第一篇:变压器及电抗器电气试验标准化作业指导书
变压器及电抗器电气试验标准化作业指导书
一.适用范围
本作业指导书适应于电力变压器及电抗器交接、大修和预防性试验。
二.引用的标准和规程
GB50150-91《电气设备交接及安装规程》
DL/T596-1996《电力设备预防性试验规程》
三.试验仪器、仪表及材料
1.交接及大修后试验所需仪器及设备材料:
序号 试验所用设备(材料)数量 序号 试验所用设备(材料)数量 QJ42型单臂、QJ44型双臂电桥或直流电阻测试仪 1套 8 倍频电源车、补偿电抗、局部放电测量系统 1套 2500—5000V手动或电动兆欧表 1块 9 TDT型变压器绕组变形测试系统 1套试验变压器、调压器、球隙、分压器、水阻等。1套 10 万用表、直流毫伏表、相位表、电压表、电流表、瓦特表、若干 直流发生器、微安表 1套 11 有载分接开关特性测试仪 1套 调压器、升压变压器,电流互感器、电压互感器 1套 12 电源线和试验接线、常用工具、干电池 若干 自动介损测试仪或QS1型西林电桥 1套 13 绝缘杆、安全带、安全帽 若干QJ35型变比电桥或变比测试仪 1套 14 温湿度计 1只
2.预防性试验所需仪器及设备材料:
序号 试验所用设备(材料)数量 序号 试验所用设备(材料)数量 QJ42型单臂、QJ44型双臂电桥或直流电阻测试仪 1套 6 万用表、电压表、电流表 若干 2500—5000V手动或电动兆欧表 1块 7 有载分接开关特性测试仪 1套 试验变压器、调压器、球隙、分压器、水阻等。(6-10KV站变时需要)1套 8 电源线和试验接线、常用工具、干电池 若干 直流发生器、微安表 1套 9 绝缘杆、安全带、安全帽 若干自动介损测试仪或QS1型西林电桥 1套 10 温湿度计 1只
四.安全工作的一般要求
1.必须严格执行DL409-1991《电业安全工作规程》及市公司相关安全规定。
2.现场工作负责人负责测试方案的制定及现场工作协调联络和监督
五.试验项目
1.变压器绕组直流电阻的测量
1.1 试验目的
检查绕组接头的焊接质量和绕组有无匝间短路;分接开关的各个位置接触是否良好以及分接开关的实际位置与指示位置是否相符;引出线有无断裂;多股导线并绕的绕组是否有断股的情况;
1.2该项目适用范围
交接、大修、预试、无载调压变压器改变分接位置后、故障后;
1.3试验时使用的仪器
QJ42型单臂、QJ44型双臂电桥或直流电阻测试仪;
1.4试验方法
1.4.1电流电压表法 电流电压表法有称电压降法。电压降法的测量原理是在被测量绕组中通以直流电流,因而在绕组的电阻上产生电压降,测量出通过绕组的电流及绕组上的电压降,根据欧姆定律,即可计算出绕组的直流电阻,测量接线如图所示。
测量时,应先接通电流回路,待测量回路的电流稳定后再合开关S2,接入电压表。当测量结束,切断电源之前,应先断S2,后断S1,以免感应电动势损坏电压表。测量用仪表准确度应不低于0.5级,电流表应选用内阻小的电压表应尽量选内阻大的4位高精度数字万用表。当试验采用恒流源,数字式万用表内阻又很大时,一般来讲,都可使用图1-1(b)的接线测量。
根据欧姆定律,由式(1-1)即可计算出被测电阻的直流电阻值。
RX=U/I(1-1)
RX——被测电阻(Ω)
U——被测电阻两端电压降(V);
I——通过被测电阻的电流(A)。
电流表的导线应有足够的截面,并应尽量地短,且接触良好,以减小引线和接触电阻带来的测量误差。当测量电感量大的电阻时,要有足够的充电时间。
1.4.2平衡电桥法
应用电桥平衡的原理测量绕组直流电阻的方法成为电桥法。常用的直流电桥有单臂电桥与双臂电桥两种。
单臂电桥常用于测量1Ω以上的电阻,双臂电桥适宜测量准确度要求高的小电阻。
双臂电桥的测量步骤如下:
测量前,首先调节电桥检流计机械零位旋钮,置检流计指针于零位。接通测量仪器电源,具有放大器的检流计应操作调节电桥电气零位旋钮,置检流计指针于零位。
接人被测电阻时,双臂电桥电压端子P1、P2所引出的接线应比由电流端子C1、C2所引出的接线更靠近被测电阻。
测量前首先估计被测电阻的数值,并按估计的电阻值选择电桥的标准电阻RN和适当的倍率进行测量,使“比较臂”可调电阻各档充分被利用,以提高读数的精度。测量时,先接通电流回路,待电流达到稳定值时,接通检流计。调节读数臂阻值使检流计指零。被测电阻按式(1-2)计算
被测电阻=倍率 ×读数臂指示(1-2)
如果需要外接电源,则电源应根据电桥要求选取,一般电压为2~4V,接线不仅要注意极性正确,而且要接牢靠,以免脱落致使电桥不平衡而损坏检流计。
测量结束时,应先断开检流计按钮,再断开电源,以免在测量具有电感的直流电阻时其自感电动势损坏检流计。选择标准电阻时,应尽量使其阻值与被测电阻在同一数量级,最好满足下列关系式(1-2)
0.1RX<RN<10 RX(1-3)
1.4.3微机辅助测量法
计算机辅助测量(数字式直流电阻测量仪)用于直流电阻测量,尤其是测量带有电感的线圈电阻,整个测试过程由单片机控制,自动完成自检、过渡过程判断、数据采集及分析,它与传统的电桥测试方法比较,具有操作简便、测试速度快、消除认为测量误差等优点。
使用的数字式直流电阻测量仪必须满足以下技术要求,才能得到真实可靠的测量值;
(l)恒流源的纹波系数要小于0.1%(电阻负载下测量)。
(2)测量数据要在回路达到稳态时候读取,测量电阻值应在5min内测值变化不大于0.5%。
(3)测量软件要求为近期数据均方根处理,不能用全事件平均处理。
1.5试验结果的分析判断
1.5.1 1.6MVA以上变压器,各相绕组电阻相互的差别不应大于三相平均值的2%,无中性点引出的绕组,线间差别不应大于三相平均值的1%;
1.5.2 1.6MVA以下变压器,相间差别一般不大于三相平均值的4%,线间差别一般不大于三相平均值的2%;
1.5.3 与以前相同部位测得值比较,其变化不应大于2%; 1.5.4 三相电阻不平衡的原因 :分接开关接触不良,焊接不良,三角形连接绕组其中一相断线,套管的导电杆与绕组连接处接触不良,绕组匝间短路,导线断裂及断股等。
1.6 注意事项
1.6.1不同温度下的电阻换算公式:R2=R1(T+t2)/(T+t1)式中R1、R2分别为在温度t1、t2时的电阻值,T为计算用常数,铜导线取235,铝导线取225。
1.6.2 测试应按照仪器或电桥的操作要求进行。
1.6.3 连接导线应有足够的截面,长度相同,接触必须良好(用单臂电桥时应减去引线电阻)。
1.6.4 准确测量绕组的平均温度。
1.6.5 测量应有足够的充电时间,以保证测量准确;变压器容量较大时,可加大充电电流,以缩短充电时间。
1.6.6如电阻相间差在出厂时已超过规定,制造厂已说明了造成偏差的原因,则按标准要求执行。
2.绕组绝缘电阻、吸收比或(和)极化指数及铁芯的绝缘电阻
2.1 试验目的
测量变压器的绝缘电阻,是检查其绝缘状态最简便的辅助方法。测量绝缘电阻、吸收比能有效发现绝缘受潮及局部缺陷,如瓷件破裂,引出线接地等。
2.2该项目适用范围
交接、大修、预试、必要时
2.3试验时使用的仪器
2500—5000V手动或电动兆欧表
2.4试验方法
2.4.1断开被试品的电源,拆除或断开对外的一切连线,并将其接地放电。此项操作应利用绝缘工具(如绝缘棒、绝缘钳等)进行,不得用手直接接触放电导线。
2.4.2用干燥清洁柔软的布擦去被试品表面的污垢,必要时可先用汽油或其他适当的去垢剂洗净套管表面的积污。
2.4.3将兆欧表放置平稳,驱动兆欧表达额定转速,此时兆欧表的指针应指“∞”,再用导线短接兆欧表的“火线”与“地线”端头,其指针应指零(瞬间低速旋转以免损坏兆欧表)。然后将被试品的接地端接于兆欧表的接地端头“E”上,测量端接于兆欧表的火线端头“L”上。如遇被试品表面的泄漏电流较大时,或对重要的被试品,如发电机、变压器等,为避免表面泄漏的影响,必须加以屏蔽。屏蔽线应接在兆欧表的屏蔽端头“G”上。接好线后,火线暂时不接被试品,驱动兆欧表至额定转速,其指针应指“∞”,然后使兆欧表停止转动,将火线接至被试品。
2.4.4驱动兆欧表达额定转速,待指针稳定后,读取绝缘电阻的数值。
2.4.5测量吸收比或极化指数时,先驱动兆欧表达额定转速,待指针指“∞”时,用绝缘工具将火线立即接至被试品上,同时记录时间,分别读取 15S和 60S或 10min时的绝缘电阻值。
2.4.6读取绝缘电阻值后,先断开接至被试品的火线,然后再将兆欧表停止运转,以免被试品的电容在测量时所充的电荷经兆欧表放电而损坏兆欧表,这一点在测试大容量设备时更要注意。此外,也可在火线端至被试品之间串人一只二极管,其正端与兆欧表的火线相接,这样就不必先断开火线,也能有效地保护兆欧表。
2.4.7在湿度较大的条件下进行测量时,可在被试品表面加等电位屏蔽。此时在接线上要注意,被试品上的屏蔽环应接近加压的火线而远离接地部分,减少屏蔽对地的表面泄漏,以免造成兆欧表过载。屏蔽环可用保险丝或软铜线紧缠几圈而成。
2.4.8测得的绝缘电阻值过低时,应进行解体试验,查明绝缘不良部位
2.5试验结果的分析判断
(1)绝缘电阻换算至同一温度下,与前一次测试结果相比应无明显变化;
(2)吸收比(10~30℃范围)不低于1.3或极化指数不低于1.5;
(3)绝缘电阻在耐压后不得低于耐压前的70%;(4)于历年数值比较一般不低于70%。
测量铁芯绝缘电阻的标准:
(1)与以前测试结果相比无显著差别,一般对地绝缘电阻不小于50MΩ;
(2)运行中铁芯接地电流一般不大于0.1A;
(3)夹件引出接地的可单独对夹件进行测量。
2.6注意事项
2.6.1不同温度下的绝缘电阻值一般可按下式换算R2=R1×1.5(t1-t2)/10 R1、R2分别为温度t1、t2时的绝缘电阻。
2.6.2测量时依次测量各线圈对地及线圈间的绝缘电阻,被试线圈引线端短接,非被试线圈引线端短路接地,测量前被试线圈应充分放 电;测量在交流耐压前后进行。
2.6.3变压器应在充油后静置5小时以上,8000kVA以上的应静置20小时以上才能测量。
2.6.4吸收比指在同一次试验中,60S与15S时的绝缘电阻值之比,极化指数指10分钟与1分钟时的绝缘电阻值之比,220kV、120000kVA及以上变压器需测极化指数。
2.6.5测量时应注意套管表面的清洁及温度、湿度的影响。
2.6.6读数后应先断开被试品一端,后停摇兆欧表,最后充分对地放电。
3.绕组的tgδ及其电容量
3.1 试验目的
测量tgδ是一种使用较多而且对判断绝缘较为有效的方法,通过测量tgδ可以反映出绝缘的一系列缺陷,如绝缘受潮、油或浸渍物脏污或劣化变质,绝缘中有气隙发生放电等。
3.2该项目适用范围
交接、大修、预试、必要时。(35KV及以上,10KV容量大于1600KVA)
3.3试验时使用的仪器
自动介损测试仪、QS1型西林电桥
3.4试验方法
3.4.1 QS1型西林电桥
3.4.1.1技术特性
QS1型电桥的额定工作电压为10kV,tgδ测量范围是0.5%~60%,试品电容Cx是30pF~0.4μF(当CN为50pF时)。该电桥的测量误差是:tgδ=0.5%~3%时,绝对误差不大于±0.3%;tgδ=3%一60%时,相对误差不大于±10%。被试品电容量CX的测量误差不大于±5%。如果工作电压高于10kV,通常只能采用正接线法并配用相应电压的标准电容器。电桥也可降低电压使用,但灵敏度下降,这时为了保持灵敏度,可相应增加CN的电容量(例如并联或更换标准电容器)。
3.4.1.2接线方式
1.正接线法。所谓正接线就是正常接线,如图3-1所示。在正接线时,桥体处于低压,操作安全方便。因不受被试品对地寄生电容的影响,测量准确。但这时要求被试品两极均能对地绝缘(如电容式套管、耦合电容器等),由于现场设备外壳几乎都是固定接地的,故正接线的采用受到了一定限制。
2.反接线法。反接线适用于被试品一极接地的情况,故在现场应用较广,如图3-2所示。这时的高、低电压端恰与正接线相反,D点接往高压而C点接地,因而称为反接线。在反接线时,电桥体内各桥臂及部件处于高电位,所以在面板上的各种操作都是通过绝缘柱传动的。此时,被试品高压电极连同引线的对地寄生电容将与被试品电容Cx并联而造成测量误差,尤其是Cx值较小时更为显著。
3、对角接线。当被试品一极接地而电桥又没有足够绝缘强度进行反接线测量时,可采用对角接线,如图3-3所示。在对角接线时,由于试验变压器高压绕组引出线回路与设备对地(包括对低压绕组)的全部寄生电容均与Cx并联,给测量结果带来很大误差。因此要进行两次测量,一次不接被试品,另一次接被试品,然后按式(3-1)计算,以减去寄生电容的影响。
tgδ=(C2 tgδ2-C1 tgδ1)/(C2-C1)(3-1)CX=(C2-C1)(3-2)
式中 tgδ1——未接人被试品时的测得值;
tgδ2——接人被试品后的测得值;
C1——未接人被试品时测得的电容;
C2——接人被试品后测得的电容。
这种接线只有在被试品电容远大于寄生电容时才宜采用。用QSI型电桥作对角线测量时,还需将电桥后背板引线插头座拆开,将D点(即图3-3中E点)的输出线屏蔽与接地线断开,以免E点与地接通将R3短路。此外,在电桥内装有一套低压电源和标准电容器,供低压测量用,通常用来测量压(100V)大容量电容器的特性。当标准电容CN=0.001μF时,试品电容 Cx的范围是300pF~10μF;当CN=0.01μF时,CX的范围是3000pF~100μF。tgδ的测量精度与高压测量法相同,Cx的误差应不大于±5%。
3.4.2数字式自动介损测量仪
数字式介损测量仪的基本原理为矢量电压法。数字式介损型测量仪为一体化设计结构,内置高压试验电源和BR26型标准电容器,能够自动测量电气设备的电容量及介质损耗等参数,并具备先进的于扰自动抑制功能,即使在强烈电磁干扰环境下也能进行精确测量。电通过软件设置,能自动施加 10、5kV或2kV测试电压,并具有完善的安全防护措施。能由外接调压器供电,可实现试验电压在l~10kV范围内的任意调节。当现场干扰特别严重时,可配置45~60HZ异频调压电源,使其能在强电场干扰下准确测量。
数字式自动介损测量仪为一体化设计结构,使用时把试验电源输出端用专用高压双屏蔽电缆 滞插头及接线挂钩)与试品的高电位端相连、把测量输人端(分为“不接地试品” 和“接地试品”两个输人端)用专用低压屏蔽电缆与试品的低电位端相连,即可实现对不接地试品或接地试品(以及具有保护的接地试品)的电容量及介质损耗值进行测量。
在测量接地试品时,接线原理见图3-4(b),它与常用的闭型电桥反接测量方式有所不同,现以单相双绕组变压器(如图3-5所示)为例,说明具体的接线方式。
测量高压绕组对低压绕组的电容CH-L时,按照图3-5(a)所示方式连接试验回路,低压测量信号IX应与测试仪的“不接地试品”输入端相连,即相当于使用QS1型电桥的正接测试方式。
测量高压绕组对低压绕组及地的电容CH-L+CH-G时,应按照图3-5(b)所示方式连接试验回路,低压测量信号Ix应与测试仪的“接地试品”输人端相连,即相当于使用QS1型电桥的反接测试方式。
测试标准当仅测量高压绕组对地之间的电容CH-G时,按照图3-5(c)所示方式连接试验回路,低压测量信号Ix应与测试仪的“接地试品”输人端相连,并把低压绕组短路后与测量电缆所提供的屏蔽E端相连,即相当于使用QSI型电桥的反接测试方式。
3.5试验结果的分析判断
(1)20℃时tgδ不大于下列数值:
330-500kV 0.6%
66-220kV 0.8% 35kV及以下1.5%
(2)tgδ值于历年的数值比较不应有显著变化(一般不大于30%)
(3)试验电压如下:
绕组电压10kV及以上 10kV 绕组电压10kV以下 Un
(4)用M型试验器时试验电压自行规定
3.6注意事项
3.6.1采用反接法测量,加压10kV,非被试线圈短路接地。
3.6.2测量按试验时使用的仪器的有关操作要求进行。
3.6.3应采取适当的措施消除电场及磁场干扰,如屏蔽法、倒相法、移相法。3.6.4非被试绕组应接地或屏蔽。
3.6.5测量温度以顶层油温为准,尽量使每次测量的温度相近。
值一般可按下式换算d3.6.6尽量在油温低于50℃时测量,不同温度下的tg d =tgdtg
值d 分别为温度 的tgd、tgd式中tg
4.交流耐压
4.1试验目的
工频交流(以下简称交流)耐压试验是考验被试品绝缘承受各种过电压能力的有效方法,对保证设备安全运行具有重要意义。交流耐压试验的电压、波形、频率和在被试品绝缘内部电压的分布,均符合在交流电压下运行时的实际情况,因此,能真实有效地发现绝缘缺陷。
4.2该项目适用范围
交接、大修、更换绕组后、必要时、6-10kV站用变2年一次4.3试验时使用的仪器
试验变压器、调压器、球隙、分压器、水阻等。
4.4试验方法
4.4.1试验变压器耐压的原理接线
交流耐压试验的接线,应按被试品的要求(电压、容量)和现有试验设备条件来决定。通常试验时采用是成套设备(包括控制及调压设备),现场常对控制回路加以简化,例如采用图4-1所示的试验电路。试验回路中的熔断器、电磁开关和过流继电器,都是为保证在试验回路发生短路和被试品击穿时,能迅速可靠地切断试验电源;电压互感器是用来测量被试品上的电压;毫安表和电压表用以测量及监视试验过程中的电流和电压。进行交流耐压的被试品,一般为容性负荷,当被试品的电容量较大时,电容电流在试验变压器的漏抗上就会产生较大的压降。由于被试品上的电压与试验变压器漏抗上的电压相位相反,有可能因电容电压升高而使被试品上的电压比试验变压器的输出电压还高,因此要求在被试品上直接测量电压。
此外,由于被试品的容抗与试验变压器的漏抗是串联的,因而当回路的自振频率与电源基波或其高次谐波频率相同而产生串联谐振时,在被试品上就会产生比电源电压高得多的过电压。通常调压器与试验变压器的漏抗不大,而被试品的容抗很大,所以一般不会产生串联谐振过电压。但在试验大容量的被试品时,若谐振频率为 50HZ,应满足(CX<3184/XL(μF)XC >XL,XL是调压器和试验变压器的漏抗之和。为避免3次谐波谐振,可在试验变压器低压绕组上并联LC串联回路或采用线电压。当被试品闪络击穿时,也会由于试验变压器绕组内部的电磁振荡,在试验变压器的匝间或层间产生过电压。因此,要求在试验回路内串人保护电阻R1将过电流限制在试验变压器与被试品允许的范围内。但保护电阻不宜选得过大,太大了会由于负载电流而产生较大的压降和损耗;R1的另一作用是在被试品击穿时,防止试验变压器高压侧产生过大的电动力。Rl按0.1~0.5Ω/V选取(对于大容量的被试品可适当选小些)。
4.5试验结果的分析判断
4.5.1油浸变压器(电抗器)试验电压值按试验规程执行;
4.5.2干式变压器全部更换绕组时,按出厂试验电压值;部分更换绕组和定期试验时,按出厂试验电压值的0.85倍。
4.5.3被试设备一般经过交流耐压试验,在规定的持续时间内不发生击穿,耐压前后绝缘电阻不降低30%,取耐压前后油样做色谱分析正常,则认为合格;反之,则认为不合格。
4.5.3在试验过程中,若空气湿度、温度或表面脏污等的影响,仅引起表面滑闪放电或空气放电,应经过清洁和干燥等处理后重新试验;如由于瓷件表面铀层损伤或老化等引起放电(如加压后表面出现局部红火),则认为不合格。
4.5.4电流表指示突然上升或下降,有可能是变压器被击穿。4.5.5在升压阶段或持续时间阶段,如发生清脆响亮的“当、当”放电声音,象用金属物撞击油箱的声音,这是由于油隙距离不够或是电场畸变引起绝缘结构击穿,此时伴有放电声,电流表指示发生突变。当重复进行试验时,放电电压下降不明显。如有较小的“当、当”放电声音,表计摆动不大,在重复试验时放电现象消失,往往是由于油中有气泡。
4.5.6如变压器内部有炒豆般的放电声,而电流表指示稳定,这可能是由于悬浮的金属件对地放电
4.6注意事项
4.6.1此项试验属破坏性试验,必须在其它绝缘试验完成后进行。
4.6.2变压器应充满合格的绝缘油,并静置一定时间,500KV变压器应大于72h,220 KV变压器应大于48h,110KV变压器应大于24h,才能进行试验。
4.6.3接线必须正确,加压前应仔细进行检查,保持足够的安全距离,非被试线圈需短路接地,并接入保护电阻和球隙,调压器回零。
4.6.4升压必须从零开始,升压速度在40%试验电压内不受限制,其后应按每秒3%的试验电压均匀升压。
4.6.5试验可根据试验回路的电流表、电压表的突然变化,控制回路过流继电器的动作,被试品放电或击穿的声音进行判断。
4.6.6交流耐压前后应测量绝缘电阻和吸收比,两次测量结果不应有明显差别。
4.6.7如试验中发生放电或击穿时,应立即降压,查明故障部位。
5.绕组泄漏电流
5.1试验目的
直流泄漏试验的电压一般那比兆欧表电压高,并可任意调节,因而它比兆欧表发现缺陷的有效性高,能灵敏地反映瓷质绝缘的裂纹、夹层绝缘的内部受潮及局部松散断裂绝缘油劣化、绝缘的沿面炭化等。
5.2该项目适用范围
交接、大修、预试、必要时(35KV及以上,不含35/0.4KV变压器)
5.3试验时使用的仪器
试验变压器或直流发生器、微安表
5.4试验方法
试验回路一般是由自耦调压器、试验变压器、高压二极管和测量表计组成半波整流试验接线,根据微安表在试验回路中所处的位置不同,可分为两种基本接线方式,现分述如下。
5.4.1微安表接在高压侧
微安表接在高压侧的试验原理接线,如图5-1所示。
由图5-1可见,试验变压器TT的高压端接至高压二极管V(硅堆)的负极由于空气中负极性电压下击穿场强较高,为防止外绝缘闪络,因此直流试验常用负极性输出。由于二极管的单向导电性,在其正极就有负极性的直流高压输出。选择硅堆的反
峰电压时应有20%的裕度;如用多个硅堆串联时,应并联均压电阻,电阻值可选约1000MΩ。为减小直流电压的脉动。在被试品CX上并联滤波电容器C,电容值一般不小于0.1μF。对于电容量较大的被试品,如发电机、电缆等可以不加稳压电容。半波整流时,试验回路产生的直流电压为:
Ud= U2-Id/(2cf)
Ud¬—直流电压(平均值,V);
C—滤波电容(C);
f—电源频率(HZ)Id—整流回路输出直流电流(A)
当回路不接负载时,直流输出电压即为变压器二次输出电压的峰值。因此,现场试验选择试验变压器的电压时,应考虑到负载压降,并给高压试验变压器输出电压留一定裕度。
这种接线的特点是微安表处于高压端,不受高压对地杂散电流的影响,测量的泄漏电流较准确。但微安表及从微安表至被试品的引线应加屏蔽。由于微安表处于高压,故给读数及切换量程带来不便。
5.4.2微安表接在低压侧
微安表接在低压侧的接线图如图5-2所示。这种接线微安表处在低电位,具有读数安全、切换量程方便的优点。
当被试品的接地端能与地分开时,宜采用图5-2(a)的接线。若不能分开,则采用5-2(b)的接线,由于这种接线的高压引线对地的杂散电流I’将流经微安表,从而使测量结果偏大,其误差随周围环境、气候和试验变压器的绝缘状况而异。所以,一般情况下,应尽可能采用图5-2(a)的接线。
5.5试验结果的分析判断
