纳米隐身材料概述

时间:2019-05-13 05:50:05下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《纳米隐身材料概述》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《纳米隐身材料概述》。

第一篇:纳米隐身材料概述

纳米隐身材料概述

摘要:本文主要在前人论述总结的基础上对当前纳米隐身材料的原理、研究的现状(进展)、存在的问题、发展趋势和自己的一点个人看法做一个大概的简单的概述。关键词:纳米

隐身材料

所谓纳米材料是指晶粒直径小于100纳米、包含多个原子簇的超细材料。在这种材料状态下,材料的力学性能、光学性能、化学性能、磁性能及电学性能发生了与传统材料不相同的变化。隐身材料是指以磁性纳米材料或结构为主体构成的一种复合隐身材料。

【1】

纳米

在信息化条件下,军事高科技的发展受到各国的重视,作为军事高科技的重要成员和基础,军用材料的发展历来很受重视。现代战争中,先进侦察系统和精确打击系统在实际作战中对军事装备及设施的威胁越来越大,隐身技术的应用能够显著提高武器装备的生存、突防和纵深打击能力,因此隐身技术成为世界各军事强国研究的热点之一。一.隐身原理

⒈简单来说,金属粉体(如Fe、Ni等)随着颗粒尺寸的减小,特别是达到纳米级后,电导率很低,材料的比饱和磁化强度下降,但磁化率和矫顽力急剧上升。其在细化过程中,处于表面的原子数越来越多,增大了纳米材料的活性,因此在一定波段电磁波的辐射下,原子、电子运动加剧,促进磁化,使电磁能转化为热能,从而增加了材料的吸波性能。2从而反射

【】除去的波就少,不容易被对方雷达探测到,从而起到隐身效果。一般认为,其对电磁波能量的吸收由晶格电场热振动引起的电子散射、杂质和晶格缺陷引起的电子散射以及电子与电子之间的相互作用三种效应来决定。

⒉纳米Si/C/N粉体的吸波机理与其结构密切相关。但目前对其结构的研究并没有得出确切结论,一般认为,在纳米Si/C/N粉体中固溶了N,存在Si(N)C固溶体,而这些判断也得到了实验的证实。固溶的N原子在SiC晶格中取代C原子的位置而形成带电缺陷。在正常的SiC晶格中,每个碳原子与四个相邻的硅原子以共价键连接,同样每个硅原子也与周围的四个碳原子形成共价键。当N原子取代C原子进入SiC后,由于N只有三价,只能与三个Si原子成键,而另外的一个Si原子将剩余一个不能成键的价电子。由于原子的热运动,这个电子可以在N原子周围的四个Si原子上运动,从一个Si原子上跳跃到另一个Si原子上。在跳跃过程中要克服一定势垒,但不能脱离这四个Si原子组成的小区域,因此,这个电子可以称为“准自由电子”。在电磁场中,此“准自由电子”在小区域内的位置随电磁场的方向而变化,导致电子位移。电子位移的驰豫是损耗电磁波能量的主要原因。带电缺陷从一个平衡位置跃迁到另一个平衡位置,相当于电矩的转向过程,在此过程中电矩因与周围粒子发生碰撞而受阻,从而运动滞后于电场,出现强烈的极化驰豫。二.研究现状【4.5.6.7.8.9】

公开资料显示目前国内外研究的纳米雷达波吸收剂主要有如下几种类型:纳米金属与合金吸收剂、纳米氧化物吸收剂、纳米SiC吸收剂、纳米铁氧体吸收剂、纳米石墨吸收剂、纳米Si/C/N 和Si/C/N/O 吸收剂、纳米金属膜/绝缘介质膜吸收剂、纳米导电聚合物吸收剂、纳米氮化物吸收剂【3】等

国内关于纳米吸收剂的研究具有代表性的是成都电子科技大学的纳米针形磁性金属粉、多层纳米膜复合吸收剂,青岛化工学院的手征和纳米磁性金属离子的复合吸收剂以及哈尔滨工业大学的纳米亚单畴氮化铁固体超顺磁体复合吸收剂。

成都电子科技大学以液相法合成出铁基纳米针形粉,并对影响其电磁参数的诸多因素进行了研究,这种纳米铁基金属粉密度低、质量轻,通过成分变化,可以有效控制其频率特性,有利展宽吸收频带。在此基础上,他们又对轻质多层膜复合材料进行了研究,利用化学成膜技术在中空玻璃球表面生成均匀、致密的金属镀层从而制备出了轻质颗粒膜复合吸收剂,这种吸收剂具有密度小,能充分发挥单位质量损耗层作用的显著特点,并且可以通过控制镀膜工艺和损耗层成分的方法达到有效调节镀膜颗粒复合材料的电导率、比饱和磁化强度进而调节其电磁参数,是一种轻质复合吸收剂。

青岛化工学院纳米材料研究所用纳米金属作催化剂通过聚合反应制备出导电螺旋手征吸收剂,这是一种集纳米材料、导电高聚物与螺旋手征于一体的新型轻质、宽频吸收剂。由于螺旋的作用,这种吸收剂对吸波涂层具有增强作用,具有工艺性能好、使用方便等优点。

哈尔滨工业大学制出了具有纳米粒度的单畴氮化铁固体超顺磁体并对超顺磁体的研制工艺也进行了探索性研究,建立了工艺研究设备。纳米氮化铁具有很高的饱和磁感应强度,而且有很高的饱和磁流密度,因此纳米粒度的氮化铁超顺磁体吸收剂具有较高的磁导率。此外,纳米氮化硅是另一种常见的纳米氮化物吸收剂,纳米氮化硅中大量悬挂键的存在形成电偶极矩,使其界面发生极化从而使纳米氮化硅产生强的介电损耗,具有良好的吸波性能。

国外方面,美、法、日等国都把纳米材料作为新一代隐身材料加以研究和探索。日本用二氧化碳激光法研制出一种在厘米和毫米波段都有很好吸波性能的硅/ 碳/ 氮和硅/ 碳/ 氮/

氧复合吸收剂。其吸波机理为:通过碳化硅、氮化硅和自由碳等对雷达波进行吸收和衰减,利用氮化硅的含量调节整体电阻率。法国研制成功的钴镍纳米材料与绝缘层构成的复合结构,由粘结剂和纳米级微屑填充材料组成,其结构具有很好的磁导率,与粘合剂复合涂层具有良好的吸波性能。纳米薄膜或纳米多层膜材料具有优异的电磁性能。美国研制出的“超黑粉”纳米吸波材料,对雷达波的吸收率大于99 %,这种“超黑粉”纳米吸波材料不仅吸收率大,而且在低温下仍保持很好的韧性。

【6】

对纳米隐身材料的最新研究主要集中在复合材料方面,运用复合技术对电损耗型与磁损耗隐身材料进行纳米尺度上的复合便可得到吸波性能大为提高的纳米复合隐身材料。综合了纳米材料和复合材料的优点而具有良好的吸收特性。其制备方法现罗列如下:

