先进材料加工成形技术专题报告

时间:2019-05-13 03:01:03下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《先进材料加工成形技术专题报告》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《先进材料加工成形技术专题报告》。

第一篇:先进材料加工成形技术专题报告

先进材料加工成形技术专题报告

摘要:本文对材料加工成形技术现状做了一个概述,同时对未来先进材料加工技术作了展望。重点介绍了几种先进材料加工成型技术的应用,包括激光加工技术,超声加工技术,电磁加工技术。

关键词:先进材料 加工技术 激光加工 超声加工 电磁加工

0 引言

材料是人类赖以生存和发展的物质基础,也是社会现代化的物质基础和先导[1]。人们通常把材料、信息和能源并列为现代科学技术的三大支柱,这三大支柱是现代社会生存和发展的基本条件之一,而材料科学显得尤为重要[2]。一般而言,材料可以分为传统材料和先进材料两大类,先进材料是指那些新近开发或正在开发的,具有优异性能的材料。先进材料不仅是对于高科技和新技术有重要的影响,同时也是发展高科技的物质基础,可以说掌握先进材料是一个国家在科技上处于领先地位的标志。

但是更为重要的是,随着科学技术的发展,先进材料的生产,制备,应用都越来越发杂,这就迫切需要材料加工成形技术的发展。正如学者认为的材料制备、[3]成形与加工技术发生了一场“静悄悄的革命”一样。材料成形加工技术与科学作为制造业的重要组成部分,其发挥着重要的作用,有时候甚至可以对材料的性能产生决定性影响。特别是现在先进材料在航空航天,机械,汽车领域越来越多的采用,其加工成形技术的重要性也尤为突出[4]。如今,为了适应全球竞争的需要,同时也为了占据有利形势,改善材料及相关制备技术对国家是非常重要的[5]。

当今先进材料加工成形技术已经发生了很多变化。从尺度上看,精密制造技术已经突破了微米级技术,进入了亚微米和拉米技术领域。同时,在加工过程中也更多的开始强调成形质量的问题,其要求开始向无缺陷方向过度。值得注意的是,现在成形加工技术也越来越与社会需求联系紧密,其倾向于快速化方向发展,来提高竞争力。并且随着复合材料的应用日益广泛,也迫切需求其加工成形工艺的提高。就目前发展情况来看,材料成形加工过程也在向建模与仿真靠近,同时也注重材料加工成形的信息化与清洁化,这也是未来材料发展的主流方向。几种先进材料加工技术

1.1 激光加工技术

激光具有亮度高、方向性强、单色性和相干性好等性能,加上激光的空间控制性和时间控制性很好,易获得超短脉冲、尺度极小的光斑,能够产生极高的能量密度和功率密度,足以融化世界上任何金属和非金属物质,特别适合自动化加工,而且对加工对象的材质、形状、尺寸和加工环境的自由度都很大[6]。由于激光热处理有相当明显的优势,其解决了困扰已久的传统金属热处理不能解决或不易解决的技术难题。激光加工技术作为一项综合集成激光技术、新材料技术、计算机与数控技术的现代化先进制造技术,一直得到世界各国重要研究机构和大学的重视和推广

目前激光加工技术有五大热点:激光焊接、激光成形与制造、新激光器与新激光加工研究、激光表面强化及激光加工过程的传感、检测与控制。随着技术的进步,这些研究方面还可以进一步细分。而激光热处理的技术关键有三个:高功率的激光器;多自由度的加工设备并与计算机配套;不同应用的激光处理工艺[7]。

[8]分析对比中国与国际激光加工研究领域不难看出:(1)中国激光材料加工研究紧扣国际研究主导方向,研究成果丰硕;(2)中国在激光表面强化领域基础扎实,实力雄厚,特别是激光熔覆技术的研究特色鲜明;(3)现在中国激光焊接与激光成形制造领域的研究与产业化紧密结合,形成了良性发展;(4)但是也明显看到我国在新型激光器和应用方面的研究严重不足,光学元器件方面研究也很微弱,成为了掣肘我国激光加工技术提高的瓶颈。

1.2 超声加工技术

超声加工是利用超声振动工具在有磨料的液体介质中或干磨料中产生磨料的冲击、抛磨、液压冲击及由此产生的气蚀作用来去除材料,或给工具或弓箭沿一定方向施加超声频振动进行振动加工,或利用超声振动使工件相互结合的加工[9][10]方法。大量实验研究和加工结果表明,超声振动加工有能量集中、瞬间作用、快速切削的特性,能有效地改变传统加工的切削机制,具有独特的加工工艺效果。

超声加工系统由超声波发生器、换能器、变幅杆、振动传递系统、工具、工艺装置等构成。近年来,随着不同领域实际加工的特殊需要,超声加工系统的应用研究有了新的发展[11]。目前超声加工技术主要应用在深小孔加工、拉丝模及型腔模具研磨抛光、难加工材料超声加工、超声振动切削以及超声复合加工。但是随着超声技术的发展以及对材料要求的提高,未来超声加工发展趋势主要集中在[12]超声振动切削技术、超声复合加工技术和微细超声加工技术等方面。

值得一提的是由于非金属硬脆材料同时具有高脆性、底断裂韧性及材料弹性与强度非常接近等特点,因此加工难度大[13],而超声加工方法很好的解决了这些问题,在其领域内得到了大量应用。1.3 电磁加工技术

材料的电磁加工是指利用电磁能量实现材料的熔化、精炼和成形等加工过程,其理论基础是研究电磁场和流体间相互作用的电磁流体力学[14]。利用磁性的同性磁极相吸,异性磁极相斥,位于磁场中的磁性物质按磁力线有序排列原理,将高强度磁性颗粒置于工件与工具之间,并处于高频转换的磁场之中,辅以一定的工具运动作用,磁力与工具运动之间形成“共振”,使磁性颗粒在工具及磁场的作用下以很大的加速度不断地撞击被加工表面,把工件材料剥落下来,从而形成加工过程[15]。

由于电磁加工中电磁力的易控性和没有接触摩擦,用它作为加工的执行手段,使大量的复杂操作,简化到少数手柄上。只有电磁加工时如此的易于实现自动化[16]和生产的高速度。

材料电磁加工的特点可以概括为:(l)以最廉价和方便的手段将高密度电磁能量作用于各种材料,特别是金属材料;(2)除去加热功能以外,充分发挥电磁场的各种功能.例如对熔融金属进行非接触性搅拌、输运和形状控制;(3)运用电磁流体力学理论可以有效地解决加工过程中的各种问题,例如电磁力的计算;(4)与电磁场相关的各种检测及控制技术日新月异,为材料电磁加工技术的研究和发展提供了条件.2 结语

随着科学技术的进步和物质生活的需要,材料科学的发展会不断向前,而先进材料作为未来的主流方向,其加工成形技术也显得尤为重要,本文以上介绍的方法也只是一小部分,其代表着先进材料加工成形技术发展的一些成果,可以预见,材料作为三大支柱之一,其成形加工技术也会迅速发展,带来更多的效益。引用文献 [1] 材料科学技术百科全书编辑委员会,材料科学技术百科全书(上册).北京:中国大百科全书出版社,1995.[2]陈拥军,魏强民,李建宝.先进材料科学与应用的展望[J].21世纪青年学者论坛.[3]Thomas W E.The quiet revolution in materials processing[C], Advanced Materials and Processing, Proceedings of PRICM-3, 1998.3-11 [4] 荣烈润,新世纪材料成形加工技术的发展趋势[J],金属加工.2012,23:(36-38).[5] Federal research and development program of materials science and technology[R].USA, 1995.[6] 江海河,激光加工技术应用的发展及展望[J],光电子技术与信息.2001,14(4):1-4.[7] 孙晓辉,激光加工技术的产业化应用[J].机械工人.2004,4:35-37.[8] 钟敏霖,刘文今.国际激光材料加工研究的主导领域与热点[J].中国激光.200811(35):1654-1658.[9] 曹凤国,张勤俭.超声加工技术的研究现状及其发展趋势[J].电加工与模具.2005年增刊:25-28.[10] 张存信,杨继先,曹文燕.超声振动精密加工研究现状与发展趋势[J].热处理技术与装备,2006,27(5).[11] 曹凤国.超声加工技术[M].北京:化学工业出版社,2005.[12] 张雄,焦锋.超声加工技术的应用及其发展趋势[J].工具技术.2012,46(1):3-5.[13] 郭昉,田欣丽,张保国等.超声振动在非金属硬脆材料加工中的应用[J].新技术新工艺.2009,9:14-18.[14] 张军,傅恒志,谢发勤等.金属熔体的电磁成形与凝固[J].材料研究学报.1997,11(6):612-614.[15] 陈养厚,电磁成型加工及其实现方法研究[J],潍坊学院学报.2010,10(6):6-8.[16] 王金光.电磁加工探讨[J].电加工.