5.5.1试验电压见试验规程
5.5.2与前一次测试结果相比应无明显变化
5.5.3泄漏电流最大容许值试验规程
5.6注意事项
5.6.1 35KV及以上的变压器(不含35/0.4KV的配变)必须进行,读取1分钟时的泄漏电流。
5.6.2试验时的加压部位与测量绝缘电阻相同,应注意套管表面的清洁及温度、湿度对测量结果的影响。
5.6.3对测量结果进行分析判断时,主要是与同类型变压器、各线圈相互比较,不应有明显变化。
5.6.4微安表接于高压侧时,绝缘支柱应牢固可靠、防止摇摆倾倒。
5.6.5试验设备的布置要紧凑、连接线要短,宜用屏蔽导线,既要安全又便于操作;对地要有足够的距离,接地线应牢固可靠。
5.6.6应将被试品表面擦拭于净,并加屏蔽,以消除被试品表面脏污带来的测量误差。
5.6.7能分相试的被试品应分相试验,非试验相应短路接地。
5.6.8试验电容量小的被试品应加稳压电容。
5.6.9试验结束后,应对被试品进行充分放电。
5.6.10泄漏电流过大,应先检查试验回路各设备状况和屏蔽是否良好,在排除外因之后,才能对被试品作出正确的结论。
5.6.11泄漏电流过小,应检查接线是否正确,微安表保护部分有无分流与断线。
5.6.12高压连接导线对地泄漏电流的影响
由于与被试品连接的导线通常暴露在空气中(不加屏蔽时),被试品的加压端也暴露在外,所以周围空气有可能发生游离,产生对地的泄漏电流,尤其在海拔高、空气稀薄的地方更容易发生游离,这种对地泄漏电流将影响测量的准确度。用增加导线直径、减少尖端或加防晕罩、缩短导线、增加对地距离等措施,可减少对测量结果的影响。
5.6.13空气湿度对表面泄漏电流的影响
当空气湿度大时,表面泄漏电流远大于体积泄漏电流,被试品表面脏污易于吸潮使表面泄漏电流增加,所以必须擦净表面,并应用屏蔽电极。
6.空载电流、空载损耗
6.1试验目的检查变压器磁路
6.2该项目适用范围
交接时、更换绕组后、必要时
6.3试验时使用的仪器
调压器、升压变压器、电流互感器、电压互感器、电流表、电压表、瓦特表等
6.4试验方法
6.4.1额定条件下的试验
试验采用图6-1到6-3的接线。所用仪表的准确度等级不低于0.5级,并采用低功率因数功率表(当用双功率表法测量时,也允许采用普通功率表)。互感器的准确度应不低于0.2级。
根据试验条件,在试品的一侧(通常是低压侧)施加额定电压,其余各侧开路,运行中处于地电位的线端和外壳都应妥善接地。空载电流应取三相电流的平均值,并换算为额定电流的百分数,即
I0%=[(I0A+I0B+ I0C)/3 In]×%(6-1)
式中I0A、I0B、I0C——三相实测的电流;In——试验加压线圈的额定电流
试验所加电压应该是实际对称的,即负序分量值不大于正序值的5%;试验应在额定电压、额定频率和正弦波电压的条件下进行。但现场实际上难以满足这些条件,因而要尽可能进行校正,校正方法如下:
(一)试验电压
变压器的铁损耗可认为与负载大小无关,即空载时的损耗等于负载时的铁芯损耗,但这是额定电压时的情况。如电压偏离额定值,空载损耗和空载电流都会急剧变化。这是因为变压器铁芯中的磁感应强度取在磁化曲线的饱和段,当所加电压偏离额定电压时,空载电流和空载损耗将非线性地显著增大或减少,这中间的相互关系只能由试验来确定。由于试验电源多取自电网,如果电压不好调,则应将分接开关接头置于与试验电压相应的位置试验,并尽可能在额定电压附近选做几点,例如改变供电变压器的分接开关位置,再将各电压下测得的P0和I0作出曲线,从而查出相应的额定电压下的数值。如在小于额定电压,但不低于90%额定电压值的情况下试验,可用外推法确定额定电压下的数值,即在半对数坐标纸上录制I0、P0、与U的关系曲线,并近似地假定I0、P0是U的指数函数,因而曲线是一条直线,可延长直线求得UN;下的I0、P0。应指出,这一方法会有相当误差,因为指数函数的关系并不符合实际。
(二)试验电源频率
变压器可在与额定频率相差±5%的情况下进行试验,此时施加于变压器的电压应为
U1=UN×(f1/ fN)= UN×(f1/ 50)(6-2)
f1——试验电源频率;fN——额定频率,即50HZ U1——试验电源电压; UN——额定电压
由于在f1下所测的空载电流I1接近于额定频率下的I0,所以这样测得的空载电流无须校正时,空载损耗按照下式换算
P0=P1(60/ f1-0.2)(6-3)
P1——在频率为f1、电压为U1时测得的空载损耗。
6.4.2低电压下的试验
低电压下测量空载损耗,在制造和运行部门主要用于铁芯装配过程中的检查,以及事故和大修后的检查试验。主要目的是:检查绕组有无金属性匝间短路;并联支路的匝数是否相同;线圈和分接开关的接线有无错误;磁路中铁芯片间绝缘不良等缺陷。试验时所加电压,通常选择在5%~10%额定电压范围内。低电压下的空载试验,必须计及仪表损耗对测量结果的影响,而且测得数据主要用于相互比较,换算到额定电压时误差较大,可按照下式换算
P0=P1(UN/ U1)n(6-4)
式中U1——试验时所加电压;Un——绕组额定电压;
P1——电压为 U’时测得的空载损耗;P0——相当于额定电压下的空载损耗;
n——指数,数值决定于铁芯硅钢片种类,热轧的取1.8,冷轧的取1.9~2。
对于一般配电变压器或容量在3200kVA以下的电力变压器,对值可由图6-4查出。
6.4.3三相变压器分相试验
经过三相空载试验后,如发现损耗超过国家标准时,应分别测量单相损耗,通过对各相空载损耗的分析比较,观察空载损耗在各相的分布情况,以检查各相绕组或磁路甲有无局部缺陷。事故和大修后的检查试验,也可用分相试验方法。进行三相变压器分相试验的基本方法,就是将三相变压器当作三台单相变压器,轮换加压,也就是依次将变压器的一相绕组短路,其他两相绕组施加电压,测量空载损耗和空载电流。短路的目的是使该相无磁通,因而无损耗,现叙述如下。
(一)加压绕组为三角形连接(a-y,b-z,c-x)
采用单相电源,依次在ab、bc、ca相加压,非加压绕组依次短路(即bc、ca、ab),分相试验接线如图6-5所示。加于变压器绕组上的电压应为线电压,测得的损耗按照下式计算
P0=(P0ab+P0bc+ P0ca)/2(6-5)
P0ab、P0bc、P0ca——ab、bc、ca三次测得的损耗。空载电流按下式计算
I0=[0.289(I0ab+I0bc+ I0ca)]/IN×100%(6-6)
(二)加压绕组为星形连接
依次在ab、bc、ca相加压,非加压绕组应短路,如图6-6所示。若无法对加压绕组短路时,则必须将二次绕组的相应相短路,如图6-7所示,施加电压U为二倍相电压,即U=2UL/,式中UL为线电压。
测量的损耗仍然按照式(6-5)进行计算,空载电流百分数为
I0=[0.333(I0ab+I0bc+ I0ca)]/IN×100%(6-7)
由于现场条件所限,当试验电压达不到上述要求2UL/,低电压下测量的损耗如需换算到额定电压,可按照式(6-4)换算。
分相测量的结果按下述原则判断:
(1)由于ab相与bc相的磁路完全对称,因此所测得ab相和 bc相的损耗P0ab和P0bc应相等,偏差一般应不超过3%;
(2)由于ac相的磁路要比ab相或bc相的磁路长,故由ac相测得的损耗应较ab或bc相大。电压为 35~60kV级变压器一般为20%~30%;110~220kV级变压器一般为30%~40%。
如测得结果大于这些数值时,则可能是变压器有局部缺陷,例如铁芯故障将使相应相激磁损耗增加。同理,如短路某相时测得其他两相损耗都小,则该被短路相即为故障相。这种分相测量损耗判断故障的方法,称为比较法。
6.5试验结果的分析判断
与出厂值相比应该无明显变化
6.6注意事项
①空载试验采用从零升压进行,在低压侧加压,高(中)压侧开路,中性点接地,测量采用两瓦法或三瓦法。
②此试验在常规试验全部合格后进行,将分接开关置额定档,通电前应对变压器本体及套管放气。
③试验应设置紧急跳闸装置。
④计算平均电流 I平均=(IA+IB+IC)/3
空载电流I0= I平均/IN×100% 空载损耗P0=P1+ P2(+P3)
7.绕组所有分接的电压比
7.1试验目的
检查变压器绕组匝数比的正确性;检查分接开关的状况;变压器故障后,测量电压比来检查变压器是否存在匝间短路;判断变压器是否可以并列运行。
7.2该项目适用范围 交接时、分接开关引线拆装后、更换绕组后、必要时
7.3试验时使用的仪器
QJ35型变比电桥或变比测试仪
7.4试验方法
7.4.1用双电压表法测量电压比
7.4.1.1直接双电压表法
在变压器的一侧施加电压,并用电压表在一次、二次绕组两侧测量电压(线电压或用相电压换算成线电压),两侧线电压之比即为所测电压比。
测量电压比时要求电源电压稳定,必要时需加稳压装置,二次侧电压表引线应尽量短,且接触良好,以免引起误差。测量用电压表准确度应不低于0.5级,一次、二次侧电压必须同时读数。
7.4.1.2电压互感器的双电压表法
在被试变压器的额定电压下测量电压比时,一般没有较准确的高压交流电压表,必须经电压互感器来测量。所使用的电压表准确度不低于0.5级,电压互感器准确度应为0.2级,其试验接线如图7-1所示。其中,图7-1(b)为用两台单相电压互感器组成的V形接线,此时,互感器必须极性相同。当大型电力变压器瞬时全压励磁时,可能在变压器中产生涌流,因而在二次侧产生过电压,所以测量用的电压表在充电的瞬间必须是断开状态。为了避免涌流可能产生的过电压,可以用发电机调压,这在发电厂容易实现,而变电所则只有利用变压器新投人运行或大修后的冲击合闸试验时一并进行。对于 110/10kV的高压变压器,如在低压侧用 380V励磁,高压侧需用电压互感器测量电压。电压互感器的准确度应比电压表高一级,电压表为0.5级,电压互感器应为0.2级。7.4.2变比电桥测量变压比
利用变比电桥能够很方便的测量出被试变压器的变压比。变比电桥的测量原理图如图7-1所示,只需要在被试变压器的一次侧加电压U1,则在变压器的二次侧感应出电压U2,调整电阻R1,使检流计指零,然后通过简单的计算求出电压比K。
测量电压比的计算公式为
K= U1/ U2=(R1+ R2)/ R2=1+R1/ R2
QJ35型变比电桥,测量电压比范围为1.02—111.12,准确度为±0.2%,完全可以满足我国电力系统测量变压比的要求。
7.4.3自动变比测试仪
按照仪器的需要,输入相关参数,按接线图和操作步骤,测出每个分接位置的变压比
7.5试验结果的分析判断
(1)各相引接头的电压比与铭牌值相比,不应有显著差别,且符合规律;
(2)电压35kV以下,电压比小于3的变压器电压比允许偏差为±1%;其他所有变压器:额定分接电压比允许偏差±0.5%,其他分接的电压比允许偏差应在变压器阻抗电压值(%)的1/10以内,但不得超过±1%。7.6注意事项
仪器的操作要求进行,首先计算额定变比,然后加压测量实际变比与额定变的误差。
8.校核三相变压器的组别和单相变压器的极性
8.1试验目的
由于变压器的绕组在一次、二次间存在着极性关系,当几个绕组互相连接组合时,无论接成串联或并联,都必须知道极性才能正确进行。
变压器接线组别是并列运行的重要条件之一,若参加并列运行的变压器接线组别不一致,将出现不能允许的环流。
8.2该项目适用范围
交接时、更换绕组后、内部接线变动后
8.3试验时使用的仪器
万用表或直流毫伏表、电压表、相位表 8.4试验方法
8.4.1极性校核试验方法
8.4.1.1直流法
如图8-1所示,将1.5~3V直流电池经开关S接在变压器的高压端子A、X上,在变压器二次绕组端子上连接一个直流毫伏表(或微安表、万用表)。注意,要将电池和表计的同极性端接往绕组的同名端。例如电池正极接绕组A端子,表计正端要相应地接到二次a端子上。测量时要细心观察表计指针偏转方向,当合上开关瞬间指针向右偏(正方向),而拉开开关瞬间指针向左偏时,则变压器是减极性。若偏转方向与上述方向相反,则变压器就是加极性。试验时应反复操作几次,以免误判断。在开、关的瞬间,不可触及绕组端头,以防触电。
8.4.1.2交流法
如图8-2所示,将变压器的一次的A端子与二次的a端子用导线连接。在高压侧加交流电压,测量加入的电压UAX和低压侧电压Uax与未连接的一对同名端子间的电压UXx。如果UXx=UAX-Uax,则变压器为减极性,若UXx=UAX+Uax,则变压器为加极性。
交流法比直流法可靠,但在电压比较大的情况下(K > 20),交流法很难得到明显的结果,因为(UAX-Uax)与(UXx=UAX+Uax)的差别很小。这时可以从变压器的低压侧加压,使减极性和加极性之间的差别增大。如图8-2(b)所示,一台220/10kV变压器,其变比K=22。若在10kV侧加压20V,则
UXx=440-20(V)为减极性
或 UXx=440+20(V)为加极性 一般电压表的最大测量范围为 0~600V,而且差值为 440土 2(V)时分辨明显,完全可以满足要求。8.4.2组别试验方法
8.4.2.1直流法
如图8-3所示,用一低压直流电源,(通常用两节1.5V干电池串联)轮流加入变压器的高压侧AB、BC、CA端子,并相应记录接在低压端子ab、bc、ca上仪表指针的指示方向及最大数值。测量时应注意电池和仪表的极性,例如,AB端子接电池,A接正,B接负。表针也是一样的,a接正,b接负,图8-3是对接线组别为Y,y0的变压器进行的九次测量的情况。图中正负号表示的是:高压侧电源开关合上瞬间的低压表计指示的数值和方向的正负;如是分闸瞬间,符号均应相反。
8.4.2.2双电压表法
连接变压器的高压侧A端与低压侧a端,在变压器的高压侧通入适当的低压电源,如图8-4所示。测量电压UBb、、UBc、UCb,并测量两侧的线电压UAB、UBC、UCA和Uab、Ubc、Uca。根据测量出的电压值,可以来判断组别。
8.4.2.3相位表法
相位表法就是利用相位表可直接测量出高压与低压线电压间的相位角,从而来判定组别,所以又叫直接法。
如图8-4所示,将相让表的电压线圈接于高压,其电流线圈经一可变电阻接人低压的对应端子上。当高压通人三相交流电压时,在低压感应出一个一定相位的电压,由于接的是电阻性负载,所以低压侧电流与电压同相。因此,测得的高压侧电压对低压侧电流的相位就是高压侧电压对低压侧电压的相位。
8.5试验结果的分析判断
与铭牌和端子标志相符合。
8.6注意事项
8.6.1 测量极性可用直流法或交流法,试验时反复操作几次,以免误判断,在开、关的瞬间,不可触及绕组端头,以防触电。
8.6.2接线组别可用直流法、双电压表法及相位表法三种,对于三绕组变压器,一般分两次测定,每次测定一对绕组。
8.6.3直流法测量时应注意电池和仪表的极性,最好能采用中间指零的仪表,操作时要先接通测量回路,再接同电源回路,读数后要先断开电源回路,后断开测量回路表计。
8.6.4双电压表法试验时要注意三相电压的不平衡度不超过 2%,电压表宜采用0.5级的表。
8.6.5相位表法对单相变压器要供给单相电源,对三相变压器要供给三相电源,接线时要注意相位表两线圈的极性。
8.6.6在被试变压器的高压侧供给相位表规定的电压一般相位表有几档电压量程,电压比大的变压器用高电压量程,电压比小的用低电压量程。可变电阻的数值要调节适当,即使电流线圈中的电流值不超过额定值,也不得低于额定值的20%;
8.6.7必要时,可在试验前,用已知接线组的变压器核对相位表的正确性。
9.局部放电测量
9.1 试验目的
测试电气设备的局部放电特性是目前预防电气设备故障的一种好方法。
9.2 该项目适用范围
交接时、大修后、必要时
9.3 试验时使用的仪器
倍频电源车、补偿电抗,局部放电测量系统
9.4 试验方法
9.4.1局部放电试验前对试品的要求
a.本试验在所有高压绝缘试验之后进行,必要时可在耐压试验前后各进行一次,以资比较。
b.试品的表面应清洁干燥,试品在试验前不应受机械、热的作用。
c.油浸绝缘的试品经长途运输颠簸或注油工序之后通常应静止48h后,方能进行试验。
d.测定回路的背景噪声水平。背景噪声水平应低于试品允许放电量的50%,当试品允许放电量较低(如小于10PC)时,则背景噪声水平可以允许到试品允许放电量的100%。现场试验时,如以上条件达不到,可以允许有较大干扰,但不得影响测量读数。
9.4.2试验基本接线
变压器局部放电试验的基本原理接线,如图9-1所示
利用变压器套管电容作为耦合电容Ck,并且在其末屏端子对地串接测量阻抗Zm。
9.4.3试验电源
试验电源一般采用50 HZ的倍频或其它合适的频率。三相变压器可三相励磁,也可单相励磁。
9.4.4现场试验电源与试验方法
现场试验的理想电源,是采用电动机一发电机组产生的中频电源,三相电源变压器开口三角接线产生的150HZ电源,或其它形式产生的中频电源。试验电压与允许放电量应同制造厂协商。若无合适的中频或150HZ电源,而又认为确有必要进行局部放电试验,则可采用降低电压的现场试验方法。其试验电压可根据实际情况尽可能高,持续时间和允许局部放电水平不作规定。降低电压试验法,不易激发变压器绝缘的局部放电缺陷。但经验表明,当变压器绝缘内部存在较严重的局部放电时,通过这种试验是能得出正确结果的。
9.4.5现场试验工频降低电压的试验方法
工频降低电压的试验方法有三相励磁、单相励磁和各种形式的电压支撑法。现推荐下述两种方法。9.4.5.1单相励磁法
单相励磁法,利用套管作为耦合电容器Ck,其接线如图9-2所示。这种方法较为符合变压器的实际运行状况。图9-2同时给出了双绕组变压器各铁芯的磁通分布及电压相量图(三绕组变压器的中压绕组情况相同)。
由于C相(或A相)单独励磁时,各柱磁通分布不均,A、B、C(或AM、BM、CM)
感应的电压又服从于E=4.44fWφ规律,因此,根据变压器的不同结构,当对C相励磁的感应电压为Uc时B相的感应电压约为0.7Uc,A相的感应电压约为0.3Uc(若A相励磁时,则结果相反)。
当试验电压为U时,各相间电压为
UCB=1.7U;UCA=1.3U
当A相单独励磁时,各相间电压为
UBA=1.7U;UAC=1.3U
当B相单独励磁时,三相电压和相间电压为
UA=UC=(1/2)UB UBA=UBC=1.5U
单相电源可由电厂小发电机组单独供给,或以供电网络单独供给。选用合适的送电网络,如经供电变压器、电缆送至试品,对于抑制发电机侧的干扰十分有效。变电所的变压器试验,则可选合适容量的调压器和升压变压器。根据实际干扰水平,再选择相应的滤波器。
9.4.5.2中性点支撑法
将一定电压支撑于被试变压器的中性点(支撑电压的幅值不应超过被试变压器中性点耐受长时间工频电压的绝缘水平),以提高线端的试验电压称为中性点支撑法。支撑方法有多种,便于现场接线的支撑法,如图9-3所示。
图9-3(b)的试验方法中,A相统组的感应电压Ui为2倍的支撑电压 U0,则A相线端对地电压UA为绕组的感应电压Ui与支撑电压U0的和,即
UA=3U0
这就提高了A相统组的线端试验电压.根据试验电压的要求,应适当选择放电量小的支撑变压器的容量和电压等级,并进行必要的电容补偿。
9.5试验结果的分析判断
国家标准GB 1094—85(电力变压器)中规定的变压器局部放电试验的加压时间步骤,如图9-4所示。其试验步骤为:首先试验电压升到U2下进行
测量,保持5min;然后试验电压升到U1,保持5S; 最后电压降到U2下再进行测量,保持 30min。
U1、U2的电压值规定及允许的放电量为
U1= UM/ = UM;
U2=1.5 UM/ 电压下允许放电量Q<500pC 或U2=1.3 UM/ 电压下允许放电量Q<300pC 式中:UM——设备最高工作电压。
试验前,记录所有测量电路上的背景噪声水平,其值应低于规定的视在放电量的50%。
测量应在所有分级绝缘绕组的线端进行。对于自耦连接的一对较高电压、较低电压绕组的线端,也应同时测量,并分别用校准方波进行校准。在电压升至U2及由U2再下降的过程中,应记下起始、熄灭放电电压。在整个试验时间内应连续观察放电波形,并按一定的时间间隔记录放电量Q。放电量的读取,以相对稳定的最高重复脉冲为准,偶尔发生的较高的脉冲可忽略,但应作好记录备查。
整个试验期间试品不发生击穿;在U2的第二阶段的 30 m i n内,所有测量端子测得的放电量Q连续地维持在允许的限值内,并无明显地、不断地向允许的限值内增长的趋势,则试品合格。
如果放电量曾超出允许限在 但之后又下降并低于允许的限值,则试验应继续进行,直到此后30min的期间内局部放电量不超过允许的限值,试品才合格。
9.6注意事项
9.6.1干扰的主要形式如下:
(1)来自电源的干扰;
(2)来自接地系统的干扰;
(3)从别的高压试验或者电磁辐射检测到的干扰;
(4)试验线路的放电;
(5)由于试验线路或样品内的接触不良引起的接触噪声。
9.6.2对以上这些干扰的抑制方法如下:
(1)来自电源的于扰可以在电源中用滤波器加以抑制。这种滤波器应能抑制处于检测
仪的频宽的所有频率,但能让低频率试验电压通过。
(2)来自接地系统的干扰,可以通过单独的连接,把试验电路接到适当的接地点来消
除。
(3)来自外部的干扰源,如高压试验、附近的开关操作、无线电发射等引起的静电或
磁感应以及电磁辐射,均能被放电试验线路耦合引人,并误认为是放电脉冲。如果这些干
扰信号源不能被消除,就要对试验线路加以屏蔽。需要有一个设计良好的薄金属皮、金属 板或铁丝钢的屏蔽。有时样品的金属外壳要用作屏蔽。有条件的可修建屏蔽试验室。
(4)试验电压会引起的外部放电。假使试区内接地不良或悬浮的部分被试验电压充
电,就能发生放电,这可通过波形判断与内部放电区别开。超声波检测仪可用来对这种放
电定位。试验时应保证所有试品及仪器接地可靠,设备接地点不能有生锈或漆膜,接地连
接应用螺钉压紧。
(5)对试验电路内的放电,如高压试验变压器中自身的放电,可由大多数放电检测仪检测到。在这些情况中,需要具备一台无放电的试验变压器。否则用平衡检测装置或者可以在高压线路内插入一个滤波器,以便抑制来自变压器的放电脉冲。
9.6.3如果高压引线设计不当,在引线上的尖端电场集中处会出现电晕放电,因此这些引线要由光滑的圆柱形或者直径足够大的蛇形管构成,以预防在试验电压下产生电晕。采用环状结构时圆柱形的高压引线可不必设专门的终端结构。采用平衡检测装置或者在高压线终端安装滤波器,可以抑制高压引线上小的放电。滤波器的外壳应光滑、圆整,以防止滤波器本身产生电晕。
10.变压器绕组变形测试
10.1 试验目的
确定变压器绕组是否发生变形,保证变压器的安全运行
10.2 该项目适用范围
交接时、出口短路后
10.3 试验时使用的仪器
TDT型变压器绕组变形测试系统
10.4 测试方法
10.4.1变压器绕组变形后频响特性曲线变化情况分析
频率响应法是一种先进的测试方法,它主要对绕组的频响特性曲线进行测试,进行前后或相间比较来判断绕组是否发生了机械变形。