1.溶胶-凝胶法:将金属有机物或无机化合物经溶液制得溶胶,溶胶在一定条件下(如加热)脱水时,具有流动性的溶胶逐渐变粘稠,成为略显弹性的固体凝胶,再将凝胶干燥、焙烧得到纳米级产物。烧结的方式和温度随物料的不同也有差异,近年来有用微波加热代替常规加热的,也有用射线照射得到产物的。该方法能够制备多孔连接的纳米材料。产生溶胶-凝胶的机制主要有:①传统胶体型:通过控制溶液中金属离子的沉淀过程,使形成的颗粒不团聚成大颗粒而沉淀,得到均匀稳定的溶胶,再经过蒸发溶胶(脱水)得到凝胶。②无机聚合物型:通过可溶性聚合物在水或有机相中溶胶-凝胶法过程,使金属离子均匀的分散在凝胶中。常用的聚合物有聚乙烯醇、硬脂酸、聚丙烯酰胺。③络合物型:利用络合剂(如柠檬酸)将金属离子形成络合物,再经过溶胶-凝胶法过程形成络合物凝胶。此方法有反应烧结温度低,径粒分布均匀等优点。

2.惰性气体冷凝法:是制备清洁界面纳米粉的主要方法之一。将装有待蒸发物质的容器抽至10pa高真空后,充入惰性气体,然后再加热蒸发,使物质蒸发成雾状原子,随惰性气体流冷凝到冷凝器上,将聚集的纳米尺度离子刮下,收集即得纳米粉末。如采用多个蒸发源,可同时得到复合粉体和化合物分体,颗粒尺寸可通过蒸发速率和凝聚气的气压来调控。

⒊此外有以在材料合成过程中于基体中产生弥散相与母体有良好的相容性、无重复污染为特点的原位复合技术;以自放热、自洁净、高活性和亚稳结构为特点的子蔓延复合技术;分子自组装技术;超分子符合技术等。另外,研究中还存在一些问题,主要有: ⒈对材料的隐身原理的研究还不是很成熟;

⒉用溶胶-凝胶法制备时存在反应过程过长,凝胶易开裂;

属于我国最尖端武器序列。另一方面,科学研究成果的应用,能更好地服务于民众,更好地促进国民经济的发展,在国际竞争中保持优势地位,能有效避免高昂的专利费流入他国。

对发展纳米隐身材料的建议:我国纳米产业化的道路还十分漫长。在科学发现方面我们和美、日、德等国家没什么大的差距,有些地方还超过了他们,但向工业化生产过程中,我国尚处于落后地位。因此我们必须大力做好纳米科技成果转化为生产力的工作。国内企业大多是生产型的,缺乏自主创新的能力,另一方面,我国的科研机构,有时缺乏从实验室小试成果转化到实施大量产业化的意识,或者能力还达不到。研究机构和企业不能很好的衔接,使得我国纳米材料产业的发展严重滞后。因此科研机构应多从实际应用的角度考虑,加强和企业的联系,以使成果较好最快的应用于实际。

参考文献:

【1】陈石卿.纳米隐身材料.航空工程与维修.中国航空工业第一集团公司第六二八研究所.2000.5总第197期第二页

【2】张振英.孙红彦.夏敏.柴娟.兵器用纳米隐身材料技术的研究.特种化工材料技术研讨会论文集.第一页

【3】王智勇, 刘俊能.航空材料学报,1996 【4】赵慕愚等.对于发展具有高新性能的纳米晶材料的战略设想 【5】张桂林.高技术通讯, 1993 【6】张卫东.吴伶芝.冯小云.刘剑锋.孟秀兰.纳米雷达隐身材料研究进展.2001年第3期 【7】王涛.张立德.纳米非晶氮化硅的界面极化行为及其机制.科学通报.1994 【8】朱以华等.Si2N4超微粒子的RF2CVD 合成及其介电性质.硅酸盐学报.1996 【9】钱海霞.熊惟皓.纳米隐身材料最新研究进展.宇航材料工艺.2002年第二期.第8-11页 【10】黄婉霞,毛建,吴行等.铁磁性Mn-Zn、Ni-Zn铁氧体与铁电性BaTiO3吸收电磁波能力研究.四川联合大学学报(工程科学版),1998

第二篇:二维纳米薄膜材料概述

二维纳米材料概述

-----纳米薄膜概述

班级:材料科学与工程103班

姓名:卢忠

学号:201011601322

摘要 纳米科学技术是二十世纪八十年代末期诞生并快速崛起的新科技,而其二维纳米结构——纳米薄膜在材料应用以及前景上都占据着重要的地位。纳米薄膜材料是一种新型的薄膜材料,由于其特殊的结构和性能,它在功能材料和结构材料领域都具有良好的发展前景。本论文着重介绍纳米薄膜的制备方法、特性以及研究前景。纳米薄膜材料性能较传统的薄膜材料有更加明显的优势,特别是纳米磁性多层膜、颗粒膜作为一种新型的复合材料将是今后的研究方向。

关键词:纳米;薄膜材料

目录

一.薄膜材料定义............................................................(1)二.纳米薄膜的分类..........................................................(1)三.纳米薄膜的制备方法......................................................(2)四.纳米薄膜特性............................................................(4)五.应用及前景..............................................................(6)参考文献

一.薄膜材料定义:纳米薄膜是指尺寸在纳米量级的晶粒构成的薄膜或将纳米晶粒薄膜镶嵌于某种薄膜中构成的复合膜,以及层厚在纳米量级的单层或多层薄膜,通常也称作纳米颗粒薄膜和纳米多层薄膜。

二.纳米薄膜的分类

1.纳米薄膜,按用途分为两大类:纳米功能薄膜和纳米结构薄膜。

纳米功能薄膜:主要是利用纳米粒子所具有的光、电、磁方面的特性,通过复合使新材料具有基体所不具备的特殊功能。

纳米结构薄膜:主要是通过纳米粒子复合,提高材料在机械方面的性能。

2.按膜的功能分

纳米磁性薄膜 纳米光学薄膜 纳米气敏膜 纳滤膜、纳米润滑膜 纳米多孔膜

LB(Langmuir Buldgett)膜

SA(分子自组装)膜 3.按膜层结构分类

单层膜

如热喷涂法的表面膜等

双层膜

如在真空气相沉积的反射膜上再镀一层 多层膜

指双层以上的膜系

4.按膜层材料分

金属膜,如Au、Ag等 合金膜,如Cr-Fe、Pb-Cu等 氧化物薄膜 非氧化物无机膜 有机化合物膜

三.纳米薄膜的制备方法

纳米材料的合成与制备一直是纳米科学领域内一个重要的研究课题,新材料制备工艺过程的研究与控制对纳米材料的微观结构和性能具有重要的影响。最早是采用金属蒸发凝聚-原位冷压成型法制备纳米晶体,相继又发展了各种物理、化学方法,如机械球磨法、非晶晶化法、水热法、溶胶-凝胶法等。

1.化学法:指在镀膜技术中,有化学反应参与,通过物质间的化学反应实现薄膜的生长。

(1)化学还原法

(2)化学气相沉积法(CVD):包括常压、低压、等离子体辅助气相沉积等。该方法通过在高温、等离子或激光辅助等条件下控制反应气压、气流速率、基片材料温度等条件,从而控制纳米微粒薄膜的成核生长过程;或者通过薄膜后处理,控制非晶薄膜的晶化过程,从而获得纳米结构的薄膜。用CVD法制备薄膜材料是通过使原料气体以不同的能量使其产生各种法学反应,产物在基片上生长、沉积成固体薄膜。