第二篇:材料成形加工技术科技前沿概览

材料成形加工技术科技前沿概览

200811102039

王志

摘要:论述了材料成形加工技术的作用及地位,介绍了快速产品与工艺开发系统、新一代制造工艺与装备、模拟与仿真3项关键先进制造技术,指出轻量化、精确化、高效化将是未来材料成形加工技术的重要发展方向。

正文:

一、引言:

材料先进制备与成型加工技术的研究开发,是近二三十年来材料科学技术领域最为活跃的方向之一。一大批先进技术和工艺不断发展和完善,并逐步获得实际应用,如快速凝固、定向凝固、连续铸轧、连续铸挤、精密铸造、半固态加工、粉末注射成型、陶瓷胶态成型、热等静压、无模成型、微波烧结、离子束制备、激光快速成型、激光焊接、表面改性等,促进了传统材料的升级换代,加速了新材料的研究开发、生产和应用,解决了高技术领域发展对特种高性能材料的制备加工与组织性能精确控制的急需。

二、历史沿革:

从人类社会的发展和历史进程的宏观来看,材料是人类赖以生存和发展的物质基础,也是社会现代化的物质基础和先导。而材料和材料技术的进步和发展,首先应归功于金属材料制备和成型加工技术的发展。人类从漫长的石器时代进化到青铜时代(有学者称之为“第一次材料技术革命”),首先得益于铜的熔炼以及铸造技术进步和发展,而由铜器时代进入到铁器时代,得益于铁的规模冶炼技术、锻造技术的进步和发展(所谓“第二次材料技术革命”)。直到16世纪中叶,冶金(金属材料的制备与成型加工)才由“技艺”逐渐发展成为“冶金学”,人类开始注重从“科学”的角度来研究金属材料的组成、制备与加工工艺、性能之间的关系,迎来了所谓的“第三次材料技术革命”——人类从较为单一的青铜、铸铁时代进入到合金化时代,催生了人类历史的第一次工业革命,推动了近代工业的快速发展。

进入20世纪以后,材料合成技术、符合技术的出现和发展,推动了现代工业的快速发展,而电子信息、航天航空等尖端技术的发展,反过来对高性能先进材料的研究开发提出了更高的要求,起到了强大的促进作用,促成了一系列新材料和新材料技术的出现和发展。

一般而言,材料需要经历制备、成型加工、零件或结构的后处理等工序才能进入实际应用,因此,材料制备与成型加工技术,与材料的成分和结构、材料的性质一起,构成了决定材料使用性能的最基本的三大要素。

先进工业国家对材料制备与成型加工技术的研究开发十分重视。美国制定了“为了工业材料发展计划”,其核心是开放先进的制备与成型加工技术,提高材

料性能,降低生产成本,满足未来工业发展对材料的需求。德国开展的“21世纪新材料研究计划”将材料制备与成型加工技术列为六个重点内容之一。在欧盟的“第六框架”计划中,先进制备技术时新材料领域的研究重点之一。日本在20世纪90年代后期,先后实施了“超级金属”、“超钢铁”计划,重点是发展先进的制备加工技术,精确控制组织,大幅度提高材料的性能,达到减少材料用量、节省资源和能源的目的。

新材料的研究、开发与应用,综合反应了一个国家的科学技术与工业化水平,而先进制备与成型加工技术的发展,对于新材料的研制、应用和产业化具有决定性的作用。先进制备与成型加工技术的出现与应用,加上了新材料的研究开发、生产和应用进程,促成了诸如微电子和生物医用材料等新兴产业的形成,促进了现代航天航空,交通运输,能源环保等高技术产业的发展。

传统结构材料向高性能“,复合化,结构功能一体化发展,尤其需要先进制备与成型加工技术及装备,可使材料的生产过程更加高效,节能和洁净,从而提高传统材料 产业的国际竞争力。

另一方面,开展本科学领域色前沿和基础研究,并综合利用相关学科基础理论和科技发展成果,提供预备新材料的新原理新方法,也是材料科学与工程学科自身发展的需求。

因此,材料先进制备与成型加工技术发展,对提高国家综合实力,突破先进工业国家的技术壁垒与封锁,保障国家安全,改善人民生活质量,以及促进材料科学与技术自身的进步与发展,具有十分重要的作用,也是国民经济和社会可持续发展的重大需求。

三、研究现状

1.快速凝固

快速凝固技术的发展,把液态成型加工推进到远离平衡的状态,极大地推动了非晶、细晶、微晶等非平衡新材料的发展。传统的快速凝固追求高的冷却速度而限于低维材料的制备,如非晶丝材、箔材的制备。近年来快速凝固技术主要在两个方面得到发展:①利用喷射成型、超高压、深过冷,结合适当的成分设计,发展体材料直接成型的快速凝固技术;②在近快速凝固条件下,制备具有特殊取向和组织结构的新材料。目前快速凝固技术被广泛地用于非晶或超细组织的线材、带材和体材料的制备与成型。2.半固态成型

半固态成型是利用凝固组织控制的技术.20世纪70年代初期,美国麻省理工学院的Flemings教授等首先提出了半固态加工技术,打破了传统的枝晶凝固模式,开辟了强制均匀凝固的先河。半固态成型包括半固态流变成型和半固态触变成形两类:前者是将制备的半固态浆料直接用于成型,如压铸成型(称为半固态流变压铸);后者是对制备好的半固态坯料进行重新加热,使其达到半熔融状态,然后进行成型,如挤压成型(称为半固态触变挤压)。3.无模成型

为了解决复杂形状或深壳件产品冲压、拉深成型设备规模大、模具成本高、生产工艺复杂、灵活度低等缺点,满足社会发展对产品多样性(多品种、小规模)的需求,20世纪80年代以来,柔性加工技术的开发受到工业发达国家的重视。典型的无模成型技术有增量成型、无摸拉拔、无模多点成型、激光冲击成型等。4.超塑性成型技术

超塑性成型加工技术具有成型压力低、产品尺寸与形状精度高等特点,近年来发展方向主要包括两个方面:一是大型结构件、复杂结构件、精密薄壁件的超塑性成型,如铝合金汽车覆盖件、大型球罐结构、飞机舱门,与盥洗盆等;二是难加工材料的精确成形加工,如钛合金、镁合金、高温合金结构件的成形加工等。5.金属粉末材料成型加工