变压器绕组变形的种类很多,但大体上可分为:整体变形和局部变形。如果变压器在运输过程或安装过程中发生了碰撞,变压器绕组就可能发生整体位移,这种变形一般整体完好,只是变压器绕组之间发生了相对位移,这种情况下,线圈对地电容C会发生改变,但线圈的电感量和饼间电容并不会发生变化,频响特性曲线各谐振峰值都对应存在,但谐振点会发生平移。线圈在运行中,出现固定压板松动、垫块失落等情况时或由于绕组间安匝不平衡,可能会出现高度尺寸上的拉伸,线圈在高度上的增加,将使线圈的总电感减小,同时线饼间的电容减小,在对应的频响特性曲线上,变形相曲线将出现第一个谐振峰值向高频方向偏移,同时伴随着幅值下降,而中高频部分的曲线与正常相的频响特性曲线相同。线圈在运行中,由于漏磁的作用,线圈在端部所受到的轴向作用力最大,可能使线圈出现高度上的压缩,线圈的总电感增加,线饼间的电容增加,在对应的频响特性曲线上,变形相曲线将出现第一个谐振峰值向低频方向偏移,同时伴随着幅值升高,而中高频部分的曲线与正常相的频响特性曲线相同。变压器在发生出口短路后,一般只是发生局部变形,如出现局部压缩或拉开变形、扭曲、幅相变形(向内收缩和鼓爆)、引线位移、匝间短路、线圈断股、存在金属异物等情况。如果变压器出现事故,则这几种情况可能同时存在。当线圈两端被压紧时,由于电磁力的作用,个别垫块可能被挤出,造成部分线饼被压紧,部分线饼被拉开,纵向电容发生变化,部分谐振峰值向高频方向移动,部分谐振峰值向低频方向移动。变压器绕组发生匝间短路后,由于线圈电感明显下降,低频段的频响特性曲线会向高频方向偏移,线圈对信号的阻碍大大减小,频响曲线将向衰减减小的方向移动,一般说来也可以通过测量变压比(有时候不一定能够测出变压比)来判断绕组是否发生匝间短路。线圈断股时,线圈的整体电感将略有增大,对应到频谱图,其低频段的谐振点将向低频方向略有移动,而中高频的频响曲线与正常曲线的图谱重合。在发生断股和匝间短路后,一般会有金属异物产生,虽然金属异物对低频总电感影响不大,但饼间电容将增大,频谱曲线的低频部分谐振峰值将向低频方向移动,中高频部分曲线的幅值将有所升高。当变压器绕组的引线发生位移时,不会影响线圈电感,频响特性曲线在低频段应重合,只是在中、高频部分的曲线会发生改变,主要是衰减幅值方面的变化,引线向外壳方向移动则幅值向衰减增大的方向移动,引线向线圈靠拢则曲线向衰减较小的方向移动。在电动力作用下,在线圈两段受到压迫时,线圈向两端顶出,线圈被迫从中部变形,如果变压器的装配间隙较大或有撑条受迫移位,线圈可能会发生轴向扭曲,由于这种变形使部分饼间电容和部分对地电容减小,所以频响特性曲线谐振峰值会向高频方向偏移,低频附近的谐振峰值略有下降,中频附近的谐振峰值点频率略有上升,高频段的频响特性曲线保持不变。在电动力作用下,一般是内线圈向内收缩,如果装配留有裕度,线圈有可能出现幅向变形,出现收缩和鼓爆,这种情况下,线圈电感会略有增加,线圈对地电容会略有增加,在整个频段范围内谐振点会向高频方向略微偏移。
10.4.2试验步骤
10.4.2.1变压器停电完毕;
10.4.2.2将变压器的各侧出线完全拆除;
10.4.2.3将变压器的档位调至最大档
10.4.2.4用DTD绕组变形测试仪对变压器的每相进行测量,并且对数据进行横向与纵向比较,得出最后结论。
10.5试验结果的分析判断
10.5.1变压器绕组变形测试时,可根据特定相关系数的变化判断绕组变形的严重程度,并结合频响特性曲线的谐振点和谐振幅值的变化加以确认。
10.5.2当变压器绕组的频响特性曲线相关系数小于0.6且低频段谐振点有明显偏移时,变压器绕组发生了严重变形;
10.5.3当相关系数小于0.8且大于0.6且低频段谐振点有偏移时,变压器绕组发生了较严重变形;
10.5.4当相关系数大于0.9时小于1.3时,变压器绕组有轻微变形;
10.5.5当相关系数大于1.3时,且频响特性曲线低频部分谐振点无明显偏移时,变压器绕组无明显可见变形;
10.5.6通过相关系数判断绕组的变形程度后,还需通过谐振点的偏移和谐振幅值进一步确认线圈的变形性质:变压器绕组频响特性曲线谐振点在低频段发生了较明显偏移且幅值变化较大,或在整个频段范围内谐振点都发生了偏移时,变压器绕组发生了严重变形或发生了整体变形,应尽快处理变压器。
10.6 注意事项
10.6.1电源使用220V交流电源;
10.6.2测试过程中要排除外部干扰,进行准确测量;
10.6.3设备在运输过程中要注意防止过度震动。
11.分接开关试验
11.1 试验目的
进行分接开关的试验,以确定分接开关各档是否正常
11.2 该项目适用范围
交接、大修、预试及必要时
11.3 试验时使用的仪器
QJ44型双臂电桥、有载分接开关特性测试仪
11.4 试验项目和试验方法
11.4.1试验项目
接触电阻(吊罩时测量),过渡电阻测量,过渡时间测量
11.4.2试验方法
11.4.2.1在变压器吊罩时时可用双臂电桥测量无载调压分接开关和有载调压分接开关选择开关的接触电阻和切换开关的接触电阻和过渡电阻,用有载分接开关特性测试仪可测量分接开关不代线圈时的切换波形和切换时间和同期。
11.4.2.2用有载分接开关特性测试仪可测量分接开关代线圈时的切换波形和切换时间和同期。
11.5试验结果的分析判断
11.5.1无载分接开关每相触头各档的接触电阻,应符合制造厂要求。
11.5.2有载分接开关的过渡电阻、接触电阻及切换时间,都应符合制造厂要求,过渡电阻允许偏差为额定值的±10%,接触电阻小于500μΩ。
11.5.3分接开关试验可检查触头的接触是否良好,过渡电阻是否断裂,三相切换的同期和时间的长短。
11.6注意事项
11.6.1测量应按照仪器的操作步骤和要求进行,带线圈测量时,应将其他侧线圈短路接地。
11.6.2应从单数档到双数档和双数档到单数档两次测量。
第二篇:电气试验标准化作业指导书
避雷器电气试验标准化作业指导书(试行)
一、适用范围
本作业指导书适用于避雷器交接或预试工作。
二、引用的标准和规程
DL/T596-1996《电力设备预防性试验规程》 DL408-91《电业安全工作规程》(发电厂和变电所电气部分)《重庆市电力公司电气设备试验规程》
三、试验设备、仪器及有关专用工具
1.交接及大修后试验所需仪器及设备材料: 序号
试验所用设备(材料)
数量
序号
试验所用设备(材料)
数量
高压直流发生器
1台
绝缘板
1块 2
泄漏电流测试仪
1套
温湿度计
1个
工频升压设备
1只
小线箱(各种小线夹及短线
1个
兆欧表(2500V)
1只
常用工具
1套
放电计数器测试棒
1套
常用仪表(电压表、万用表)
1套
电源盘及刀闸板
2副
前次试验报告
1本 2.预防性试验所需仪器及设备材料: 序号
试验所用设备(材料)
数量
序号
试验所用设备(材料)
数量
高压直流发生器
1台
温湿度计
1个
工频升压设备
1套
小线箱(各种小线夹及短线
1个
兆欧表(2500V)
1只
常用工具
1套
放电计数器测试棒
1只
常用仪表(电压表、万用表)
1套
电源盘及刀闸板
1套
前次试验报告
1本 6
绝缘板
1块
四、安全工作的一般要求
1.必须严格执行DL409-1991《电业安全工作规程》及市公司相关安全规定。2.现场工作负责人负责测试方案的制定及现场工作协调联络和监督。
五、试验项目
1.绝缘电阻的测量 1.1试验目的
测量避雷器的绝缘电阻,目的在于初步检查避雷器内部是否受潮;有并联电阻者可检查其通、断、接触和老化等情况。1.2该项目适用范围
10kV及以上避雷器交接、大修后试验和预试。1.3试验时使用的仪器
35kV及以下的用2500V兆欧表;对35kV及以上的用5000V兆欧表;低压的用500V兆欧表测量。1.4测量步骤
1.4.1断开被试品的电源,拆除或断开对外的一切连线,将被试品接地放电。放电时应用绝缘棒等工具进行,不得用手碰触放电导线。
图1 测量避雷器绝缘电阻接线图
1.4.2 用干燥清洁柔软的布擦去被试品外绝缘表面的脏污,必要时用适当的清洁剂洗净。
1.4.3兆欧表上的接线端子“E”是接被试品的接地端的,“L”是接高压端的,“G”是接屏蔽端的。应采用屏蔽线和绝缘屏蔽棒作连接。将兆欧表水平放稳,当兆欧表转速尚在低速旋转时,用导线瞬时短接“L”和“E”端子,其指针应指零。开路时,兆欧表转速达额定转速其指针应指“∞”。然后使兆欧表停止转动,将兆欧表的接地端与被试品的地线连接,兆欧表的高压端接上屏蔽连接线,连接线的另一端悬空(不接试品),再次驱动兆欧表或接通电源,兆欧表的指示应无明显差异。然后将兆欧表停止转动,将屏蔽连接线接到被试品测量部位。
1.4.4驱动兆欧表达额定转速,或接通兆欧表电源,待指针稳定后(或60s),读取绝缘电阻值。
1.4.5读取绝缘电阻后,先断开接至被试品高压端的连接线,然后再将兆欧表停止运转。
1.4.6 断开兆欧表后对被试品短接放电并接地。
1.4.7测量时应记录被试设备的温度、湿度、气象情况、试验日期及使用仪表等。
1.5影响因素及注意事项
1.5.1试品温度一般应在10~40℃之间。
1.5.2绝缘电阻随着温度升高而降低,但目前还没有一个通用的固定换算公式。
温度换算系数最好以实测决定。例如正常状态下,当设备自运行中停下,在自行冷却过程中,可在不同温度下测量绝缘电阻值,从而求出其温度换算系数。1.6测量结果的判断
FS(PBⅡ,LX)型交接时>2500MΩ,运行中>2000 MΩ;FZ(PBC,LD)、FCZ和FCD型等有分流电阻的避雷器,主要应与前一次或同一型式的测量数据进行比较;氧化锌避雷器35kV以上不小于2500 MΩ,35kV及以下不小于1000 MΩ。底座绝缘电阻不小于100 MΩ。
2.电导电流和直流1mA下的电压U1mA的测量 2.1试验目的
试验目的是检查避雷器并联是否受潮、劣化、断裂,以及同相各元件的α系数是否相配;对无串联间隙的金属氧化物避雷器则要求测量直流1mA下的电压及75%该电压下的泄漏电流。2.2该项目适用范围
10kV及以上避雷器交接、大修后试验和预试。2.3试验时使用的仪器 高压直流发生器、微安表 2.4测量步骤
2.4.1避雷器地端接地,高压直流发生器输出端通过微安表与避雷器引线端相连,如图2所示。
图2 避雷器泄漏电流测试接线图
2.4.2首先检查升压旋纽是否回零,然后合上刀闸,打开操作电源,逐步平稳升压,升压时严格监视泄漏电流,当要到1mA时,缓慢调节升压按钮,使泄漏电流达到1mA,此时马上读取电压,然后降压至该电压的75%,再读取此时的泄漏电流。2.4.3迅速调节升压按钮回零,断开高压通按钮,断开设备电源开关,拉开电源刀闸,对被试设备和高压发生器放电。2.4.4测量时应记录被试设备的温度、湿度、气象情况、试验日期及使用仪表等。2.5影响因素及注意事项
对不同温度下测量的普通阀型或磁吹型避雷器电导电流进行比较时,需要将它们换算到同一温度。经验指出,温度每升高10℃,电流增大3%~5%,可参照换算。2.6测量结果的判断
2.6.1对不同温度下测量的普通阀型或磁吹型避雷器电导电流进行比较时,需要将它们换算到同一温度。经验指出,温度每升高10℃,电流增大3%~5%,可参照换算。额定电压(千伏)
直流试验电压(千伏)
泄漏电流(微安)
≤10
≤10
≤10
2.6.2 FZ(PBC,LD)型有分流电阻的避雷器的各元件直流试验电压和电导电流标准及同相各节间非线性系数差值,同相各节电导电流最大相差值(%)标准如下:(20℃时)
元件额定电压(千伏)
直流试验电压(千伏)
U2
U1
U2时电 导电流(微安)
上限
650
650
650
650
650
650
下限
交接
400
400
400
400
400
400
运行
300
300
300
300
300
300 同相各节间电导电流最大相差 %
同相各节间非线性系数α的差值,交接时不应大于0.04运行中不大于0.05 电导电流最大相差(%)= α=lg ∕lg
I1、I2分别为电压U1、U2时测得的电导电流 Δα=α1-α2
2.6.3 氧化锌避雷器试验标准如下:
U1mA值与初始值或与制造厂给定值相比较,变化应不大于±5%,0.75U1mA下的泄漏电流不大于50μA。3.测量工频放电电压 3.1试验目的
测量工频放电电压,是FS避雷器和有串联间隙金属氧化物避雷器的必做项目,其试验的目的,是检查间隙的放电电压是否符合要求。3.2该项目适用范围
10kV及以上避雷器交接、大修后试验和预试。3.3试验时使用的仪器
电压表、电流表、调压器、试验变压器 3.4测量步骤
3.4.1工频放电试验接线与一般工频耐压试验接线相同,接线如图3所示。
3.4.2试验电压的波形应为正弦波,为消除高次谐波的影响,必要时调压器的电源取线电压或在试验变压器低压侧加滤波回路。对有串联间隙的金属氧化物避雷器,应在被试避雷器下端串接电流表,用来判别间隙是否放电动作。3.4.3图3中的保护电阻器R,是用来限制避雷器放电时的短路电流的。对不带并联电阻的FS型避雷器,一般取0.1~0.5Ω/V,保护电阻不宜取得太大,否则间隙中建立不起电弧,使、测得的工频放电电压偏高。
3.4.4有串联间隙的金属氧化物避雷器,由于阀片的电阻值较大,放电电流较小,过流跳闸继电器应调整得灵敏些。调整保护电阻器,将放电电流控制在0.05~0.2A之间,放电后在0.2S内切断电源。3.5影响因素及注意事项
试验时,升压不能太快,以免电压表由于机械惯性作用读不准。应读取避雷器击穿时电压下降前的最高电压值,作为避雷器的放电电压。一般一只避雷器做3次试验,取平均值作为工频放电电压。3.6测量结果的判断
FS(PBⅡ,LX)型的工频放电电压在下列范围内: 额定电压(千伏)
放电电压(千伏)
新装及大修后
9~11
16~19
26~31
运行中
8~12
15~21
23~33 4.测量运行电压下的交流泄露电流 4.1试验目的
监测金属氧化物避雷器,判断是否出现故障保障避雷器的安全运行。4.2该项目适用范围
110kV及以上避雷器交接试验。4.3试验时使用的仪器 泄漏电流测试仪 4.4测量步骤
按照测试仪器接线方法,正确连接试验接线,一人接,一人检查,接线检查完毕后,进行交流泄漏电流的测试。4.5影响因素及注意事项
由于是在运行中测量避雷器的泄露电流,因此应注意保持足够安全距离,监护人应提高警惕。
4.6测量结果的判断
测量运行电压下的全电流、阻性电流或功率损耗,测量值与初始值比较,有明显变化时应加强监测,当阻性电流增加1倍时,应停电检查。5.测量工频参考电流下的工频参考电压 5.1试验目的
工频参考电压是无间隙金属氧化物避雷器的一个重要参数,它表明阀片的伏安特性曲线饱和点的位置。运行一定时期后,工频参考电压的变化能直接反映避雷器的老化、变质程度。5.2该项目适用范围
35kV及以上避雷器交接试验。5.3试验时使用的仪器
电压表、调压器、试验变压器、交流泄漏电流测试仪器 5.4测量原理接线图
如图4接好试验接线,然后逐步升压使测得的工频泄漏电流等于工频参考电流,此时读取输入电压求得避雷器两端所加电压,此电压就为工频参考电压。
5.5影响因素及注意事项
测量时的环境温度应在20±15℃,测量应每节单独进行,整相避雷器有一节不合格,应更换该节避雷器(或整相更换),使该相避雷器合格 5.6测量结果的判断
判断的标准是与初始值和历次测量值比较,当有明显降低时就应对避雷器加强监视,110kV及以上的避雷器,参考电压降低超过10%时,应查明原因,若确系老化造成的,宜退出运行。金属氧化物避雷器工频放电电压应符合GB11032或制造厂规定。6.检查放电计数器动作情况 6.1试验目的
检查放电计数器是否正常工作。6.2该项目适用范围
10kV及以上避雷器交接、大修后试验和预试。6.3试验时使用的仪器 放电计数器测试棒 6.4测量步骤
6.4.1 将测试棒的接地引线夹在计数器的接地端。
6.4.2 然后打开电源,等待几秒钟后,测试棒高压输出端迅速接触计数器与避雷器连接体,同时观察计数器是否动作。6.5影响因素及注意事项
测试3~5次,均应正常动作,测试后计数器指示应调到“0”。6.6测量结果的判断
观察计数器是否能正常动作。
变压器及电抗器电气试验标准化作业指导书(试行)一.适用范围
本作业指导书适应于电力变压器及电抗器交接、大修和预防性试验。二.引用的标准和规程
GB50150-91《电气设备交接及安装规程》 DL/T596-1996《电力设备预防性试验规程》 《重庆市电力公司电力设备试验规程》 三.试验仪器、仪表及材料
1.交接及大修后试验所需仪器及设备材料: 序号
试验所用设备(材料)
数量
序号
试验所用设备(材料)
数量
QJ42型单臂、QJ44型双臂电桥或直流电阻测试仪
1套
倍频电源车、补偿电抗、局部放电测量系统
1套
2500—5000V手动或电动兆欧表
1块
TDT型变压器绕组变形测试系统
1套 3
试验变压器、调压器、球隙、分压器、水阻等。
1套
万用表、直流毫伏表、相位表、电压表、电流表、瓦特表、若干
直流发生器、微安表
1套
有载分接开关特性测试仪
1套
调压器、升压变压器,电流互感器、电压互感器
1套
电源线和试验接线、常用工具、干电池
若干
自动介损测试仪或QS1型西林电桥
1套
绝缘杆、安全带、安全帽
若干
QJ35型变比电桥或变比测试仪
1套
温湿度计
1只
2.预防性试验所需仪器及设备材料: 序号
试验所用设备(材料)
数量
序号
试验所用设备(材料)
数量
QJ42型单臂、QJ44型双臂电桥或直流电阻测试仪
1套
万用表、电压表、电流表
若干
2500—5000V手动或电动兆欧表
1块
有载分接开关特性测试仪
1套 3
试验变压器、调压器、球隙、分压器、水阻等。(6-10KV站变时需要)
1套
电源线和试验接线、常用工具、干电池
若干
直流发生器、微安表
1套
绝缘杆、安全带、安全帽
若干
自动介损测试仪或QS1型西林电桥
1套
温湿度计
1只
四.安全工作的一般要求
1.必须严格执行DL409-1991《电业安全工作规程》及市公司相关安全规定。2.现场工作负责人负责测试方案的制定及现场工作协调联络和监督 五.试验项目
1.变压器绕组直流电阻的测量 1.1 试验目的
检查绕组接头的焊接质量和绕组有无匝间短路;分接开关的各个位置接触是否良好以及分接开关的实际位置与指示位置是否相符;引出线有无断裂;多股导线并绕的绕组是否有断股的情况; 1.2该项目适用范围
交接、大修、预试、无载调压变压器改变分接位置后、故障后; 1.3试验时使用的仪器
QJ42型单臂、QJ44型双臂电桥或直流电阻测试仪; 1.4试验方法
1.4.1电流电压表法
电流电压表法有称电压降法。电压降法的测量原理是在被测量绕组中通以直流电流,因而在绕组的电阻上产生电压降,测量出通过绕组的电流及绕组上的电压降,根据欧姆定律,即可计算出绕组的直流电阻,测量接线如图所示。
测量时,应先接通电流回路,待测量回路的电流稳定后再合开关S2,接入电压表。当测量结束,切断电源之前,应先断S2,后断S1,以免感应电动势损坏电压表。测量用仪表准确度应不低于0.5级,电流表应选用内阻小的电压表应尽量选内阻大的4位高精度数字万用表。当试验采用恒流源,数字式万用表内阻又很大时,一般来讲,都可使用图1-1(b)的接线测量。
根据欧姆定律,由式(1-1)即可计算出被测电阻的直流电阻值。RX=U/I
(1-1)RX——被测电阻(Ω)
U——被测电阻两端电压降(V); I——通过被测电阻的电流(A)。
电流表的导线应有足够的截面,并应尽量地短,且接触良好,以减小引线和接触电阻带来的测量误差。当测量电感量大的电阻时,要有足够的充电时间。1.4.2平衡电桥法 应用电桥平衡的原理测量绕组直流电阻的方法成为电桥法。常用的直流电桥有单臂电桥与双臂电桥两种。
单臂电桥常用于测量1Ω以上的电阻,双臂电桥适宜测量准确度要求高的小电阻。双臂电桥的测量步骤如下:
测量前,首先调节电桥检流计机械零位旋钮,置检流计指针于零位。接通测量仪器电源,具有放大器的检流计应操作调节电桥电气零位旋钮,置检流计指针于零位。接人被测电阻时,双臂电桥电压端子P1、P2所引出的接线应比由电流端子C1、C2所引出的接线更靠近被测电阻。
测量前首先估计被测电阻的数值,并按估计的电阻值选择电桥的标准电阻RN和适当的倍率进行测量,使“比较臂”可调电阻各档充分被利用,以提高读数的精度。测量时,先接通电流回路,待电流达到稳定值时,接通检流计。调节读数臂阻值使检流计指零。被测电阻按式(1-2)计算
被测电阻=倍率 ×读数臂指示
(1-2)
如果需要外接电源,则电源应根据电桥要求选取,一般电压为2~4V,接线不仅要注意极性正确,而且要接牢靠,以免脱落致使电桥不平衡而损坏检流计。
测量结束时,应先断开检流计按钮,再断开电源,以免在测量具有电感的直流电阻时其自感电动势损坏检流计。选择标准电阻时,应尽量使其阻值与被测电阻在同一数量级,最好满足下列关系式(1-2)
0.1RX<RN<10 RX
(1-3)1.4.3微机辅助测量法
计算机辅助测量(数字式直流电阻测量仪)用于直流电阻测量,尤其是测量带有电感的线圈电阻,整个测试过程由单片机控制,自动完成自检、过渡过程判断、数据采集及分析,它与传统的电桥测试方法比较,具有操作简便、测试速度快、消除认为测量误差等优点。
使用的数字式直流电阻测量仪必须满足以下技术要求,才能得到真实可靠的测量值;(l)恒流源的纹波系数要小于0.1%(电阻负载下测量)。
(2)测量数据要在回路达到稳态时候读取,测量电阻值应在5min内测值变化不大于0.5%。
(3)测量软件要求为近期数据均方根处理,不能用全事件平均处理。1.5试验结果的分析判断
1.5.1 1.6MVA以上变压器,各相绕组电阻相互的差别不应大于三相平均值的2%,无中性点引出的绕组,线间差别不应大于三相平均值的1%;
1.5.2 1.6MVA以下变压器,相间差别一般不大于三相平均值的4%,线间差别一般不大于三相平均值的2%;
1.5.3 与以前相同部位测得值比较,其变化不应大于2%;
1.5.4 三相电阻不平衡的原因 :分接开关接触不良,焊接不良,三角形连接绕组其中一相断线,套管的导电杆与绕组连接处接触不良,绕组匝间短路,导线断裂及断股等。
1.6 注意事项
1.6.1不同温度下的电阻换算公式:R2=R1(T+t2)/(T+t1)式中R1、R2分别为在温度t1、t2时的电阻值,T为计算用常数,铜导线取235,铝导线取225。1.6.2 测试应按照仪器或电桥的操作要求进行。
1.6.3 连接导线应有足够的截面,长度相同,接触必须良好(用单臂电桥时应减去引线电阻)。
1.6.4 准确测量绕组的平均温度。
1.6.5 测量应有足够的充电时间,以保证测量准确;变压器容量较大时,可加大充电电流,以缩短充电时间。
1.6.6如电阻相间差在出厂时已超过规定,制造厂已说明了造成偏差的原因,则按标准要求执行。
2.绕组绝缘电阻、吸收比或(和)极化指数及铁芯的绝缘电阻 2.1 试验目的
测量变压器的绝缘电阻,是检查其绝缘状态最简便的辅助方法。测量绝缘电阻、吸收比能有效发现绝缘受潮及局部缺陷,如瓷件破裂,引出线接地等。2.2该项目适用范围
交接、大修、预试、必要时 2.3试验时使用的仪器
2500—5000V手动或电动兆欧表 2.4试验方法