(3)高温分解法

(4)溶胶-凝胶法:这种方法是20世纪60年代作为一种制备玻璃、陶瓷等无机材料的合成工艺而开发的。溶胶–凝胶法可以赋予基体多种特殊性能,其中包括机械、化学保护、光学、电磁和催化等。溶胶–凝胶法制备薄膜,首先必须制得稳定的溶胶,按其溶胶的方法,将溶胶–凝胶工艺分为有机途径和无机途径,两者各有优缺点。与其他制备薄膜的方法相比,溶胶–凝胶法工艺设备简单,温度低,易于大面积制备各种不同形状、材料的薄膜,用料省、成本较低。

(5)电浮法(6)阴极电镀法

2.物理法:指在薄膜沉积过程中,不涉及化学反应,薄膜的生长基本是物理过程。

物理气相沉积(PVD)是一类常规的薄膜制备手段,它包括蒸镀、电子束蒸镀、溅射等。主要通过两种途径制膜:

(1)在非晶薄膜晶化过程中控制纳米结构的形成。

(2)在薄膜的成核过程中控制纳米结构的形成。物理气相沉积主要包括以下三点:

①气相物质的产生。在蒸发镀膜方法中,用加热源使其蒸发;而在溅射镀膜中,则用具有一定能量的粒子轰击靶材。

② 气相物质的输送。由于有气体存在时会与气相物质发生碰撞,因此气相物质的输送往往在真空中进行。

③ 气相物质的沉积。气相物质在基片上的沉积是一个凝聚过程。根据凝聚条件的不同,可以形成单晶膜、多晶膜或者非晶态膜。

3.分子组装方法

(1)LB膜技术

LB膜技术就是先将双亲分子在水面上形成有序的紧密单分子薄膜,再利用端基的亲水、疏水作用将单层膜转移到固体基片上。由于基片与分子之间的吸附作用,单分子层级成绩在固体基片上。这样基片反复的进出水面就可以形成多层膜。LB膜随着转移方式的不同可得到X型、Y型和Z型。LB膜的制备是将悬浮在气/液界面的单分子膜转移到基片表面。最常用的方法是垂直拉提法、水平拉提法、亚相降低法、扩散吸附法和接触法。

(2)分子自组装技术

分子自组装(SA)薄膜技术是一种在平衡条件下通过建的相互作用,自发结缔形成性能稳定的、结构完整的薄膜的方法。SA成膜技术主要包括基于化学吸附的自组装成膜技术,和基于物理吸附的离子自组装膜技术。

①基于化学吸附的SA技术

其基本方法是:将表面修饰有某种物质的基片浸入待组装分子的溶液中,待组装分子一端的反应基于基片表面发生自动连续的化学反应,在基片表面形成化学键连接的二维有序单层膜;如果单层膜表面也有具有某种反应活性的基团,则又可以和别的物质反应,如此重复就构建成同质或异质的多成膜。SA技术形成的多层膜有如下主要特征:①.原位自发形成;②.热力学性质稳定;③.物理基片形状如何,其表面均可形成均匀一致的覆盖层;④.高密度堆积和低缺氧浓度;⑤.分子有序排列;⑥.可人为设计分子结构和表面结构来获得预期的物理和化学性质;⑦.有机合成和制膜有很大的灵活性。

②基于物理吸附的SA膜技术

基于物理吸附的SA膜技术又叫做离子自组装技术,其原理是将表面带负电荷的基片浸入阳离子聚电解质溶液中,由于静电吸引,阳离子聚电解质聚集到基片表面,使基片表面带正电,然后将基片再浸入阴离子聚电解质溶液中,如此重复进行,就会形成多层聚电解质自组装膜。

这种建立在静电互相作用原理基础上的自组装技术,是一种新型的制备聚合物纳

米复合膜的方法。它的特点是:①对沉积过程或膜结构进行分子级控制;②.利用连续沉积的方法,可实现层间分子对称或非对称二维或三维超晶格结构,从而实现膜的光、电、磁、非线性光学性能的功能化;③.可形成仿真生物膜;④.层与层之间膜的稳定性极好;⑤.与基于化学吸附法制备有机复合膜相比,具有较好的重复性。

四.纳米薄膜特性

1.纳米薄膜的力学性能:纳米薄膜的性能强烈依赖于晶粒(颗粒)尺寸、膜的厚度、表面粗糙度及多层膜的结构,这也就是日前纳米薄膜研究的主要内容。

硬度:纳米多层膜的硬度与材料系统的组分、各组分的相对含量、薄膜的调制波长有着密切的关系。

机械性能较好的薄膜材料一般由硬质相〔如陶瓷材料)和韧性相(如全属材料)共同构成。因此如果不考虑纳米效应的影响和硬质相含量较高时,则薄膜材料的硬度较高,并且与相同材料组成的近似混合的薄膜相比,硬度均有所提高。

韧性:多层膜结构可以提高材料的韧性,其增韧机制主要是裂纹尖端钝化、裂纹分支、层片拔出以及沿界面的界面开裂等,在纳米多层膜中也存在类似的增韧机制。

影响韧性的因素主要有组分材料的相对含量及调制波长。在金属/陶瓷组成的多层膜中,可以把金属作为韧性相,陶瓷为脆性相,实验中发现在TiC/Fe、Ti/Al、TiC/W多层膜系中,当金属含量较低时,韧性基本上随金属相含量的增加而上升,但是在上升到一定程度时反而下降。

耐磨性:研究发现合理搭配材料可以获得较好的耐磨性。从结构上看,多层膜的晶粒小,原子排列的晶格存在缺陷的可能性增多,晶粒内的晶格点阵畸变和晶格缺陷的增多,使晶粒内部的位错滑移阻碍增加;此外,多层膜相界面结构也非常复杂,由于不同材料位错能的差异,也会导致薄膜材料的耐磨性的不同。

2.光学性能

(1)蓝移和宽化

用胶体化学法制备TiO2/SnO2超颗粒及其复合LB膜具有特殊的紫外-可见光吸收光谱。TiO2/SnO2超颗粒具有量子尺寸效应使吸收光谱蓝移。TiO2/SnO2-硬脂酸复合LB膜具有良好的抗紫外线性能和光学透过性。

(2)光学线性与非线性

光学线性效应是指介质在光波场作用下,当光强较弱时,介质的电极化强度与光波电场的一次方成正比的现象。一般说来,多层膜的每层膜厚度与激子玻尔半径(aB)相近

或小于aB时,在光的照射下,吸收谱上会出现激子吸收峰,这种现象也属于光学效应。半导体InCaAlAs和InCaAs构成的多层膜,通过控制InCaAs膜的厚度,可以很容易地观察到激子吸收峰。

光学非线性是在强光场的作用下,介质的电极化强度中就会出现与外加电磁场的二次、三次乃至高次方成比例的项。对于纳米材料,小尺寸效应、宏观量子尺寸效应、量子限域和激子是引起光学非线性的主要原因。

3.电磁学特性

(1)磁学特性

磁性材料在吸波材料中最具特色和发展潜力,高磁导率金属材料一般具有高电导率,高频下易产生大涡流,对电磁波强反射而难以被吸收。采用薄膜多层化设计,用绝缘介质层将高磁导率金属层间隔形成纳米多层膜复合结构,可能获得高频下的高磁导率和大磁损耗。某文献研究报道了C0923zr7Ndn,薄膜材料的高频磁谱特性,该材料具有高的磁损耗,有可能成为GHz频段抗EMI材料,难以应用于高于2 GHz频段。华中科技大学邓联文吲等人研究一种能用于微波吸收的高磁损耗型纳米多层膜材料,并获得了高于2GHz频段的高磁导率。