粉末材料的成型加工是一种典型的近终形、短流程制备加工技术,可以实现材料设计、制备预成型一体化;可自由组装材料结构从而精确调控材料性能;既可用于制备陶瓷、金属材料,也可制备各种复合材料。它是近20年来材料先进制备与成型加工技术的热点与主要发展方向之一。自1990年以来,世界粉末冶金年销售量增加了近2倍。2003年北美铁基粉末。相关的模具、工艺设备和最终零件产品的销售额已达到91亿美元,其中粉末冶金零件的销售为64亿美元。美国企业生产的粉末冶金产品占全球市场的一半以上。可以预见,在较长一段时间内,粉末冶金工业仍将保持较高的增长速率。

粉末材料成型加工技术的研究重点包括粉末注射成型胶态成型、温压成型及微波、等离子辅助低温强化烧结等。6.陶瓷胶态成型

20世纪80年代中期,为了避免在注射成型工艺中使用大量的有机体所造成的脱脂排胶困难以及引发环境问题,传统的注浆成型因其几乎不需要添加有机物、工艺成本低、易于操作和控制等特点而再度受到重视,但由于其胚体密度低、强度差等原因,他并不适合制备高性能的陶瓷材料。

进入90年代之后,围绕着提高陶瓷胚体均匀性和解决陶瓷材料可靠性的问题,开发了多种原位凝固成型工艺,凝胶注模成型工艺、温度诱导絮凝成形、胶态振动注模成形、直接凝固注模成形等相继出现,受到严重重视。原位凝固成形工艺被认为是提高胚体的均匀性,进而提高陶瓷材料可靠性的唯一途径,得到了迅速的发展,已逐步获得实际应用。7.激光快速成型

激光快速成形技术,是20实际90年代中期由现代材料技术、激光技术和快速原型制造技术相结合的近终形快速制备新技术。采用该技术的成形件完全致密且具有细小均匀的内部组织,从而具有优越的力学性能和物理化学性能,同时零件的复杂程度基本不受限制,并且可以缩短加工周期,降低成本。目前发达国家已进入实际应用阶段,主要应用于国防高科技领域。国内激光快速成形起步稍晚于发达国家,在应用基础研究和相关设备建设方面已有较好的前期工作,具备了通过进一步研究形成自身特色的激光快速成形技术的条件。8.电磁场附加制备与成型技术

在材料的制备与成形加工过程中,通过施加附加外场(如温度场、磁场、电场、力场等),可以显著改善材料的组织,提高材料的性能,提高生产效率。典型的温度场附加制备与成形加工技术有熔体过热处理、定向凝固技术等;典型的力场附加制备与成形技术有半固态加工等;典型的电磁场附加制备与成形加工技术有电磁铸轧技术、电磁连铸技术、磁场附加热处理技术、电磁振动注射成形技术等。近年来,有关电磁场附加制备与成形加工技术的研究在国际上已形成一门新的材料科学分支——材料电磁处理,并且得到迅速发展。9.先进连接技术

①铝合金激光焊接 ②镁合金激光焊接

③机器人智能焊接 10.表面改质改性

在材料的使用过程中,材料的表面性质和功能非常重要,许多体材料的失效也往往是从表面开始的。通过涂覆(或沉积、外延生长)表面薄层材料或特殊能量手段改变原材料表面的结构(即对处理进行表面改性),赋予较廉价的体材料以高性能、高功能的表面,可以大大提高材料的使用价值和产品的附加值,是数十年来材料表面加工处理研究领域的主要努力方向。

四、发展前景

材料加工技术的总体发展趋势,可以概括为三个综合,即过程综合、技术综合、学科综合。由于上述材料加工技术的总体发展趋势,可以预见,在今后较长一段时间内,材料制备、成型与加工技术的发展将具有以下两个主要特征:

(1)性能设计与工艺设计的一体化。

(2)在材料设计、制备、成型与加工处理的全过程中对材料的组织性能和形状尺寸进行精确控制。

实际上,第一个特征实现材料技术的第五次革命、进入新材料设计与制备加工工艺时代的标志。实现第二个特征则要求具备两个基本条件:一是计算机模拟仿真技术的高度发展;二是材料数据库的高度完备化。

基于上述材料加工技术的总体发展趋势和特征,金属材料加工技术的主要发展方向包括以下几个方面。

1)常规材料加工工艺的短流程化和高效化。

打破传统材料成形与加工模式,工艺环节,实现近终形、短流程的连续化生产提高生产效率。例如,半固态流变成形、连续铸轧、连续铸挤等是将凝固与成形两个过程合二为一,实行精确控制,形成以节能、降耗、提高生产效率为主要特征的新技术和新工艺。

目前国外铝合金和镁合金半固态加工技术已经进入较大规模工业应用阶段。铝合金半固态成型方法主要有流变压铸、2)发展先进的成形加工技术,实现组织与性能的精确控制

例如,非平衡凝固技术、电磁铸轧技术、电磁连铸技术、等温成形技术、低温强加工技术、先进层状复合材料成形、先进超塑性成形、激光焊接、电子束焊接、复合热源焊接、扩散焊接、摩擦焊接等先进技术,实现组织与性能的精确控制,不仅可以提高传统材料的使用性能,还有利于改善难加工材料的加工性能,开发高附加值材料。

3)材料设计(包括成分设计、性能设计与工艺设计)、制备与成形加工一体化

发展材料设计、制备与成型加工一体化技术,可以实现先进材料和零部件的高效,近终形,短流程成型。典型的技术有喷射技术、粉末注射成形、激光快速成型等,是不锈钢、高温合金、钛合金、难熔金属及金属间化合物、陶瓷材料、复合材料、梯度功能材料零部件制备与成型加工的研究热点。材料设计、制备与成形加工的一体化,是实现真正意义上的全过程的组织性能精确控制的前提和基础。

4)开发新型制备与成形加工技术,发展新材料和新产品 块体非晶合金制备和应用技术、连续定向凝固成形技术、电磁约束成型技术、双结晶器连铸与充芯连铸复合技术、多坯料挤压技术、微成形加工技术等,是近年来开发的新型制备与成形加工技术。这些技术在特种高性能材料或制品的制备与成形技术加工方面具有各自的特色,受到国内外的广泛关注。

5)发展计算机数值模拟与过程仿真技术,构建完善的材料数据库

随着计算机技术的发展,计算材料科学已成为一门新兴的交*学科,是除实验和理论外解决材料科学中实际问题的第3个重要研究方法。它可以比理论和实验做得更深刻、更全面、更细致,可以进行一些理论和实验暂时还做不到的研究。因此,基于知识的材料成形工艺模拟仿真是材料科学与制造科学的前沿领域和研究热点。根据美国科学研究院工程技术委员会的测算, 模拟仿真可提高产品质量5~15倍,增加材料出品率25%,降低工程技术成本13%~30%,降低人工成本5%~20%,提高投入设备利用率30%~60%,缩短产品设计和试制周期30%~60%等。

目前,模拟仿真技术已能用在压力铸造、熔模铸造等精确成形加工工艺中,而焊接过程的模拟仿真研究也取得了可喜的进展。

高性能、高保真、高效率、多学科及多尺度是模拟仿真技术的努力目标,而微观组织模拟(从mm、μm到nm尺度)则是近年来研究的新热点课题。通过计算机模拟,可深入研究材料的结构、组成及其各物理化学过程中宏观、微观变化机制,并由材料成分、结构及制备参数的最佳组合进行材料设计。计算材料科学的研究范围包括从埃量级的量子力学计算到连续介质层次的有限元或有限差分模型分析,此范围可分为4个层次:纳米级、微观、介观及宏观层次。在国外,多尺度模拟已在汽车及航天工业中得到应用。

铸件凝固过程的微观组织模拟以晶粒尺度从凝固热力学与结晶动力学两方面研究材料的组织和性能。20世纪90年代铸造微观模拟开始由试验研究向实际应用发展,国内的研究虽处于起步阶段,但在用相场法研究铝合金枝晶生长、用Cellular Automaton法研究铝合金组织演变和汽车球墨铸铁件微观组织与性能预测等方面均已取得重要进展。锻造过程的三维晶粒度预测也有进展。

