现了高低压复合脉冲、多回路脉冲、等幅脉冲和可调波形脉冲等电源,在加工表面粗糙度、加工精度和降低工具电极损耗等方面又有了新的进展。在控制系统方面,从最初简单地保持放电间隙,控制工具电极的进退,逐步发展到利用微型计算机,对电参数和非电参数等各种因素进行适时控制。
电火花加工技术经历了手动电火花加工、液压伺服、直流电机、步进电机、交流伺服电机等一系列过程。控制系统也越来越复杂,从单轴数控到3轴数控、再到多轴联动。20世纪90年代初期,3轴电火花机在国内还是空白,主要是从日本和瑞士引进。直到90年代中期,我国才开始步入国内电火花加工机的真正快速发展轨道,后来在此基础上又生产研发了4轴4联动电火花加工机。
2,2电火花加工技术成果
2.2.1对电火花加工优缺点的总结
电火花加工属于电脉冲放电腐蚀类,被加工的工件是好的导电材料,而且最好是优良的导电材料且不含杂质。
电火花加工的优点:
(1)电火花加工,最擅长对付那些高硬度的(一般的机械加工难以实现的)金属的加工(2)电火花加工尤其适合细、窄缝类(普通机械加工难以做到的)、清角位等的加工。
电化花加工的缺点:
(1)不能加工不导电的材料;
(2)加工过程中,有因为使用控制不良,引起火灾的安全隐患;(3)加工效率较低(相对机械加工来讲);
(4)加工过程造成被加工件的内应力增加而变形,加工尺寸精度不高。
2.2.2影响其加工精度的因素的总结
与传统的机械加工一样,机床本身的各种误差,工件和工具电极的定位、安装误差都会影响到电火花加工的精度。另外,与电火花加工工艺有关的主要因素是放电间隙的大小及其一致性、工具电极的损耗及其稳定等。概括为以下几个方面:(1)表面粗糙度
电火花加工表面的粗糙度取决于放电蚀坑的深度及其分布的均匀程度,只有在加工表面产生浅而分布均匀的放电蚀坑,才能保证加工表面有较小的粗糙度值。(2)加工间隙(侧面间隙)的影响
加工间隙的大小及其一致性直接影响电火花成形加工的加工精度。只有掌握每个规准的加工间隙和表面粗糙度的数值,才能正确设计电极的尺寸,决定收缩量,确定加工过程中的规准转换。
(3)加工斜度的影响
在加工中,不论型孔还是型腔,侧壁都有斜度,形成斜度的原因,除电极侧壁本身在技术要求或制造中原有的斜度外,一般都是由电极的损耗不均匀,以及“二次放电”等因素造成的。这些因素包括电极损耗、工作液脏污程度、冲油或抽油、加工深度等。(4)楞角倒圆的原因及规律
电火花加工现状与发展
电极尖角和楞边的损耗,比端面和侧面的损耗严重,所以随着电极楞角的损耗导致楞角倒圆,加工出的工件不可能得到清楞。而且,随着加工深度的增加,电极楞角倒圆的半径增大。但超过一定加工深度,其增大的趋势逐渐缓慢,最后停留在某一最大值上。楞角倒圆的原因除电极的损耗外,还有放电间隙的等距离性。
2.2.3影响其加工后表面粗糙度的因素的总结
(1)脉冲能量越大,加工速度越高,Ra值越大。(2)工件材料越硬、熔点越高,Ra值越小。
(3)工件电极的表面粗糙度越大,工件的Ra值越大。
3.电火花加工的国内外研究基本现状
近年来电火花线切割加工无论在加工过程控制,还是改进加工工艺方面都取得了许多新的进展。主要表现在突破了许多传统观念的束缚,产生了一些新的加工方法,以及一些新的控制和检测方式。
往复走丝电火花线切割机床的走丝速度为6~12 m/s,是我国独创的机种。自1970年9月由
电火花加工现状与发展
微电子、数控、电力半导体、机械技术、电气技术等,是多方面、多学科集成的产品,是比较复杂的高科技产品。国内现在显然还没有一个能够独立进行原始创新的团队,因此注定要经历一个长时间痛苦的积淀过程,电火花加工技术正不断向精密化、自动化、智能化、高效化等方向发展。我国务必要紧跟电火花加工技术发展步伐,才能立足世界。如今新型数控电火花机床层出不穷,如瑞士阿奇、瑞士夏米尔、日本沙迪克、日本牧野、日本三菱等机床在这方面技术都有了全面的提高。(1)电火花加工的精密化核心主要体现在对尺寸精度、仿形精度、表面质量的要求。时下数控电火花机床加工的精度已有全面提高,尺寸加工要求可达±2-3μm、底面拐角R值可小于0.03mm,最佳加工表面粗糙度可低于Ra0.3μm。
(2)自动化指目前最先进的数控电火花机床在配有电极库和标准电极夹具的情况下,只要在加工前将电极装入刀库,编制好加工程序,整个电火花加工过程便能日以赴继地自动运转,几乎无需人工操作。机床的自动化运转降低了操作人员的劳动强度、提高生产效率。但自动装置配件的价格比较昂贵,大多模具企业的数控电火花机床的配置并不齐全。数控电火花机床具备的自动测量找正、自动定位、多工件的连续加工等功能已较好地发挥了它的自动化性能。自动操作过程不需人工干预,可以提高加工精度、效率。