(2)电学特性

有人在Au/Al2O3de 颗粒膜上观察到电阻反常现象,随着纳米金颗粒含量的增加,电阻不但不减小,反而急剧增加。实验证明,材料的导电性与材料颗粒的临界尺寸有关。当材料颗粒小于临界尺寸时,它可能失去原来的电学性。

(3)气敏特性

采用PECVD方法制备的SnO2超微粒颗粒薄膜比表面积大,存在不饱和配位键,表面存在很多活性中心,容易吸附多种气体而在表面进行反应,是很好的制备传感器的功能膜材料。

五.应用及前景

1.应用(1)金属的耐蚀薄膜:非晶态合金膜是一种无晶界的,高度均匀的单相体系,且不存在一般金属或合金所具有的晶体缺陷,因此,它不存在晶体间腐蚀和化学偏析,具有极强的防腐蚀性能。

如化学沉积制备非晶态的Ni-P合金。由于它没有晶态Ni-P合金所具有的两相组织,无法构成微电池。其镀层可使金属材料原来敏感的点蚀、晶间腐蚀、应力腐蚀和氢脆等易腐蚀性都得到改善。

(2)多功能薄膜—SnO2由于:SnO2具有良好的吸附性、较低的电阻温度系数及化学稳定性,因此容易沉积在诸如玻璃、陶瓷材料、氧化物材料及其他种类的衬底材料上。SnO2薄膜的主要用途有:薄膜电阻器、透明电极、气敏传感器、太阳能电池、热反射镜、光电子器件、电热转化等。

2.前景

纳米薄膜在很多领域内都有着广阔而先进的应用前景,利用它独有的物理化学性质及特性,设计出新型纳米结构性器件和纳米复合传统材料改性正孕育着新的突破,而功能性的薄膜材料一直是目前研究的热点。

利用纳米薄膜吸收光谱的蓝移和红移特性,人们已经制造出了各种各样的紫外吸收薄膜和红外反射薄膜,并且在日常的生产和生活中获得了广泛的应用;在一些硬度高的耐磨涂层或薄膜中添入纳米相,可进一步提高纳米薄膜的硬度和耐磨性能,并保持较高的韧性;利用纳米粒子涂料形成的涂层具有良好的吸收能力,可对重型设备起到隐身作用,纳米氧化钛、氧化铬、氧化铁等具有导体性质的粒子,有很好的静电屏蔽作用;美国科学家将PAH、PSS沉积到多空聚丙烯膜上,二氧化碳和氮气的选择透过性表明固体二甲基硅烷沉积多层膜后有较高的选择性。

在充满生机的21世纪,信息、生物技术、能源、环境、先进制造技术和国防的高速发展必然对材料提出新的要求,元件的小型化、智能化、高集成、高密度存储和超快传输等对材料的尺寸要求越来越。新材料的创新,以及在此基础上诱发的新技术是未来10年对社会发展、经济振兴、国力增强最有影响力的战略研究领域,纳米材料将是起重要作用的关键材料之一。正想美国科学家估计的“这种人们肉眼看不见的极微小的物质很有可能给各个领域带来一场革命”。在纳米科技的竞争中,我国起步并不算晚,这是我国赶上世界经济发展的又一个不可多得的机遇。

参考文献

[1] 崔传文

姜明

纳米薄膜材料的制备技术及其应用研究 [2] 徐扬海 纳米薄膜材料

[3] 王鹏飞 周剑平巫建功 王永明 ZnO基稀磁半导体纳米薄膜材料的研究进展 [4] 贾嘉 溅射法制备纳米薄膜材料及进展

第三篇:一维纳米材料的制备概述

学年论文 ` 题目:一维纳米材料的制备方法概述 学院:化学学院

专业年级:材料化学2011级

学生姓名:龚佩斯学号:20110513457 指导教师:周晴职称:助教 2015年3月 26日 成绩

一维纳米材料制备方法概述

--气相法、液相法、模板法制备一维纳米材料 材料化学专业

2011级龚佩斯 指导教师周晴 摘要:一维纳米材料碳纳米棒、碳纳米线等因其独特的用途成为国内外材料科学家的研究热点。然而关于如何制备出高性能的一维纳米材料正是各国科学家所探究的问题。本文概述了一维纳米材料的制备方法:气相法、液相法、模板法等。关键词:一维纳米材料;制备方法;气相法;液相法;模板法

Abstract: the nanoscale materials such as carbon nanorods and carbon nanowires have become the focus of intensive research owing to their unique applications.but the question that how to make up highqulity one-dimentional nanostructure is discussing by Scientists all around the world.This parper has reviewed the preparation of one dimention nanomaterials ,such as vapor-state method, liqulid-state method,template method and so on.Key words: one-dimention nanomaterials;preparatinal method;vapor-state method liqulid-state method;template method 纳米材料是基本结构单元在1nm ~100nm之间的材料,按其尺度分类包括零维、一维、二维纳米材料。自80年代以来,零维纳米材料不论在理论上和实践中均取得了很大的进展;二维纳米材料在微型传感器中也早有应用。[1]一维纳米材料因其特殊的结构效应在介观物理、纳米级结构方面具有广阔的应用前景,它的制备研究为器件的微型化提供了材料基础。本文主要概述了近年来文献关于一维纳米材料的制备方法。1 一维纳米材料的制备方法

近几年来,文献报导了制备一维纳米材料的多种方法,如溶胶-凝胶法、气相-溶液-固相法、声波降解法、溶剂热法、模板法、化学气相沉积法等。然而不同制备方法的纳米晶体生长机制各异。本文按不同生长机制分类概述,主要介绍气相法、液相法、模板法三大类制备方法。1.1 气相法

在合成一维纳米结构时,气相合成可能是用得最多的方法。气相法中的主要机制有:气—液—固(VLS)生长机制、气—固(VS)生长机制。[2] 1.1.1 气—液—固(VLS)生长法

VLS法是制备单晶一维纳米材料较好的方法,该方法具有较高的产率。催化剂以及适宜的温度是VLS生长基质的必要条件。催化剂能与生长材料的组元互熔形成液态的共熔物,生长材料的组元不断地从气相中获得,当液态中溶质组元达到过饱和后,晶须将沿着固-液界面的择优方向析出。[2]纳米线的最终形态受部分实验因素的影响。实验表明,最终合成一维纳米材料的长度受催化剂的尺寸影响,而反应时间则影响最终合成一维纳米材料的长径比。最具有代表性的工作有杨培东(P.Yang)小组的Ge纳米线在Au的催化作用下VLS机制生长过程的原位观察。[3] 1.1.2 气—固(VS)生长机制

大量研究实验表明,在不存在催化剂的条件下,一维纳米材料按照VS生长制备。在VS过程中,可以通过热蒸发、化学还原或气相反应等方法产生气相,随后该气相被传输到低温区并沉积在基底上。其生长方式通常是以液固界面上微观缺陷(位错、孪晶等)为形核中心生长出一维材料。[2]其中晶体的形貌取决于气体的过饱和度。低的过饱和度有利于晶须的形成。中等过饱和度利于块状晶体的生长。而很高的过饱和度则均匀形成粉末。1.2 液相法