6)材料的智能化制备与成形加工技术

材料的智能化制备与成形加工技术是1986年由美国材料科学界提出的“第三代”材料成形加工技术,20世纪90年代以来受到日本等先进工业国家的重视它通过综合利用计算机技术、人工智能技术、数据库技术和先进控制技术等,以成分、性能、工艺一体化设计与工艺控制方法,实现材料组织性能与成形加工质量,同时达到缩短研制周期、降低生产成本、减少环境负荷的目的。

材料的智能化制备与成形加工技术的研究尚处于概念形成与探索阶段,被认为是21世纪前期材料成形加工新技术中最富潜力的前沿研究方向之一。

其他的材料先进制备与成形加工前沿技术

电磁软接触连铸、钛合金连铸连轧技术、高性能金属材料喷射成形技术、轻合金半固态加工技术、泡沫铝材料制备、钢质蜂窝夹芯板扩散-轧制复合、金属超细丝材制备技术、超细陶瓷粉末燃烧合成、模具表面渗注镀复合强化、金属管件内壁等离子体强化技术、钛合金激光熔覆技术、非纳米晶复合涂层制备技术等。

五、个人认识与评论

中国已是制造大国,仅次于美、日、德,居世界第4位。中国虽是制造大国,但与工业发达国家相比,仍有很大差距,表现在:(1)制造业的劳动生产率低,不到美国的5%;(2)技术含量低,以CAD为例,仍停留在绘图功能上;(3)重要关键产品基本上没有自主创新开发能力。材料成形加工行业是制造业的重要组成部分,材料成形加工技术是汽车、电力、石化、造船及机械等支柱产业的基础制造技术,新一代材料加工技术也是先进制造技术的重要内容。铸造、锻造及焊接等材料加工技术是国民经济可持续发展的主体技术。据统计,全世界75%的钢材经塑性加工成形,45%的金属结构用焊接得以成形。又如我国铸件年产量已超过1400万t,是世界铸件生产第一大国。汽车结构中65%以上仍由钢材、铝合金、铸铁等材料通过铸造、锻压、焊接等加工方法成形。但是,我国的材料成形加工技术与工业发达国家相比仍有很大差距。举例说, 重大工程的关键铸锻件如长江三峡水轮机的第一个叶轮仍从国外进口;航空工业发动机及其他重要的动力机械的核心成形制造技术尚有待突破。因此,在振兴我国制造业的同时,要加强和重视材料成形加工制造技术的发展。高速发展的工业技术要求加工制造的产品精密化、轻量化、集成化;国际竞争更加激烈的市场要求产品性能高、成本低、周期短;日益恶化的环境要求材料加工原料与能源消耗低、污染少。为了生产高精度、高质量、高效率的产品,材料正由单一的传统型向复合型、多功能型发展;材料成形加工制造技术逐渐综合化、多样化、柔性化、多学科化。因此, 面对市场经济、参与全球竞争,必须十分重视先进制造技术及成形加工技术的技术进步。

材料成形及控制工程专业发展战略研究中值得思考的几个问题

1.明晰专业内涵,确定发展方向

材料成形及控制工程专业作为1998年专业调整时设立的一个新的专业,由于其涵盖范围较广泛,涉及的内容较繁杂,因而使其专业内涵不够明确。

材料成形及控制工程专业是以成形技术为手段、以材料为加工对象、以过程控制为质量保证措施、以实现产品制造为目的的工科专业。材料成形及控制工程专业与机械设计制造及自动化专业、工业设计专业和工程装备与控制工程专业均隶属于机械学科,要求共同的机械工程基础理论。以材料为加工对象的特点决定了材料科学也成为本专业的基础知识,而以过程控制为质量保证措施这一特点,决定了控制理论也成为本学科基础知识的重要组成部分。因此,材料类学科专业和自动化专业及计算机科学与技术专业等都成为与本专业密切相关的学科。此外,随着科学技术的发展和学科交叉,本专业比以往任何时候都更紧密地依赖诸如数学、物理、化学、微电子、计算机、系统论、信息论、控制论及现代化管理等各门学科及其最新成就。

材料成形及控制工程这一隶属于机械学科、具有机械类学科典型特征的专业,同时还具有浓厚的材料学科的色彩,成为一个业务领域宽、知识范围广的名副其实的宽口径专业。继续进行深入研究,准确界定专业内涵,对专业的发展具有重要的意义。

2.培养目标的定位

培养目标定位很重要,涉及到材料成形及控制工程专业的发展和人才培养适应市场需求的问题。尽管我国的高等教育已由精英教育迈入大众化教育阶段,但这并不意味着社会市场只需要通才,而不需要专才。并且科学研究和工程应用这两方面的需求也要求培养不同类型的专业人才。因此,不同类型学校应根据市场的需求和自身的特点来培养不同类型的人才。一部分高等院校应该担负起精英教育的责任,以培养材料成形及控制工程学科的科学研究型和科学研究与工程技术

复合型高层次人才为主,本科阶段应是以通识为主的专业教育;另一部分学校应以普及高等教育为主,负起大众化教育的责任,以培养本学科的工程技术型、职业应用复合型人才为主,本科是通识与专业并重的教育;高等职业技术学院则以培养职业应用型、职业应用复合型人才为主,专科是完全职业专业教育。各学校可根据学校自身的层次来确定专业培养目标。

在材料成形及控制工程专业培养目标的定位中,还应考虑市场需求。本科教育培养通才还是专才,是以普通教育为中心还是以职业教育或专业教育为中心,历来是高等教育激烈争辩的问题。西方国家本科通才教育是建立在完善的继续教育基础上的,我国在这方面还有较大的差距。一方面是一些大型企业公司已有完善的教育培训体制和充足的教育经费,而另一方面是大量的中小企业仍然需要行业背景强的毕业生,因而高校应进一步适应市场的需求,根据不同的培养目标,调整通识教育与专业教育的比例,拓宽专业口径,灵活专业方向,建立和健全第二学位、主副修制度等。

3.创新精神和能力培养的实践落脚点

当前,就高校自身来说,首先应抓好以下工作:(1)教师队伍建设是关键。教师的真本事,主要不是课堂上的公式运用和解题技巧,而是在于提出的解决问题的思路。教师过教学关、过外语关、过现代信息技术关、接受科研训练以及参加国内外的各种学术交流等,在当前显得特别重要。(2)在教学领域应当全方位地“联合行动”,即:突破传统观念,强化创新意识;提倡教育民主,尊重创新精神;改革评价方式,建立创新机制;关注个性培养,营造创新氛围;拓宽知识视野,夯实创新基础;开发情感智力,培养创新品质等等。(3)当前应特别注意加强教学方法和考试方法的改革,根据学生的不同年级,逐渐使学生从以教师、书本和课堂为中心的教学模式中“向外突围”,通过教学管理制度的改革,增加学生的自学时间,组织学生参加有指导的小型课堂讨论(Seminar),引导学生参加教师的科研工作,鼓励学生参加课外科技和实践活动等等。(4)建设和改造一批能够培养学生动手能力的实践训练中心(基地),克服困难,保证实践和实验教学环节的落实。

六、结论

通过对材料成形专业领域的科技前沿技术的整理总结,我终于清楚地知道了我的专业(材料成形与控制工程)的发展方向,并对本专业有了深层次的了解和认识,这为我以后的学习指明了道路。看到还有许多富有潜力的先进技术还没有进行实际应用,这激发了我奋斗的激情,我争取通过自身的学习和努力在材料成形领域有较大发展,推动材料成形技术的在社会生活中的应用,为人类的发展作出应有贡献。