(3)智能化:智能控制技术的出现把数控电火花加工推向了新的发展高度。新型数控电火花机床采用了智能控制技术。专家系统是数控电火花机床智能化的重要体现,它的智能性体现在精确的检测技术和模糊控制技术两方面。专家系统采用人机对话方式,根据加工的条件、要求,合理输入设定值后便能自动创建加工程序,选用最佳加工条件组合来进行加工。在线自动监测、调整加工过程,实现加工过程的最优化控制。目前智能化技术不断地升级,使得智能控制技术的应用范围更加的广泛。随着市场对电加工要求的提升,智能化技术将获得更为广阔的发展空间。
(4)高效化:现代加工的要求为数控电火花加工技术提供了最佳的加工模式,即要求在保证加工精度的前提下大幅提高粗、精加工效率。如这不但缩短了加工时间且省却后处理的麻烦,同时提升了模具品质,使用粉末加工设备可达到要求。另外减少辅助时间(如编程时间、电极与工件定位时间等),这就需要增强机床的自动编程功能,配置电极与工件定位的夹具、装置。若在大工件的粗加工中选用石墨电极材料也是提高加工效率的好方法。
4.未来发展方向
先进制造技术的快速发展和制造业市场竞争的加剧对电火花成形加工技术提出了更高要求,同时也为电火花成形加工技术加工理论的研究和工艺开发、设备更新提供了新的动力。
今后电火花成形加工的加工对象应主要面向传统切削加工不易实现的难加工材料、复杂型面等加工,其中精细加工、精密加工、窄槽加工、深腔加工等将成为发展重点。同时,还应注意与其它特种加工技术或传统切削加工技术的复合应用,充分发挥各种加工方法在难加工材料加工中的优势,取得联合增值效应。相对于切削加工技术而言,电火花成形加工技术仍是一门较年轻的技术,因此在今后的发展中,应借鉴切削加工技术发展过程中取得的经验与成果,根据电火花成形加工自身的技术特点,选用适当的加工理论、控制原理和工艺方法,并在己有成果的基础上不断完善、创新。电火花成形加工机床向数控化方向发展的趋势已不可逆转,但应注意不可盲目追求“大而全”,应以市场为导向,建立具有开放性的数控体系。总体而言,电火花成形加工技术今后的发展趋势应是高效率、高精度、低损耗、微细化、自动化、安全、环保等。
对电火花加工而言,电火花成形机下一步的发展空间在精密微细和特殊材料两个方面。特殊材料(如航空航天领域用的材料)专机,窄槽窄缝、异型腔的加工,精密模具等领域都是发展重点。在精加工方面,曾经有过高速铣要代替电火花的传言,现在证明这是不现实的。
电火花加工现状与发展
现在粗加工、大电流的火花机又有回头的趋势,在家电、汽车很多行业中应用。人类新开发出来的导电的特殊材料都可进行放电加工,而高速铣通常很难实现。精密微细加工比如喷丝板等微小型零件都离不开电火花加工;航空航天领域中很多零部件需要多轴联动电火花加工。我们国家在专用机型上有创新的能力,有很大的空间。
5.需要进一步研究的问题
电火花加工虽然发展迅速,但仍然存在一些问题,经过对一些资料的查阅,这些问题可以总结为以下几条:
(1)一般加工速度较慢,生产率低于切削加工 安排工艺时可采用机械加工去除大部分余量,然后再进行电火花加工以求提高生产率。最近新的研究成果表明,采用特殊水基不燃性工作液进行电火花加工,其生产率甚至高于切削加工。
(2)存在电极损耗和二次放电 电极损耗多集中在尖角或底面,最近的机床产品已能将电极相对损耗比降至0.1%,甚至更小;电蚀产物在排除过程中与工具电极距离太小时会引起二次放电,形成加工斜度,影响成型精度,(3)工作液的净化和加工中产生的烟雾污染处理比较麻烦。
(4)由于电级丝是往复使用,所以会造成电极丝损耗,加工精度和表面质量降低。(5)放电过程有部分能量消耗在工具电极上,导致电极损耗,影响成形精度。(6)电极之间需要始终保持确定的距离。(7)电火花需要达到足够高的电流密度。(8)脉冲性放电是一个难题。
(9)如何及时有效的排除电蚀产物值得进一步的研究。
近年来随着特种加工技术在现代制造技术中的发展和广泛应用,国家很重视特种加工行业发展,我国的特种加工机床拥有量较高,也具有很大的生产规模,但在高端机床装备方面,与发达国家还有明显的差距,在加工精度、加工质量以及自动化程度等方面都有很大的提升空间。电火花加工技术中遇到的难题也将在这一趋势中不断被解决。我们相信,电火花加工技术将会不断成熟,并为我们带来巨大的价值。
参考资料:卢秉恒.机械制造技术基础.北京.机械工业出版社,2007. 王贵成,张银喜.精密与特种加工.武汉.武汉理工大学出版社,2009.
刘志东,高长水.电火花加工工艺及应用.北京.国防工业出版社,2011.
汤传建.液中喷气电火花加工试验及机理研究.上海.上海交通大学机械与动力工程学院,2008. 徐安阳,刘志东等.功能电极电火花诱导烧蚀加工模具钢Cr12实验研究.南京.南京航空航天大学机电学院,2012.