液相法包括溶液-液相-固相(SLS)生长机制、溶剂热法。1.2.1溶液-液相-固相(SLS)生长机制

SLS生长机制与VLS生长机制相似。SLS生长机制与VLS生长机制的不同之处在于后者原材料来于气相,前者来于液相。在SLS生长机制中,常用低熔点金属为助溶剂,其作用相当于VLS中催化剂的作用。该机制生长出来的一维纳米材料为单晶和多晶结构,且其尺寸分布范围较宽。美国华盛顿大学Buhro小组在低温下通过SLS机制获得了高结晶度的半导体纳米线,如InP、InAs、GaAs纳米线。1.2.2 溶剂热法

该反应是在高压釜中,以相对较低的温度和压力进行的。原料各组分按一定比例混合在溶剂中,在这种方法中,溶剂处在高于其临界点的温度和压力下,可以溶解绝大多数物质,从而使常规条件下不能发生的反应可以进行或加速进行。溶剂的作用还在于它可以在反应过程中控制晶体的生长,实验证明,使用不同的溶剂可以得到不同形貌的产品。如钱雪峰等[4]以水和乙二胺以及二者不同比例的混合物作溶剂,制得了带状、树枝状、花瓣状等不同形貌的 GdS纳米结构。1.3 模板法

模板法是合成一维纳米材料的有效方法。该方法具有限域能力,对一维纳米材料的尺寸及形状具有可控性。目前,广泛使用的模板主要有多孔阳极氧化铝膜、径迹蚀刻聚合物膜和介孔沸石等。模板法材料的形成仍采用化学反应等途径来完成,主要有电化学气相沉积、溶胶—凝胶法、化学气相沉积。1.3.1电化学气相沉积

将模板技术与电化学方法相结合,利用对AAO的填系和孔洞的空间限制就可以制备一维纳米材料电化学沉积法是一种简单、廉价的合成方法,可用于制备多种纳米材料,如金属、合金、半导体、导电高分子等。Shoso、Forred等采用电化学方法成功制备了Au纳米线,Davydov等在多孔阳极氧化铝纳米孔中制备了Ni纳米线,并研究了其电学性能,Evans等运用电化学沉积法在多孔氧化铝模板中合成了Co—Ni—Cu多层纳米线。[2] 1.3.2化学气相沉积

化学气相沉积法(CVD)通过原料气体的化学反应而在模板孔道内沉积形成纳米管、纳米线或纳米粒子。其反应温度比热解法低,一般在550℃~1000℃之间。该法中纳米线(管)的生长一般需使用催化剂,经常使用的催化剂有Fe、Co、Ni及其合金。杨勇等用CVD法在660℃下热分解乙炔,在模板中得到了碳纳米管阵列。贾圣果等[5]利用CVD方法制备了平均直径20nm~100nm,长度为几十微米的GaN纳米线。同时他们探讨了生长温度和催化剂对纳米线生长的影响,研究了GaN纳米线的生长过程,为了解一维纳米结构材料的生长机理,实现纳米材料的可控生长,提供了有力的实验依据。1.3.3溶胶-凝胶法 溶胶—凝胶(Sol—gel)法首先将前体分子溶液水解得到溶胶,再将Al2O3模板浸入溶胶中,溶胶沉积到孔壁,经热处理后在孔内就可得到管状或线状的产物。用Sol-gel法在Al2O3模孔内制得的是纳米管还是纳米线,取决于模板在溶胶中的浸渍时间,浸渍时间短,得到纳米管,而浸渍时间长则得到纳米线。1.3.4固态底物的特性模板

固态底物表面的浮雕结构是制备一维纳米材料天然的模板。用石版印刷术及蚀刻等方法可以方便地在固态底物的表面得到不同图案的微型结构,利用这些结构可以制备各种材料的纳米线。Jorritsma等[6]发现将金属蒸气以一定角度沉积到一列刻在InP(001)底物上的V形沟上可以制备细达20 nm的金属纳米线。

以其他方法合成的纳米线或纳米管作为模板来制备新的纳米材料,大大拓宽了可被制成均一一维纳米结构的材料的范围。这种方法最主要的问题在于难以对最终产品的组成和结晶度进行严密地控制。而模板指导反应的机理尚需进一步研究,只有了解固-气或固-液反应在原子层次上是怎样进行的,才能更好地控制产品的组成、纯度、结晶度和形貌。[7] 2 结语

一维纳米材料具备纳米材料的小尺寸效应、量子尺寸效应、表面效应、宏观量子隧道效应等特殊性质,其在物理化学方面的特性在新型半导体器件方面具有广阔的应用前景。目前,气相法、液相法、模板法制备一维纳米材料的工艺逐渐成熟,一些新型制备工艺如:离子液体制备新技术[8],在制备复杂尺寸一维纳米材料具有较大优势。随着一维纳米材料的研究日益激烈及制备新技术的不断发展,多功能光电等半导体器件将更加小型化、智能化。参考文献

[1] 梁芳 ,郭林.钴及其化合物一维纳米材料的制备研究进展[J].世界科技研究与发展,2006,28(4):37-41.[2] 周明林、李应真等.一维纳米材料的制备及应用[J].信阳农业高等专科学校学报,2010(4):121-124.[3] Wu Y,Yang P.Physical Review Letters[J].M.G.Payne.,2003(9):123.[4] 曹立新,吕艳玲,孙大可.Mn纳米晶体结构和发光性质的研究[J].功能材料,2008(2):194-196.[5] 向 杰,贾圣果.氧化鎵纳米带的制备研究[J].固体电子学研究与进展,2002(4):449-453.[6] Jorritsma J,Gijs M A M,Kerkhof J M,et al.General technique for fabricating large arrays of nanowires [J].Nanotechnology,1996,7(3):263.[7] 孙大可、曹立新、常素玲.一维纳米材料的制备、性质及应用[J].稀有金属2006(2):88-93.[8] 王宝和.一维纳米材料的离子制备新技术[J].2007,24(1):11-13.

第四篇:隐身材料

隐身材料

(stealth material)隐身材料是实现武器隐身的物质基础。武器装 备如飞机、舰船、导弹等使用隐身材料后,可大大减小自身的信号特征,提高生存能力。隐身材料按频谱可分 为声、雷达、红外、可见光、激光隐身材料、按材料用途可分为隐身涂层材料和隐身结构材料。声隐身材料包 括消声材料,隔声材料,吸声材料及消声、隔声、吸声的复合体。主要用于新一代潜艇。雷达隐身材料能吸收雷 达波,使反射波减弱甚至不反射雷达波,从而达到隐身的目的。如日本研制的一种由电阻抗变换层和低阻抗谐振 层组成的宽频带高效吸波涂料,其中变换层由铁氧体和树脂混合组成,谐振层由铁氧体导电短纤维和树脂组成,在1~20吉赫的雷达波段上吸收率达20分贝以上。另外,一些由硅、碳、硼、玻璃纤维,以及某些陶瓷与有机聚 合物构成的复合材料,有很高的机械强度,可用于制作部分结构件,如飞机蒙皮、雷达天线罩等,同时又具有隐身 功能,这类材料称为隐身结构材料。红外隐射材料主要用于车辆、舰艇、军用飞机及其他军用设施,使这些装 备和设施的红外辐射与背景基本达到一致,敌人的红外探测器难以分辨。用铝粉及含有二价铁离子的材料作为 填充料,加到能透过红外线的粘结剂中,可构成红外隐身涂料。可见光隐身材料通常由铝粉、多属氧化物粉和有 机物复合而成,或由掺杂的半导体材料构成,可形成与背景颜色相匹配的迷彩图案,满足可见光隐身的要求。激 光隐身材料用来对抗激光制导武器、激光雷达和激光测距机,要求这些材料对激光的反射率低可吸收率高。对 隐身材料来说,对某种探测手段的隐身性能好,往往对另一种探测手段的隐身性能就不好。例如,对激光探测的 隐身性能好,对红外探测就不能隐身。这就是隐身材料的相容性问题。为解决这一问题,研制了兼容型隐身材 料,如雷达波、红外兼容隐身材料,红外、激光兼容隐身材料,雷达波、红外、激光等多种兼容的隐身材料等。这是当前隐身材料的发展方向。1.雷达吸波材料