2.4.1断开被试品的电源,拆除或断开对外的一切连线,并将其接地放电。此项操作应利用绝缘工具(如绝缘棒、绝缘钳等)进行,不得用手直接接触放电导线。2.4.2用干燥清洁柔软的布擦去被试品表面的污垢,必要时可先用汽油或其他适当的去垢剂洗净套管表面的积污。
2.4.3将兆欧表放置平稳,驱动兆欧表达额定转速,此时兆欧表的指针应指“∞”,再用导线短接兆欧表的“火线”与“地线”端头,其指针应指零(瞬间低速旋转以免损坏兆欧表)。然后将被试品的接地端接于兆欧表的接地端头“E”上,测量端接于兆欧表的火线端头“L”上。如遇被试品表面的泄漏电流较大时,或对重要的被试品,如发电机、变压器等,为避免表面泄漏的影响,必须加以屏蔽。屏蔽线应接在兆欧表的屏蔽端头“G”上。接好线后,火线暂时不接被试品,驱动兆欧表至额定转速,其指针应指“∞”,然后使兆欧表停止转动,将火线接至被试品。
2.4.4驱动兆欧表达额定转速,待指针稳定后,读取绝缘电阻的数值。
2.4.5测量吸收比或极化指数时,先驱动兆欧表达额定转速,待指针指“∞”时,用绝缘工具将火线立即接至被试品上,同时记录时间,分别读取 15S和 60S或 10min时的绝缘电阻值。
2.4.6读取绝缘电阻值后,先断开接至被试品的火线,然后再将兆欧表停止运转,以免被试品的电容在测量时所充的电荷经兆欧表放电而损坏兆欧表,这一点在测试大容量设备时更要注意。此外,也可在火线端至被试品之间串人一只二极管,其正端与兆欧表的火线相接,这样就不必先断开火线,也能有效地保护兆欧表。
2.4.7在湿度较大的条件下进行测量时,可在被试品表面加等电位屏蔽。此时在接线上要注意,被试品上的屏蔽环应接近加压的火线而远离接地部分,减少屏蔽对地的表面泄漏,以免造成兆欧表过载。屏蔽环可用保险丝或软铜线紧缠几圈而成。2.4.8测得的绝缘电阻值过低时,应进行解体试验,查明绝缘不良部位 2.5试验结果的分析判断
(1)绝缘电阻换算至同一温度下,与前一次测试结果相比应无明显变化;(2)吸收比(10~30℃范围)不低于1.3或极化指数不低于1.5;(3)绝缘电阻在耐压后不得低于耐压前的70%;(4)于历年数值比较一般不低于70%。测量铁芯绝缘电阻的标准:
(1)与以前测试结果相比无显著差别,一般对地绝缘电阻不小于50MΩ;(2)运行中铁芯接地电流一般不大于0.1A;(3)夹件引出接地的可单独对夹件进行测量。2.6注意事项
2.6.1不同温度下的绝缘电阻值一般可按下式换算R2=R1×1.5(t1-t2)/10 R1、R2分别为温度t1、t2时的绝缘电阻。
2.6.2测量时依次测量各线圈对地及线圈间的绝缘电阻,被试线圈引线端短接,非被试线圈引线端短路接地,测量前被试线圈应充分放 电;测量在交流耐压前后进行。2.6.3变压器应在充油后静置5小时以上,8000kVA以上的应静置20小时以上才能测量。
2.6.4吸收比指在同一次试验中,60S与15S时的绝缘电阻值之比,极化指数指10分钟与1分钟时的绝缘电阻值之比,220kV、120000kVA及以上变压器需测极化指数。
2.6.5测量时应注意套管表面的清洁及温度、湿度的影响。
2.6.6读数后应先断开被试品一端,后停摇兆欧表,最后充分对地放电。3.绕组的tgδ及其电容量 3.1 试验目的
测量tgδ是一种使用较多而且对判断绝缘较为有效的方法,通过测量tgδ可以反映出绝缘的一系列缺陷,如绝缘受潮、油或浸渍物脏污或劣化变质,绝缘中有气隙发生放电等。
3.2该项目适用范围
交接、大修、预试、必要时。(35KV及以上,10KV容量大于1600KVA)3.3试验时使用的仪器
自动介损测试仪、QS1型西林电桥 3.4试验方法
3.4.1 QS1型西林电桥 3.4.1.1技术特性
QS1型电桥的额定工作电压为10kV,tgδ测量范围是0.5%~60%,试品电容Cx是30pF~0.4μF(当CN为50pF时)。该电桥的测量误差是:tgδ=0.5%~3%时,绝对误差不大于±0.3%;tgδ=3%一60%时,相对误差不大于±10%。被试品电容量CX的测量误差不大于±5%。如果工作电压高于10kV,通常只能采用正接线法并配用相应电压的标准电容器。电桥也可降低电压使用,但灵敏度下降,这时为了保持灵敏度,可相应增加CN的电容量(例如并联或更换标准电容器)。3.4.1.2接线方式
1.正接线法。所谓正接线就是正常接线,如图3-1所示。
在正接线时,桥体处于低压,操作安全方便。因不受被试品对地寄生电容的影响,测量准确。但这时要求被试品两极均能对地绝缘(如电容式套管、耦合电容器等),由于现场设备外壳几乎都是固定接地的,故正接线的采用受到了一定限制。
2.反接线法。反接线适用于被试品一极接地的情况,故在现场应用较广,如图3-2所示。这时的高、低电压端恰与正接线相反,D点接往高压而C点接地,因而称为反接线。在反接线时,电桥体内各桥臂及部件处于高电位,所以在面板上的各种操作都是通过绝缘柱传动的。此时,被试品高压电极连同引线的对地寄生电容将与被试品电容Cx并联而造成测量误差,尤其是Cx值较小时更为显著。
3、对角接线。当被试品一极接地而电桥又没有足够绝缘强度进行反接线测量时,可采用对角接线,如图3-3所示。在对角接线时,由于试验变压器高压绕组引出线回路与设备对地(包括对低压绕组)的全部寄生电容均与Cx并联,给测量结果带来很大误差。因此要进行两次测量,一次不接被试品,另一次接被试品,然后按式(3-1)计算,以减去寄生电容的影响。
tgδ=(C2 tgδ2-C1 tgδ1)/(C2-C1)(3-1)
CX=(C2-C1)
(3-2)式中 tgδ1——未接人被试品时的测得值; tgδ2——接人被试品后的测得值; C1——未接人被试品时测得的电容; C2——接人被试品后测得的电容。
这种接线只有在被试品电容远大于寄生电容时才宜采用。用QSI型电桥作对角线测量时,还需将电桥后背板引线插头座拆开,将D点(即图3-3中E点)的输出线屏蔽与接地线断开,以免E点与地接通将R3短路。此外,在电桥内装有一套低压电源和标准电容器,供低压测量用,通常用来测量压(100V)大容量电容器的特性。当标准电容CN=0.001μF时,试品电容 Cx的范围是300pF~10μF;当CN=0.01μF时,CX的范围是3000pF~100μF。tgδ的测量精度与高压测量法相同,Cx的误差应不大于±5%。
3.4.2数字式自动介损测量仪
数字式介损测量仪的基本原理为矢量电压法。数字式介损型测量仪为一体化设计结构,内置高压试验电源和BR26型标准电容器,能够自动测量电气设备的电容量及介质损耗等参数,并具备先进的于扰自动抑制功能,即使在强烈电磁干扰环境下也能进行精确测量。电通过软件设置,能自动施加 10、5kV或2kV测试电压,并具有完善的安全防护措施。能由外接调压器供电,可实现试验电压在l~10kV范围内的任意调节。当现场干扰特别严重时,可配置45~60HZ异频调压电源,使其能在强电场干扰下准确测量。
数字式自动介损测量仪为一体化设计结构,使用时把试验电源输出端用专用高压双屏蔽电缆 滞插头及接线挂钩)与试品的高电位端相连、把测量输人端(分为“不接地试品” 和“接地试品”两个输人端)用专用低压屏蔽电缆与试品的低电位端相连,即可实现对不接地试品或接地试品(以及具有保护的接地试品)的电容量及介质损耗值进行测量。
在测量接地试品时,接线原理见图3-4(b),它与常用的闭型电桥反接测量方式有所不同,现以单相双绕组变压器(如图3-5所示)为例,说明具体的接线方式。测量高压绕组对低压绕组的电容CH-L时,按照图3-5(a)所示方式连接试验回路,低压测量信号IX应与测试仪的“不接地试品”输入端相连,即相当于使用QS1型电桥的正接测试方式。
测量高压绕组对低压绕组及地的电容CH-L+CH-G时,应按照图3-5(b)所示方式连接试验回路,低压测量信号Ix应与测试仪的“接地试品”输人端相连,即相当于使用QS1型电桥的反接测试方式。
测试标准当仅测量高压绕组对地之间的电容CH-G时,按照图3-5(c)所示方式连接试验回路,低压测量信号Ix应与测试仪的“接地试品”输人端相连,并把低压绕组短路后与测量电缆所提供的屏蔽E端相连,即相当于使用QSI型电桥的反接测试方式。
3.5试验结果的分析判断
(1)20℃时tgδ不大于下列数值: 330-500kV 0.6% 66-220kV 0.8% 35kV及以下1.5%(2)tgδ值于历年的数值比较不应有显著变化(一般不大于30%)(3)试验电压如下:
绕组电压10kV及以上
10kV 绕组电压10kV以下
Un(4)用M型试验器时试验电压自行规定 3.6注意事项
3.6.1采用反接法测量,加压10kV,非被试线圈短路接地。3.6.2测量按试验时使用的仪器的有关操作要求进行。
3.6.3应采取适当的措施消除电场及磁场干扰,如屏蔽法、倒相法、移相法。3.6.4非被试绕组应接地或屏蔽。
3.6.5测量温度以顶层油温为准,尽量使每次测量的温度相近。
值一般可按下式换算3.6.6尽量在油温低于50℃时测量,不同温度下的tg tg =tg
分别为温度、tg式中tg 值的tg
4.交流耐压 4.1试验目的
工频交流(以下简称交流)耐压试验是考验被试品绝缘承受各种过电压能力的有效方法,对保证设备安全运行具有重要意义。交流耐压试验的电压、波形、频率和在被试品绝缘内部电压的分布,均符合在交流电压下运行时的实际情况,因此,能真实有效地发现绝缘缺陷。4.2该项目适用范围
交接、大修、更换绕组后、必要时、6-10kV站用变2年一次 4.3试验时使用的仪器
试验变压器、调压器、球隙、分压器、水阻等。4.4试验方法
4.4.1试验变压器耐压的原理接线
交流耐压试验的接线,应按被试品的要求(电压、容量)和现有试验设备条件来决定。通常试验时采用是成套设备(包括控制及调压设备),现场常对控制回路加以简化,例如采用图4-1所示的试验电路。试验回路中的熔断器、电磁开关和过流继电器,都是为保证在试验回路发生短路和被试品击穿时,能迅速可靠地切断试验电源;电压互感器是用来测量被试品上的电压;毫安表和电压表用以测量及监视试验过程中的电流和电压。进行交流耐压的被试品,一般为容性负荷,当被试品的电容量较大时,电容电流在试验变压器的漏抗上就会产生较大的压降。由于被试品上的电压与试验变压器漏抗上的电压相位相反,有可能因电容电压升高而使被试品上的电压比试验变压器的输出电压还高,因此要求在被试品上直接测量电压。
此外,由于被试品的容抗与试验变压器的漏抗是串联的,因而当回路的自振频率与电源基波或其高次谐波频率相同而产生串联谐振时,在被试品上就会产生比电源电压高得多的过电压。通常调压器与试验变压器的漏抗不大,而被试品的容抗很大,所以一般不会产生串联谐振过电压。但在试验大容量的被试品时,若谐振频率为 50HZ,应满足(CX<3184/XL(μF)XC >XL,XL是调压器和试验变压器的漏抗之和。为避免3次谐波谐振,可在试验变压器低压绕组上并联LC串联回路或采用线电压。当被试品闪络击穿时,也会由于试验变压器绕组内部的电磁振荡,在试验变压器的匝间或层间产生过电压。因此,要求在试验回路内串人保护电阻R1将过电流限制在试验变压器与被试品允许的范围内。但保护电阻不宜选得过大,太大了会由于负载电流而产生较大的压降和损耗;R1的另一作用是在被试品击穿时,防止试验变压器高压侧产生过大的电动力。Rl按0.1~0.5Ω/V选取(对于大容量的被试品可适当选小些)。
4.5试验结果的分析判断
4.5.1油浸变压器(电抗器)试验电压值按试验规程执行; 4.5.2干式变压器全部更换绕组时,按出厂试验电压值;部分更换绕组和定期试验时,按出厂试验电压值的0.85倍。
4.5.3被试设备一般经过交流耐压试验,在规定的持续时间内不发生击穿,耐压前后绝缘电阻不降低30%,取耐压前后油样做色谱分析正常,则认为合格;反之,则认为不合格。
4.5.3在试验过程中,若空气湿度、温度或表面脏污等的影响,仅引起表面滑闪放电或空气放电,应经过清洁和干燥等处理后重新试验;如由于瓷件表面铀层损伤或老化等引起放电(如加压后表面出现局部红火),则认为不合格。4.5.4电流表指示突然上升或下降,有可能是变压器被击穿。4.5.5在升压阶段或持续时间阶段,如发生清脆响亮的“当、当”放电声音,象用金属物撞击油箱的声音,这是由于油隙距离不够或是电场畸变引起绝缘结构击穿,此时伴有放电声,电流表指示发生突变。当重复进行试验时,放电电压下降不明显。如有较小的“当、当”放电声音,表计摆动不大,在重复试验时放电现象消失,往往是由于油中有气泡。
4.5.6如变压器内部有炒豆般的放电声,而电流表指示稳定,这可能是由于悬浮的金属件对地放电 4.6注意事项
4.6.1此项试验属破坏性试验,必须在其它绝缘试验完成后进行。4.6.2变压器应充满合格的绝缘油,并静置一定时间,500KV变压器应大于72h,220 KV变压器应大于48h,110KV变压器应大于24h,才能进行试验。
4.6.3接线必须正确,加压前应仔细进行检查,保持足够的安全距离,非被试线圈需短路接地,并接入保护电阻和球隙,调压器回零。4.6.4升压必须从零开始,升压速度在40%试验电压内不受限制,其后应按每秒3%的试验电压均匀升压。
4.6.5试验可根据试验回路的电流表、电压表的突然变化,控制回路过流继电器的动作,被试品放电或击穿的声音进行判断。
4.6.6交流耐压前后应测量绝缘电阻和吸收比,两次测量结果不应有明显差别。4.6.7如试验中发生放电或击穿时,应立即降压,查明故障部位。
5.绕组泄漏电流 5.1试验目的
直流泄漏试验的电压一般那比兆欧表电压高,并可任意调节,因而它比兆欧表发现缺陷的有效性高,能灵敏地反映瓷质绝缘的裂纹、夹层绝缘的内部受潮及局部松散断裂绝缘油劣化、绝缘的沿面炭化等。5.2该项目适用范围
交接、大修、预试、必要时(35KV及以上,不含35/0.4KV变压器)5.3试验时使用的仪器
试验变压器或直流发生器、微安表 5.4试验方法
试验回路一般是由自耦调压器、试验变压器、高压二极管和测量表计组成半波整流试验接线,根据微安表在试验回路中所处的位置不同,可分为两种基本接线方式,现分述如下。
5.4.1微安表接在高压侧
微安表接在高压侧的试验原理接线,如图5-1所示。
由图5-1可见,试验变压器TT的高压端接至高压二极管V(硅堆)的负极由于空气中负极性电压下击穿场强较高,为防止外绝缘闪络,因此直流试验常用负极性输出。由于二极管的单向导电性,在其正极就有负极性的直流高压输出。选择硅堆的反峰电压时应有20%的裕度;如用多个硅堆串联时,应并联均压电阻,电阻值可选约1000MΩ。为减小直流电压的脉动。在被试品CX上并联滤波电容器C,电容值一般不小于0.1μF。对于电容量较大的被试品,如发电机、电缆等可以不加稳压电容。半波整流时,试验回路产生的直流电压为: Ud= U2-Id/(2cf)Ud¬—直流电压(平均值,V); C—滤波电容(C); f—电源频率(HZ)Id—整流回路输出直流电流(A)
当回路不接负载时,直流输出电压即为变压器二次输出电压的峰值。因此,现场试验选择试验变压器的电压时,应考虑到负载压降,并给高压试验变压器输出电压留一定裕度。
这种接线的特点是微安表处于高压端,不受高压对地杂散电流的影响,测量的泄漏电流较准确。但微安表及从微安表至被试品的引线应加屏蔽。由于微安表处于高压,故给读数及切换量程带来不便。5.4.2微安表接在低压侧
微安表接在低压侧的接线图如图5-2所示。这种接线微安表处在低电位,具有读数安全、切换量程方便的优点。
当被试品的接地端能与地分开时,宜采用图5-2(a)的接线。若不能分开,则采用5-2(b)的接线,由于这种接线的高压引线对地的杂散电流I’将流经微安表,从而使测量结果偏大,其误差随周围环境、气候和试验变压器的绝缘状况而异。所以,一般情况下,应尽可能采用图5-2(a)的接线。
5.5试验结果的分析判断 5.5.1试验电压见试验规程
5.5.2与前一次测试结果相比应无明显变化 5.5.3泄漏电流最大容许值试验规程 5.6注意事项
5.6.1 35KV及以上的变压器(不含35/0.4KV的配变)必须进行,读取1分钟时的泄漏电流。
5.6.2试验时的加压部位与测量绝缘电阻相同,应注意套管表面的清洁及温度、湿度对测量结果的影响。
5.6.3对测量结果进行分析判断时,主要是与同类型变压器、各线圈相互比较,不应有明显变化。
5.6.4微安表接于高压侧时,绝缘支柱应牢固可靠、防止摇摆倾倒。
5.6.5试验设备的布置要紧凑、连接线要短,宜用屏蔽导线,既要安全又便于操作;对地要有足够的距离,接地线应牢固可靠。5.6.6应将被试品表面擦拭于净,并加屏蔽,以消除被试品表面脏污带来的测量误差。5.6.7能分相试的被试品应分相试验,非试验相应短路接地。5.6.8试验电容量小的被试品应加稳压电容。5.6.9试验结束后,应对被试品进行充分放电。
5.6.10泄漏电流过大,应先检查试验回路各设备状况和屏蔽是否良好,在排除外因之后,才能对被试品作出正确的结论。
5.6.11泄漏电流过小,应检查接线是否正确,微安表保护部分有无分流与断线。5.6.12高压连接导线对地泄漏电流的影响
由于与被试品连接的导线通常暴露在空气中(不加屏蔽时),被试品的加压端也暴露在外,所以周围空气有可能发生游离,产生对地的泄漏电流,尤其在海拔高、空气稀薄的地方更容易发生游离,这种对地泄漏电流将影响测量的准确度。用增加导线直径、减少尖端或加防晕罩、缩短导线、增加对地距离等措施,可减少对测量结果的影响。5.6.13空气湿度对表面泄漏电流的影响
当空气湿度大时,表面泄漏电流远大于体积泄漏电流,被试品表面脏污易于吸潮使表面泄漏电流增加,所以必须擦净表面,并应用屏蔽电极。
6.空载电流、空载损耗 6.1试验目的 检查变压器磁路 6.2该项目适用范围
交接时、更换绕组后、必要时 6.3试验时使用的仪器
调压器、升压变压器、电流互感器、电压互感器、电流表、电压表、瓦特表等 6.4试验方法
6.4.1额定条件下的试验
试验采用图6-1到6-3的接线。所用仪表的准确度等级不低于0.5级,并采用低功率因数功率表(当用双功率表法测量时,也允许采用普通功率表)。互感器的准确度应不低于0.2级。
根据试验条件,在试品的一侧(通常是低压侧)施加额定电压,其余各侧开路,运行中处于地电位的线端和外壳都应妥善接地。空载电流应取三相电流的平均值,并换算为额定电流的百分数,即
I0%=[(I0A+I0B+ I0C)/3 In]×%(6-1)
式中I0A、I0B、I0C——三相实测的电流;In——试验加压线圈的额定电流
试验所加电压应该是实际对称的,即负序分量值不大于正序值的5%;试验应在额定电压、额定频率和正弦波电压的条件下进行。但现场实际上难以满足这些条件,因而要尽可能进行校正,校正方法如下:
(一)试验电压
变压器的铁损耗可认为与负载大小无关,即空载时的损耗等于负载时的铁芯损耗,但这是额定电压时的情况。如电压偏离额定值,空载损耗和空载电流都会急剧变化。这是因为变压器铁芯中的磁感应强度取在磁化曲线的饱和段,当所加电压偏离额定电压时,空载电流和空载损耗将非线性地显著增大或减少,这中间的相互关系只能由试验来确定。由于试验电源多取自电网,如果电压不好调,则应将分接开关接头置于与试验电压相应的位置试验,并尽可能在额定电压附近选做几点,例如改变供电变压器的分接开关位置,再将各电压下测得的P0和I0作出曲线,从而查出相应的额定电压下的数值。如在小于额定电压,但不低于90%额定电压值的情况下试验,可用外推法确定额定电压下的数值,即在半对数坐标纸上录制I0、P0、与U的关系曲线,并近似地假定I0、P0是U的指数函数,因而曲线是一条直线,可延长直线求得UN;下的I0、P0。应指出,这一方法会有相当误差,因为指数函数的关系并不符合实际。
(二)试验电源频率
变压器可在与额定频率相差±5%的情况下进行试验,此时施加于变压器的电压应为 U1=UN×(f1/ fN)= UN×(f1/ 50)
(6-2)f1——试验电源频率;fN——额定频率,即50HZ U1——试验电源电压; UN——额定电压
由于在f1下所测的空载电流I1接近于额定频率下的I0,所以这样测得的空载电流无须校正时,空载损耗按照下式换算 P0=P1(60/ f1-0.2)(6-3)
P1——在频率为f1、电压为U1时测得的空载损耗。
6.4.2低电压下的试验
低电压下测量空载损耗,在制造和运行部门主要用于铁芯装配过程中的检查,以及事故和大修后的检查试验。主要目的是:检查绕组有无金属性匝间短路;并联支路的匝数是否相同;线圈和分接开关的接线有无错误;磁路中铁芯片间绝缘不良等缺陷。试验时所加电压,通常选择在5%~10%额定电压范围内。低电压下的空载试验,必须计及仪表损耗对测量结果的影响,而且测得数据主要用于相互比较,换算到额定电压时误差较大,可按照下式换算 P0=P1(UN/ U1)n(6-4)
式中U1——试验时所加电压;Un——绕组额定电压;
P1——电压为 U’时测得的空载损耗;P0——相当于额定电压下的空载损耗; n——指数,数值决定于铁芯硅钢片种类,热轧的取1.8,冷轧的取1.9~2。
对于一般配电变压器或容量在3200kVA以下的电力变压器,对值可由图6-4查出。
6.4.3三相变压器分相试验
经过三相空载试验后,如发现损耗超过国家标准时,应分别测量单相损耗,通过对各相空载损耗的分析比较,观察空载损耗在各相的分布情况,以检查各相绕组或磁路甲有无局部缺陷。事故和大修后的检查试验,也可用分相试验方法。进行三相变压器分相试验的基本方法,就是将三相变压器当作三台单相变压器,轮换加压,也就是依次将变压器的一相绕组短路,其他两相绕组施加电压,测量空载损耗和空载电流。短路的目的是使该相无磁通,因而无损耗,现叙述如下。
(一)加压绕组为三角形连接(a-y,b-z,c-x)
采用单相电源,依次在ab、bc、ca相加压,非加压绕组依次短路(即bc、ca、ab),分相试验接线如图6-5所示。加于变压器绕组上的电压应为线电压,测得的损耗按照下式计算
P0=(P0ab+P0bc+ P0ca)/2(6-5)
P0ab、P0bc、P0ca——ab、bc、ca三次测得的损耗。空载电流按下式计算
I0=[0.289(I0ab+I0bc+ I0ca)]/IN×100%(6-6)
(二)加压绕组为星形连接
依次在ab、bc、ca相加压,非加压绕组应短路,如图6-6所示。若无法对加压绕组短路时,则必须将二次绕组的相应相短路,如图6-7所示,施加电压U为二倍相电压,即U=2UL/,式中UL为线电压。
测量的损耗仍然按照式(6-5)进行计算,空载电流百分数为 I0=[0.333(I0ab+I0bc+ I0ca)]/IN×100%(6-7)由于现场条件所限,当试验电压达不到上述要求2UL/,低电压下测量的损耗如需换算到额定电压,可按照式(6-4)换算。分相测量的结果按下述原则判断:
(1)由于ab相与bc相的磁路完全对称,因此所测得ab相和 bc相的损耗P0ab和P0bc应相等,偏差一般应不超过3%;
(2)由于ac相的磁路要比ab相或bc相的磁路长,故由ac相测得的损耗应较ab或bc相大。电压为 35~60kV级变压器一般为20%~30%;110~220kV级变压器一般为30%~40%。