参考文献

《21世纪材料成形加工技术》、《材料先进制备与成形加工技术》、《材料成形新技术》、《中国材料工程大典》、《先进材料定向凝固》、《材料成形界面工程》、《材料科学与工艺》、《材料成形技术基础》、《材料成形工艺基础》、《工程材料与成形技术》、《材料加工工程》、《先进制造技术》

第三篇:先进加工技术

工程训练报告

先进加工技术----3D打印

学院:机械与汽车工程学院

班级:机械13--4 姓名:姜晖

学号:201301011215

先进加工技术--------3D打印

众所周知,传统的打印技术及其所配套的打印设备只能进行简单或者稍微复杂的二维平面打印。然而,随着时代的发展,特别是对于加工效率,加工精度的要求日益增长的情况下,传统的二维打印越来越力不从心,在一次次高科技革命的推动下,3D打印应运而生。

3D打印,也称为3D立体打印技术,即快速成型技术的一种,它是一种以数字模型文件为基础,运用粉末状金属或塑料等可粘合材料,通过逐层打印的方式来构造物体的技术。

3D打印技术最早出现于20世纪90年代,是利用光固化和纸层叠等技术的最新快速成型装置。原理方面与传统的二维打印机相同,打印盒内装有粉末等打印材料与电脑连接后,通过电脑控制把“打印材料”一层层叠加起来,最终把计算机上的蓝图变成实物的一种快速成型技术。

相对于传统打印机,3D打印机所用原理基本相同,但是所用的原料并不相同,传统打印机所用的材料是墨粉和各种纸张,而3D打印机内装有金属、陶瓷、塑料、砂等不同的“打印材料”,是实实在在的原材料,当打印机与电脑连接后,在电脑进行控制下,按照设计人员设定的三维立体模型,将原材料一层一层叠加起来,将计算机的立体模型变为一个实实在在的立体产品。

3D打印存在着许多不同的技术。它们的不同之处在于以可用的材料的方式,并以不同层构建创建部件。3D打印常用材料有尼龙玻纤、耐用性尼龙材料、石膏材料、铝材料、钛合金、不锈钢、镀银、镀金、橡胶类材料。

介绍了3D打印技术,就不得不介绍3D打印的工作过程.3D打印最重要的一个过程就是设计过程,3D打印的设计过程是:先通过计算机建模软件建模,再将建成的三维模型“分区”成逐层的截面,即切片,从而指导打印机逐层打印。

其次便是相切面包一样,对模型进行切片处理:打印机通过读取文件中的横截面信息,用液体状、粉状或片状的材料将这些截面逐层地打印出来,再将各层截面以各种方式粘合起来从而制造出一个实体。这种技术的特点在于其几乎可以造出任何形状的物品。

打印机打出的截面的厚度(即Z方向)以及平面方向即X-Y方向的分辨率是以dpi(像素每英寸)或者微米来计算的。一般的厚度为100微米,即0.1毫米,也有部分打印机如ObjetConnex 系列还有三维 Systems' ProJet 系列可以打印出16微米薄的一层。而平面方向则可以打印出跟激光打印机相近的分辨率。打印出来的“墨水滴”的直径通常为50到100个微米。用传统方法制造出一个模型通常需要数小时到数天,根据模型的尺寸以及复杂程度而定。而用三维打印的技术则可以将时间缩短为数个小时,当然其是由打印机的性能以及模型的尺寸和复杂程度而定的。

传统的制造技术如注塑法可以以较低的成本大量制造聚合物产品,而三维打印技术则可以以更快,更有弹性以及更低成本的办法生产数量相对较少的产品。一个桌面尺寸的三维打印机就可以满足设计者或概念开发小组制造模型的需要。

完成以上步骤后,便只剩下完成打印了:三维打印机的分辨率对大多数应用来说已经足够(在弯曲的表面可能会比较粗糙,像图像上的锯齿一样),要获得更高分辨率的物品可以通过如下方法:先用当前的三维打印机打出稍大一点的物体,再稍微经过表面打磨即可得到表面光滑的“高分辨率”物品。

有些技术可以同时使用多种材料进行打印。有些技术在打印的过程中还会用到支撑物,比如在打印出一些有倒挂状的物体时就需要用到一些易于除去的东西(如可溶的东西)作为支撑物。

现行的3D打印有多种成型方法,每项各有利弊:

电子束是3D金属打印成型最快方法电子束快速成型技术目前还有一些技术难点尚待进一步研究,比如成型过程中废热高,金属构件中金相结构控制较为困难,特别是成型时间长,先凝固的部分经受的高温时间长,对金属晶态成长控制困难,进而引起大尺度构件应力复杂等等。

电子束成型对复杂腔体,扭转体,薄壁腔体等成型效果不佳,他的成形点阵精度在毫米级,所以成型以后仍然需要传统的精密机械加工,也需要传统的热处理,甚至锻造等等。

但电子束快速成型速度快,是目前3D金属打印类打印速度最快的,可达15KG/小时,设备工业化成熟度高,基本可由货架产品组合,生产线构建成本低,具有很强的工业普及基础,同时,电子束快速成型设备同时还能具有一定的焊接能力和金属构件表面修复能力,应用前景广泛。在发动机领域,目前美国和中国在电子束控制单晶金属近净形成型技术方面正积极研究,一旦获得突破,传统的单晶涡轮叶片生产困难和生产成本高的问题将获得极大的改善,从而大大提高航空发动机的性能,并对发动机研制改进等提供了极大的助力。

由于电子束成形精度受到电子束聚焦和扫描控制能力的限制,激光作为更高精度的能量介质引起高度重视,激光成形技术几乎是和电子束成形技术同步起步发展,但是,由于稳定的10KW以上级的大功率激光器到2008年才开始逐步工业化,所以激光成形技术在最近才出现喷涌的盛况。

激光数字成型技术主要有两个类别,一是激光近净成形制造(LENS)、金属直接沉积(DMD),这个类别的技术和电子束快速成型类似,也是利用控制扫描区域形成控制的熔融区,用金属丝或金属粉同步扫描点添加,金属熔融沉积,这项技术算电子束快速成型的高精度的进化成果,激光的扫描点阵精度可以比电子束高一个数量级,可以得到更高精度的零件,从而进一步减少材料的耗量和机械加工的需求,同时它还能保留电子束快速成型的打印速度快的优势。

这类区域熔融的技术需要大尺度的腔体提供零件加工所需的真空环境,这限制了加工零件的尺寸,激光熔融区的大小和功率直接相关,越大形的构件加工能力要求越高,由于电子束对金属的热效应深度比较大,而激光热效应深度较小,激光成形时胚体受热和散热状况要好于电子束,因此它能形成很薄的熔化区和更细密均匀的沉积构造,凝固过程中的金相结构更容易控制,热应力复杂度要低很多,可以制造更精确的形状和更复杂零件,也能制造较薄壁的零件类型。美DRAPA,洛克希德先进制造技术中心,和飞利浦、宾州大学等于2013年演示的先进制造

DM概念,就是基于这类技术基础。

激光3D打印几乎可直接加工出工业零件

目前主流的激光打印机是利用硒鼓静电吸附墨粉,激光扫描熔融墨粉形成图像的,这种打印方式精度可达300PPI,利用激光打印和粉末冶金技术结合,新一代的最有希望的最精密成型的技术是以直接金属激光烧结(Direct metal laser sintering,DMLS)和选区激光(selective laser sintering,SLS)为代表的激光精密数字成形。这两者都是在基底铺设金属粉末,由激光扫瞄烧结,所不同的是,直接烧结是边铺粉边烧,而选区烧结是先铺整层粉末,然后激光扫描烧结,这种烧结每次沉积厚度约20-100微米,通过反复多次的沉积最终获得三维立体的零件。