雷达吸波材料是最重要的隐身材料,其中尤以结构型雷达吸波材料和吸波涂料最为重要,国外目前已实用的主要也是这两类隐身材料。(1)结构型雷达吸波材料

结构型雷达吸波材料是一种多功能复合材料,它既能承载作结构件,具备复合材料质轻、高强的优点,又能较好地吸收或透过电磁波,已成为当前隐身材料重要的发展方向。

国外的一些军机和导弹均采用了结构型RAM,如SRAM导弹的水平安定面,A-12机身边缘、机翼前缘和升降副翼,F-111飞机整流罩,B-1B和美英联合研制的鹞-Ⅱ飞机的进气道,以及日本三菱重工研制的空舰弹ASM-1和地舰弹SSM-1的弹翼等均采用了结构型RAM。近年来,复合材料的高速发展为结构吸波材料的研制提供了保障。新型热塑性PEEK(聚醚醚酮)、PES(聚醚砜)、PPS(聚苯硫醚)以及热固性的环氧树脂、双马来酰亚胺、聚酰亚胺、聚醚酰亚胺和异氰酸酯等都具有比较好的介电性能,由它们制成的复合材料具有较好的雷达传输和透射性。采用的纤维包括有良好介电透射性的石英纤维、电磁波透射率高的聚乙烯纤维、聚四氟乙烯纤维、陶瓷纤维,以及玻纤、聚酰胺纤维。碳纤维对吸波结构具有特殊意义,近年来,国外对碳纤维作了大量改良工作,如改变碳纤维的横截面形状和大小,对碳纤维表面进行表面处理,从而改善碳纤维的电磁特性,以用于吸波结构。

美国空军研究发现将PEEK、PEK和PPS抽拉的单丝制成复丝分别与碳纤维、陶瓷纤维等按一定比例交替混杂成纱束,编织成各种织物后再与PEEK或PPS制成复合材料,具有优良的吸收雷达波性能,又兼具有重量轻、强度大、韧性好等特点。据称美国先进战术战斗机(ATF)结构的50%将采用这一类结构吸波材料,材料牌号为APC(HTX)。

国外典型的产品有用于B-2飞机机身和机翼蒙皮的雷达吸波结构,其使用了非圆截面(三叶形、C形)碳纤维和蜂窝夹芯复合材料结构。在该结构中,吸波物质的密度从外向内递增,并把多层透波蒙皮作面层,多层蒙皮与蜂窝芯之间嵌入电阻片,使雷达波照射在B-2的机身和机翼时,首先由多层透波蒙皮导入,进入的雷达在蜂窝芯内被吸收。该吸波材料的密度为0.032g/cm,蜂窝芯材在6-18GHz时,衰减达20dB;其它的产品如英国Plessey公司的“泡沫LA-1型”吸波结构以及在这一基础上发展的LA-

3、LA-

4、LA-1沿长度方向厚度在3.8~7.6cm变化,厚12mm时重2.8kg/m2,用轻质聚氨酯泡沫构成,在4.6~30GHz内入射波衰减大于10dB;Plessey公司的另一产品K-RAM由含磁损填料的芳酰胺纤维组成,厚5~10mm,重7~15kg/m2,在2~18GHz衰减大于7dB。美国Emerson公司的Eccosorb CR和Eccosorb MC系列有较好的吸波性,其中CR-114及CR-124已用于SRAM导弹的水平安定面,密度为1.6~4.6kg/m2,耐热180℃,弯曲强度1050kg/cm2,在工作频带内的衰减为20dB左右。日本防卫厅技术研究所与东丽株式会社研制的吸波结构,由吸波层(由碳纤维或硅化硅纤维与树脂复合而成)、匹配层(由氧化锆、氧化铝、氮化硅或其它陶瓷制成)、反射层(由金属、薄膜或碳纤维织物制成)构成,厚2mm,10GHz时复介电数为14-j24、样品在7~17GHz内反射衰减>10dB。

在结构吸波材料领域,西方国家中以美国和日本的技术最为先进,尤其在复合材料、碳纤维、陶瓷纤维等研究领域,日本显示出强大的技术实力。英国的Plesey公司也是该领域的主要研究机构。(2)雷达吸波涂料

雷达吸波涂料主要包括磁损性涂料和电损性涂料

磁损性涂料主要由铁氧体等磁性填料分散在介电聚合物中组成。目前国外航空器的雷达吸波涂层大都属于这一类。这种涂层在低频段内有较好的吸收性。美国Condictron公司的铁氧体系列涂料,厚1mm,在2~10GHz内衰减达10~12dB,耐热达500℃;Emerson公司的Eccosorb Coating 268E厚度1.27mm,重4.9kg/m2,在常用雷达频段内(1~16GHz)有良好的衰减性能(10dB)。磁损型涂料的实际重量通常为8~16kg/m2,因而降低重量是亟待解决的重要问题。

电损性涂料通常以各种形式的碳、SiC粉、金属或镀金属纤维为吸收剂,以介电聚合物为粘接剂所组成。这种涂料重量较轻(一般可低于4kg/m2),高频吸收好,但厚度大,难以做到薄层宽频吸收,尚未见纯电损型涂层用于飞行器的报道。90年代美国Carnegie-Mellon大学发现了一系列非铁氧体型高效吸收剂,主要是一些视黄基席夫碱盐聚合物,其线型多烯主链上含有连接二价基的双链碳-氮结构,据称涂层可使雷达反射降低80%,比重只有铁氧体的1/10,有报道说这种涂层已用于B-2飞机。(3)电路模拟吸收体和R卡

电路模拟吸收体是西方80年代研究的一种吸波机理和方法,它运用等铲电路技术对电阻片的电感、电容等参数进行分析和设计,以衰减大部分入射能量。与电路模拟吸收体相关的设计问题是频率选择表面(FSS)设计。电路模拟吸收体可以由吸波材料中周期性金属条、栅、片构成的电阻片制成,也可以采用带有刻蚀成专门设计的格网图案的金属或金属陶瓷涂层的介质薄膜或薄纤维织物,涂层材料和厚度决定电路模拟薄膜网格单元的有效电阻值;网格单元的循环间隔以及薄膜厚度的电性能可决定吸波体的电感和电容值。这种涂层可采用气相沉积或溅射方法敷于介质薄膜表面。典型的FSS有振子型、条带型、正交线型、矩型、圆形等形状。电路模拟吸收体图案比较复杂,一般由多个薄膜层组成。每层的设计不同且沿整个吸波体厚度变化,层间距离由设计频率确定。这种吸波体一般用于吸收宽频带电磁波,目前已用于隐身飞机座舱盖、隐身雷达天线罩的设计。