如测得结果大于这些数值时,则可能是变压器有局部缺陷,例如铁芯故障将使相应相激磁损耗增加。同理,如短路某相时测得其他两相损耗都小,则该被短路相即为故障相。这种分相测量损耗判断故障的方法,称为比较法。6.5试验结果的分析判断
与出厂值相比应该无明显变化 6.6注意事项
①空载试验采用从零升压进行,在低压侧加压,高(中)压侧开路,中性点接地,测量采用两瓦法或三瓦法。
②此试验在常规试验全部合格后进行,将分接开关置额定档,通电前应对变压器本体及套管放气。
③试验应设置紧急跳闸装置。
④计算平均电流 I平均=(IA+IB+IC)/3 空载电流I0= I平均/IN×100% 空载损耗P0=P1+ P2(+P3)
7.绕组所有分接的电压比 7.1试验目的
检查变压器绕组匝数比的正确性;检查分接开关的状况;变压器故障后,测量电压比来检查变压器是否存在匝间短路;判断变压器是否可以并列运行。7.2该项目适用范围
交接时、分接开关引线拆装后、更换绕组后、必要时 7.3试验时使用的仪器
QJ35型变比电桥或变比测试仪 7.4试验方法
7.4.1用双电压表法测量电压比 7.4.1.1直接双电压表法
在变压器的一侧施加电压,并用电压表在一次、二次绕组两侧测量电压(线电压或用相电压换算成线电压),两侧线电压之比即为所测电压比。
测量电压比时要求电源电压稳定,必要时需加稳压装置,二次侧电压表引线应尽量短,且接触良好,以免引起误差。测量用电压表准确度应不低于0.5级,一次、二次侧电压必须同时读数。
7.4.1.2电压互感器的双电压表法
在被试变压器的额定电压下测量电压比时,一般没有较准确的高压交流电压表,必须经电压互感器来测量。所使用的电压表准确度不低于0.5级,电压互感器准确度应为0.2级,其试验接线如图7-1所示。其中,图7-1(b)为用两台单相电压互感器组成的V形接线,此时,互感器必须极性相同。当大型电力变压器瞬时全压励磁时,可能在变压器中产生涌流,因而在二次侧产生过电压,所以测量用的电压表在充电的瞬间必须是断开状态。为了避免涌流可能产生的过电压,可以用发电机调压,这在发电厂容易实现,而变电所则只有利用变压器新投人运行或大修后的冲击合闸试验时一并进行。对于 110/10kV的高压变压器,如在低压侧用 380V励磁,高压侧需用电压互感器测量电压。电压互感器的准确度应比电压表高一级,电压表为0.5级,电压互感器应为0.2级。
7.4.2变比电桥测量变压比
利用变比电桥能够很方便的测量出被试变压器的变压比。变比电桥的测量原理图如图7-1所示,只需要在被试变压器的一次侧加电压U1,则在变压器的二次侧感应出电压U2,调整电阻R1,使检流计指零,然后通过简单的计算求出电压比K。
测量电压比的计算公式为
K= U1/ U2=(R1+ R2)/ R2=1+R1/ R2 QJ35型变比电桥,测量电压比范围为1.02—111.12,准确度为±0.2%,完全可以满足我国电力系统测量变压比的要求。7.4.3自动变比测试仪
按照仪器的需要,输入相关参数,按接线图和操作步骤,测出每个分接位置的变压比
7.5试验结果的分析判断
(1)各相引接头的电压比与铭牌值相比,不应有显著差别,且符合规律;
(2)电压35kV以下,电压比小于3的变压器电压比允许偏差为±1%;其他所有变压器:额定分接电压比允许偏差±0.5%,其他分接的电压比允许偏差应在变压器阻抗电压值(%)的1/10以内,但不得超过±1%。7.6注意事项
仪器的操作要求进行,首先计算额定变比,然后加压测量实际变比与额定变的误差。
8.校核三相变压器的组别和单相变压器的极性 8.1试验目的
由于变压器的绕组在一次、二次间存在着极性关系,当几个绕组互相连接组合时,无论接成串联或并联,都必须知道极性才能正确进行。
变压器接线组别是并列运行的重要条件之一,若参加并列运行的变压器接线组别不一致,将出现不能允许的环流。8.2该项目适用范围
交接时、更换绕组后、内部接线变动后 8.3试验时使用的仪器
万用表或直流毫伏表、电压表、相位表 8.4试验方法
8.4.1极性校核试验方法 8.4.1.1直流法
如图8-1所示,将1.5~3V直流电池经开关S接在变压器的高压端子A、X上,在变压器二次绕组端子上连接一个直流毫伏表(或微安表、万用表)。注意,要将电池和表计的同极性端接往绕组的同名端。例如电池正极接绕组A端子,表计正端要相应地接到二次a端子上。测量时要细心观察表计指针偏转方向,当合上开关瞬间指针向右偏(正方向),而拉开开关瞬间指针向左偏时,则变压器是减极性。若偏转方向与上述方向相反,则变压器就是加极性。试验时应反复操作几次,以免误判断。在开、关的瞬间,不可触及绕组端头,以防触电。
8.4.1.2交流法
如图8-2所示,将变压器的一次的A端子与二次的a端子用导线连接。在高压侧加交流电压,测量加入的电压UAX和低压侧电压Uax与未连接的一对同名端子间的电压UXx。如果UXx=UAX-Uax,则变压器为减极性,若UXx=UAX+Uax,则变压器为加极性。
交流法比直流法可靠,但在电压比较大的情况下(K > 20),交流法很难得到明显的结果,因为(UAX-Uax)与(UXx=UAX+Uax)的差别很小。这时可以从变压器的低压侧加压,使减极性和加极性之间的差别增大。如图8-2(b)所示,一台220/10kV变压器,其变比K=22。若在10kV侧加压20V,则
UXx=440-20(V)为减极性 或
UXx=440+20(V)为加极性
一般电压表的最大测量范围为 0~600V,而且差值为 440土 2(V)时分辨明显,完全可以满足要求。
8.4.2组别试验方法 8.4.2.1直流法
如图8-3所示,用一低压直流电源,(通常用两节1.5V干电池串联)轮流加入变压器的高压侧AB、BC、CA端子,并相应记录接在低压端子ab、bc、ca上仪表指针的指示方向及最大数值。测量时应注意电池和仪表的极性,例如,AB端子接电池,A接正,B接负。表针也是一样的,a接正,b接负,图8-3是对接线组别为Y,y0的变压器进行的九次测量的情况。图中正负号表示的是:高压侧电源开关合上瞬间的低压表计指示的数值和方向的正负;如是分闸瞬间,符号均应相反。8.4.2.2双电压表法
连接变压器的高压侧A端与低压侧a端,在变压器的高压侧通入适当的低压电源,如图8-4所示。测量电压UBb、、UBc、UCb,并测量两侧的线电压UAB、UBC、UCA和Uab、Ubc、Uca。根据测量出的电压值,可以来判断组别。
8.4.2.3相位表法
相位表法就是利用相位表可直接测量出高压与低压线电压间的相位角,从而来判定组别,所以又叫直接法。
如图8-4所示,将相让表的电压线圈接于高压,其电流线圈经一可变电阻接人低压的对应端子上。当高压通人三相交流电压时,在低压感应出一个一定相位的电压,由于接的是电阻性负载,所以低压侧电流与电压同相。因此,测得的高压侧电压对低压侧电流的相位就是高压侧电压对低压侧电压的相位。8.5试验结果的分析判断 与铭牌和端子标志相符合。8.6注意事项
8.6.1 测量极性可用直流法或交流法,试验时反复操作几次,以免误判断,在开、关的瞬间,不可触及绕组端头,以防触电。
8.6.2接线组别可用直流法、双电压表法及相位表法三种,对于三绕组变压器,一般分两次测定,每次测定一对绕组。
8.6.3直流法测量时应注意电池和仪表的极性,最好能采用中间指零的仪表,操作时要先接通测量回路,再接同电源回路,读数后要先断开电源回路,后断开测量回路表计。
8.6.4双电压表法试验时要注意三相电压的不平衡度不超过 2%,电压表宜采用0.5级的表。
8.6.5相位表法对单相变压器要供给单相电源,对三相变压器要供给三相电源,接线时要注意相位表两线圈的极性。
8.6.6在被试变压器的高压侧供给相位表规定的电压一般相位表有几档电压量程,电压比大的变压器用高电压量程,电压比小的用低电压量程。可变电阻的数值要调节适当,即使电流线圈中的电流值不超过额定值,也不得低于额定值的20%; 8.6.7必要时,可在试验前,用已知接线组的变压器核对相位表的正确性。
9.局部放电测量 9.1 试验目的 测试电气设备的局部放电特性是目前预防电气设备故障的一种好方法。9.2 该项目适用范围
交接时、大修后、必要时 9.3 试验时使用的仪器
倍频电源车、补偿电抗,局部放电测量系统 9.4
试验方法
9.4.1局部放电试验前对试品的要求
a.本试验在所有高压绝缘试验之后进行,必要时可在耐压试验前后各进行一次,以资比较。
b.试品的表面应清洁干燥,试品在试验前不应受机械、热的作用。c.油浸绝缘的试品经长途运输颠簸或注油工序之后通常应静止48h后,方能进行试验。
d.测定回路的背景噪声水平。背景噪声水平应低于试品允许放电量的50%,当试品允许放电量较低(如小于10PC)时,则背景噪声水平可以允许到试品允许放电量的100%。现场试验时,如以上条件达不到,可以允许有较大干扰,但不得影响测量读数。
9.4.2试验基本接线
变压器局部放电试验的基本原理接线,如图9-1所示
利用变压器套管电容作为耦合电容Ck,并且在其末屏端子对地串接测量阻抗Zm。
9.4.3试验电源
试验电源一般采用50 HZ的倍频或其它合适的频率。三相变压器可三相励磁,也可单相励磁。
9.4.4现场试验电源与试验方法
现场试验的理想电源,是采用电动机一发电机组产生的中频电源,三相电源变压器开口三角接线产生的150HZ电源,或其它形式产生的中频电源。试验电压与允许放电量应同制造厂协商。若无合适的中频或150HZ电源,而又认为确有必要进行局部放电试验,则可采用降低电压的现场试验方法。其试验电压可根据实际情况尽可能高,持续时间和允许局部放电水平不作规定。降低电压试验法,不易激发变压器绝缘的局部放电缺陷。但经验表明,当变压器绝缘内部存在较严重的局部放电时,通过这种试验是能得出正确结果的。9.4.5现场试验工频降低电压的试验方法
工频降低电压的试验方法有三相励磁、单相励磁和各种形式的电压支撑法。现推荐下述两种方法。9.4.5.1单相励磁法
单相励磁法,利用套管作为耦合电容器Ck,其接线如图9-2所示。这种方法较为符合变压器的实际运行状况。图9-2同时给出了双绕组变压器各铁芯的磁通分布及电压相量图(三绕组变压器的中压绕组情况相同)。
由于C相(或A相)单独励磁时,各柱磁通分布不均,A、B、C(或AM、BM、CM)
感应的电压又服从于E=4.44fWφ规律,因此,根据变压器的不同结构,当对C相励磁的感应电压为Uc时B相的感应电压约为0.7Uc,A相的感应电压约为0.3Uc(若A相励磁时,则结果相反)。当试验电压为U时,各相间电压为 UCB=1.7U;UCA=1.3U 当A相单独励磁时,各相间电压为
UBA=1.7U;UAC=1.3U 当B相单独励磁时,三相电压和相间电压为
UA=UC=(1/2)UB
UBA=UBC=1.5U 单相电源可由电厂小发电机组单独供给,或以供电网络单独供给。选用合适的送电网络,如经供电变压器、电缆送至试品,对于抑制发电机侧的干扰十分有效。变电所的变压器试验,则可选合适容量的调压器和升压变压器。根据实际干扰水平,再选择相应的滤波器。9.4.5.2中性点支撑法
将一定电压支撑于被试变压器的中性点(支撑电压的幅值不应超过被试变压器中性点耐受长时间工频电压的绝缘水平),以提高线端的试验电压称为中性点支撑法。支撑方法有多种,便于现场接线的支撑法,如图9-3所示。
图9-3(b)的试验方法中,A相统组的感应电压Ui为2倍的支撑电压 U0,则A相线端对地电压UA为绕组的感应电压Ui与支撑电压U0的和,即
UA=3U0 这就提高了A相统组的线端试验电压.根据试验电压的要求,应适当选择放电量小的支撑变压器的容量和电压等级,并进行必要的电容补偿。9.5试验结果的分析判断
国家标准GB 1094—85(电力变压器)中规定的变压器局部放电试验的加压时间步骤,如图9-4所示。其试验步骤为:首先试验电压升到U2下进行 测量,保持5min;然后试验电压升到U1,保持5S; 最后电压降到U2下再进行测量,保持 30min。U1、U2的电压值规定及允许的放电量为 U1= UM/ = UM;
U2=1.5 UM/ 电压下允许放电量Q<500pC 或U2=1.3 UM/ 电压下允许放电量Q<300pC 式中:UM——设备最高工作电压。
试验前,记录所有测量电路上的背景噪声水平,其值应低于规定的视在放电量的50%。
测量应在所有分级绝缘绕组的线端进行。对于自耦连接的一对较高电压、较低电压绕组的线端,也应同时测量,并分别用校准方波进行校准。在电压升至U2及由U2再下降的过程中,应记下起始、熄灭放电电压。在整个试验时间内应连续观察放电波形,并按一定的时间间隔记录放电量Q。放电量的读取,以相对稳定的最高重复脉冲为准,偶尔发生的较高的脉冲可忽略,但应作好记录备查。
整个试验期间试品不发生击穿;在U2的第二阶段的 30 m i n内,所有测量端子测得的放电量Q连续地维持在允许的限值内,并无明显地、不断地向允许的限值内增长的趋势,则试品合格。
如果放电量曾超出允许限在 但之后又下降并低于允许的限值,则试验应继续进行,直到此后30min的期间内局部放电量不超过允许的限值,试品才合格。9.6注意事项
9.6.1干扰的主要形式如下:(1)来自电源的干扰;(2)来自接地系统的干扰;
(3)从别的高压试验或者电磁辐射检测到的干扰;(4)试验线路的放电;
(5)由于试验线路或样品内的接触不良引起的接触噪声。9.6.2对以上这些干扰的抑制方法如下:
(1)来自电源的于扰可以在电源中用滤波器加以抑制。这种滤波器应能抑制处于检测
仪的频宽的所有频率,但能让低频率试验电压通过。
(2)来自接地系统的干扰,可以通过单独的连接,把试验电路接到适当的接地点来消 除。
(3)来自外部的干扰源,如高压试验、附近的开关操作、无线电发射等引起的静电或
磁感应以及电磁辐射,均能被放电试验线路耦合引人,并误认为是放电脉冲。如果这些干
扰信号源不能被消除,就要对试验线路加以屏蔽。需要有一个设计良好的薄金属皮、金属
板或铁丝钢的屏蔽。有时样品的金属外壳要用作屏蔽。有条件的可修建屏蔽试验室。(4)试验电压会引起的外部放电。假使试区内接地不良或悬浮的部分被试验电压充 电,就能发生放电,这可通过波形判断与内部放电区别开。超声波检测仪可用来对这种放
电定位。试验时应保证所有试品及仪器接地可靠,设备接地点不能有生锈或漆膜,接地连
接应用螺钉压紧。
(5)对试验电路内的放电,如高压试验变压器中自身的放电,可由大多数放电检测仪检测到。在这些情况中,需要具备一台无放电的试验变压器。否则用平衡检测装置或者可以在高压线路内插入一个滤波器,以便抑制来自变压器的放电脉冲。9.6.3如果高压引线设计不当,在引线上的尖端电场集中处会出现电晕放电,因此这些引线要由光滑的圆柱形或者直径足够大的蛇形管构成,以预防在试验电压下产生电晕。采用环状结构时圆柱形的高压引线可不必设专门的终端结构。采用平衡检测装置或者在高压线终端安装滤波器,可以抑制高压引线上小的放电。滤波器的外壳应光滑、圆整,以防止滤波器本身产生电晕。
10.变压器绕组变形测试 10.1 试验目的
确定变压器绕组是否发生变形,保证变压器的安全运行 10.2 该项目适用范围 交接时、出口短路后 10.3 试验时使用的仪器
TDT型变压器绕组变形测试系统 10.4
测试方法
10.4.1变压器绕组变形后频响特性曲线变化情况分析 变压器绕组的等值网络图如下:
频率响应法是一种先进的测试方法,它主要对绕组的频响特性曲线进行测试,进行前后或相间比较来判断绕组是否发生了机械变形。
变压器绕组变形的种类很多,但大体上可分为:整体变形和局部变形。如果变压器在运输过程或安装过程中发生了碰撞,变压器绕组就可能发生整体位移,这种变形一般整体完好,只是变压器绕组之间发生了相对位移,这种情况下,线圈对地电容C会发生改变,但线圈的电感量和饼间电容并不会发生变化,频响特性曲线各谐振峰值都对应存在,但谐振点会发生平移。线圈在运行中,出现固定压板松动、垫块失落等情况时或由于绕组间安匝不平衡,可能会出现高度尺寸上的拉伸,线圈在高度上的增加,将使线圈的总电感减小,同时线饼间的电容减小,在对应的频响特性曲线上,变形相曲线将出现第一个谐振峰值向高频方向偏移,同时伴随着幅值下降,而中高频部分的曲线与正常相的频响特性曲线相同。线圈在运行中,由于漏磁的作用,线圈在端部所受到的轴向作用力最大,可能使线圈出现高度上的压缩,线圈的总电感增加,线饼间的电容增加,在对应的频响特性曲线上,变形相曲线将出现第一个谐振峰值向低频方向偏移,同时伴随着幅值升高,而中高频部分的曲线与正常相的频响特性曲线相同。
变压器在发生出口短路后,一般只是发生局部变形,如出现局部压缩或拉开变形、扭曲、幅相变形(向内收缩和鼓爆)、引线位移、匝间短路、线圈断股、存在金属异物等情况。如果变压器出现事故,则这几种情况可能同时存在。当线圈两端被压紧时,由于电磁力的作用,个别垫块可能被挤出,造成部分线饼被压紧,部分线饼被拉开,纵向电容发生变化,部分谐振峰值向高频方向移动,部分谐振峰值向低频方向移动。变压器绕组发生匝间短路后,由于线圈电感明显下降,低频段的频响特性曲线会向高频方向偏移,线圈对信号的阻碍大大减小,频响曲线将向衰减减小的方向移动,一般说来也可以通过测量变压比(有时候不一定能够测出变压比)来判断绕组是否发生匝间短路。线圈断股时,线圈的整体电感将略有增大,对应到频谱图,其低频段的谐振点将向低频方向略有移动,而中高频的频响曲线与正常曲线的图谱重合。在发生断股和匝间短路后,一般会有金属异物产生,虽然金属异物对低频总电感影响不大,但饼间电容将增大,频谱曲线的低频部分谐振峰值将向低频方向移动,中高频部分曲线的幅值将有所升高。当变压器绕组的引线发生位移时,不会影响线圈电感,频响特性曲线在低频段应重合,只是在中、高频部分的曲线会发生改变,主要是衰减幅值方面的变化,引线向外壳方向移动则幅值向衰减增大的方向移动,引线向线圈靠拢则曲线向衰减较小的方向移动。在电动力作用下,在线圈两段受到压迫时,线圈向两端顶出,线圈被迫从中部变形,如果变压器的装配间隙较大或有撑条受迫移位,线圈可能会发生轴向扭曲,由于这种变形使部分饼间电容和部分对地电容减小,所以频响特性曲线谐振峰值会向高频方向偏移,低频附近的谐振峰值略有下降,中频附近的谐振峰值点频率略有上升,高频段的频响特性曲线保持不变。在电动力作用下,一般是内线圈向内收缩,如果装配留有裕度,线圈有可能出现幅向变形,出现收缩和鼓爆,这种情况下,线圈电感会略有增加,线圈对地电容会略有增加,在整个频段范围内谐振点会向高频方向略微偏移。10.4.2试验步骤
10.4.2.1变压器停电完毕;
10.4.2.2将变压器的各侧出线完全拆除; 10.4.2.3将变压器的档位调至最大档
10.4.2.4用DTD绕组变形测试仪对变压器的每相进行测量,并且对数据进行横向与纵向比较,得出最后结论。10.5试验结果的分析判断
10.5.1变压器绕组变形测试时,可根据特定相关系数的变化判断绕组变形的严重程度,并结合频响特性曲线的谐振点和谐振幅值的变化加以确认。
10.5.2当变压器绕组的频响特性曲线相关系数小于0.6且低频段谐振点有明显偏移时,变压器绕组发生了严重变形;
10.5.3当相关系数小于0.8且大于0.6且低频段谐振点有偏移时,变压器绕组发生了较严重变形;
10.5.4当相关系数大于0.9时小于1.3时,变压器绕组有轻微变形;
10.5.5当相关系数大于1.3时,且频响特性曲线低频部分谐振点无明显偏移时,变压器绕组无明显可见变形;
10.5.6通过相关系数判断绕组的变形程度后,还需通过谐振点的偏移和谐振幅值进一步确认线圈的变形性质:变压器绕组频响特性曲线谐振点在低频段发生了较明显偏移且幅值变化较大,或在整个频段范围内谐振点都发生了偏移时,变压器绕组发生了严重变形或发生了整体变形,应尽快处理变压器。10.6 注意事项
10.6.1电源使用220V交流电源;
10.6.2测试过程中要排除外部干扰,进行准确测量; 10.6.3设备在运输过程中要注意防止过度震动。11.分接开关试验 11.1 试验目的
进行分接开关的试验,以确定分接开关各档是否正常 11.2 该项目适用范围
交接、大修、预试及必要时 11.3 试验时使用的仪器
QJ44型双臂电桥、有载分接开关特性测试仪 11.4 试验项目和试验方法 11.4.1试验项目
接触电阻(吊罩时测量),过渡电阻测量,过渡时间测量 11.4.2试验方法
11.4.2.1在变压器吊罩时时可用双臂电桥测量无载调压分接开关和有载调压分接开关选择开关的接触电阻和切换开关的接触电阻和过渡电阻,用有载分接开关特性测试仪可测量分接开关不代线圈时的切换波形和切换时间和同期。
11.4.2.2用有载分接开关特性测试仪可测量分接开关代线圈时的切换波形和切换时间和同期。
11.5试验结果的分析判断
11.5.1无载分接开关每相触头各档的接触电阻,应符合制造厂要求。
11.5.2有载分接开关的过渡电阻、接触电阻及切换时间,都应符合制造厂要求,过渡电阻允许偏差为额定值的±10%,接触电阻小于500μΩ。
11.5.3分接开关试验可检查触头的接触是否良好,过渡电阻是否断裂,三相切换的同期和时间的长短。11.6注意事项
11.6.1测量应按照仪器的操作步骤和要求进行,带线圈测量时,应将其他侧线圈短路接地。
11.6.2应从单数档到双数档和双数档到单数档两次测量。
电缆电气试验标准化作业指导书(试行)一 适用范围
1、本指导书在重庆市电力公司各下属单位范围内适用。
2、本指导书适用于1kV及以上电缆(包括橡塑绝缘电缆和油纸绝缘电缆)的交接、预防性试验。
二 引用的标准和规程
GB 50150-91 电气设备交接试验标准
DL/T596-96
《电力设备预防性试验规程》 重庆市电力公司《电力设备试验规程》 三 试验仪器、仪表及材料
1.交接及大修后(新作终端或接头后)试验所需仪器及设备材料: 序号
试验所用设备(材料)
数量
序号
试验所用设备(材料)
数量
500V、1000V、2500V兆欧表
各1块
带有屏蔽层的测量导线
1根
调压器
1只
试验导线
若干
试验变压器
1台
交流试验变压器
1台 4
高压硅堆
1根
干湿温度计
1只 5
保护电阻
1只
电源盘
2只 6
电压表
1块
平口螺丝刀
1把 7
微安表
1块
梅花螺丝刀
1把 8
数字万用表
1块
计算器
1只
双臂电桥
1只
试验原始记录
1本 10
串联谐振试验设备
1套
2.预防性试验所需仪器及设备材料: 序号
试验所用设备(材料)
数量
序号
试验所用设备(材料)
数量
500V、1000V、2500V兆欧表
各1块
带有屏蔽层的测量导线
1根
调压器
1只
试验导线
若干
试验变压器
1台
交流试验变压器
1台 4
高压硅堆
1根
干湿温度计
1只 5
保护电阻
1只
电源盘
2只 6
电压表
1块
平口螺丝刀
1把 7
微安表
1块
梅花螺丝刀
1把 8
双臂电桥
1只
计算器
1只
串联谐振试验设备
1套
试验原始记录
1本 注:
如果使用直流高压发生器一套时,也可不需2~7所列设备 四 安全工作的一般要求 1