激光精密成形的优点是精度高,成形点阵可以小于0.01毫米,可以得到近似平滑的表面,能够处理空腔,薄壁等复杂空间扭转体,和相互交叉穿透的复杂空腔和管路,几乎可以加工出直接应用的工业零件。

激光3D打印零件强度略小于锻造机加件

高精度激光烧结对激光的功率要求中等,烧结点温度虽然高,但是点阵小,每点阵金属熔融凝固量很少,全过程热释放低,材料胚体温度接近常温区,较少形成复杂的热应力情况,金属凝固形成的金相较为均匀细密,大多为细小的晶格态,类似于经过锻造的金属构件,获得金属零件强度略小于锻造机加件。

美国德州大学奥斯汀分院最早于1986年提出SLS的专利,由DTM公司提供商用设备,美国麻省理工1988年提出DMLS的概念和专利,但目前商用化设备主要的供应商都来源于欧洲,德国EOS略占优势,MTT 公司和 Concept Laser 公司也具有很强的竞争力。中国于1998年以后开始开展SLS方面的研究,2000年以后,随着商品化光纤激光器的成熟,国内在SLS方面取得一定成果,2004年起,有至少3家公司和单位提出SLS技术应用化的专利,在航空领域因材料强度方面的问题,早期的应用主要在快速建立冶金应用模具方面。

作为一种主流的高新技术,3D打印有着非常广阔的应用领域:军工,航天,医学,甚至于建筑行业,均存在着3D打印技术的影子.3D打印技术目前在全球也是前沿技术和前沿应用,最尖端的航空工业对这种技术最为关注也最严谨,美国90年代中期就获得这类技术的工业尝试,但是他们一直称为近净成型加工技术,F-22,F-35都有应用,不过因为一些加工工艺等原因,美国也没有能大规模应用,但美国将这一技术一直作为先进制造技术而由美国国防高级研究计划局(DRAPA)牵头,组织美国30多家企业对这一技术长期研究。

美国如此重视,我国自然也不甘落后。最近几年,中国航空工业捷报频传,先进战斗机歼-20,歼-31,舰载机歼-15,运输机运-20一大批高新机不断诞生,接踵而出,最为引人关注的是,在2013年全球3D打印热潮中,以北航和西工大两个科研主体带动,沈飞、成飞、西飞等数家航空制造企业为主体,成为全球第二个能够在实际应用中利用3D打印技术制造飞机零件的国家。

与其他的高新技术一样,3D打印技术也有着自身的缺点和不足之处。

3D打印零件强度还难以作为飞机受力构件

3D打印概念的出现是一种制造工业领域革命性的新技术,目前的诸多成形手段和方法都有各自的具体优点和缺陷,在航空领域,选择烧结SLS技术看起来潜力最大,应用前景最广泛,它的材料适应范围最广,从铝合金、钛合金、高强度钢、高温合金到陶瓷都能处理,但是它属于微观粉末冶金的范畴,快速成形中,粉末冶金技术中因熔融——凝固过程过快,成形体中容易夹杂空穴,未完全熔融的粉末,胚体缺陷还有可能包括激光扫描线方向形成的熔融——凝固不均匀金相微观线状晶格排列,这些都会严重影响了成形件的强度。

目前激光选区成形的构件大多都只能达到同牌号金属铸造的强度水平,虽然这已经能让构件进入正常的应用领域,但显然要承担象飞机这样的主要结构受力构件还是有很大限制的。

3D金属打印零件表面还需进一步机械加工直接金属激光烧结DMLS技术因为直接用激光熔融金属丝沉积,金属本身是致密体重熔,不易产生粉末冶金那样的成形时的空穴,这个技术生产的构件致密度可达99%以上,接近锻造的材料胚体,目前国际国内都主要利用这种技术制造高受力构件,它能达到同牌号金属最 高强度的90~95%左右的水平,接近一般锻造构件。

目前的金属3D打印构件都不能直接形成符合要求的零件表面,它都必须经过表面的机械加工,去除表面多余的,不连续的,不光滑的金属,才能作为最终使用的零件,因此,尽管3D打印可以获得复杂的空间结构和一些复杂的管路和腔体,但是这些管路和腔体的机械加工很有可能无法进行,其零件的重量效率,管路流动效率等方面不一定能够满足实际需求,因此,尽管3D打印可能能一步直接完成很多复杂零件的成形,但其还不具备直接取代传统机械加工的能力。

3D打印对飞机大型构件制造还存在问题

直接成形的金属零件在生产过程中因为反复经受局部接近熔点温度受热,内部热应力状态复杂,在成形某些大型细长体,薄壁体金属构件时,应力处理和控制还不能满足要求,实际上到目前为止一直影响3D打印在航空业的应用也正是因为这个原因。

美国从1992年开始就不断利用这类技术希望能够直接生产飞机用的大型框架,粱绗,整体壁板等,正是因为应力复杂,大型构件成形过程中或成形后会产生严重变形,严重到无法使用。所以3D打印技术尽管很早就出现了,但国外航空工业界还持有相当的保守态度也是有原因的。激光3D打印工业化面临精细度难题目前激光成形技术面临工业化的两个方向相互间有矛盾,一是打印精细度,目前的打印精细度SLS最高,基本在1~0.1毫米左右,而其他技术加工生成的零件表面精度则在0.8~5毫米之间,目前市场销售的2D激光打印机点阵精度在1200DPI左右即0.02毫米,这个精度可以获得近似光滑的曲面,提高精度受到打印耗材粉末的粒径粗细和激光熔融金属液态滴状表面张力影响,要把精度提高到0.1毫米以下还有很大困难,不过铺粉预处理、激光超快速融化——凝固等技术的出现会为提高激光成形的精度有很大帮助。

激光3D打印工业化面临打印速度难题另一个发展方向则是提高打印速度,目前激光打印的速度还是较慢的,每小时印重量大多都在1公斤以下,最好水平也只有9公斤/小时左右,要实现工业化生产,特别是大规模化生产,这个速度是不够的,现在的激光成形基本还是单光头单层铺粉作业,未来为了提高打印速度和应对超大型构件打印,已经有多光头多层铺粉同步打印的设计出现。

激光成形目前尚属于单一技术应用,但是在工业界,激光冲击强化在冶金方面应用已经有10几年的历史了,激光打印成形实际上很有希望能够直接集成激光冲击强化,激光淬火等技术,它能让激光成形的构件更加致密,且具有高级别的强度,实际上激光3D打印机都能简单的通过软件控制来实现激光冲击强化的功能。

现在3D打印技术还只是露出第一缕曙光

新的制造方法需要新的一系列处理工艺配合,3D打印目前只能算一丝曙光,真正达到大规模应用产生效益,还需要很长的时间发展和积累。

3D打印技术的出现是信息革命在攻克传统工业的最后堡垒的终结的冲锋号,因而引发了一系列的科学技术领域研究的新课题,激光粉末冶金,微沉积金相学,微观淬火、锻造,激光冲击强化等一系列机械制造,冶金等领域的课题将会让已经暮气沉沉的传统冶金科学,和制造科学领域重新充满发展的动力,在未来的数十年间,谁在这些技术领域获得应用化的实际成果,可能会影响和颠覆现有的制造工业的基本面貌,未来可谓潜力无限。

第四篇:材料先进加工技术

1.快速凝固

快速凝固技术的发展,把液态成型加工推进到远离平衡的状态,极大地推动了非晶、细晶、微晶等非平衡新材料的发展。传统的快速凝固追求高的冷却速度而限于低维材料的制备,非晶丝材、箔材的制备。近年来快速凝固技术主要在两个方面得到发展:①利用喷射成型、超高压、深过冷,结合适当的成分设计,发展体材料直接成型的快速凝固技术;②在近快速凝固条件下,制备具有特殊取向和组织结构的新材料。目前快速凝固技术被广泛地用于非晶或超细组织的线材、带材和体材料的制备与成型。2.半固态成型