另一类吸波材料是称为R卡的电阻性薄膜和纤维织物。这些材料由介质基体材料与非常薄的真空沉积层、溅涂金属或金属陶瓷组成。R卡可利用沉积厚度逐渐变化和/或电阻率逐渐变化的材料构成分级涂层。R卡用于机翼时,能较好地满足气动外形的要求。在吸收前缘表面的次行波方面也很有效。2.红外隐身材料〔1〕

红外隐身材料作为热红外隐身材料中最重要的品种,因其坚固耐用、成本低廉、制造施工方便,且不受目标几何形状限制等优点一直受到各国的重视,是近年来发展最快的热隐身材料,如美国陆军装备研究司令部、英国BTRRLC公司材料系统部、澳大利亚国防科技组织的材料研究室、德国PUSH GUNTER和瑞典巴拉居达公司均已开发了第二代产品,有些可兼容红外、毫米波和可见光。近年来美国等西方国家在探索新型颜料和粘接剂等领域作了大量工作。新一代的热隐身涂料大多采用热红外透明度

[影响] 隐身材料是隐身技术的重要组成部分。武器系统采用隐身材料可以降低被探测率,提高自身的生存率,增加攻击性,获得最直接的军事效益。因此隐身材料的发展及其在飞机、主战坦克、舰船、箭弹上应用,将成为国防高技术的重要组成部分。

隐身材料是实现武器隐身的物质基础。武器装 备如飞机、舰船、导弹等使用隐身材料后,可大大减小自身的信号特征,提高生存能力。隐身材料按频谱可分 为声、雷达、红外、可见光、激光隐身材料、按材料用途可分为隐身涂层材料和隐身结构材料。声隐身材料包 括消声材料,隔声材料,吸声材料及消声、隔声、吸声的复合体。主要用于新一代潜艇。雷达隐身材料能吸收雷 达波,使反射波减弱甚至不反射雷达波,从而达到隐身的目的。如日本研制的一种由电阻抗变换层和低阻抗谐振 层组成的宽频带高效吸波涂料,其中变换层由铁氧体和树脂混合组成,谐振层由铁氧体导电短纤维和树脂组成,在1~20吉赫的雷达波段上吸收率达20分贝以上。另外,一些由硅、碳、硼、玻璃纤维,以及某些陶瓷与有机聚 合物构成的复合材料,有很高的机械强度,可用于制作部分结构件,如飞机蒙皮、雷达天线罩等,同时又具有隐身 功能,这类材料称为隐身结构材料。红外隐射材料主要用于车辆、舰艇、军用飞机及其他军用设施,使这些装 备和设施的红外辐射与背景基本达到一致,敌人的红外探测器难以分辨。用铝粉及含有二价铁离子的材料作为 填充料,加到能透过红外线的粘结剂中,可构成红外隐身涂料。可见光隐身材料通常由铝粉、多属氧化物粉和有 机物复合而成,或由掺杂的半导体材料构成,可形成与背景颜色相匹配的迷彩图案,满足可见光隐身的要求。激 光隐身材料用来对抗激光制导武器、激光雷达和激光测距机,要求这些材料对激光的反射率低可吸收率高。对 隐身材料来说,对某种探测手段的隐身性能好,往往对另一种探测手段的隐身性能就不好。例如,对激光探测的 隐身性能好,对红外探测就不能隐身。这就是隐身材料的相容性问题。为解决这一问题,研制了兼容型隐身材 料,如雷达波、红外兼容隐身材料,红外、激光兼容隐身材料,雷达波、红外、激光等多种兼容的隐身材料等。这是当前隐身材料的发展方向。

第五篇:隐身材料专题

隐身材料专题

一、各种隐身飞机发展历程介绍

1、美国第一次正式提出发展隐身技术是在1973年.这一年.美国国防部下属的先进研究计划局(DARPA)提出了一项代号“海弗蓝”(Have Blue)的研究计划.这就是隐身技术研究的开始,在“海弗蓝”计划中,DARPA对之前世界各国关于隐身技术的研究情况,以及隐身概念的提出情况进行了总结,甚至一直追溯到1936年最早的隐身飞机概念,当时所提出的隐身飞机概念就是能够不被肉眼发现.不被雷达发现,不被红外探测系统发现,无法听到声音的飞机。

“海弗蓝”计划经过一年多的进展,向美国空军提供了许多非常有价值的研究成果,有了这些成果的支持,美国空军决定制造一架专用的验证机,即试验性隐身技术试验机(XST)。2、3、第一种真正的 “隐身”轰炸机是美国的F—117战术轰炸机。美国洛克希德公司从70年代中期开始执行秘密研制 “隐身”战斗机的 “臭鼬工程”计划。1977年原型机试飞成功,1981年定型投产。F—117外型奇特,翼身融为一体,整个机身表面几乎全部由多个小平面拼命而成,可将雷达波以各种角度散射,不能形成有效的回波。

在美国入侵巴拿马和海湾战争轰炸伊拉克的空袭中,美国多闪成功地使用F—117执行轰炸任务,而一次也没有被对方探测到。

4、世界先进的隐形飞机

二、隐身材料分类及原理

隐身材料按频谱可分为声、雷达、红外、可见光、激光隐身材料。按材料用途可分为隐身涂层材料和隐身结构材料。这里便着重介绍几类重要的隐身材料。

1、雷达吸波材料

它能吸收雷达波,使反射波减弱甚至不反射雷达波,从而达到隐身的目的。如日本研制的一种由电阻抗变换层和低阻抗谐振层组成的宽频带高效吸波涂料,其中变换层由铁氧体和树脂混合组成,谐振层由铁氧体导电短纤维和树脂组成,在1~20吉赫的雷达波段上吸收率达20分贝以上。雷达吸波材料中尤以结构型雷达吸波材料和吸波涂料最为重要,国外目前已实用的主要也是这两类隐身材料。A、结构型雷达吸波材料

一种多功能复合材料,它既能承载作结构件,具备复合材料质轻、高强的优点,又能较好地吸收或透过电磁波,已成为当前隐身材料重要的发展方向。

碳纤维对吸波结构具有特殊意义,近年来,国外对碳纤维作了大量改良工作,如改变碳纤维的横截面形状和大小,对碳纤维表面进行表面处理,从而改善碳纤维的电磁特性,以用于吸波结构。美国先进战术战斗机(ATF)结构的50%将采用这一类结构吸波材料。

B、雷达吸波涂料

雷达吸波涂料主要包括磁损性涂料、电损性涂料。

1)磁损性涂料主要由铁氧体等磁性填料分散在介电聚合物中组成。目前国外航空器的雷达吸波涂层大都属于这一类。这种涂层在低频段内有较好的吸收性。磁损型涂料的实际重量通常为8~16kg/m2,因而降低重量是亟待解决的重要问题。

2)电损性涂料通常以各种形式的碳、SiC粉、金属或镀金属纤维为吸收剂,以介电聚合物为粘接剂所组成。这种涂料重量较轻(一般可低于4kg/m2),高频吸收好,但厚度大,难以做到薄层宽频吸收