基本要求
1.1 为了保证工作人员在现场试验中的安全和健康,电力系统发、供、配电气设备的安全运行,必须严格执行DL409-1991《电业安全工作规程》。
1.2 加压前必须认真检查试验接线,表计倍率、量程,通知有关人员离开被试设备,加压时,必须将被测设备从各方面断开,验明无电压,确实证明设备无人工作,且电缆的另一端已派专人看守后,方可进行。在加压过程中,试验人员应精力集中,操作人应站在绝缘垫上。
1.3摇测电缆绝缘电阻时,测量完毕,仍然要摇动摇表,使其保持转速,待引线与被试品分开后,才能停止摇动,以防止由于试品电容积聚的电荷反放电损坏兆欧表。1.4 变更接线或绝缘电阻试验以及直流耐压结束后应对电缆彻底放电,并将升压设备短路接地。
1.5高压设备带电时的安全距离 表1 高压设备带电时的安全距离
电压等级(kV)
安全距离(m)10及以下
0.70 20-35
1.00 44
1.20 60-110
1.50 154
2.00 220
3.00 330
4.00 500
5.00 2 保证安全的组织措施
2.1 在电气设备上工作,保证安全的组织措施 a.工作票制度; b.工作许可制度; c.工作监护制度;
d.工作间断,转移和终结制度。注:详见《电业安全工作规程》
2.2必须由有经验的运行维护单位的实际操作人员现场进行安全监督。现场技术负责人负责测试方案的制定及现场工作协调联络和监督。
2.3 电气试验工作应填写第一种工作票,必须严格履行工作许可手续,工作不得少于两人。
五.试验项目及要求 1绝缘电阻测量
1.1测量目的
通过对主绝缘绝缘电阻的测试可初步判断电缆绝缘是否受潮、老化、脏污及局部缺陷,并可检查由耐压试验检出的缺陷的性质。对橡塑绝缘电力电缆而言,通过电缆外护套和电缆内衬层绝缘电阻的测试,可以判断外护套和内衬层是否进水。1.2 该项目适用范围
交接(针对橡塑绝缘电缆)及预防性试验时,耐压前后进行。1.3试验时使用的仪器、仪表
1.3.1 采用500V兆欧表(测量橡塑电缆的外护套和内衬层绝缘电阻时)1.3.2 采用1000V兆欧表(对0.6/1kV及以下电缆)1.3.3采用2500 V兆欧表(对0.6/1kV以上电缆)1.4试验步骤
1.4.1电缆主绝缘绝缘电阻测量 1.4.1.1断开被试品的电源,拆除或断开其对外的一切连线,并将其接地充分放电。1.4.1.2 用干燥清洁柔软的布檫净电缆头,然后将非被试相缆芯与铅皮一同接地,逐相测量。
1.4.1.3 将兆欧表放置平稳,将兆欧表的接地端头“E”与被试品的接地端相连,带有屏蔽线的测量导线的火线和屏蔽线分别与兆欧表的测量端头“L”及屏蔽端头“G”相连接。
1.4.1.4 接线完成后,先驱动兆欧表至额定转速(120转/分钟),此时,兆欧表指针应指向“∞”,再将火线接至被试品,待指针稳定后,读取绝缘电阻的数值。
1.4.1.5读取绝缘电阻的数值后,先断开接至被试品的火线,然后再将兆欧表停止运转。
1.4.1.6 将被试相电缆充分放电,操作应采用绝缘工具。1.4.2 橡塑电缆内衬层和外护套绝缘电阻测量 解开终端的铠装层和铜屏蔽层的接地线 1.4.2.1 同1.4.1中1.4.1.1;
1.4.2.2 首先用干燥清洁柔软的布檫净电缆头; 注1:测量内衬层绝缘电阻时:
将铠装层接地;将铜屏蔽层和三相缆芯一起短路(摇绝缘时接火线)注2:测量外护套绝缘电阻时:
将铠装层、铜屏蔽层和三相缆芯一起短路(摇绝缘时接火线)1.4.2.3,1.4.2.4,1.4.2.5,1.4.2.6分别同1.4.1中1.4.1.3,1.4.1.4,1.4.1.5,1.4.1.6 1.5试验接线图
绝缘电阻测试原理接线图(a)不加屏蔽(b)加屏蔽 1.6 测量结果分析判断
运行中电缆,其绝缘电阻值应从各次试验数据的变化规律及相间的相互比较来综合判断。
1.6.1电力电缆的绝缘电阻值与电缆的长度和测量时的温度有关,所以应进行温度和长度的换算,公式为: Ri20=RitKL 式中 Ri20表示温度为20℃时的单位绝缘电阻值,(MΩ.km);Rit表示电缆长度为L,在温度为t℃时的绝缘电阻值,MΩ;L为电缆长度(km);
K为绝缘电阻温度换算系数,见下表
电缆绝缘的温度换算系数 温度(℃)
0
K
0.48
0.57
0.70
0.85
1.00
1.13
1.41
1.66
1.92 停止运行时间较长的地下电缆可以以土壤温度为准,运行不久的应测量导体直流电阻后计算缆芯温度,对于新电缆(尚未铺设)可以以周围环境温度为准。1.6.2绝缘电阻参考值 对油纸绝缘电缆
额定电压(kV)
1~3
绝缘电阻每km不少于(MΩ)
100
对橡塑绝缘电缆: 主绝缘电阻值应满足:
额定电压(kV)
3~6
MΩ
1000 1000
2500 橡塑绝缘电缆的内衬层和外护套电缆每km不应低于0.5MΩ(使用500V兆欧表),当绝缘电阻低于0.5 MΩ/km时,应用万用表正、反接线分别测量铠装层对地、屏蔽层对铠装的电阻,当两次测得的阻值相差较大时,表明外护套或内衬层已破损受潮。1.6.3对纸绝缘电缆而言,如果是三芯电缆,测量绝缘电阻后,还可以用不平衡系数来判断绝缘状况。
不平衡系数等于同一电缆各芯线的绝缘电阻值中最大值与最小值之比,绝缘良好的电缆,其不平衡系数一般不大于2.5。1.7 注意事项
1.7.1兆欧表接线端柱引出线不要靠在一起;
1.7.2测量时,兆欧表转速应尽可能保持额定值并维持恒定。
1.7.3被试品温度不低于+5℃,户外试验应在良好的天气下进行,且空气的相对湿度一般不高于80%。直流耐压和泄漏电流试验
由于重庆市电力公司目前已经着手对交联聚乙烯电缆开展交流耐压试验工作,所以这里的直流耐压和泄漏电流主要针对纸绝缘电缆,对于尚未开展交流耐压试验(对交联聚乙烯电缆)的单位,也可参照《重庆市电力公司电力设备试验规程》的有关规定,进行直流耐压和泄漏电流试验。2.1测量目的
通过直流耐压试验可以检查出电缆绝缘中的气泡、机械损伤等局部缺陷,通过直流泄漏电流测量可以反映绝缘老化、受潮等缺陷,从而判断绝缘状况的好坏。2.2 该项目适用范围
交接、预试、新作终端或接头后 2.3 试验时使用的仪表(测量仪器)
直流高压发生器一套,也可使用下列散件: 2.3.1 调压器 2.3.2 试验变压器 2.3.3 高压硅堆 2.3.4 保护电阻 2.3.5 直流微安表 2.3.6电压表 2.4试验步骤
2.4.1.按照试验接线图由一人接线,接线完后由另一人检查,内容包括试验接线有无错误,各仪表量程是否合适,试验仪器现场布局是否合理,试验人员的位置是否正确。
2.4.2 将电缆充分放电,指示仪表调零,调压器置于零位。
2.4.3 测量电源电压值并分清电源的火、地线,电源火、地线应与单相调压器的对应端子相接。
2.4.4 合上电源刀闸,给升压回路加电,然后用单相调压器逐步升压至预先确定的试验电压值:在0.25、0.5、0.75倍试验电压下各停留1分钟,读取泄漏电流值,在1.0倍试验电压下读取1分钟及5分钟泄漏电流值,交接时还应读取10分钟和15分钟泄漏电流值。
2.4.5 试验完毕,应先将升压回路中单相调压器退回零位并切断电源。
2.4.6 每次试验后,必须将电缆先经电阻对地放电,然后对地直接放电。放电时,应使用绝缘棒,并可根据被试相放电火花的大小,大概了解其绝缘状况。2.4.7 再次试验前,必须检查接地是否已从被试相上移开。2.5试验原理接线图
2.6对测量结果的分析判断 2.6.1 试验电压标准
预试时纸绝缘电缆主绝缘的直流耐压试验值(加压时间5min)电缆额定电压(U0/U)
直流试验电压(kV)1.0/3
3.6/3.6
3.6/6
6/6
6/10
8.7/10
21/35
26/35
130
交接时粘性油浸纸绝缘电缆主绝缘直流耐压试验电压值
电缆额定电压U0/U(kV)
0.6/1
6/6
8.7/10
21/35 直流试验电压
(kV)
6U
6U
6U
5U 试验时间
(min)
不滴流油浸纸绝缘电缆主绝缘直流耐压试验电压值
电缆额定电压U0/U(kV)
0.6/1
6/6
8.7/10
21/35 直流试验电压
(kV)
6.7
试验时间
(min)
交联聚乙烯电缆主绝缘的直流耐压试验标准(加压5分钟)
电缆额定电压(U0/U)
直流试验电压(kV)1.8/3
3.6/3.6
6/6
6/10
8.7/10
21/35
26/35
48/66
144
64/110
192 127/220
305
2.6.2 要求耐压5分钟时的泄漏电流值不得大于耐压1分钟时的泄漏电流值。对纸绝缘电缆而言,三相间的泄漏电流不平衡系数不应大于2,6/6kV及以下电缆的泄漏电流小于10μA,8.7/10kV电缆的泄漏电流值小于20μA时,对不平衡系数不作规定。
2.6.3 在加压过程中,泄漏电流突然变化,或者随时间的增长而增大,或者随试验电压的上升而不成比例地急剧增大,说明电缆绝缘存在缺陷,应进一步查明原因,必要时可延长耐压时间或提高耐压值来找绝缘缺陷。
2.6.4 相与相间的泄漏电流相差很大,说明电缆某芯线绝缘可能存在局部缺陷。
2.6.5 若试验电压一定,而泄漏电流作周期性摆动,说明电缆存在局部孔隙性缺陷。当遇到上述现象,应在排除其他因素(如电源电压波动、电缆头瓷套管脏污等)后,再适当提高试验电压或延长持续时间,以进一步确定电缆绝缘的优劣。2.7注意事项
2.7.1 试验时,应每相分别施加电压,其他非被试相应短路接地。
2.7.2 每次改变试验接线时,应保证电缆电荷完全泄放完、电源断开、调压器处于零位,将待被试的相先接地,接线完毕后加压前取下该相的地线。
2.7.3 泄漏电流值和不平衡系数只作为判断绝缘状况的参考,不能作为是否能投入运行的判据。
2.7.4 注意温度和空气湿度对表面泄漏电流的影响
当空气湿度对表面泄漏电流远大于体积泄漏电流,电缆表面脏污易于吸潮,使表面泄漏电流增加,所以必须擦净表面,并应用屏蔽电极。另外,温度对高压直流试验结果的影响极为显著,最好在电缆温度为30~80℃时做试验,因在这样的温度范围内泄漏电流变化较明显。
2.7.5 对金属屏蔽或金属套一端接地,另一端装有护层过电压保护器的单芯电缆主绝缘作直流耐压试验时,必须将护层过电压保护器短接,使这一端的电缆金属屏蔽或金属套临时接地。3 检查相位 3.1测量目的
检查电缆两端相位一致并应与电网相位相符合,以免造成短路事故。3.2该项目适用范围 交接时或检修后。
3.3试验时使用的仪表(测量仪器)数字万用表 3.4试验步骤
3.4.1 在电缆一端将某相接地,其他两相悬空,准备好以后,用对讲机呼叫电缆另一端准备测量。
3.4.2 将万用表的档位开关置于测量电阻的合适位置,打开万用表电源,黑表笔接地,将红表笔依次接触三相,观察红表笔处于不同相时电阻值的大小。3.4.3 当测得某相直流电阻较小而其他两相直流电阻无穷大时(此时表),说明该相在另一端接地,呼叫对侧做好相序标记(己侧也做好相同的相序标记)。
3.4.4 重复步骤ABC,直至找完全部三相为止,最后随即复查任意一相,确保电缆两端相序的正确。3.5原理接线图 交联聚乙烯电缆交流耐压试验 4.1 测量目的
橡塑绝缘电缆特别是交联聚乙烯电缆,因其具有优异的性能,得到了迅速的发展,目前在中低压电压等级中已基本取代了油浸纸绝缘电缆,超高压交联聚乙烯电缆已发展至500kV电压等级。如果对交联聚乙烯电缆施加直流电压,那么直流试验过程中在交联聚乙烯电缆及其附件中会形成空间电荷,对绝缘,有积累效应,加速绝缘老化,缩短使用寿命,同时,直流电压下绝缘电场分布与实际运行电压下不同。因此,直流试验合格的交联聚乙烯电缆,投入运行后,在正常工作电压作用下也会发生绝缘事故。通过施加交流试验电压,可以避免以上不足,并且可以有效地鉴别正常绝缘的绝缘水平。4.2该项目适用范围
交接、预试、新作终端或接头后 4.3试验时使用的仪器(测量仪器)
串联谐振试验设备一套(包括操作箱、励磁变、谐振电抗器、分压器、负载补偿电容等)
4.4试验步骤
4.4.1 将被试电缆与其他电气设备解开并充分放电。
4.4.2 布置试验设备,检查设备的完好性,连接电缆无破损、断路和短路。连接线路前应有明显的电源断开点。
4.4.3 按照试验接线图连接各部件,各接地点应一点接地。
4.4.4 检查“电源”开关处于断开位置,“电压调节”电位器逆时针旋转到底(零位),接通电源线。
4.4.5 检查“过压整定”拨码开关,拨动拨盘,使显示的整定值为试验电压的1.05~1.1倍。
4.4.6 接通“电源”开关,显示设置界面,进行有关参数设置。4.4.7 升压及试验结果保存与查询。4.4.8 更换试验相,重复步骤A~G。4.4.9 关机,断开电源。4.5试验原理接线图
串联谐振试验现场接线布置原理示意图(单个或并联使用)
串联谐振试验现场接线布置原理示意图(单个或串并联使用)4.6测量结果的分析判断
4.6.1 国内部分地区(省)交流耐压试验电压标准 地区
江苏、安徽 浙江(30~300Hz)
华北(1~300Hz)
山东(1~300Hz)
吉林(20~70Hz)
U0/U
交接/分钟
预试/分钟
交接/分钟
预试/分钟
交接/分钟
预试/分钟
交接/分钟
预试/分钟
1.8/3
U0/5
1.6 U0/5
U0/5
1.6 U0/5
U0/5
1.6 U0/5
6.7/5(3.5 U0)
5.7/5 3.6/6
U0/5(7.2KV)
1.6 U0/5(6kV)
U0/5
1.6 U0/5
U0/5
1.6 U0/5
11.6/5(3.2 U0)
9.9/5 6/10 8.7/10
U0/5
1.6 U0/5
U0/60
1.6 U0/5
U0/60
1.6 U0/5
17.4/5(3.0U0)
14.8/5 地区
江苏、安徽 浙江(30~300Hz)
华北(1~300Hz)
山东(1~300Hz)
吉林(20~70Hz)12/20 21/35 26/35
U0/5
1.6 U0/5
U0/60
1.6 U0/5
U0/60
1.6 U0/5
64/110 127/220
1.7 U0/5 1.4 U0/5
1.36 U0/5 1.15 U0/5
1.7 U0/60 1.4 U0/60
1.7 U0/60 1.4 U0/60
1.7 U0/60 1.4 U0/60
1.36 U0/5 1.12 U0/5
颁发日期
江苏2002.2 安徽
2003.6
2002.2
2003.3(新版)
4.6.2 由于重庆市电力公司目前还未有统一的交流耐压试验电压标准,各单位可参照相关省市制定的标准执行。4.6.3 在一定频率范围内(通常为20~300Hz),当确定试验电压后,逐渐升高电压,如果在规定时间内耐压通过,说明电缆能够投入运行,否则不合格。4.7注意事项
4.7.1 被试电缆两端应完全脱空,试验过程中,两端应派专人看守。
4.7.2 试验前应根据电缆长度、电压等级等确定励磁变低压侧接线方式,以使励磁变高压能输出满足试验条件的电压。
4.7.3 在施加试验电压前应设定好过电压整定值。
4.7.4 试验设备(谐振电抗器、分压器、励磁变压器等)应尽量靠近被试电缆头,减少试验接地线的长度,及减少接地线的电感量。
4.7.5 试验时操作人员除接触调谐、调压绝缘旋钮外,不要触及控制箱金属外壳。5 交联聚乙烯电缆铜屏蔽层电阻和导体电阻比 5.1测量目的
通过对交联聚乙烯电缆铜屏蔽层电阻的测量,以判断铜屏蔽层是否被腐蚀;通过对交联聚乙烯电缆铜屏蔽层电阻和导体电阻比的测量,可大致判断附件中导体连接点接触情况。
5.2该项目适用范围
交接、投运前、重作终端或接头后或内衬层破损进水后
5.3试验时使用的仪表(测量仪器)
双臂电桥一套
5.4试验步骤
5.4.1 用双臂电桥测量在相同温度下的铜屏蔽层直流电阻。5.4.2 用双臂电桥测量在相同温度下的导体的直流电阻。5.5对测量结果的分析判断
当铜屏蔽层电阻和导体电阻比与投运前相比增加时,表明铜屏蔽层的直流电阻增大,铜屏蔽层有可能被腐蚀;当该值与投运前相比减少时,表面附件中的导体连接点的接触电阻有增大的可能。6 交叉互联系统 6.1测量目的
检查电缆外护套、绝缘接头外护套与绝缘夹板耐受规定电压的能力;检查非线性电阻型护层过电压保护器性能的好坏,以保证高压电缆的金属护套能承受在电缆受到过电压时感应的过电压对外护层的破坏;检查互联箱中闸刀(或连接片)接触电阻的大小。
6.2该项目适用范围 交接、预试时
6.3使用的仪表(测量仪器)6.3.1直流发生器一套 6.3.2 1000V兆欧表 6.3.3 回路电阻测试仪 6.4试验步骤
6.4.1 电缆外护套、绝缘接头外护套与绝缘夹板的直流耐压试验 6.4.2 非线性电阻型护层过电压保护器 6.4.2.1对炭化硅电阻片:
6.4.2.1.1将连接线拆开后,分别对三组电阻片施加产品规定的直流电压后测量流过电阻片的电流值。
6.4.2.1.2将测得值与产品规范相比较。6.4.2.2对氧化锌电阻片: 6.4.2.2.1将连接线拆开。
6.4.2.2.2对产品施加直流电压,当回路中电流刚好达1mA时,记下此时的电压,及直流1mA参考电压。
6.4.2.2.3测得的U1Ma应符合产品规范。
6.4.2.3测量非线性电阻片及其引线的对地绝缘电阻:
6.4.2.3.1将非线性电阻片的全部引线并联在一起并与接地的外壳绝缘。6.4.2.3.2用1000V兆欧表测量引线与外壳间的绝缘电阻。6.4.3 互联箱
6.4.3.1测量闸刀(或连接片)的接触电阻。
6.4.3.2检查闸刀(或连接片)连接位置是否正确。6.5测量结果分析判断
6.5.1 在对电缆外护套、绝缘接头外护套与绝缘夹板的直流耐压试验过程中,要求施加直流电压5kV,加压时间1min,不应击穿,如果发生击穿现象,说明电缆绝缘中有气泡、机械损伤等局部缺陷。
6.5.2 在测量炭化硅电阻片泄漏电流试验中,如果试验时的温度不是20℃,则被测电流值应乘以修正系数(120-t)/100(t为电阻片的温度,℃)。
6.5.3 当用兆欧表测量非线性电阻片及其引线的对地绝缘电阻小于10 MΩ时,说明电阻片受潮或老化。
6.5.4 测量互联箱中闸刀(或连接片)的接触电阻不应大于20μΩ,否则说明接触不良好,应处理。6.6 注意事项
6.6.1 在测量电缆外护套、绝缘接头外护套与绝缘夹板的直流耐压试验中,试验时必须将护层过电压保护器断开。在互联箱中将另一侧的三段电缆金属套都接地,使绝缘接头的绝缘夹板也能结合在一起试验,然后在每段电缆金属屏蔽或金属套与地之间施加直流电压。
6.6.2 互联箱中闸刀(或连接片)接触电阻的测量应在做完护层过电压保护器的所有试验后进行。
6.6.3 检查闸刀(或连接片)连接位置试验应在交叉互联系统的试验合格后密封互联箱之前进行。
电容器电气试验标准化作业指导书(试行)一.适用范围
本作业指导书适应于高压并联电容器、串联电容器、交流滤波电容器、集合式电容器、断路器电容器、耦合电容器和电容式电压互感器的电容分压器的交接或预防性试验。
二.引用的标准和规程
GB50150-91《电气设备交接及安装规程》 DL/T596-1996《电力设备预防性试验规程》 《重庆市电力公司电力设备试验规程》 制造厂出厂说明书
三.试验设备、仪器及有关专用工具
3.交接及大修后试验所需仪器仪表及材料: 序号
试验所用设备(材料)
数量
序号
试验所用设备(材料)
数量
兆欧表
1块
电源盘
2个 3
介损测试仪
1套 刀闸板
2块
常用仪表(电压表、微安表、万用表等)
1套
小线箱(各种小线夹及短接线)
1个
局部放电测试仪
1套
交流耐压试验系统
1套 9
常用工具
1套
安全带
3根
示波器
1台
暂态录波系统一套 13
操作杆
3副
设备试验原始记录
1本 4.预防性试验所需仪器仪表及材料: 序号
试验所用设备(材料)
数量
序号
试验所用设备(材料)
数量
兆欧表
1块
介损测试仪
1套
常用仪表(电压表、微安表、万用表等)
1套
小线箱(各种小线夹及短接线)
1个
安全带
2根
电源盘
1个 7
操作杆
3副
常用工具
1套 9
设备预试台帐
1套
四.安全措施、试验工作要求
1.必须严格执行DL409-1991《电业安全工作规程》及市公司相关安全规定。2.现场工作负责人负责测试方案的制定及现场工作协调联络和监督。五.电气试验项目及要求 1.渗漏油检查 1.1 目的
检查电容器是否有渗漏油现象。1.2 试验性质
交接、大修后、预防性试验或每6个月。1.3 测量结果的分析判断 有渗漏油现象应停止使用。1.4 注意事项
渗漏油检查由变电站值班员或检修人员观察。2.交流耐压 2.1 目的
检查电容器极间或极对壳的绝缘性能。2.2 试验性质 交接
2.3 使用仪表
调压器、工频试验变压器、分压器、限流电阻、测量用电流电压表。2.4 试验步骤
电容器极间交流耐压试验所需无功容量较大,有试验条件的可用试验变压器对电容器直接加压试验,否则采用串联谐振的试验方法。消弧线圈L2与电容量并联,以补偿电容电流,使其并联后仍为容性,再与消弧线圈L1串联,L1用于电压补偿,以实现用较低的电源电压和较小的电流来满足试验电压较高、电流较大的试品的试验要求。
电容器极对外壳的交流耐压试验将电容器的两极连接在一起,外壳接地,用一般的耐压试验方法,对电容器两极逐步加至试验电压,并持续1min。2.5 接线图
电容器极间交流耐压采用补偿方法的试验接线如图2所示。2.6 测量结果的分析判断
交流耐压过程中无放电、升温和击穿为合格。2.7 注意事项
交流耐压试验电压应按产品出厂试验电压值的75%进行。3.绝缘电阻 3.1 目的 检查电容器极间和双极对壳的绝缘状况。3.2 试验性质
交接、大修后、预防性试验。3.3 使用仪表
绝缘摇表或兆欧表。3.4 试验步骤
一般用2500V兆欧表测量电容器的绝缘电阻。对断路器电容器、耦合电容器和电容式电压互感器的电容分压器,测量两极间的绝缘电阻;对并联电容器、串联电容器和交流滤波电容器,测量两极对外壳的绝缘电阻(测量时两极应短接),以检查器身套管等的对地绝缘。3.5 测量结果的分析判断
并联电容器、串联电容器和交流滤波电容器极对壳绝缘电阻不低于2000MΩ;断路器电容器、耦合电容器和电容式电压互感器的电容分压器极间绝缘电阻不低于5000MΩ;耦合电容器低压端对地绝缘电阻不低于100MΩ;集合式电容器的相间和极对壳绝缘电阻不做规定。3.7 注意事项
3.7.1 串联电容器极对壳绝缘、耦合电容器低压端对地绝缘用1000V兆欧表测量,其余用2500V兆欧表测量。
3.7.2使用兆欧表测量时应注意在测量前后均应对电容器充分放电;测量过程中,应充断开兆欧表与电容器的连接面停止摇动兆欧表的手柄,以免电容器反充放电损坏兆欧表。
4.介质损耗角正切值tgδ及电容值 4.1 目的
检查电容器极间电容量及其介质损耗。4.2 试验性质
交接、大修后、预防性试验。4.3 使用仪表
电容表、介质损耗电桥、调压器、工频试验变压器、分压器、标准电容。4.4 试验步骤