半固态成型是利用凝固组织控制的技术.20世纪70年代初期,美国麻省理工学院的Flemings教授等首先提出了半固态加工技术,打破了传统的枝晶凝固式,开辟了强制均匀凝固的先河。半固态成型包括半固态流变成型和半固态触变成形两类:前者是将制备的半固态浆料直接成型,如压铸成型(称为半固态流变压铸);后者是对制备好的半固态坯料进行重新加热,使其达到半熔融状态,然后进行成型,如挤压成型(称为半固态触变挤压)3.无模成型

为了解决复杂形状或深壳件产品冲压、拉深成型设备规模大、模具成本高、生产工艺复杂、灵活度低等缺点,满足社会发展对产品多样性(多品种、小规模)的需求,20世纪80年代以来,柔性加工技术的开发受到工业发达国家的重视。典型的无模成型技术有增量成型、无摸拉拔、无模多点成型、激光冲击成型等。4.超塑性成型技术

超塑性成型加工技术具有成型压力低、产品尺寸与形状精度高等特点,近年来发展方向主要包括两个方面:一是大型结构件、复杂结构件、精密薄壁件的超塑性成型,如铝合金汽车覆盖件、大型球罐结构、飞机舱门,与盥洗盆等;二是难加工材料的精确成形加工,如钛合金、镁合金、高温合金结构件的成形加工等。5.金属粉末材料成型加工

粉末材料的成型加工是一种典型的近终形、短流程制备加工技术,可以实现材料设计、制备预成型一体化;可自由组装材料结构从而精确调控材料性能;既可用于制备陶瓷、金属材料,也可制备各种复合材料。它是近20年来材料先进制备与成型加工技术的热点与主要发展方向之一。自1990年以来,世界粉末冶金年销售量增加了近2倍。2003年北美铁基粉末。相关的模具、工艺设备和最终零件产品的销售额已达到91亿美元,其中粉末冶金零件的销售为64亿美元。美国企业生产的粉末冶金产品占全球市场的一半以上。可以预见,在较长一段时间内,粉末冶金工业仍将保持较高的增长速率。粉末材料成型加工技术的研究重点包括粉末注射成型胶态成型、温压成型及微波、等离子辅助低温强化烧结等。6.陶瓷胶态成型

20世纪80年代中期,为了避免在注射成型工艺中使用大量的有机体所造成的脱脂排胶困难以及引发环境问题,传统的注浆成型因其几乎不需要添加有机物、工艺成本低、易于操作制等特点而再度受到重视,但由于其胚体密度低、强度差等原因,他并不适合制备高性能的陶瓷材料。进入90年代之后,围绕着提高陶瓷胚体均匀性和解决陶瓷材料可靠性的问题,开发了多种原位凝固成型工艺,凝胶注模成型工艺、温度诱导絮凝成形、胶态振动注模成形、直接凝固注模成形等相继出现,受到严重重视。原位凝固成形工艺被认为是提高胚体的均匀性,进而提高陶瓷材料可靠性的唯一途径,得到了迅速的发展,已逐步获得实际应用。

7.激光快速成型

激光快速成形技术,是20实际90年代中期由现代材料技术、激光技术和快速原型制造术相结合的近终形快速制备新技术。采用该技术的成形件完全致密且具有细小均匀的内部组织,从而具有优越的力学性能和物理化学性能,同时零件的复杂程度基本不受限制,并且可以缩短加工周期,降低成本。目前发达国家已进入实际应用阶段,主要应用于国防高科技领域。国内激光快速成形起步稍晚于发达国家,在应用基础研究和相关设备建设方面已有较好的前期工作,具备了通过进一步研究形成自身特色的激光快速成形技术的条件。8.电磁场附加制备与成型技术

在材料的制备与成形加工过程中,通过施加附加外场(如温度场、磁场、电场、力场等),可以显著改善材料的组织,提高材料的性能,提高生产效率。典型的温度场附加制备与形加工技术有熔体过热处理、定向凝固技术等;典型的力场附加制备与成形技术有半固态加工等;典型的电磁场附加制备与成形加工技术有电磁铸轧技术、电磁连铸技术、磁场附加热处理技术、电磁振动注射成形技术等。近年来,有关电磁场附加制备与成形加工技术的研究在国际上已形成一门新的材料科学分支——材料电磁处理,并且得到迅速发展。9.先进连接技术

①铝合金激光焊接 ②镁合金激光焊接

③机器人智能焊接 10.表面改质改性

在材料的使用过程中,材料的表面性质和功能非常重要,许多体材料的失效也往往是从表面开始的。通过涂覆(或沉积、外延生长)表面薄层材料或特殊能量手段改变原材料表面的结构(即对处理进行表面改性),赋予较廉价的体材料以高性能、高功能的表面,可以大大提高材料的使用价值和产品的附加值,是数十年来材料表面加工处理研究领域的主要努力方向。

材料加工技术的总体发展趋势,可以概括为三个综合,即过程综合、技术综合、学科综合。由于上述材料加工技术的总体发展趋势,可以预见,在今后较长一段时间内,材料制备、成型与加工技术的发展将具有以下两个主要特征:(1)性能设计与工艺设计的一体化。(2)在材料设计、制备、成型与加工处理的全过程中对材料的组织性能和形状尺寸进行精确控制。

实际上,第一个特征实现材料技术的第五次革命、进入新材料设计与制备加工工艺时代的标志。实现第二个特征则要求具备两个基本条件:一是计算机模拟仿真技术的高度发展;二是材料数据库的高度完备化。基于上述材料加工技术的总体发展趋势和特征,金属材料加工技术的主要发展方向包括以下几个方面。1)常规材料加工工艺的短流程化和高效化。

打破传统材料成形与加工模式,工艺环节,实现近终形、短流程的连续化生产提高生产效率。例如,半固态流变成形、连续铸轧、连续铸挤等是将凝固与成形两个过程合二为一,实行精确控制,形成以节能、降耗、提高生产效率为主要特征的新技术和新工艺。

目前国外铝合金和镁合金半固态加工技术已经进入较大规模工业应用阶段。铝合金半固态成型方法主要有流变压铸

2)发展先进的成形加工技术,实现组织与性能的精确控制

例如,非平衡凝固技术、电磁铸轧技术、电磁连铸技术、等温成形技术、低温强加工技术、先进层状复合材料成形、先进超塑性成形、激光焊接、电子束焊接、复合热源焊接、扩散焊接、摩擦焊接等先进技术,实现组织与性能的精确控制,不仅可以提高传统材料的使用性能,还有利于改善难加工材料的加工性能,开发高附加值材料。

3)材料设计(包括成分设计、性能设计与工艺设计)、制备与成形加工一体化

发展材料设计、制备与成型加工一体化技术,可以实现先进材料和零部件的高效,近终形,短流程成型。典型的技术有喷射技术、粉末注射成形、激光快速成型等,是不锈钢、高温合金、钛合金、难熔金属及金属间化合物、陶瓷材料、复合材料、梯度功能材料零部件制备成型加工的研究热点。材料设计、制备与成形加工的一体化,是实现真正意义上的全过程的组织性能精确控制的前提和基础。

4)开发新型制备与成形加工技术,发展新材料和新产品

块体非晶合金制备和应用技术、连续定向凝固成形技术、电磁约束成型技术、双结晶器连铸与充芯连铸复合技术、多坯料挤压技术、微成形加工技术等,是近年来开发的新型制备与成形加工技术。这些技术在特种高性能材料或制品的制备与成形技术加工方面具有各自的特色,受到国内外的广泛关注。