2、纳米复合隐身材料

纳米材料的特性:表面效应,量子尺寸效应,小尺寸效应

纳米复合隐身材料的隐身机理

由于纳米材料的结构尺寸在纳米数量级,物质的量子尺寸效应和表面效应等方面对材料性能有重要影响。隐身材料按其吸波机制可分为电损耗型与磁损耗型。电损耗型隐身材料包括SiC粉末、SiC纤维、金属短纤维、钛酸钡陶瓷体、导电高聚物以及导电石墨粉等;磁损耗型隐身材料包括铁氧体粉、羟基铁粉、超细金属粉或纳米相材料等。

金属粉体(如Fe、Ni等)随着颗粒尺寸的减小,特别是达到纳米级后,电导率很低,材料的比饱和磁化强度下降,但磁化率和矫顽力急剧上升。其在细化过程中,处于表面的原子数越来越多,增大了纳米材料的活性,因此在一定波段电磁波的辐射下,原子、电子运动加剧,促进磁化,使电磁能转化为热能,从而增加了材料的吸波性能。一般认为,其对电磁波能量的吸收由晶格电场热振动引起的电子散射、杂质和晶格缺陷引起的电子散射以及电子与电子之间的相互作用三种效应来决定。

纳米Si/C/N粉体的吸波机理与其结构密切相关。其理论认为,在纳米Si/C/N粉体中固溶了N,存在Si(N)C固溶体,而这些判断也得到了实验的证实。固溶的N原子在SiC晶格中取代C原子的位置而形成带电缺陷。在正常的SiC晶格中,每个碳原子与四个相邻的硅原子以共价键连接,同样每个硅原子也与周围的四个碳原子形成共价键。当N原子取代C原子进入SiC后,由于N只有三价,只能与三个Si原子成键,而另外的一个Si原子将剩余一个不能成键的价电子。由于原子的热运动,这个电子可以在N原子周围的四个Si原子上运动,从一个Si原子上跳跃到另一个Si原子上。在跳跃过程中要克服一定势垒,但不能脱离这四个Si原子组成的小区域,因此,这个电子可以称为“准自由电子”。在电磁场中,此“准自由电子”在小区域内的位置随电磁场的方向而变化,导致电子位移。电子位移的驰豫是损耗电磁波能量的主要原因。带电缺陷从一个平衡位置跃迁到另一个平衡位置,相当于电矩的转向过程,在此过程中电矩因与周围粒子发生碰撞而受阻,从而运动滞后于电场,出现强烈的极化驰豫。

纳米复合隐身材料因为具有很高的对电磁波的吸收特性,已经引起了各国研究人员的极度重视。而其一旦应用于实际产品,也必将会对各国的政治、经济、军事等多方面产生巨大影响。

3、红外隐身材料

红外隐身材料作为热红外隐身材料中最重要的品种,因其坚固耐用、成本低廉、制造施工方便,且不受目标几何形状限制等优点。红外隐身材料主要有单一型和复合型两种。

A、单一型红外隐身材料

导电高聚物材料重量轻、材料组成可控性好且导电率变化范围大,因此作为单一红外隐身材料使用的前景十分乐观,但其加工较困难且价格相当昂贵,除聚苯胺外尚无商品生产。B、复合型红外隐身材料

复合型红外隐身材料主要有涂料型隐身材料、多层隐身材料和夹芯材料。

1)涂料型隐身材料

涂料型红外隐身材料一般由粘合剂和填料两部分组成。填料和粘合剂是影响红外隐身性能的主要因素,目前的研究大多针对热隐身。

2)多层隐身材料

多层隐身材料中最常见的是涂敷型双层材料。一般有微波吸收底层和红外吸收面层组成。3)夹芯材料

夹芯材料一般由面板和芯组成。面板一般为透波材料, 芯为电磁损耗材料和红外隐身材料。

4、其它隐身材料

A、电路模拟隐身材料

该技术是在合适的基底材料上涂敷导电的薄窄条网络、十字形或更复杂的几何图形, 或在复合材料内部埋入导电高分子材料形成电阻网络, 实现阻抗匹配及损耗, 从而实现高效电磁波吸收。

B、手征隐身材料

所谓的手征是指一个物体不论是通过平移或旋转都不能与其镜像重合的性质。研究表明, 手征材料能够减少入射电磁波的反射并能够吸收电磁波。目前, 用于微波波段的手征材料都是人造的。现在研究的手征吸波材料是在基体中掺杂手征结构物质形成的手征复合材料。

C、红外隐身柔性材料

这种材料是指以织物为中心开发的各种红外隐身材料, 常常以高性能纤维织物为基础。

D、红外隐身服

美国特立屈公司(TeledyncIndustr ies Inc)设计出一种红外隐身效果较好的隐身服。这种隐身服可以与背景保持一致,从而保证人体的红外特性难于被红外探测器探测到。

三、研究前景展望

对隐身材料来说,对某种探测手段的隐身性能好,往往对另一种探测手段的隐身性能就不好。例如,对激光探测的隐身性能好,一般对红外探测就不能隐身,这就是隐身材料的相容性问题。为解决这一问题,需要研制兼容型隐身材料,如雷达波、红外兼容隐身材料,红外、激光兼容隐身材料,雷达波、红外、激光等多种兼容的隐身材料等。

下载纳米隐身材料概述word格式文档
下载纳米隐身材料概述.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    隐身人读后感

    最近,我读了一本科幻小说——《隐身人》,我沉溺于故事引人入胜的情节中,痴迷于作者各种精彩的文字里,更是感慨作家独具匠心的写作方法和和语言表达。一连几天我都手不释书,一口气......

    《隐身人》读后感

    《隐身人》读后感 《隐身人》读后感1 今天,我一口气读完了英国小说——《隐身人》,这是一本精彩而又神秘的科幻、悬疑小说,扣人心弦的故事让人不得不一口气看下去。故事讲述的......

    隐身人读后感

    科技使我们的生活素质提高了不止一倍,这可以举很多例子比如:有了电灯,晚上不再漆黑;有了飞机,咫尺天涯不再是梦想。科技的益处是我们无法否认的,但科技如果应用不当,便会给社会造成......

    隐身不好玩故事

    1假期,汤吉儿背了几身替换衣服独自一人乘车到住在八十公里外的S城姑妈家去玩。姑妈一家人热情地接待了汤吉儿,尤其是肥胖的姑妈和八岁的表妹,见到汤吉儿,那种合不拢嘴的高兴劲甭......

    纳米论文(合集)

    聚合物基-纳米二氧化硅复合材料的应用研究进展 班级12材料2班学号1232230042姓名王晓婷 摘要本文介绍了近年来国内外纳米SiO2聚合物复合材料的制备方法,讨论了制备方法的特点......

    纳米论文

    纳米技术在医学上的应用 [摘要]纳米医学是纳米技术与医药技术结合的产物,纳米医学研究在疾病诊断和治疗方面显示出了巨大的应用潜力。近几年,纳米技术突飞猛进,作为纳米技术......

    纳米材料论文

    纳米科技及纳米材料 【摘 要】纳米技术是当今世界最有前途的决定性技术。纳米材料在结构、光电和化学性质等方面的诱人特征,引起物理学家、材料学家和化学家的浓厚爱好。80年......

    纳米演讲稿

    开头:Today, we will talk about nano-materials and nano technology in the field of textiles and clothing. Our introduction includes four parts , Introduction and......