测量极间电容量可采用电容表直接测量、电流电压表法和电桥法。电容表法可以直接读数,简单易行,但受电容表准确度和测量电容值大小的限制。用电流、电压表法测量电容量的接线如图1所示。测量电压取0.05~0.5Un,额定电压Un较低的电容器应取较大的系数,测量时要求电源频率稳定,并为正弦波,测量读数用电流、电压表均不低于0.5级。加上试验电源,待电压、电流表指针稳定以后,同时读取电流和电压。当被试品的容抗较大时,电流表的内阻可以忽略不计,其被测电容为 Cx=I*106/2πfU
式中,I—通过被试电容器的电流(A); U—加于被试电容器的试验电压(V); f—试验电源频率(Hz); Cx—被试电容量(μF)。
4.5 接线图
图1 用电流、电压表法测量电容器接线图
图2 极间交流耐压、tgδ和电容量测量接线图
图2中TR为移圈调压器;T为隔离变压器;L1、L2为消弧线圈;Cx为被试电容器;CN为标准电容器;RN为交流分流器;TV1、TV2为电压分压器;TA为电流互感器,r为阻尼电阻;F为保护球隙;S1~S3为开关。U1为电源电压;U2为加在被试电容器上的电压;U为补偿电压;I1为试验变压器的电流;I2为补偿电流;Ic为被试电容器的电容电流。4.6 测量结果的分析判断
10kV或额定电压下油纸绝缘耦合电容器介质损耗角正切值tgδ小于0.5,膜纸绝缘耦合电容器介质损耗角正切值tgδ小于0.2;每相并联电容器、串联电容器、交流滤波电容器、集合式电容器、耦合电容器和电容式电压互感器的电容分压器的电容值偏差不超出额定值的-5%~+10%范围,电容器叠柱中任何两单元的实测电容之比值与这两单元的额定电压之比值的倒数之差不应大于5%;断路器电容器电容值的偏差应在额定电容值的±5%范围内。对电容器组,还应测量总的电容值。交流滤波电容器组的总电容值应满足交流滤波器调谐的标准。4.7 注意事项
4.7.1耦合电容器、电容式电压互感器的电容分压器采用电桥法正接线测量,电容式电压互感器的电容分压器的电容值与出厂值相差±2%范围时,准确度为0.5级及0.2级的应进行误差试验。
4.7.2断路器电容器的介质损耗角正切值tgδ及电容值用电桥法正接线与断口并联测量。对OWF系列电容器tgδ≥0.5%时,宜停止使用。
4.7.3并联电容器、串联电容器、交流滤波电容器、集合式电容器在预防性试验时不测量介质损耗角正切值tgδ。5.并联电阻值测量 5.1 试验性质
交接、大修后、预防性试验。5.3 使用仪表 万用表
5.4 试验步骤
并联电容器、串联电容器和交流滤波电容器并联电阻采用自放电法测量,断路器电容器并联电阻可用万用表测量。5.5 测量结果的分析判断
并联电阻值与出厂值的偏差在±10%范围内为合格。5.6 注意事项
耦合电容器、电容式电压互感器的电容分压器不做这项试验。6.局部放电试验 6.1 目的
检查电容器的绝缘性能。6.2 试验性质 交接。
6.3 使用仪表
调压器、试验变压器、分压器、局部放电测量装置 6.4 试验步骤
预加电压值为0.8×1.3Um,停留时间大于10s;降至测量电压值为1.1Um/,维持1min后,测量局部放电量。6.5 测量结果的分析判断
试验电压下放电量小于10pC为合格,放电量超过规定时,应综合判断,局部放电量无明显增长时一般仍可使用,但应加强监视。6.7 注意事项
局部放电试验仅限于耦合电容器和电容式电压互感器的电容分压器,除交接外,局部放电试验仅在其它试验判断电容器绝缘有疑问时进行,多节组合的耦合电容器可分节进行试验。
7.电容器组现场投切试验 7.1 目的
检查并联电容器组回路的投切性能。7.2 试验性质
系统试验,适用于并联电容器组。7.3 使用仪表
测量用电流、电压表,示波器,暂态录波系统,电容分压器。7.4 试验步骤
在电网额定电压下,对电力电容器组回路进行3次合闸、分闸试验,测量投切过程中三相稳态和暂态的母线及电容器上的电压波形、合闸过程的三相涌流波形、避雷器的动作电流。电流、电压的稳态信号可通过变电站的CT和PT二次直接读取,同时用光线示波器记录波形;因合闸涌流的频率约为几百赫兹,可从CT抽取信号输入示波器;暂态电压信号由电容分压器降低电压获得,通过阻抗变换器再输入暂态录波系统;避雷器的动作电流应通过分流器FL抽取信号输入示波器。试验接线时,所有暂态测量信号线均应使用双屏蔽电缆,并采用阻抗匹配措施。7.5 接线图
图3 10kV电容器组现场投切试验接线图 7.6 测量结果的分析判断
熔断器不应熔断;电容器组各相电流相互间的差值不宜超过5%。7.7 注意事项
为保证测量信号的可靠记录,应保持开关投切的动作时间与暂态录波装置启动的同步,每次操作完毕后,须及时分析波形图,如出现异常由现场负责人决定试验是否继续进行。
互感器电气试验标准化作业指导书(试行)
一、适用范围
本作业指导书适应于35kV及以上电磁式、电容式互感器的交接或预防性试验。
二、引用的标准和规程
GB50150-91《电气设备交接及安装规程》 DL/T596-1996《电力设备预防性试验规程》 《重庆市电力公司电力设备试验规程》 高压电气设备试验方法 制造厂说明书
三、试验仪器、仪表及材料
5.交接及大修后试验所需仪器及设备材料: 序号
试验所用设备(材料)
数量
序号
试验所用设备(材料)
数量
兆欧表
1块
电源盘
2个 3
介损测试仪
1套 刀闸板
2块
常用仪表(电压表、微安表、万用表等)
1套
小线箱(各种小线夹及短接线)
1个
局部放电测试仪
1套
交流耐压试验系统
1套 9
常用工具
1套
安全带
3根
操作杆
3副
设备试验原始记录
1本 6.预防性试验所需仪器及设备材料: 序号
试验所用设备(材料)
数量
序号
试验所用设备(材料)
数量
兆欧表
1块
介损测试仪
1套
常用仪表(电压表、微安表、万用表等)
1套
小线箱(各种小线夹及短接线)
1个
安全带
2根
电源盘
1个 7
操作杆
3副
常用工具
1套 9
设备预试台帐
1套
四、安全工作的一般要求
3.必须严格执行DL409-1991《电业安全工作规程》及市公司相关安全规定。4.现场工作负责人负责测试方案的制定及现场工作协调联络和监督。
五、试验项目
1.绝缘电阻的测量 1.1
试验目的
有效发现设备整体受潮和脏污,以及绝缘击穿和严重过热老化等缺陷 1.2
该项目适用范围
电流和电压互感器交接、大修后试验和预防性试验 1.3
试验时使用的仪器
2500V兆欧表、1000V兆欧表或具有1000V和2500V档的电动绝缘兆欧表 1.4
测量步骤
1.4.1 断开被试品的电源,拆除或断开对外的一切连线,将被试品接地放电。放电时应用绝缘棒等工具进行,不得用手碰触放电导线。
1.4.2 一次绕组用2500V兆欧表测量,二次绕组用1000V兆欧表测量。测量时,被测量绕组短接至兆欧表,非被试绕组均短路接地。
1.4.3 用干燥清洁柔软的布擦去被试品外绝缘表面的脏污,必要时用适当的清洁剂洗净。
1.4.4 兆欧表上的接线端子“E”接被试品的接地端,“L”接高压端,“G”接屏蔽端。采用屏蔽线和绝缘屏蔽棒作连接。将兆欧表水平放稳,当兆欧表转速尚在低速旋转时,用导线瞬时短接“L”和“E”端子,其指针应指零。开路时,兆欧表转速达额定转速其指针应指“∞”。然后使兆欧表停止转动,将兆欧表的接地端与被试品的地线连接,兆欧表的高压端接上屏蔽连接线,连接线的另一端悬空(不接试品),再次驱动兆欧表或接通电源,兆欧表的指示应无明显差异。然后将兆欧表停止转动,将屏蔽连接线接到被试品测量部位。
1.4.5 驱动兆欧表达额定转速,或接通兆欧表电源,待指针稳定后(或60s),读取绝缘电阻值。
1.4.6 读取绝缘电阻后,先断开接至被试品高压端的连接线,然后再将兆欧表停止运转。
1.4.7 断开兆欧表后对被试品短接放电并接地。
1.4.8 测量时应记录被试设备的温度、湿度、气象情况、试验日期及使用仪表等。2.极性检查
2.1
该项目适用范围 电流互感器交接试验
2.2
试验时使用的仪器 毫伏表,干电池等 2.3
测量步骤
极性检查试验接线如图1所示,当开关S瞬间合上时,毫伏表的指示为正,指针右摆,然后回零,则L1和K1同极性。
装在电力变压器套管上的套管型电流互感器的极性关系,也要遵循现场习惯的标法,即“套管型电流互感器二次侧的始端a与套管上端同极性”的原则。因为套管型电流互感器是在现场安装的,因此应注意检查极性,并做好实测记录。3.励磁特性试验 3.1
试验目的
可用此特性计算10%误差曲线,可以校核用于继电保护的电流互感器的特性是否符合要求,并从励磁特性发现一次绕组有无匝间短路。3.2
该项目适用范围 电流互感器的交接试验
3.3
试验时使用的仪器 调压器、电压表、电流表等 3.4
测量步骤 按图2所示接线。
试验时电压从零向上递升,以电流为基准,读取电压值,直至额定电流。若对特性曲线有特殊要求而需要继续增加电流时,应迅速读数,以免绕组过热。3.5
测量结果判断
当电流互感器一次绕组有匝间短路时,其励磁特性在开始部分电流较正常的略低,如图3中曲线2或3所示,因此在录制励磁特性时,在开始部分多测几点。当电流互感器一次电流较大,励磁电压也高时,可用2(b)的试验接线,输出电压可增至500V左右。但所读取的励磁电流值仍只为毫安级,在试验时对仪表的选用要加以注意。
根据规程规定,电流互感器只对继电保护有特性要求时才进行该项试验,但在调试工作中,当对测量用的电流互感器发生怀疑时,也可测量该电流互感器的励磁特性,以供分析。
4.电流比效对试验 4.1
该项目适用范围 电流互感器的交接试验
4.2
试验时使用的仪器
电压表、电流表、升流器、标准电流互感器、调压器等 4.3
测量步骤
理想的电流互感器的电流比应与匝数比成反比,即: I1 / I2=N2 / N1
式中:I1— 一次电流(A);I2—M次电流(A);N1— 一次绕组匝数;N2— 二次绕组匝数。
电流比测量接线见图4,如被测互感器TAX实际的电流比为 KX=I1X / I2X
标准电流互感器的变流比为 KN=I1N / I2N
已知被试电流互感器的铭牌标定电流比为K1X。5.一、二次绕组直流电阻测量 5.1
该项目适用范围 电流互感器的交接试验
5.2
试验时使用的仪器 QJ44型双臂电桥、甲电池等 5.3
测量步骤
以QJ44型双臂电桥为例,测量步骤如下:
测量前,首先调节电桥检流计机械零位旋钮,置检流计指针于零位。接通测量仪器电源,具有放大器的检流计应操作调节电桥电气零位旋钮,置检流计指针于零位。接人被测电阻时,双臂电桥电压端子P1、P2所引出的接线应比由电流端子Cl、C2所引出的接线更靠近被测电阻。
测量前首先估计被测电阻的数值,并按估计的电阻值选择电桥的标准电阻RN和适当的倍率进行测量,使“比较臂”可调电阻各档充分被利用,以提高读数的精度。测量时,先接通电流回路,待电流达到稳定值时,接通检流计。调节读数臂阻值使检流计指零。被测电阻按下式计算
被测电阻=倍率×读数臂指示
如果需要外接电源,则电源应根据电桥要求选取,一般电压为2~4V,接线不仅要注意极性正确,而且要接牢靠,以免脱落致使电桥不平衡而损坏检流计。
测量结束时,应先断开检流计按钮,再断开电源,以免在测量具有电感的直流电阻时其自感电动势损坏检流计。
6.tgδ及电容量(20kV及以上)测量 6.1
该项目适用范围
电流互感器的交接、大修后和预防性试验 6.2
试验时使用的仪器 0.5级及以上精度、三位有效数值及以上,自动抗干扰一体化电桥或QS19型电桥等。6.3
测量步骤
一般采用正接线法测量,试验接线和测试步骤参见测试仪器的使用说明书。操作及注意事项:
测量tgδ是一项高电压试验,电桥桥体外壳应用足够截面的导线可靠接地,对桥体或标准电容器的绝缘应保持良好状态。反接线测量时,桥体内部及标准电容器外壳均带高压,应注意安全距离。
6.4
影响tgδ的因素和结果的分析
在排除外界干扰,正确地测出tgδ值后,还需对tgδ的数值进行正确分析判断。为此,就要了解tgδ与哪些因素影响有关。根据tgδ测量的特点,除不考虑频率的影响(因施加电压频率基本不变)外,还应注意以下几个方面的问题。(1)、温度的影响
温度对tgδ有直接影响,影响的程度随材料、结构的不同而异。一般情况下,tgδ是随温度上升而增加的。现场试验时,设备温度是变化的,为便于比较,应将不同温度下测得的tgδ值换算至20℃(见附录B)。例如,25℃时测得绝缘油的介质损失角为0.6%,查附录B得25℃时的系数为0.79,因此20℃时的绝缘油介质损失角即为tgδ20=0.6%×0.78=0.47%。
应当指出,由于被试品真实的平均温度是很难准确测定的,换算系数也不是十分符合实际,故换算后往往有很大误差。因此,应尽可能在10~30℃的温度下进行测量。有些绝缘材料在温度低于某一临界值时,其tgδ可能随温度的降低而上升;而潮湿的材料在0℃以下时水分冻结,tgδ会降低。所以,过低温度下测得的tgδ不能反映真实的绝缘状况,容易导致错误的结论,因此,测量tgδ应在不低于5℃时进行。油纸绝缘的介质损耗与温度关系取决于油与纸的综合性能。良好的绝缘油是非极性介质,油的电 主要是电导损耗,它随温度升高而增大。而纸是极性介质,其年 由偶极子的松弛损耗所决定,一般情况下,纸的培 在一40~60℃的温度范围内随温度升高而减小。因此,不含导电杂质和水分的良好油纸绝缘,在此温度范围内其边 没有明显变化。对于电流互感器与油纸套管,由于含油量不大,其主绝缘是油纸绝缘。因此,对把 进行温度换算时,不宜采用充油设备的温度换算方式,因为其温度换算系数不符合油纸绝缘的tgδ随温度变化的真实情况。
当绝缘中残存有较多水分与杂质时,tgδ与温度关系就不同于上述情况,tgδ随温度升高明显增加。如两台220kV电流互感器通入50%额定电流,加温9h,测取通入电流前后tgδ的变化,tgδ初始值为0.53%的一台无变化,tgδ初始值为0.8%的一台则上升为1.1%。实际上初始值
第三篇:变压器常规试验作业指导书
变压器常规试验作业指导书 范围
本作业指导书适用于10 kV及以上的干式、油浸式变压器,规定了变压器交接验收、预防性试验、检修过程中的常规电气试验的引用标准、仪器设备要求、试验人员资质要求和职责、作业程序、试验结果判断方法和试验注意事项等。变压器试验的主要目的是判定变压器在运输、安装过程中和运行中是否受到损伤或发生变化,以及验证变压器性能是否符合有关标准和技术条件的规定。因此变压器试验的判断原则是与出厂试验和历史数据比较,有关标准和技术条件的各项条款试验判据也是依据这一原则制定的。制定本作业指导书的目的是规范试验操作、保证试验结果的准确性,为设备运行、监督、检修提供依据。规范性引用文件
GB 50150-2006
电气装置安装工程电气设备交接试验标准 安全措施
(1)测量前应断开变压器与引线的连接,并应有明显断开点。(2)变压器试验前应充分放电,防止残余电荷对试验人员的伤害。
(3)为保证人身和设备安全,要求必须在试验设备周围设围栏并有专人监护。负责升压的人要随时注意周围的情况,一旦发现异常应立刻断开电源停止试验,查明原因并排除后方可继续试验。(4)接地线应牢固可靠。
(5)注意对试验完毕的变压器绕组必须充分放电。
(6)进行直流泄漏电流试验过程中,如发现泄漏电流随时间急剧增长或有异常放电现象时,应立即停止试验,并断开电源,将被测变压器绕组接地,充分放电后,再进行检查。试验项目
变压器常规试验包括以下试验项目:(1)绕组连同套管绝缘电阻、吸收比和极化指数;(2)绕组连同套管的直流电阻;(3)绕组的电压比、极性与接线组别;(4)交流耐压试验;
(5)绝缘油试验(油浸变压器);(6)额定电压下的冲击合闸试验。仪器设备要求
(1)温度计(误差±1℃)、湿度计。(2)2500 V兆欧表:输出电流大于1mA。(3)变压器直流电阻测试仪(0.2级)。(4)变压比测试仪(0.2级)。(5)交流试验变压器。
所有使用仪器均应在校验有效期内。作业程序
6.1 绕组连同套管绝缘电阻、吸收比与极化指数
6.1.1 测试方法
测量绕组绝缘电阻时,应依次测量各绕组对地和其他绕组间绝缘电阻值。被测绕组各引出端应短路,其余各非被测绕组应短路接地。6.1.2 试验接线
6.1.3 试验步骤
(1)测量并记录环境温度和湿度,并记录变压器顶层油温平均值作为绕组绝缘温度。
(2)测量前应将被测绕组短路接地,将所有绕组充分放电。
(3)各非被测绕组短路接地,被测绕组各引出端短路,测量记录15、60s的绝缘电阻值。
(4)关闭兆欧表,被测绕组回路对地放电。(5)测量其他绕组。6.1.4 试验结果判断依据(或方法)
(1)可利用公式R2二R1 x 1.5(t1-t2)/10,将不同温度下的绝缘值换算到同一温度下,与上一次试验结果相比应无明显变化,一般不低于上次值的70%(式中R1、R2分别为在温度t1、t2下的绝缘电阻值)。
(2)在10~30℃范围内,吸收比不小于1.3;极化指数不小于1.5。吸收比和极化指数不进行温度换算。
(3)对于变压器绝缘电阻、吸收比或极化指数测试结果的分析判断最重要的方法就是与出厂试验比较,比较绝缘电阻时应注意温度的影响。由于干燥工艺的改进变压器绝缘电阻越来越高,一般能达到数万兆欧,这使变压器极化过程越来越长,原来的吸收比标准值越来越显示出其局限性,这时应测量极化指数,而不应以吸收比试验结果判定变压器不合格。变压器绝缘电阻大于10000 MΩ时,可不考核吸收比或极化指数。6.1.5 注意事项
(1)测量吸收比时应注意时间引起的误差。(2)试验时注意兆欧表的L端和E端不能对调。(3)试验时设法消除表面泄漏电流的影响。
6.2 绕组连同套管的直流电阻
6.2.1 测试方法
(1)使用变压器直流电阻测试仪进行测量。
(2)试验原理接线图(参照各直流电阻测试仪试验接线)。6.2.2 试验步骤
(1)测量并记录顶层油温及环境温度和湿度。
(2)将测量设备或仪表通过测试线与被测绕组有效连接,开始测量。(3)测试完毕应使用测量设备或仪表上的“放电”或“复位”键对被测绕组充分放电。
6.2.3 试验结果判断依据(或方法)
(1)按公式R2=R1(T+t2)/(T+t1)将测量值换算到同一温度(式中R1、R2分别为在温度t1、t2下的电阻值,t1可取为交接试验时的变压器绕组温度;T为电阻温度常数,铜导线取235,铝导线取225)。
(2)1.6 MVA以上的变压器,各相绕组电阻相互间的差别,不应大于三相平均值的2%;无中性点引出的绕组,线间差别应不大于三相平均值的1%。(3)1.6 MVA及以上变压器,相间差别一般应不大于三相平均值的4%;线间差别一般应不大于三相平均值的2%。
(4)各相绕组电阻与以前相同部位、相同温度下的历次结果相比,不应有明显差别。
(5)三相不平衡率是判断的重要标准,各种标准、规程都作了详细明确的规定。交接时与出厂时比较三相不平衡率应无明显变化,否则即使小于规定值也不能简单判断为合格。6.2.4 注意事项
(1)测量一般应在油温稳定后进行。只有油温稳定后,油温才能等同绕组温度,测量结果才不会因温度差异而引起温度换算误差。
(2)对于大型变压器测量时充电过程很长,应予足够的重视,可考虑使用去磁法或助磁法。
(3)应注意在测量后对被测绕组充分放电。
6.3 绕组的电压比、极性与接线组别
6.3.1 测试方法
(1)在出厂试验时,检查变压器极性与接线组别及所有分接头的变压比,目的在于检验绕组匝数、引线及分接引线的连接、分接开关位置及各出线端子标志的正确性。对于安装后的变压器,主要是检查分接开关位置及各出线端子标志是否正确。可使用专用变压比测试仪进行测试。(2)试验原理接线图(参照变压比测试仪试验接线)。6.3.2 试验步骤
(1)将专用变压比侧试仪与被测变压器的高压、低压绕组用测试线正确连接。(2)根据被测变压器的铭牌、型号对变压比测试仪进行设置。(3)运行测试仪便可得到被测变压器的变压比、极性与接线组别。6.3.3 试验结果判断依据(或方法)
(1)各相应分接的电压比顺序应与铭牌相同。
(2)电压35 kV以下,电压比小于3的变压器电压比允许偏差为±1%,其他所有变压器的额定分接电压比允许偏差为±0.5%,其他分接的偏差应在变压器阻抗值(%)的1/10以内,但不得超过1%。
(3)三相变压器的接线组别或单相变压器的极性必须与变压器的铭牌和出线端子标号相符。6.3.4 注意事项
(1)对于一个绕组有分接开关的多绕组变压器,可只测量带分接开关绕组对一个绕组所有分接头的变压比,而对第三绕组只测额定变压比。(2)测试前应正确输人被测变压器的铭牌、型号。
6.4 交流耐压试验
6.4.1 试验目的
(1)交流耐压试验是鉴定电力设备绝缘强度最有效和最直接的方法。电力设备在运行中,绝缘长期受着电场、温度和机械振动的作用会逐渐发生劣化,其中包括整体劣化和部分劣化,形成缺陷,例如由于局部地方电场比较集中或者局部绝缘比较脆弱就存在局部的缺陷。
(2)各种预防性试验方法,各有所长,均能分别发现一些缺陷,反映出绝缘的状况,但其他试验方法的试验电压往往都低于电力设备的工作电压,但交流耐压试验电压一般比运行电压高,因此通过试验后,设备有较大的安全裕度,所以这种试验已成为保证安全运行的一个重要手段。
(3)但是由于交流耐压试验所采用的试验电压比运行电压高得多,过高的电压会使绝缘介质损耗增大、发热、放电,会加速绝缘缺陷的发展,因此,从某种意义上讲,交流耐压试验是一种破坏性试验,在进行交流耐压试验前,必须预先进行各项非破坏性试验。
(4)如测量绝缘电阻、吸收比、介质损耗因数tanδ、直流泄漏电流等,对各项试验结果进行综合分析,以决定该设备是否受潮或含有缺陷。若发现已存在问题,需预先进行处理,待缺陷消除后,方可进行交流耐压试验,以免在交流耐压试验过程中,发生绝缘击穿,扩大绝缘缺陷,延长检修时间,增加检修工作量。6.4.2 试验接线
图1 交流耐压原理接线图
6.4.3 注意事项
(1)交流耐压是一项破坏性试验,因此耐压试验之前被试品必须通过绝缘电阻、吸收比、绝缘油色谱、tanδ等各项绝缘试验且合格。充油设备还应在注油后静置足够时间(110kV及以下,24h;220kV,48h;500kV,72h)方能加压,以避免耐压时造成不应有的绝缘击穿。
(2)进行耐压试验时,被试品温度应不低于+5℃,户外试验应在良好的天气进行,且空气相对湿度一般不高于80%。
(3)试验过程中试验人员应大声呼唱,加压过程中应有人监护。
(4)加压期间应密切注视表记指示动态,防止谐振现象发生;应注意观察、监听被试变压器、保护球隙的声音和现象,分析区别电晕或放电等有关迹象。(5)有时耐压试验进行了数十秒钟,中途因故失去电源,是试验中断,在查明原因、恢复电源后,应重新进行全时间的持续耐压试验,不可仅进行“补足时间”的试验。
(6)谐振试验回路品质因数Q值的高低与试验设备、试品绝缘表面干燥清洁及高压引线直径大小、长短有关,因此试验宜在天气晴好的情况下进行。试验设备、试品绝缘表面应干燥、清洁。尽可能缩短高压引线的长度,采用大直径的高压引线,以减小电晕损耗。提高试验回路品质因数Q值。
(7)变压器的接地端和测量控制系统的接地端要互相连接,并应自成回路,应采用一点接地方式,即仅有一点和接地网的接地端子相连。(8)耐压前应检查所需电源容量和试验设备的容量是否满足要求。
第四篇:500kV变压器交接试验作业指导书_图文.