5)发展计算机数值模拟与过程仿真技术,构建完善的材料数据库 随着计算机技术的发展,计算材料科学已成为一门新兴的交学科,是除实验和理论外解决材料科学中实际问题的第3个重要研究方法。它可以比理论和实验做得更深刻、更全面、更细致,可以进行一些理论和实验暂时还做不到的研究。因此,基于知识的材料成形工艺模拟仿真是材料科学与制造科学的前沿领域和研究热点。根据美国科学研究院工程技术委员会的测算, 模拟仿真可提高产品质量5~15倍,增加材料出品率25%,降低工程技术成本13%~30%,降低人工成本5%~20%,提高投入设备利用率30%~60%,缩短产品设计和试制周期30% ~60%等。目前,模拟仿真技术已能用在压力铸造、熔模铸造等精确成形加工工艺中,而焊 接过程的模拟仿真研究也取得了可喜的进展。高性能、高保真、高效率、多学科及多尺度是模拟仿真技术的努力目标,而微观组织模拟(从mm、μm到nm尺度)则是近年来研究的新热点课题。通过计算机模拟,可深入研究材料的结构、组成及其各物理化学过程中宏观、微观变化机制,并由材料成分、结构及制备参数的最佳组合进行材料设计。计算材料科学的研究范围包括从埃量级的量子力学计算到连续介质层次的有限元或有限差分模型分析,此范围可分为4个层次:纳米级、微观、介观及宏观层次。在国外,多尺度模拟已在汽车及航天工业中得到应用。铸件凝固过程的微观组织模拟以晶粒尺度从凝固热力学与结晶动力学两方 面研究材料的组织和性能。20世纪90年代铸造微观模拟开始由试验研究向实际应用发展,国内的研究虽处于起步阶段,但在用相场法研究铝合金枝晶生长、用Cellular Automaton 法研究铝合金组织演变和汽车球墨铸铁件微观组织与性能预测等方面均已取得重要进展。锻造过程的三维晶粒度预测也有进展。6)材料的智能化制备与成形加工技术

材料的智能化制备与成形加工技术是1986年由美国材料科学界提出的“第三代”材料成形加工技术,20世纪90年代以来受到日本等先进工业国家的重视它通过综合利用计算机技术、人工智能技术、数据库技术和先进控制技术等,以成分、性能、工艺一体化设计与工艺控制方法,实现材料组织性能与成形加工质量,同时达到缩短研制周期、降低生产成本、减少环境负荷的目的。

材料的智能化制备与成形加工技术的研究尚处于概念形成与探索阶段,被认为是21世纪前期材料成形加工新技术中最富潜力的前沿研究方向之一。其他的材料先进制备与成形加工前沿技术

电磁软接触连铸、钛合金连铸连轧技术、高性能金属材料喷射成形技术、轻合金半固态加工技术、泡沫铝材料制备、钢质蜂窝夹芯板扩散-轧制复合、金属超细丝材制备技术、超细陶瓷粉末燃烧合成、模具表面渗注镀复合强化、金属管件内壁等离子体强化技术、钛合金激光熔覆技术、非纳米晶复合涂层制备技术等。

第五篇:先进材料成形技术与理论大纲

研究生课程教学大纲

课程编号:S292023 课程名称:先进材料成形技术与理论

开课院系:机电工程学院 任课教师:郭永环 先修课程:理论力学、材料力学、材料成型原理、工程材料等 适用学科范围:机械工程 学时: 36 开课学期:2 课程目的和基本要求:

本课程主要介绍与材料成型与加工相关的知识,通过本课程的学习,可以使学生对液态成形、连接成形、固态塑性成形、粉末冶金及成形、高分子材料及成形、陶瓷材料及成形、复合材料及成形基本过程有较深入的理解;掌握典型机械零件制造的基本工艺,初步具备根据零件使用要求合理选择成形工艺以及根据成形工艺要求合理设计零件结构的能力,并能进行简单的技术经济性分析。

学分: 2 开课形式:讲授

课程主要内容:

第一章 金属材料与热处理

主要内容包括金属材料的机械性能、金属的晶体结构和结晶、常用的热处理工艺。第二章 铸造成型技术

主要内容包括合金的铸造性能、常用的铸造合金和铸造方法、先进液态金属成型技术。第三章 压力加工成型技术

主要内容包括压力加工成型的特点和方法、锻造和冲压等常用压力加工技术、超塑性成形、粉末锻造等特殊压力加工新技术。

第四章 焊接成型技术

主要内容包括焊接原理及方法、焊接接头的组织和性能、常用金属的焊接、激光焊和微连接技术等新的连接技术。

第五章 粉末冶金及其成型

主要内容包括粉末冶金基础知识及粉末冶金工艺过程知识。第六章 高分子材料及其成型

主要内容包括工程塑料的分类和工程塑料成型工艺、塑料制品的结构工艺性。第七章 陶瓷材料及成型 主要内容包括陶瓷材料的性能。第八章 复合材料及其成型

主要内容包括复合材料的定义和分类、复合材料成型工艺和应用。第九章 快速成型技术

主要内容包括快速成型技术的原理、分类及特点 第十章 成型材料与方法选择

主要内容包括材料成型方法选择的原则、几种常用的机械零件的毛坯成型方法的选择方法。

课程主要教材:

樊自田.先进材料成形技术及理论,化学工业出版社,2006 主要参考文献:

1.刘建华.材料成型工艺基础,西安电子科技大学出版社,2007 2.毛萍莉.材料成形技术,机械工业出版社,2007 3.毛卫民.金属材料成形与加工,清华大学出版社,2008

学院审核意见: 学位分委员会审批意见:

签字: 签字:

日期: 日期:

下载先进材料加工成形技术专题报告word格式文档
下载先进材料加工成形技术专题报告.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    先进材料成形技术与理论5篇

    《先进材料成形技术与理论》 博士考试大纲 一、《先进材料成形技术及理论》课程概述 编 号:MB11001 学时数:40 学 分:2.5 教学方式:讲课30、研讨6、实验参观4 二、教学目的与要......

    材料先进加工技术论文

    材料先进加工技术 结课论文 院系:学号: 姓名: 指导教师: 目次 说明„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„1 1、焊接成形工艺„„„„„„„„„„„......

    先进制造技术电磁约束成形技术论文

    电磁约束成形技术 李康 机械制造机器自动哈1107班 学号:0806111122 摘要 :电磁约束成形是一种无容器金属材料处理加工技术 ,它具有无器壁污染、短流程等优点。分析了液态金属......

    《先进材料成形技术与理论》考试大纲

    华中科技大学博士研究生入学考试 《先进材料成形技术与理论》考试大纲 一、《先进材料成形技术及理论》课程概述 编 号:MB11001 学时数:40 学 分:2.5 教学方式:讲课30、研讨6、......

    材料成形技术基础习题

    金属材料力学性能部分 一、填空题 1.材料力学性能指标有:( )、、、( )、( )、( )。 2.拉伸试验可以用来测试( )、、。 3.塑性可由和两种方式是表示。 4.硬度表示方法有三种,分别是:( )、、......

    特种加工电火花穿孔成形[5篇范文]

    特种加工电火花穿孔成形 姓名:杨青槐 学号:1108030145 班级:机制111 学院:机械工程学院(一)特种加工的涵义 特种加工是区别于传统的切削加工的新型加工方法。它主要不是依靠机械......

    数控强力成形磨床加工实例介绍

    数控强力成形磨床加工实例介绍 强力成形磨削也称为缓进给成形磨削,是一种先进的磨削工艺。这种先进工艺自上世纪60年代以来的半个多世纪中,风靡全球,长盛不衰,并且技术不断进步......

    现代加工技术报告(大全5篇)

    现代加工制造技术 现代加工制造技术课程设计(论文) 设计(论文)题目五轴联动数控加工 学院名称核技术与自动化工程学院 专业名称机械工程及自动化 学生姓名严亚鹏 学生学号20......