编号:Q/×××
××变电站500kV×#变压器交接试验作业指导书(范本 编写:年月日 审核:年月日 批准:年月日 试验负责人: 试验日期年月日时至年月日时 ××局××× 1适用范围
本作业指导书适用于××变电站500kV×#变压器现场交接试验。2引用文件
GB 1094.3--2003电力变压器 A B 试验日期 油温℃ 换算温度℃ 换算温度℃ C 试验日期 7.变压器绕组的直流电阻 相别 分接 OA(mΩ 实测值 换算值 相别 OC(mΩ 实测值 换算值 三相不平衡率(%)
分接 1 2 3 4 5 低压侧 I 接线 低压侧直阻实测值 低压侧直阻换算值 使用仪器 环境温度℃ 环境湿度% 备 注 OAm(mΩ 实测值 换算值 OBm(mΩ 实测值 换算值 OCm(mΩ 实测值 换算值 三相不平衡率(%)ax(mΩ by(mΩ cz(mΩ 三相不平衡率(%)试验日期 油温℃ 换算温度℃ 8.变压器套管的 tgδ 绝缘电阻(MΩ A 高压套管 B C Am 中压套管 Bm Cm 一次 末屏 一次 末屏 一次 末屏 一次 末屏 一次 末屏 一次 末屏 tgδ 电容量(pF Oa 中性点套管 Ob Oc a x b 低压套管 y c z 环境温度℃ 使用仪器 9. 局部放电试验 使用仪器 试验电压 kV 时间 高压 低压 A相 B相 C相 a相 b相 5min 一次 末屏 一次 末屏 一次 末屏 一次 末屏 一次 末屏 一次 末屏 一次 末屏 一次 末屏 一次 末屏 环境湿度 结论 5s 5min 10min 15min 20min 25min 30min 局放量 pC
c相 10.绕组变形试验 使用仪器 相别 A B C 试验数据 保存计算机 高压 低压 子 目 录 结论 备注 11.工频耐压试验 使用设备仪器 电压 kV 高压侧 低压侧 结论 备注 12.空载试验 使用设备仪器 电压 kV A B C 结论 备注 13.试验总结论: 时间 s 结果 电流 A 电流% 损耗 kW
第五篇:变压器安装作业指导书
变压器、箱式变电所安装作业指导书
一、适用范围
适用于一般工业与民用建筑电气安装工程10kV及以下中小型室内变压器及箱式变电所的安装。
二、施工准备 1技术准备
1.1熟悉图纸资料,弄清设计图的设计内容,注意图纸和产品技术资料提出的具体施工要求。
1.2考虑与主体工程和其他工程的配合问题,确定施工方法。1.3技术交底。施工前要认真听取工程技术人员的技术交底,弄清技术要求,技术标准和施工方法。1.4必须熟悉有关电力工程的技术规范。2设备及材料要求
2.1变压器应装有铭牌。铭牌上应注明制造厂名,额定容量,一、二次额定电压,电流,阻抗电压及接线组别等技术数据。
2.2变压器的容量、规格及型号必须符合设计要求。附件、备件齐全,并有出厂合格证及技术文件。
2.3干式变压器的局放试验PC值及噪声测试器dB(A)值应符合设计及标准要求。
2.4带有防护罩的干式变压器,防护罩与变压器的距离应符合标准的规定。2.5查验箱式变电所合格证和随带技术文件,箱式变电所应有出厂试验记录。
2.6外观检查。有铭牌,箱门内侧应有主回路线路图、控制线路图、操作程序和使用说明,以及附件齐全,绝缘件无损伤、裂纹,箱内接线无脱落脱焊,箱体完好无损,表面涂膜应完整。
2.7安装时所选用的型钢和紧固件、导线的型号和规格应符合设计要求,其性能应符合相关技术标准的规定。紧固件应是镀锌制品标准件。
2.8型钢:各种规格型钢应符合设计要求,并无明显锈蚀;螺栓:除地脚螺栓及防震装置螺栓外,均应采用镀锌螺栓,并配相应的平垫圈和弹簧垫。
2.9其他材料:蛇皮管、耐油塑料管、电焊条、防锈漆、调合漆及变压器油,均应符合设计要求,并有产品合格证。
三、施工工艺 1变压器 1.1工艺流程
设备点件检查---变压器二次搬运---变压器稳装---附件安装----变压器吊芯检查及交接试验---送电前检查----送电运行验收。1.2操作工艺(1)设备点件检查
1)设备点件检查应由安装单位、供货单位会同建设单位代表共同进行,并做好记录。2)按照设备清单、施工图纸及设备技术文件核对变压器本体及附件备件的规格型号是否符合设计图纸要求,是否齐全,有无丢失及损坏。
3)变压器本体外观检查无损伤及变形,油漆完好无损伤。4)油箱封闭是否良好,有无漏油、渗油现象,油标处油面是否正常,发现问题应立即处理。
5)绝缘瓷件及环氧树脂铸件有无损伤、缺陷及裂纹。(2)变压器二次搬运
1)变压器二次搬运应由起重工作业,电工配合。最好采用汽车吊吊装,也可采用吊链吊装,距离较长最好用汽车运输,运输时必须用钢丝绳固定牢固,并应行车平稳,尽量减少振动;距离较短且道路良好时,可用卷扬机、滚杠运输。
2)变压器吊装时,索具必须检查合格,钢丝绳必须挂在油箱的吊钩上,上盘的吊环仅作吊芯用,不得用此吊环吊装整台变压器。
3)变压器搬运时,应注意保护瓷瓶,最好用木箱或纸箱将高低压瓷瓶罩住,使其不受损伤。
4)变压器搬动过程中,不应有冲击或严重振动情况,利用机械牵引时,牵引的着力点应在变压器重心以下,以防倾斜,运输倾斜角不得超过15度,防止内部结构变形。
5)用千斤顶顶升大型变压器时,应将千斤顶放置在油箱专门部位。6)大型变压器在搬运或装卸前,应核对高低压侧方向,以免安装时调换方向发生困难。(3)变压器稳装
1)变压器就位可用汽车吊直接甩进变压器室内,或用道木搭设临时轨道,用三步搭、吊链吊至临时轨道上,然后用吊链拉人室内合适位置。
2)变压器就位时,应注意其方位和距墙尺寸应与图纸相符,允许误差为±25mm,图纸无标注时,纵向按轨道定位,横向距离不得小于800mm,距门不得小于1000mm,并适当使屋内吊环的垂线位于变压器中心,以便于吊芯。
3)变压器基础的轨道应水平,轨距与轮距应配合,装有气体继电器的变压器,应使其顶盖沿气体继电器气流方向有1%~1.5%的升高坡度(制造厂规定不需安装坡度者除外)。
4)变压器宽面推进时,低压侧应向外;窄面推进时,油枕侧一般应向外。在装有开关的情况下,操作方向应留有1200mm以上的宽度。
5)油浸变压器的安装,应考虑能在带电的情况下,便于检查油枕和套管中的油位、上层油温、瓦斯继电器等。
6)装有滚轮的变压器,滚轮应能转动灵活,在变压器就位后,应将滚轮用能拆卸的制动装置加以固定。
7)变压器的安装应采取抗震措施。(4)附件安装 1)气体继电器安装
① 气体继电器安装前应经检验鉴定。
② 气体继电器应水平安装,观察窗应装在便于检查的一侧,箭头方向应指向油枕,与连通管的连接应密封良好。截油阀应位于油枕和气体继电器之间。
③ 打开放气嘴,放出空气,直到有油溢出时将放气嘴关上,以免有空气使继电保护器误动作。
④ 当操作电源为直流时,必须将电源正极接到水银侧的接点上,以免接点断开时产生飞弧。
⑤ 事故喷油管的安装方位,应注意到事故排油时不致危及其他电气设备;喷油管口应换为割划有“+”字线的玻璃,以便发生故障时气流能顺利冲破玻璃。
2)防潮呼吸器的安装
① 防潮呼吸器安装前,应检查硅胶是否失效,如已失效,应在115℃~120℃温度内烘烤8h,使其复原或更新。浅蓝色硅胶变为浅红色,即已失效;白色硅胶,不加鉴定一律烘烤。
② 防潮呼吸器安装时,必须将呼吸盖子上的橡皮垫去掉,使其通畅,并在下方隔离器具中装入适量变压油,起滤尘作用。
3)温度计的安装
① 套管温度计安装,应直接安装在变压器上盖的预留孔内,并在孔内加人适当的变压器油。刻度方向应便于检查。
② 电接点温度计安装前应进行校验,油浸变压器一次元件应安装在变压器顶盖上的温度计套筒内,并加适当变压器油;二次仪表挂在变压器一侧的预留板上。干式变压器一次元件应按厂家说明书位置安装,二次仪表安装在便于观测的变压器护网栏上。软管不得有压扁或死弯,弯曲半径不得小于50mm,富余部分应盘圈并固定在温度计附近。
③ 干式变压器的电阻温度计,一次元件应预埋在变压器内,二次仪表应安装在值班室或操作台上,导线应符合仪表要求,并加以适当的附加电阻校验调试后方可使用。
4)电压切换装置的安装
① 变压器电压切换装置各分接点与线圈的连线应紧固正确,且接触紧密良好。转动点应正确停留在各个位置上,并与指示位置一致。
② 电压切换装置的拉杆、分接头的凸轮、小轴销子等应完整无损;转动盘应动作灵活,密封良好。
③ 电压切换装置的传动机构(包括有载调压装置)的固定应牢靠,传动机构的摩擦部分应有足够的润滑油。
④ 有载调压切换装置的调换开关的触头及铜辫子软线应完整无损,触头间应有足够的压力(一般为8~lOkg)。
⑤ 有载调压切换装置转动到极限位置时,应装有机械联锁与带有限位开关的电气联锁。
⑥ 有载调压切换装置的控制箱一般应安装在值班室或操作台上,连线应正确无误并应调整好,手动、自动工作正常,挡位指示正确。
5)变压器连线
① 变压器的一、二次连线、地线、控制管线均应符合国家现行技术标准和施工规范的规定。
② 变压器工作零线与中性点接地线,应分别敷设。工作零线宜用绝缘导线。
③ 变压器中性点的接地回路中,靠近变压器处,宜做1个可拆卸的连接点。
④ 油浸变压器附件的控制导线,应采用具有耐油性能绝缘导线。靠近箱壁的导线,应用金属软管保护并排列整齐,接线盒应密封良好。
(5)变压器吊芯检查及交接试验 1)变压器吊芯检查
① 变压器安装前应做吊芯检查。制造厂规定不检查器身者及就地生产仅做短途运输的变压器,且在运输过程中有效监督,无紧急制动、剧烈振动、冲撞或严重颠簸等异常情况者,可不做吊芯。
② 吊芯检查应在气温不低于O℃,芯子温度不低于周围空气温度,空气相对湿度大于75%的条件下进行(器身暴露在空气中的时间不得超过16h)。
③ 所有螺栓应紧固,并应有防松措施。铁芯无变形,表面漆层良好,铁芯应接地良好。
④ 线圈的绝缘层应完整,表面无变色、脆裂、击穿等缺陷。⑤ 线圈间、线圈与铁芯、铁芯与轭铁间的绝缘层应完整无松动。⑥ 引出线绝缘良好,包扎紧固无破裂情况,引出线固定应牢固可靠,引出线与套管连接牢靠,接触良好紧密,引出线接线正确。
⑦ 测量可接触到的穿芯螺栓、铁轭夹件及绑扎钢带对铁轭、铁芯、油箱及绕组压环的绝缘电阻,采用2500V兆欧表测量,持续时间为1min,应无闪络及击穿现象。
⑧ 油路应畅通,油箱底部清洁无油垢杂物,油箱内壁无锈蚀。⑨ 芯子检查完毕后,应用合格的变压器油冲洗,并从箱底油堵将油放净。吊芯过程中,芯子与箱壁不应碰撞。
⑩ 吊芯检查后如无异常,应立即将芯子复位并注油至正常油位。吊芯、复位、注油必须在16h内完成。吊芯检查完成后,要对油系统密封进行全面仔细检查,不得有漏油渗油现象。
2)变压器的交接试验
① 变压器的交接试验应由当地供电部门认可的试验室进行。试验标准应符合《电气装置安装工程电气设备交接试验标准》(GB 50150)的要求、供电部门规定及产品技术资料的要求。
② 变压器交接试验的内容:应符合《电气装置安装工程电气设备交接试验标准》(GB 50150)第6.0.1条的规定。
(6)变压器送电前的检查
1)变压器试运行前,应做全面检查,确认符合试运行条件时方可投入运行。
2)变压器试运行前,必须由质量监督部门检查合格。3)变压器试运行前的检查内容:
①
各种交接试验单据齐全,数据符合要求。
②
变压器应清理、擦拭干净,顶盖上无遗留杂物,本体及附件无缺损,且不渗油。③
变压器一、二次引线相位正确,绝缘良好。④
接地线良好,PE、N线的连接点应在变压器处。⑤
通风设施安装完毕,工作正常,事故排油设施完好;消防设施齐备。
⑥
油浸变压器油系统油门应打开,油门指示正确,油位正常。⑦ 油浸变压器的电压切换装置及干式变压器的分接头位置旋转到正常电压挡位。
⑦
保护装置整定值符合设计规定要求;操作联动试验正常。⑧
干式变压器护栏安装完毕;各种标志牌挂好,门装锁。(7)变压器送电试运行验收 1)送电试运行
① 变压器第一次投入时,可全压冲击合闸,冲击合闸时一般可由高压侧投入。
② 变压器第一次受电后,持续时间不应少于10min,无异常情况。
③ 变压器应进行3~5次全压冲击合闸,并无异常情况,励磁涌流不应引起保护装置误动作。
④ 油浸变压器带电后,检查油系统不应有渗油现象。⑤ 变压器试运行要注意冲击电流、空载电流、一、二次电压、温度,并做好详细记录,干式变压器自动风冷系统应能正常工作并达到设计要求。
⑥ 变压器并列运行前,应核对好相位。⑦ 变压器空载运行24h,无异常情况,方可投入负荷运行。2)验收
① 变压器开始带电起,24h后无异常情况,应办理验收手续。② 验收时,应移交下列资料和文件:变更设计证明,产品说明书、试验报告、合格证及安装图纸等技术文件,安装检查及调整记录。
2箱式变压所
2.1工艺流程
测量定位---基础---设备就位---安装---接线---试验---验收 2.2操作工艺(1)测量定位
按设计施工图纸所标注位置及坐标方位、尺寸,进行测量放线。确定箱式变电所安装的底盘线和中心轴线,并确定地脚螺栓的位置。(2)基础型钢安装
1)预制加工基础型钢的型号、规格应符合设计要撼按设计尺寸进行下料和调直,做好防锈处理,根据地脚螺栓位置及孔距尺寸,进行制孔。制孔必须采用机械制孔。
2)基础型钢架安装。按放线确定的位置、标高、中心轴线尺寸控制准确的位置放好型钢架,用水平尺或水准仪找平、找正,与地脚螺栓连接牢固。
3)基础型钢与地线连接,将引进箱内的地线与型钢结构基架两端焊牢。(3)箱式变电所就位与安装 1)就位。
要确保作业场地清洁、通道畅通,将箱式变电所运至安装的位置,吊装时应严格按吊点且充分利用吊环,将吊索穿入吊环内,然后做试吊检查受力,吊索力的部分应均匀一致,确保箱体平稳、安全、准确就位。
2)按设计布局的顺序组合排列箱体。找正两端的箱体,然后挂通线,找准调正,使其箱体正面平顺。
3)组合的箱体找正、找平后,应将箱与箱用镀锌螺栓连接牢固。4)接地。箱式变电所接地应以每箱独立与基础型钢连接,严禁进行串联。接地干线与箱式变电所的N母线及PE母线直接连接,变电箱体、支架或外壳的接地应用带有防松装置的螺栓连接。连接均应紧固可靠,紧固件齐全。
5)箱式变电所的基础应高于室外地坪,周围排水通畅。6)箱式变电所所用的地脚螺栓应螺帽齐全,拧紧牢固,自由安放的应垫平放正。
7)箱壳内的高、低压室均应装设照明灯具。
8)箱体应有防雨、防晒、防锈、防尘、防潮、防凝露的技术措施。
9)箱式变电所安装高压或低压电度表时,必须接线相位准确,应安装在便于查看的位置。
(4)接线 1)高压接线应尽量简单,但要求既有终端变电所接线,又有适应环网供电的接线。
2)接线的接触面应连接紧密,连接螺栓或压线螺栓紧固必须牢固,与母线连接时紧固螺栓应采用力矩扳手紧固,其紧固力矩值应达到相关规定要求。
3)相序排列应准确、整齐、平整、美观并涂有相序色标。4)设备接线端、母线搭接或卡子、夹板处,明设地线的接线螺栓处等两侧10mm~15mm处均不得涂刷涂料。
(5)试验及验收
1)箱式变电所应进行电气交接试验。变压器应按本节所涉及变压器试验的相关规定进行试验。
2)高压开关、熔断器等与变压器组合在同一个密闭的油箱内的箱式变电所,其高压电气交接试验必须按随带的技术文件执行。
3)低压配电装置的电气交接试验
① 对每路配电开关及保护装置核对规格型号,必须符合设计要求。
② 测量线间和线对地间绝缘电阻值大于0.5MΩ。当绝缘电阻值大于10MΩ时,用2500V兆欧表摇测1min,无闪络击穿现象。当绝缘电阻值在0.5~10MΩ之间时,做1000V交流工频耐压试验,时间1min,不击穿为合格。
四、质量标准 1主控项目 1.1变压器安装应位置正确,附件齐全,油浸变压器油位正常,无渗油现象。
1.2接地装置引出的接地干线与变压器的低压侧中性点直接连接;接地干线与箱式变电所的N母线和PE母线直接连接;变压器箱体、干式变压器的支架或外壳应接地(PE);所有连接应可靠。紧固件及防松零件齐全。
1.3变压器必须按《电气装置安装工程电气设备交接试验标准》(GB 50150)的规定交接试验合格。
1.4箱式变电所及落地式配电箱的基础应高于室外地坪。周围排水通畅。
1.4箱式变电所及落地式配电箱的基础应高于室外地坪。周围排水通畅。用地脚螺栓固定的螺帽齐全,拧紧牢固;自由安放的应垫平放正。金属箱式变电所及落地式配电箱,箱体应接地(PE)或接零(PEN)可靠,且有标识。
1.5箱式变电所的交接试验,必须符合下列规定:
(1)由高压成套开关柜、低压成套开关柜和变压器三个独立单元组合成的箱式变电所高压电气设备部分,按《电气装置安装工程电气设备交接试验标准》(GB 50150)的规定交接试验合格。
(2)高压开关、熔断器等与变压器组合在同一个密闭油箱内的箱式变电所,交接试验按产品提供的技术文件要求执行。
(3)低压成套配电柜交接试验应符合下列规定:
1)每路配电开关及保护装置的规定型号,应符合设计要求。2)相间和相对地间的绝缘电阻值应大于0.5MΩ。
3)电气装置的交流工频耐压试验电压为1kV,当绝缘电阻值大于10MΩ时,可采用2500V兆欧表摇测替代,试验持续时间1min,无击穿闪络现象。2一般项目
2.1有载调压开关的传动部分润滑应良好,动作灵活,点动给定位置与开关实际位置一致,自动调节符合产品的技术文件要求。2.2绝缘件应无裂纹、缺损和瓷件瓷釉损坏等缺陷,外表清洁,测温仪表指示准确。
2.3装有滚轮的变压器就位后,应将滚轮用能拆卸的制动部件固定。2.4变压器按产品技术文件要求进行器身检查。当满足下列条件之一时,可不检查器身。
(1)制造厂规定不检查器身者。
(2)就地生产仅做短途运输的变压器,且在运输过程中有效监督,无紧急制动、剧烈振动、冲撞或严重颠簸等异常情况者。
2.5箱式变电所内外涂层完整、无损伤,有通风口的风口防护网完好。
2.6箱式变电所的高低压柜,内部接线完整,低压每个输出回路标记清晰,回路名称准确。
2.7装有气体继电器的变压器顶盖,沿气体继电器的气流方向有1.0%~1.5%的升高坡度。
五、成品保护 1变压器门应加锁,未经安装单位许可,闲杂人员不得人内。2对就位的变压器高低压瓷套管及环氧树脂铸件,应有防砸及防碰撞措施。
3变压器器身要保持清洁干净,油漆无碰撞损伤。干式变压器就位后,要采取保护措施,防止铁件掉入线圈内。
4在变压器上方作业时,操作人员不得蹬踩变压器并带工具袋,以防工具材料掉下砸坏、砸伤变压器。
5变压器发现漏油、渗油时应及时处理,防止油面太低,潮气侵入,降低线圈绝缘程度。
6对安装完的电气管线及其支架应注意保护,不得碰撞损伤。7在变压器上方操作电气焊时,应对变压器进行全方位保护,防止焊渣掉下,损伤设备。